I
a0a1a2
a3a4a5a6a7a8a6a9
c?September 6, 2005
c?a0a1a2 1 September 6, 2005
September 6, 2005 2 c?a0a1a2
a10 a11
a12a13a14 a15a16a17a18a19a20a21a22a23a24 5
§1.1 a25a26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
§1.2 a27a28a29a30a31a32a33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
§1.3 a34a35a36a37a38a39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
§1.4 a40a41a42a43a44a45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
§1.5 a46a47a48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
§1.6 a36a37a49a50a51a52a31a53a54a55a56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
§1.7 a53a57a58a59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
§1.8 a60a61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
a12a62a14 a15a16a63a64a65a66a67 13
§2.1 a25a26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
§2.2 a53a68a29a69a31a70a30a30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
§2.3 a71a72a31a73a74a29a68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
§2.4 a53a35a75a76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
§2.5 a73a74a58a59a29a68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
a12a77a14 a78a79a80a81a19a20 19
§3.1 a25a26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
§3.2 a82a83a84a85a38a39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
§3.3 a86a87a88a36a37a38a39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
§3.4 a82a83a84a85a38a39
a3
a74a89a56a68a90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
§3.5 a86a87a88a36a37a38a39
a3
a74a89a56a68a90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
§3.6 a82a83a84a85a38a39
a3
a74a58a59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
§3.7 Pareto-a91a92a58a59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
a12a93a14 a94a95 27
§4.1 a25a26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
§4.2 a96a97
a6a98a99
a29a47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
§4.3 a100a68a101a102a74a103a53a30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
a12a104a14 a105a106a95a107a108a109a110a21a67a111a112a108a113a95a114 33
§5.1 a25a26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
§5.2 a89a56a68a90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
§5.3 a115a116a117a118a119a31a120a121a122a123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
§5.4 a116a117
a3
a30a124a125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3
a126 a127 a126 a127
§5.5 a116a117
a3
a30a124a125a128a74a35a129a118a119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
§5.6 a116a117
a3
a30a100a68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
§5.7 a68a130a74a131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
§5.8 a29a68a132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
§5.9 a60a61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
a12a133a14 a17a18a22a134a64a65a135 45
§6.1 a25a26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
§6.2 a136a72a31a120a121a136a72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
§6.3 a120a121a136a72a31a137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
§6.4 a136a72a31a137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
a12a138a14 a139a140a141a142a22a17a18a113a95 51
§7.1 a25a26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
§7.2 a35a129a143a144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
§7.3 a116a117a145a146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
§7.4 a55a56a147a148a149a31a148a149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
§7.5 a98a150a151a152a74a36a37a29a68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
§7.6 a153a45a154a155a128a74a36a37a29a68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
§7.7 a156a35a157a158a159a46a125a74a160a82a30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
§7.8 a60a61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
a12a161a14 a162a106a163a164a113a95a65 CAPM 57
§8.1 a165a85a166a167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
§8.2 a168a153a169ta89a56a74a53a35a36a37a38a39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
§8.3 a55a56a170a171a29a68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
§8.4 a172a173a86a174a143a144a74a55a56CAPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
§8.5 a34a35a38a39a118a119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
§8.6 a175a84a85a38a39
a3
a74a55a56CAPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
September 6, 2005 4 c?a0a1a2
a176a177a178 a179a180a181a182a183a184a185a186a187a188
§1.1 a189a190
a168a191a35a36a37a38a39a75a76
a3
a192
a36a37a193a168a35a194a195a196a53a174a197a198a199a75a76a91a200a50
a150
a36a37a74a116a117a31a118a119a45a74
a201a202a203a204
a116a117a74a58a59a205a206
a3
a74a36a37a74a207a144a74a208a209a197
a168a191a35a75a76
a3
a192
a210
a173a74a27a28a29a30a211a53a174a212a213a74a197
a214
a121a215a74a211
a192
a216a217
a27a28a29a30a211a218a219a220a212a213a74a197
a221a222
a27a28a29a30a74a212a213
a192
a46a47a48a53a174a223a53a174a224a195a196a36a37a197
a99a225a226a227a228a229a225
a74a34a35a75a76a230a231a27a28a29a30
a74a218a232a212a213
a192
a203a204a233a234a235
a173
a201
a36a37a68a90
a226a236a237
a74a238a32a33a153a230a231a36a37a74a239a195a196a197
§1.2 a240a241a242a243a244a245a246
a73a247a168a191a35a75a76
a3a248a249
a192
a168a34a35a75a76
a3
a192
a27a28a29a30a144a250a83a251 (a252
a249a99
a44a45) ?a253a254a255a197a0a53a1
a250a83a211a2
a210
a173a153a169t = 0,1,...,T a74a3a4a5a6a74a53a1a7a8a197a168a153a1690
a192
a46a47a48a27a166a9a10a53a1a250a83a11
a12
a215a121a197a13a211
a221a222
a153a45a74a14a15
a192a16a17
a234a235a18
a253
a18
a34a74
a201a150
a250a83a74a32a33a197a168a153a169 T
a192a16a17
a11a166a9a19
a215a74a250a83a197
a73a88a224
a192
a46a47a48a168a153a169ta74a32a33a251a144a250a83a251?a74a53a1a155a20Ft a253a7a8a197a53a1a155a20 Ft
a21
a211?a74
a53a1a123a251a22
a192
a198a23a123a251a24a24a27a25a195a26a27a28a29a30a31a1
a249a99
a44a45
a192a32a33a34
a254
a192
a0a1a250a83 ω ∈ ?a35
a150
a26
a36
a35
a150F
t a74a53a1a37a38a197a39a212a40a211a41a168a153a169 ta46a47a48a166a9a19a215a250a83a35
a150F
t a74a10a1a37a38a192a13a27a166a9
a198a1a37a38
a3
a74a10a1a250a83a211a19a215a250a83
a192a42a43
a166a9a27a35
a150
a198a1a37a38a74
a248
a23a250a83a11a27a27a215a121a197
a44a45 1.1
a46a47a48a49a50a51a52a53a54a55a56a57a58a52
a192a59
a50a51a53a54a55a60a51a57a58a52a61a62a197
? a168a153a1690a192a46a47a48a63a173a250a83a74a64a65a32a33
a192a66
a153a169 -0a155a20a67a68a69a155a20F0 = {?,?}.
? a168a153a169T a192a46a47a48a70a173a84a71a32a33
a192
a122
a43
a153a169 -T a155a20a67a72a155a20 FT = {{ω} : ω ∈ ?}.
? a168a153a1691,...,T ?1a192a46a47a48a70a173a74a32a33a73a74
a150a75
a24a76
a3
a45a77
? Ft+1
a78
Ft
a79a80
(a27a53a29a81a90
a79a80
)a192a252a53a1a250a83a210a168a74a153a169 -(t+1)a155a20a74
a248
a1a37a38a211a82
a210
a168
a74a153a169-ta155a20a74
a248
a1a37a38a74a123a251a197a83a68a224
a192
a247a84a24a1a250a83a35
a150 t
a153a169a155a20a74a24a1a27a85a37a38
a192
a86
a82
a17
a27a154a27a35
a150ta203a227
a64a65a153a169a155a87a74a85a53a37a38a77
? a88a89a46a47a48a90a91a27a27a92a61
a16a17a93
a3a166a9a74a32a33
a192
a252
a16a17
a201a150
a250a83a74a32a33a211a175a94a74a197
? a155a20a74T + 1a37a49{F0,F1,...,FT}a95a67a32a33a96a123
a192
a61a67F.
? a168a173a97a1a250a83a74a98a99
a192
a32a33a96a123a74a100a53a1a101a102a211a103a104a105(a106a1071.1)
– a155a20Ft a74a0a1a37a38a95a67a53a1a153a169-ta89a56
a192
a203a204
a89a56a108a74a53a1a109
a110
a192
a61a207ξt;
– a89a56ξ0 = F0 a95a67a111a109
a110;
– a89a56ξt a74a112a53a211a89a56ξτ ? ξt, τ > t.
a89a56ξt a74a113a53a211a89a56ξt+1 ? ξt.
– a89a56ξt a74a114a115a211a89a56ξτ ? ξt, τ < t.
a89a56ξt a74a116a115a211a103a53a74
a192
a67a89a56ξt?1 ? ξt,a61a207ξ?t .
? a168
a210
a173a74a11a253a153a169 t = 1,...,T a74
a210
a173a89a56a117a43a74a251a50a61a67 Ξ. a118a61 k = sharp(Ξ) a67 Ξ a3a74a89a56
a74a119a73a197
a150
a211a120a121a122a123a124a74a89a56a119a67 k + 1.
5
1.2a125a126a127a128a129a130a131 a132a133
a134 a135a136a137a138a139a140a141a142a143a144
a145
a145
a146
a147
a148
a148
a149
a150
a150
a151
a152
a153
ω1
ω2
ω3
ω4
ω5
ω6
ω7
ω8
ω9
ω10
ω11
ω12
ω13
ω14
ω15
ω16
ω17
ω18
ω19
ω20
ω21
ω22
a45 t
a153a1690 a153a1691 a153a1692 a153a1693
a1541.1:
a155a156a157
September 6, 2005 6 c?a158a159a160
a132a133
a134 a135a136a137a138a139a140a141a142a143a144 1.2
a125a126a127a128a129a130a131
a161 1.2.1
a162a163a57a164a61a62
a165
a56a166a167a168a169a52a170a171a172a173a197
a174
a167a172a173a175a176
a177a178 (G)
a192
a175a176
a177a179 (B)
a197
a180
a167a168a169
a181a182a1831
a184a185a172a173
a192a186
a180
a167a168a169
a181a182a1832
a184a185a172a173
a192
a187a188a189a190?
a191a166a167a172a173a52a192a193
a194a195a196a197a198a199
a41
ξgg
ξgb
ξbg
ξbb
ξg
ξb
ξ0
a1541.2:
a155a156a157
? = {GG,GB,BG,BB}
a61a62
a200
a113a201
F0 = {?, ?}
F1 = {{GG,GB},{BG,BB}}
F2 = {{GG},{GB},{BG},{BB}}
a181a182a183 0
a192
a53a54a55a202a176
a203a204a205a206
a192
a181a182a183 1
a205a206
a168a1691 a52a170a171a172a173
a192
a181a182a183 2
a205a206 2
a167a168a169
a52a170a171a172a173a197
a182a183 1
a52a103a104a51
ξg = {GG,GB}, ξb = {BG,BB}
a182a183 2
a52a103a104a51
ξgg = {GG},ξgb = {GB},ξbg = {BG},ξbb = {BB}
a50a51a207a208a103a104
a190
a201
Ξ = {ξg,ξb,ξgg,ξgb,ξbg,ξbb}
? a46a47a48a201a150a250a83a74a32a33a209a73a210a224a211a212a168a210a173a3a4a213a73a3a192a247a214a215a108a36a37a68a90a108a216a72a108a36a37a49a50
a217
a173
a108a151a152a218
a20
a192
a83a83a197a172a219a253a254
a192
a247a84a27a27
a98a150
a153a169ta46a47a48a154
a234a235
a74a32a33a220a155a221a23a250a83
a192
a248a222a223a224
a153a169 t a198a23a250a83a128a74
a151a152a218
a20a225a36a37a68a90a211a63a173a226a227a74a197a254a255a198a23a213a73a74a53a1a148a228
a211
a192a229
a82
a17a230a231
a43a250a83a251?a232a74a102a119
a192
a118a88a89a82
a17
a201a150
a155a87Ft a211
a194a233
a52.
? a29a227a41a247a84ta153a74
a151a152
a144a102a119ct : ? →Ra230a231a74
a34a192
a248a222c
t
a201a150F
t a74a154a234a30a211a235 ct a168a0a1
a89a56ξt ∈Ft a232a211a210a119
a192
a252
ω,ωprime ∈ ξt ? ct(ω) = ct(ωprime)
a236
a17a229
a198a1a237a85a74a130a61a207ct(ξt),a238a61a67c(ξt). a128a85a197
? a144ct a230a231a2
a210
a173ξt ∈Ft, a239c(ξt)a49a43a74a240a73
a192a241
a119a83
a150F
t
a3
a74a89a56a119sharp(Ft).
c?a0a1a2 7 September 6, 2005
1.3a135a136a137a138a139a140 a132a133
a134 a135a136a137a138a139a140a141a142a143a144
– a198
a249
a192
a236
a17
a144a85a53a242a243 ct
a230a231
a207a67Ft a154a234a102a119
a203a204
a207a67a240a73a74
a151a152a218
a20a197
– a244a245a224
a192
a144 c a230a231Ft a154a234a102a119 ct a74 T + 1 a37a49{c0,c1,...,cT}, a85a153
a230a231 k + 1 a241
a240a73
(c(ξ) : ξ ∈ Ξuniontext{ξ0})
? a29a227a41a247a84T + 1a37a49c a3a74a0a53a1a102a119ct a211Ft a154a234a74a192a248a222a95ca246a247
a150
a32a33a96a123F.
§1.3 a248a249a250a251a252a253
? a217a254a255J a1a0a1
a192
a0a1a2a3a4a120a5a6a1a7a8a9a7a10a11a7a10a12a13
? a14a15a0a1a16
a17a255a18
a15a19a20a21a22a23a24a25a20a26a13
? a24a25a27a28a0a1a29a2a30a2a11a31a2a23a32a33a21a22a13a34a8a9a35a24a25a36a27a37a38a39a8a40a23a41a42a25a43a13a34a6
a1a35a24a25a36a27a44a9a21a22a45a46a47a10a21a22a13
? a48xj(ξt)a49a50a0a1j a255a51a52ξt a23a24a25
a48x(ξt)a49a50J a15a0a1
a255a51a52ξ
t a23a24a25a53
a54
a35a55x(ξt) = (x1(ξt),...,xJ(ξt))
a48xjt a49a50a0a1j a255a56a2ta19a20
a51a52ξ
t a23a24a25xj(ξt)a57a58a23a53
a54a59
xjt = (xj(ξt) : ξt ∈Ft)
a48xt a49a50
a56
a2J a15a0a1
a255a56
a2ta19a20
a51a52
a23a24a25a57a58a23a53
a54
xt = (x1t,...,xJt)
? a255a19a200a60a2a24a25a35
? a2a61a62a63a15a0a1a64
a255a65
a15a19a20a2a66a67a24a25a13a3a68
a59a255
a19a20ta47a10a23a35
a69a70a711
a23a67a44a6a1a35
a255
a14a15a19a20ta51a52a23a24a25a72a731a35a74
a255a75a17
a19a20a24a25
a710
a13
? a0a1
a255a76a77a78a79
a19a20T a80a23
a56
a2a19a20a81a82a13
? a48pj(ξt)a49a50a0a1j a255a51a52ξt a23a83a84a35t = 0,...,T
a48p(ξt)a49a50J a15a0a1
a255a51a52ξ
t a23a83a84a53
a54a59
p(ξt) = (p1(ξt),...,pJ(ξt))
? a85a73a86a87a88a23a89a90a35
a91a92
a2a19a20T a23a83a84p(ξT),a93a94a81a82
a255
a19a20T a95a96a97a98
a99a100
a83a84a101
a710.
a48pjt a49a50a0a1j a255a56a2ta19a20
a51a52ξ
t a23a83a84pj(ξt)a57a58a23a53
a54
pjt = (pj(ξt) : ξt ∈Ft)
a48pt a49a50
a56
a2J a15a0a1
a255a56
a2ta19a20
a51a52
a23a83a84a57a58a23a53
a54
pt = (p1t,...,pJt)
? a48hj(ξt)a49a50a0a1j a255a51a52ξt a23a29a2
a54
a98
a48h(ξt)a49a50J a15a0a1
a255a51a52ξ
t a23a0a1a102a103a35
a71
a53
a54
h(ξt) = (h1(ξt),...,hJ(ξt))
September 6, 2005 8 c?a104a105a106
a107a108a109 a110a111a112a113a114a115a116a117a118a119 1.4
a120
a121a122a123a124a125
– a14a15a0a1a23a29a2
a54
a61a45a27a126a23a35a67a35a127a128a23 (a76a66a2a129a130a131a132)a35
– a133a134a35a85a73a86a87a88a23a89a90a35a19a20 T a102a103h(ξt)a101
a71
a67a13
a48ht a49a50
a255a56
a2a19a20ta51a52ξt a23a0a1a102a103h(ξt)a57a58a23a53
a54
ht = (h(ξt) : ξt ∈Ft)
T + 1a135a102h = {h0,...,hT}a136
a71
a0a1a102a103a137a138a13
? a63a15a0a1a102a103a137a138ha255a51a52ξt a23a21a22(a139a140a141a85)a35
a142a71z(h,p)(ξ
t),a27a143a102a103
a255a144a145a146ξ?
a23
a147
a24a25a23a21a22a148a149
a255
a143
a145a146
a23a83
a70 (
a127a30a150
a255a145a146ξ
t a81a82a151a23a83
a70
a148a149a81a82a152a23a83
a70)
a35a55
z(h,p)(ξt) ≡ [p(ξt) + x(ξt)]h(ξ?t )?p(ξt)h(ξt),t = 1,...,T
a99a153a154
a15a53
a54a155a156a157a158a71
a34a159a37
a54a155a156a160a155a161
a13
? a48zt(h,p)a49a50
a255a56
a2a19a20-ta51a52ξt a23a21a22z(h,p)(ξt)a57a58a23a53
a54
zt(h,p) = (z(h,p)(ξt) : ξt ∈Ft)
? a0a1a102a103a137a138ha255a19a200a23a83
a70a71p(ξ
0)h(ξ0)
? a162 1.3.1 – a163a164a165a166a167a168a169a170ha59a171a172a173t ≥ 1,a171a174a175ξt
a176a177
1a178a165a166j,a171ξt
a179a180a181a182
a183a184a185a186a187a188
a35a189
hj(ξt) = 1, hj(ξ) = 0, ?ξ negationslash= ξt; hi(ξ) = 0, ?ξ,i negationslash= j
z(h,p)(ξt) = ?pj(ξt)
z(h,p)(ξt+1) = pj(ξt+1) + xj(ξt+1), ?ξt+1 ? ξt
z(h,p)(ξ) = 0, ?ξ negationslash∈ Ξ\({ξt}∪{ξt+1 : ξt+1 ? ξt}
– a190a191a192a29a2a137a138: a171a174a175a193
a179a180a181a182
a174a175a194a195
a181
a178a165a166 j,
hj(ξt) = 1, ?ξt ∈Ft,t = 0,1,...,T ?1
hj(ξT) = 0, ?ξT ∈FT
hi(ξ) = 0, ?ξ,i negationslash= j
z(h,p)(ξt) = xj(ξt), ?ξt ∈Ft,t = 0,1,...,T
z(h,p)(ξ0) = ?pj(ξ0)
? a19a20ta23a24a25xjt,a83a84pjt,a102a103ht,a21a22zt(h,p)a196a27Ft a61a197a198a199a13
§1.4 a200a201a202a203a204a205
? a206a207a208a209a210a211a88a23a81a82a61a212a213a23a21a22a57a58a23a214a103a136
a71a215a216a217a218a219a220
a35a221a222
a71
M(p) = {(z1,...,zT) ∈Rk : zt = zt(h,p) for some h,t = 1,...,T}
c?a104a105a106 9 September 6, 2005
1.5a223a224a225
a107a108a109 a110a111a112a113a114a115a116a117a118a119
? a2261.3.1 a227a208a209a102a103a137a138a23a21a22a228a229a230a73a231a232a97a58a130a233a13
a234a235
a35a24a25 (xj1,...,xjT) ∈M(p),j =
1,...,J, ?p.
? a154a10a236a237a238a239a10a236a237a23a63a15a240a241a242
a235a59
a243a154
a10a236a237a227a35a231a232a97a58a130a233a27a80a97a23a35a244a245a246a73a28a221a23a208a209a21a22a98
a243
a239a10a236a237a227a35a231a232a97a58a130a233a27a247a97a23a35a245a246a73a208a209a83a84a98
? a208a209a210a211a136
a71
a27a248a249a250
a251
a179
(a245a83a84p)a35a68a252a32a33a253a254a19a20(a19a201a47T)a23a255a0a1a2a61a3
a71
a4
a15a208a209a102a103a137a138a23a21a5a254a212a213a35a55
M(p) = Rk.
a208a209a210a211a136
a71
a27a6a250
a251
a179
a35a68a252M(p)a27Rk a23a7a8a130a233a13
§1.5 a9a10a11
a2431.2a145
a227a35a12a221a222
a77
a255a0a23a13
a54c(ξ
t),ct,c.
a14a15 1.2
a16a17a18
a195a19a20a171a21a22a23a24 c = (c
0,c1,...,cT) a25a26a168 Rk+1 a27a179a28a29a30a31
a35a32a33a34a35a36
a179a37a38a39a179
a13
a206a40a41a42a101a255a0a27a126a23a35a43a19a35a44
a157a45
a23a46a48a198a199
a71
ui : Rk+1+ →R.
a44
a157a45i
a23a47a48
a71wi = (wi
0,...,wiT) ∈R
k+1
+ .
a49a59
? a46a48a198a199ua243a19a20ta27a50a51a23a35a68a252a34?(c0,c1,...,cT),a244a241cprimet ≥ ct a35a36a52
u(c0,...,cprimet,...,cT) ≥ u(c0,...,ct,...,cT).
? ua27a50a51a23a35a68a252ua243a14a15a19a20a196a27a50a51a23a13
? ua243a19a20ta27a53a84a50a51a23a35a68a252a34?(c0,c1,...,cT),a244a241cprimet > ct a35a36a52
u(c0,...,cprimet,...,cT) > u(c0,...,ct,...,cT).
? ua27a53a84a50a51a23a35a68a252ua243a14a15a19a20a196a27a53a84a50a51a23a13
§1.6 a54a55a56a57a58a59a60a61a62a63a64
? a63a15a46a48a198a199
a71u
a23a44
a157a45
a23a255a0-a208a209a102a103a65a66a67a68
a71
max u(c) (1.6.1)
s.t. c(ξ0) = w(ξ0)?p(ξ0)h(ξ0) (1.6.2)
c(ξt) = w(ξt) + z(h,p)(ξt), ?ξt,t = 1,...,T (1.6.3)
c ≥ 0 (a68a252a52a43a131a132a23a69)
September 6, 2005 10 c?a104a105a106
a107a108a109 a110a111a112a113a114a115a116a117a118a119 1.6a112a113a70a71a72a73a74a108a75a76a77
? a78a79a80a81 (1.6.2) a238 (1.6.3) a82a159
a71≤
a237a95a72a83a35a84a16a73a46a48a198a199a85a42a101
a71
a50a51a23a35a86a61a87a58
a72a83a13
? a78a79a80a81(1.6.2)a238(1.6.3)a61a37
a235
a87a58
c0 = w0 ?p0h0 (1.6.4)
ct = wt + zt(h,p), t = 1,...,T (1.6.5)
? a67a68(1.6.1)a23Lagrangea198a199
a71
L(c,h,λ) = u(c) + λ(ξ0)[w(ξ0)?p(ξ0)h(ξ0)?c(ξ0)]
+
Tsummationdisplay
t=1
summationdisplay
ξt∈Ft
λ(ξt)[w(ξt) + z(h,p)(ξt)?c(ξt)]
a75
a227λ(ξt)a71a155a159a73a78a79a80a81(1.6.3)a23Lagrangea156a8a13
? a67a68(1.6.1)a23a63a88a89a241a90
a52a71
?L
?c(ξt) = 0, ?ξt,t = 0,...,T
?L
?h(ξt) = 0, ?ξt,t = 0,...,T
a55
?u
?c(ξt) ?λ(ξt) = 0, ?ξt,t = 0,...,T (1.6.6)
λ(ξt)p(ξt) =
summationdisplay
ξt+1?ξt
[p(ξt+1) + x(ξt+1)]λ(ξt+1) (1.6.7)
? a68a252ua27a91a92a23a35a93a88a94a90
a52a95
a78a79a80a81a41a27a96a37a23a13
? a68a252a42a101?u/?c(ξt) > 0,a93a90
a52(1.6.7)
a97a58
p(ξt) =
summationdisplay
ξt+1?ξt
[p(ξt+1) + x(ξt+1)] ?u/?c(ξt+1)?u/?c(ξ
t)
a253
a75
a87a58a37
a54
a23a98a83
a71
pj(ξt) =
summationdisplay
ξt+1?ξt
[pj(ξt+1) + x(ξt+1)] ?u/?c(ξt+1)?u/?c(ξ
t)
, j = 1,...,J
a88a83a49a99a35a208a209 j a243a145a146ξt a23a83a84a72a73a208a209 j a243ξt a23a8
a145a146 ξ
t+1 a23
a147
a24a25a23a21a22
a156
a45
a243a145
a146ξ
t+1 a23a255a0
a95a243a145a146ξ
t a23a255a0a100a233a23a101a102a103a44a104a152a105a73 ξt a23
a56
a52a8
a145a146a106
a238a13
? a243a32a33a19a20a23a208a209a83a84
a95a107
a63a19a20a23a208a209a21a22a100a233a23
a99
a15a105a73
a243
a239a108a236a237a238
a154
a108a236a237a227a27a63
a134a23a13
c?a104a105a106 11 September 6, 2005
1.7 a108a109a118a119 a107a108a109 a110a111a112a113a114a115a116a117a118a119
§1.7 a61a110a111a112
? a239a108a208a209a210a211a227a23a113a114a16a63a15a208a209a83a84a53
a54 p.
a63a115a208a209a102a103a137a138 {hi}a238a63a115a255a0a1a2{ci}
a102a58a35a116a117
1. a208a209a102a103a118a137hi a238a255a0a1a2 ci a27a44
a157a45i
a23a245a83a84pa23a65a66a67a68a23
a158a119
2. a210a211a85a120a35a55
summationdisplay
i
hi = 0 (1.7.1)
summationdisplay
i
ci =
summationdisplay
i
wi (1.7.2)
? a206a207a253a18a44a157a45a23a78a79a113a114a80a81a155a161a35a61a121 (1.7.1)?(1.7.2)
– a68a252a60a52a122a123a23a208a209(a55a59 z(h,p) = 0 ? h = 0),a93(1.7.2)?(1.7.1)
– a68a252a124
a243
a122a123a23a208a209a35a93a34a159a73a116a117(1.7.2)a23a255a0a1a2a102a23
a56
a52a208a209a102a103a137a138a102a227
a125a126
a52a63a15a116a117(1.7.1)a35a55a210a211a85a120a13
? (1.7.1) a49a50a208a209a27a67a127a159a23a13a208a209a29a52
a54
a159a128
a71a129
a81a82
a54
a13a68a252a14a15a208a209a27a126a127a159a23a35a101a14
a15a44
a157a45i
a23a130a131a208a209a102a103
a71?hi
0,a84
a71a132a133a134a135
a42a101a60a52a130a131a255a0a47a48a35a93a43a19a35
a136a137
a208a209a102
a103a137a138
ˉhi
a23a210a211a138a120a90
a52
a159
a71
summationdisplay
i
ˉhi(ξt) =summationdisplay
i
?hi0, ?ξt,
a68a252a253hi a157a158a71a129a81a82a59 hi = ˉhi0 ??hi0,a93a88a83
a95(1.7.1)
a63a139a13
§1.8 a140a141
? a142a143
a158
a118a95a144a221a145a23
a51a52a146
a236a237a27a95a147a48a23a35a228
– a19a233a27a148a149a23a13
– a150a151a214a27a152a153a23a13
? a243a148a149a19a233a101a154
a107
a35
a107
a19a20 t a44
a157a45
a23a155a44a48
a51a52
a23 σ- a44a199 (σ- a156) a254a157a94a35a74a95a27a48a37a2
a254a157a94a13
September 6, 2005 12 c?a104a105a106
a158a159a160 a161a162a163a164a165a166a167
§2.1 a168a169
a95a243a65
a108a236a237a63a134a35
a243
a239a108a236a237a227a35a253a254a21a22
a95a17a92
a23a228a151a83a84a100a233a23a105a170a52
a154
a15
a234a235
a240a241
a23a145a171
a59a172
a145a145
a95
a126a145a13
§2.2 a61a173a174a175a60a176a177a177
? a239a108a210a211a227a23a63a83a221a178
a59
a32a33
a154
a15a179a52
a155
a133a21a22a23a208a209a102a103a137a138a35a52
a155
a133a23a19a20 0a83a84a35a55
z(h,p) = z(hprime,p) ? p0h0 = p0hprime0 (2.2.1)
? a90a52(2.2.1)a72a83a73
z(h,p) = 0 ? p0h0 = 0
a99
a27a90
a71
a35a180a181a221a222a35z(h,p)a27ha23
a172
a145a198a199a13
? a68a252a44
a157a45
a23a46a48a198a199
a243
a19a20 0a53a84a50a51a35a93a63a83a221a178
a243
a113a114a19a58a182a13 (a183a208a99)
? a63a83a221a178a58a182a23a184a63a15a96a37a90
a52
a27
a59 (
a185a208a99)
1. a124a243a179a52a126a23a66a67a21a22a23a208a209a102a103a137a138a35
2. a46a48a198a199
a243a186
a15a21a22a95
a71
a67a23a32a33a19a20a27a53a84a50a51a23a13
? a42a101a63a83a221a178a58a182a13
? a21a22a221a83a187a198a27a188a189q : M(p) →R,
q(z) = p0h0, ?z ∈M(p), a75a227ha190a213z = z(h,p)
? a191a229a97a58a21a22z a23a208a209a102a103a137a138ha61a62a95a192a63a13a84a63a83a221
a157a193
a208a35
a56
a52
a99a100
a137a138a23a19a200a83
a84 p0h0 a27
a155
a133a23a13
a99
a134a21a22a221a83a187a198a27a52a221a222a23a13
? a21a22a221a83a187a198q a39a14a15a21a22a28a38
a77
a97a58
a99
a15a21a22a23a208a209a102a103a137a138a23a19a20 -0a83a84a13
? q a27M(p)a88a23
a172
a145a187a198
a59
q(z + zprime) = q(z)+ q(zprime), ?z,zprime ∈M(p)
a208a99
a59 ∵ z,zprime ∈M(p), ∴ ?h,hprime
a190a213
z = z(h,p), zprime = z(hprime,p).
a16a73z(h,p)a27
a172
a145a23a35
z + zprime = z(h,p)+ z(hprime,p) = z(h + hprime,p).
a90a43
q(z + zprime) = p0(h + hprime)0 = p0h0 + p0hprime0 = q(z) + q(zprime).
13
2.3a194a195
a74a196a117a197a198 a107a199a109 a110a111
a194a195
a74a196a200
? a180a181a2261.3.1,a14a15a208a209a23a24a25a16a63a15a190a191a192a29a52a208a209a102a103a137a138a97a58a13a90a43xj ∈M(p), ?p . a74
a99
a15a190a191a192a29a52a208a209a102a103a137a138a23a19a20 -0a83a84a27pj0,a73a27
q(xj) = pj0.
a221a83a23a138a252
a95a201
a102a63a139a13
§2.3 a202a203a60a204a205a174a173
? a239a108a210a211a227a23a63a15a206a207a208a27
a99
a134a63a15a208a209a102a103a137a138h,a17a179a52a126a23a21a22z(h,p)a238a53a84a128a23a19
a200a83a84p0h0.
? a63a15a207a208a27
a99
a134a63a15a208a209a102a103a137a138a35
a17
a241a209a27a63a15a210a211a25a35a241a209a179a52a126a23a66a67a21a22a238
a71
a67
a23a19a20-0a83a84a35a55
p0h0 ≤ 0, z(h,p) ≥ 0 a212
a75
a227
a125a126
a52a63a15a53a84a95a72a83a98
? a210a211a25
?
notdblarrowleft a211a25
? a162 2.3.1 a163a164a2131.2.1. a214a215
a195
a181
a165a166
a171a174a175 ξ
gg a216
ξgb
a179a217
a208a218 1a35
a171a186
a32a219a218 0a13
a220
a165a166
a171
a172a1730
a221a222a34
a195a223a224
a179
a35
a225a171a172a173 1
a226a227
a218a228a223a224
a179
a13
a229a230a220
a165a166
a179a231a232
a218 p(ξ0) = 0, p(ξg) =
?1, p(ξb) = 0, a233a234a35
a171 ξ
g a176a177
a220
a165a166a235
a171a236
a182a237
a183a184a238
a218a239
a194a195a240a241a242a243a244a245a246a247a248 h
a34
a242a249
a207a208
a225a250
a34
a242a249
a206a207a208
a240a251
a218
ha252a253a254 -0
a231a232
p0h0 = 0
ha255 ξg a252a0a1 z(h,p)(ξg) = ?p(ξg) = 1
ha255 ξb a252a0a1 z(h,p)(ξb) = 0
ha255 ξgg a252a0a1 z(h,p)(ξgg) = x(ξgg) = 1
ha255 ξgb a252a0a1 z(h,p)(ξgb) = x(ξgb) = 1
ha255 ξbg a252a0a1 z(h,p)(ξbg) = 0
ha255 ξbb a252a0a1 z(h,p)(ξbb) = 0
a2z(h,p) = (1,0,1,1,0,0) > 0.
? a3a4a5a210a211a6? [a7a8a9a10a11a12a13a14a15h, z(h,p) ≥ 0 ? p0h0 ≥ 0]
a10a16
a17 ?)
a18z(h,p) ≥ 0. a19p0h0 < 0a240a20ha21a22a23a6a24a25a26a27a28p0h0 ≥ 0.
?)a19a4a5a22a23a6h,a20p0h0 < 0,z(h,p) ≥ 0,a29a30a31a32a33a34a18a35a36a24
? a3a4a5a23a6? [?h, z(h,p) > 0 ? p0h0 > 0]
a10a16
a17 ?)
a18z(h,p) > 0. a19p0h0 < 0a240a20ha21a22a23a6
a240a37a38
a21a23a6a39a19 p0h0 = 0a240a20 ha21
a40
a23a6a24a25a26a41a28p0h0 > 0.
?)a19a4a5a23a6h,a20
p0h0 ≤ 0, z(h,p) ≥ 0, a42a43a44
a45a46
a28
a40a47a48a49
a3a50a51a24
a25a26
a240
a19 z(h,p) > 0, a20a52a53a51a28 p0h0 ≤ 0 a240a29a30a31a32a33a34a18a35a36a39a19 z(h,p) = 0, a20a52a40a54
a55a56
a28p0h0 = 0a240a29a30
a53
a51a35a36a24
September 6, 2005 14 c?a57a58a59
a60a61a62 a63a64a65a66a67a68a69 2.4
a70
a64a71a72
? a55a73a17a74a75a55a54a76a77q a78a21a79a80a81
a240a82a83
q(z) ≥ 0, ?z ≥ 0, z ∈M(p);
a78a21a79
a48a49
a80a81
a240a82a83
q(z) > 0, ?z > 0, z ∈M(p).
? q a21a48a49a80a81?a3a4a5a23a6 ?notdblarrowleft a3a4a5a22a23a6?q a21a80a81a24
? a84a85 2.3.2 a0a1a86a87a88a89a90a91a92a93a252?a250a94a255a95a96a97
a10a16
a17
a3a4a5a23a6? [z(h,p) > 0 ? q(z(h,p)) = p0h0 > 0] ? q a79
a48a49
a80a81a97
? a84a85 2.3.3 a0a1a86a87a88a89a90a93a252?a250a94a255a98a95a96a97
a10a16
a17
a3a4a5a22a23a6? [z(h,p) ≥ 0 ? q(z(h,p)) = p0h0 ≥ 0] ? q a79a80a81a24
? q a21
a48a49
a80a81
?
notdblarrowleft q a79a80a81a24
a99 2.3.4
a100 2.3.1 a101a252a102a103
a243a244
a252a0a1a86a87a88a89a104
q(z) = 0, ?z ∈M(p)
a105
a90
a251
a104a253a2540a252
a243a244
a87a92a1040 a97
a105a249
a239a88a89a90a93a252a106
a250
a90a91a92a93a252
a240a107a108a250a94
a255a109
a110
a98a95
a96a97
§2.4 a111a112a113a114
? a115a116a117a118
a52
a115
a47a40
a116a117a118a12a119a97
? a120a116a117a118a44a81(a22)a23a6a121a122a123a124a125a126a115a116a117a118a81a8a127a128a129a130a131a132a97
? a5a133a134t < T a81a131a132ξt
a135
a81
a40
a116a22a23a6a79
a40a47
a10a11a12a13 h(ξt)a240a136a137a28a80a81
a40
a116
a74a75
[p(ξt+1) + x(ξt+1)]h(ξt) ≥ 0, ?ξt+1 ? ξt
a138
a48a49a139
a81
a54a49
p(ξt)h(ξt) < 0
? a5a133a134 t < T a81a131a132 ξt
a135
a81
a40
a116a23a6a79
a40a47
a10a11a12a13 h(ξt) a240a136a140a141a79
a40a47a40
a116a22a23a6
a240a140
a141a137
a28a80a81a128a142
a40
a116
a74a75
a138
a142
a54a49
a97a50
a54a143
a240
p(ξt)h(ξt) ≤ 0
[p(ξt+1) + x(ξt+1)]h(ξt) ≥ 0, ?ξt+1 ? ξt
a42a43a44
a45a46
a28
a40a47a48a49
a3a50a51a119a144a97
? a5a145
a47
a128a129a130a131a132a3a4a5
a40
a116a23a6?a3a4a5a115a116a23a6
a10a16
a17 ?)
a146a147a148a149a150a151a81a115a116a152a23a6a81a31
a140a153
a132
a240a154a155
a10a16
a82a156a157a158
a119a144
z(h,p) > 0 ? p0h0 > 0
c?a57a58a59 15 September 6, 2005
2.4 a70
a64a71a72 a60a61a62 a63a64a65a66a67a68a69
a159z(h,p) > 0a240a20
x(ξT)h(ξ?T ) ≥ 0, ?ξT (2.4.1)
[p(ξT?1)+ x(ξT?1)]h(ξ?T?1) ≥ p(ξT?1)h(ξT?1), ?ξT?1 (2.4.2)
...
[p(ξ1)+ x(ξ1)]h(ξ0) ≥ p(ξ1)h(ξ1), ?ξ1 ? ξ0 (2.4.3)
a42a43a44
a45a46
a28
a40a47a48a49
a3a50a51a119a144a97
a52
a126a5a145
a47 ξT?1
a3a4a5
a40
a116a23a6
a240(2.4.1)
a160a161
p(ξT?1)h(ξT?1) ≥ 0, ?ξT?1 (2.4.4)
a37a38a52(2.4.2)
a28
[p(ξT?1) + x(ξT?1)]h(ξ?T?1) ≥ 0, ?ξT?1
a162
[p(ξT?1) + x(ξT?1)]h(ξT?2) ≥ 0, ?ξT?2, ?ξT?1 ? ξT?2 (2.4.5)
a52
a126a5a145
a47ξT?2
a3a4a5
a40
a116a23a6
a240a53
a51a160a161
p(ξT?2)h(ξT?2) ≥ 0, ?ξT?2 (2.4.6)
a163
a26a164a165
a240
a28
p(ξ0)h(ξ0) ≥ 0
a52
a126(2.4.1)~(2.4.3) a44
a45a46
a28
a40a47a48a49
a3a50a51
a240a53
a51
a40
a55
a21
a48a49
a3a50a51
a240a162p(ξ
0)h(ξ0) > 0,a166
a162p
0h0 > 0.
?)a167a10a168a24a19a169a170a3a171a240a20a4a5a172a131a132 ξt, (t < T)a173a174a5ξt a4a5a40a116a23a6h(ξt),a162
p(ξt)h(ξt) ≤ 0
[p(ξt+1) + x(ξt+1)]h(ξt) ≥ 0, ?ξt+1 ? ξt
a43a44
a45a46
a28
a40a47a48a49
a3a50a51a119a144a24
a175a176
a40a47
a10a11a12a13a14a15ha17a5ξt
a177
a28a12a13h(ξt),a38a5a43a178
a131a132
a177
a28a142a12a13a24
a20a179t > 0
a133
a240
a28
p(ξ0)h(ξ0) = 0
z(h,p)(ξt+1) = [p(ξt+1) + x(ξt+1)]h(ξt) ≥ 0, ?ξt+1 ? ξt
z(h,p)(ξt) = 0?p(ξt)h(ξt) ≥ 0
z(h,p)(ξ) = 0, ?ξ ∈ Ξ\({ξt}∪{ξt+1 : ξt+1 ? ξt})
a42a43a44
a45a46
a28
a40a47a48a49
a3a50a51a24a29a30a3a4a5a115a116a23a6a35a36a24
a179 t = 0
a133
a240
a28
p(ξ0)h(ξ0) ≤ 0
z(h,p)(ξ1) = [p(ξ1) + x(ξ1)]h(ξ0) ≥ 0, ?ξ1 ? ξ0
z(h,p)(ξ) = 0, ?ξ ∈ Ξuniondisplay
ξ1?ξ0
{ξ0,ξ1}
a42a43a44
a45a46
a28
a40a47a48a49
a3a50a51a24a29a180a181a30a3a4a5a115a116a23a6a35a36a24
September 6, 2005 16 c?a57a58a59
a60a61a62 a63a64a65a66a67a68a69 2.5a68a182a183a184a185a186
? a5a145
a47
a128a129a130a131a132a3a4a5
a40
a116a22a23a6
?
notdblarrowleft a3a4a5a115a116a22a23a6a97
a10a16
a17
a30a148a164a187a97
a167a188
a17a189a190
a1882.3.1,a5ξg a4a5
a40
a116a22a23a6
a240a191
a3a4a5a115a116a22a23a6 (a25a21
a74a75
a76a77
a79a80a81)a97
§2.5 a192a193a194a195a196a197
a198a199a200a201
a84a202a203a204
a17
a205
a124a126a206a207a10a11
a54a49
a81
a74a75
a55
a54a76a77
a97
a84a85 2.5.1 a208a209a210a211a212a213a214a215a89a216a90a91a92a217a218a213a219a220a221a222a223a87a92a224a225
a94
a221a95a96a97a226a227a219a222a223a0a1
a86a87a88a89a90a91a92a93a213a97
a10a16
a17
a167a10a168a97a34a19a5a206a207
a54a49
a135
a4a5a23a6a219
a20
a4a5a10a11a12a13a14a15 ha173a174
p0h0 ≤ 0, z(h,p) ≥ 0, (2.5.1)
a43a44
a45a46
a28
a40a47a48a49
a3a50a51a97
a159hi a138ci
a79a228a229a230ia81a206a207a10a11a12a13a14a15
a138a231a232a233a234
a219
a20a136a235a236a237
a238a239a240a241
ci(ξ0) = wi(ξ0)?p(ξ0)hi(ξ0)
ci(ξt) = wi(ξt)+ z(hi,p)(ξt), ?ξt, t = 1,...,T.
a37a38
a28
ci(ξ0)?p(ξ0)h(ξ0) = w(ξ0)?p(ξ0)(hi + h)(ξ0)
ci(ξt)+ z(h,p)(ξt) = wi(ξt)+ z(hi + h,p)(ξt), ?ξt, t = 1,...,T.
a25a26hi + ha138ci + (?p0h0,z(h,p))a242
a236a237a238a239a240a241
a97a243
a52
a126a244a125
a77a245 ui a48a49a246a247
a219
a38a52(2.5.1),
ci + (?p0h0,z(h,p)) > ci
a248a231a232a233a234 ci +(?p
0h0,z(h,p))a48a49a249a126ci a219a174a250a35a36a97a25a26a5a206a207a54a49a135
a3a4a5a23a6a219
a37a38a52
a55
a2292.3.2,a206a207
a74a75
a55
a54a76a77
a21
a48a49
a80a97
a84a85 2.5.2 a208a209a210a211a212a213a214a215a89a216a90a217a218a213a219a251a221a252a253 0 a91a92a217a218a219a220a221a222a223a87a92a224a225
a94
a221a98a95
a96a219a226a227a222a223a0a1a86a87a88a89a90a93a213a97
a10a16
a17
a164a187a123a10a97
a156
a149a254a255(a29a0a34a18a28a133a79a1a2a81)
a17
a115a116a117a118a44a81
a231a232a3a4a5
a5a6a7
a138
a129a169a133a134a97
a29a0a8a9
a156
a219
a55
a2292.5.1a3a10a124a125a219a25a21a244a125
a77a245
a5a44
a11
a133a134a3a79
a48a49a246a247
a81a97
a191
a123a173a125
a82a156
a12
a0a97
a84a85 2.5.3 a208a209a210a211a212a213a214a215a89a216a90a217a218a213a251a221a252a253T a91a92a217a218a219a227a251
a94
a221a13a14a15a16a17a18a96a221a19
a20
a252a253a21a90a93a213a227a221a252a253 T a90a93a213a22a23
a24
a219a220a221a222a223a15a16a87a92a225
a94
a221a95a96a219a226a227a222a223a0a1a86a87a88
a89a90a91a92a93a213a97
a10a16
a17
a159
a10a11j a173a174xjt ≥ 0, ?t ≥ 1,a42xjT > 0. a20a206a207
a54a49pjt
a27a25a5a145
a47
a133a134a81a145
a47
a131a132a26a79
a48a49
a80a81a219
a27a20
a228a229a230a123a28a5
a54a49
a21
a139
a81 (≤ 0)a131a132a29a30a10a11j a219
a31a32a136
a177
a28a33a133a134 T a219a29a181a123
a48
a49a247a34
a228a229a230a5a133a134T a81
a231a232
a97
a37a38
a206a207a133a81
a231a232a35
a3a79a36
a249
a81a219a25a21a244a125
a77a245
a5T a48a49a246a247a97
c?a57a58a59 17 September 6, 2005
2.5a68a182a183a184a185a186 a60a61a62 a63a64a65a66a67a68a69
a159hi a138ci
a79a228a229a230ia81a206a207a10a11a12a13a14a15
a138a231a232a233a234
a97a34a19a4a5a23a6a219
a20
a4a5a10a11a12a13a14a15
ha173a174
p0h0 ≤ 0, z(h,p) ≥ 0,
a43a44
a45a46
a28
a40a47a48a49
a3a50a51a97
Case 1. a82a83 zT(h,p) > 0, a20a30a55a229 2.5.1a81a10a16
a37a38
a40
a181a219a174a33
a40a47
a30 (h
i,ci)
a81a36
a249
a33
a205
a35a36a81a169
a83
a97
Case 2. a82a83 zT(h,p) = 0, a191 p0h0 < 0, a20a28a119a39?p0h0 a29a30 α a40a10a11 j (αpj0 = ?p0h0), a31a32a136 (a41
h)
a177
a28a33a133a134 T, a123
a48a49a247a34
a228a229a230a5a133a134 T a81
a231a232
a97
a137a42a43a44
a219a7a14a15
?h = h + ˉh,
a43a44
ˉh(ξt) = (0,...,α,...,0), ?ξt ∈ Ft,?t < T, α
a21a45j a47a32a46a219 hi + ?ha138ci + (?p0?h0,z(?h,p))a236
a237a238a239a240a241
a219a42a26
a231a232a233a234
a48a49a249
a126ci,a174a250a35a36a24(a47a9
a17
a5ξ0 a81
a231a232
a3
a12
a219a5a44
a11
a133a134a81
a231a232
a3a48)
Case 3. a82a83zT(h,p) = 0a219p0h0 = 0,a191a7a172ξt(0 < t < T), z(h,p)(ξt) > 0a219
a20
a30Case 2a164a187a219a5ξt
a29a30a10a11j (a119a39a21z(h,p)(ξt)),a31a32a136(a41h)
a177
a28a33T a219
a32
a48a49a247a34
a228a229a230a81a244a125a219a180a181a174
a33a35a36a97(a47a9
a17
a5ξt a41a43a49a50a81
a231a232
a3
a12
a219a5a43a51a228a81
a231a232
a3a48a24)
September 6, 2005 18 c?a57a58a59
a52a53a54 a55a56a57a58a59a60
§3.1 a61a62
? a10a11a63a64a79a65a66
a37a67
a81 (a163a54a49 p) ? Rk = M(p) := {z(h,p) : ?h} ?a8a127
a32a43
a133a134a81
a231a232a233
a234
a206a123a68a21a172
a47
a10a11a12a13a14a15a81
a74a75
a43a69
a174a97
? a10a11a63a64a79a128
a37a67
a81? M(p) subsetornotdbleqlRk
? a5a120a116a117a118a44a219a10a11a63a64a81a37a67a33a140a70a4a5a45a46a30a71a72a73a66a40a181a115a81a10a11
? a5a115a116a117a118a44a219a28a74a75a5
a32a43
a133a134a76a77a10a11a219a29a173a174a63a64a79a65a66
a37a67
a81a78a27
a155
a81a10a11
a245
a41a131
a132
a245
a46a79
a115a97
? a39a80a81a250a65a66
a37a67
a63a64a81
a40a47
a134a82a219
a31
a10a16a206a207a81
a231a232
a32a83a79 Paretoa36
a249
a81a97
§3.2 a84a85a86a87a88a89
? a90a91a10a11a63a64a92a8a127
a54a49
a206a79a65a66
a37a67
a81a10a11a81a188a93a79 Arrow a15a16a97
? a131a132ξt a81Arrowa10a11a219a43a94a6a5a133a134ta81a131a132ξt a211,a5a78a28a43
a136
a131a132a210. a29
a47
a10a11a81
a74a75
a95
a46a79Rk a44a81
a40a47
a120a96
a95
a46
a17 (0,...,0,1,0,...,0) defines e(ξt).
? a97a28k a47Arrowa10a11a219a145a47a7a124a126Ξ a44a81a40a47a131a132(a98a99)a97
? a82a83a78a28 k a47Arrowa10a11a26a100a76a77a219a101
a141Rk
a44a8a127
a231a232a233a234
a123a125
a40a47
a29a30
a31
a177
a28a10a11a12a13
a14a15a102
a5
a97
? a28a103Arrowa10a11a219
a162
a173a76a77
a3a104
a126a133a134 0,a63a64a242a79a65a66
a37a67
a81a97
? a32a43a133a134a81a76a77a74a75a105a105
a143
a48
a46
a103a65a66
a37a67
a63a64a78
a155a140
a81a10a11
a245
a219
? a165a106a120a116a117a118a44a81
a37a67
a63a64a81a134a82a219a123a174a33a65a66
a37a67
a63a64a81
a40a47a107
a120a134a82a97
? a5a133a134t < T a131a132ξt a81
a40
a116
a74a75a108a109
a79
a40a47J ×k(ξt)
a108a109
a219a43a45j a110a111a112a79
pj(ξt+1)+ xj(ξt+1), ?ξt+1 ? ξt
a29a113k(ξt) = sharp{ξt+1 : ξt+1 ? ξt}a21ξt a81a93a98a99
a245
a97
? a84a85 3.2.1 a114a115a90a116a117a118
a119
a213?a221a19
a20
a23
a120a121a122a123 ξ
t a213a13
a110a124a125a126a127
a213a128a104 k(ξt).
a10a16
a17
a63a64a79a65a66
a37a67
a81?a5a145
a47
a128a129a130a131a132ξt a28a41a7a8a9a81a5ξt a81
a40
a116
a74a75
a219a4a5
a40a47
a10a11a12a13
a5
a119a101a129
a74a75 (
a130a131
a189
a31
a10a16). ?a5a145
a47 ξt
a81
a40
a116
a74a75a108a109
a81a132a21 k(ξt)(a147
a108
a109
a229a170).
? a133a134
a17
a63a64a79a65a66
a37a67
a81a78
a140a70
a81a36
a46
a10a11
a245=
a37
a131a132a135a81a136a98a99a250
a4
a81a36a105a32
a74
a245 max
0≤t≤T?1
k(ξt)
? a72a38a219a137a10a11
a245a138
a27a139a79a31a32a81a219a10a11
a54a49
a123a173a174a10a11a81
a40
a116
a74a75
a5a172a129a131a132a79a140a141a81a219
a37
a38
a63a64a123a28a79a128
a37a67
a81a219
a162
a173a4a5a27
a140
a245a142
a81a10a11a97
? a99 3.2.2 a221a1001.2.1 a101a219
a143
a19
a20
a23
a120a121a144a145a146a147a148a149a20a150a124
a219
a151a152
a114a115a90a116a117a118
a119
a213a153a154a155
a123
a90
a17a156a157
a94
a221
a149a20
a15a16a97
a105a20
a155
a123a158
a225a159
a150
a97
a122a160a161
a219a162a163
a94
a221
a149a20
a15a16a219a18a96
a150a164
a104
x1(ξg) = x1(ξb) = 0, x1(ξgg) = x1(ξbb) = 1, x1(ξgb) = x1(ξbg) = 0,
x2(ξg) = x2(ξb) = 0, x2(ξgg) = x2(ξbb) = 0, x2(ξgb) = x1(ξbg) = 1,
19
3.3a61a165a166a167a168a169a170 a60a171a62 a172a173a174a175a169a170
a176
x1 = (0,0,1,0,0,1), x2 = (0,0,0,1,1,0).
a221a252a253 1 a213
a149a20a122a123 ξ
g a22ξb a213a13
a110a124a125a126a127
a104
parenleftBigg
1 0
0 1
parenrightBigg
,
parenleftBigg
0 1
1 0
parenrightBigg
a177a178
a213a128a222a104 2. a179a227a219a208a209a19a103a15a16a213a87a92a221a252a253 1 a213
a149a20a122a123 ξ
g a22 ξb a222a104 1/2, a180a181a221
a252a253 0 a213a13
a110a124a125a126a127
a104 parenleftBigg
1
2
1
2
1
2
1
2
parenrightBigg
a17a128a104 1. a151a152a114a115a90a23a118
a119
a213a97(a182a183
a17
a184a185a186a187
a221a252a253 0a188a189a15a16a190a191a192a221
a149a20
a252a253 -1a122
a123
a213a225a193a13
a110a124a125
a97)
§3.3 a194a195a196a197a198a88a89
? a199a200a51a131a132a135
– a137a28a201a202a115a47(a28
a104
a47)
a133a134
– a145
a47
a128a129a130a133a134a131a132a28a203
a47
a93a98a99
a17 up
a138down.
? a199a200a51a131a132a135a36
a107
a120a81a188a93a204
a205a206 1.2
a44a81a250a97
? a99 3.3.1
– a163
a148a149a20
a221a19
a20
a252a253a188a189a213a15a16
a17 a (
a207a208a209a210), b (a221a252a253 T a211
a110
a213a212a213a214a16).
– a214a16a221a252a253 T a213a18a96a104 1, a221a252a253 t(t < T)a213a87a92a104
pb(ξt) = ˉr?(T?t), ?ξt
– a209a210a221a252a253 0 a213a87a92a104 pa0 = 1, a108a215a19a13
a110
a101a17a87a92a154a181
a161a216
a104 u a217a219a154a181
a218a219
a211
d(d < u)a217a219a220a221a222
a122a123 up
a223a90 down a146a213a97
a151a152
a219a209a210a221a252a253 -t a122a123 ξt a213a87a92a104
pa(ξt) = ut?ldl
a17a101l a104a224a211 ξt a104a225 down a146a213a213a226a216 (0 ≤ l ≤ t).
– a209a210a213a18a96a227a221
a120a228
a252a253 T a23
a24a158
a104
xa(ξt) = uT?ldl, ?ξT
a17a101l a104a224a211 ξT a104a225 down a146a213a213a226a216a97
– a221a19a13
a110
a219a214a16a213a229
a230
a104 ˉr, a209a210a213a229
a230
a104 ua231 d.
– a221a19
a20
a23
a120a121a122a123
a219a13
a110a232a233a126a127
a104
parenleftBigg
ˉr ˉr
u d
parenrightBigg
a17a234a104 2 (a151u > d).
– a151a152a219
a105a20a235a236a237
a15a16a114a115 (a238
a148a149a20
a15a16a22 2T a20a252a253 -T a122a123) a239a240a117a118
a119
a213a241
September 6, 2005 20 c?a242a243a244
a245a171a246 a172a173a174a175
a169a170 3.4
a172a173a174a175
a169a170a247a248
a249a250a251a252
§3.4 a84a85a86a87a88a89a253
a254a255a0a1a2
? a3a4a204
a205a5a6a7a8a9a10a11a12a13 q
a14M(p)a15a16a17a18a19a20
a12a13a21
? a22a23a24a25a14a26a27a28a29a16
a7a30M(p) = Rk a7a31a32q
a14Rk a15a16a19a20
a12a13a21
? a33a34 ξ a35a36a37
a38a7a39a40e(ξ),
a14a41a42a43ξ a16Arrowa44a45a16a46a47a48
e(ξ) = (0,...,0,1,0,...,0) ∈Rk, a49a501a51a42a43ξ.
a52a53e(ξ) (ξ ∈ Ξ)
a54a55Rk a16a17a18a56
a21
? a10a57q(ξ) = q(e(ξ)),a58a59q(ξ)a40ξ a16a33a34a60a61
a21
? a62a18z ∈Rk a63a64a65a40
z =
summationdisplay
ξ∈Ξ
z(ξ)e(ξ)
a31a32
q(z) = q
?
?summationdisplay
ξ∈Ξ
z(ξ)e(ξ)
?
?=summationdisplay
ξ∈Ξ
z(ξ)q(e(ξ)) =
summationdisplay
ξ∈Ξ
z(ξ)q(ξ) (3.4.1)
? a15a66a14a67a68a69a11a70a64a65a16a8a9a10a11a12a13a241
a22a23a67a71a17a72a73q a64a65a8a9a10a11a12a13a74k-a75a68a69
a11a70a76a77(q(ξ) : ξ ∈ Ξ),a30
q(z) = qz (3.4.2)
? a68a69
a11a70a78
a14(a79
a70)
a80a16?a8a9a10a11a12a13a14(a79
a70)
a80a16?a81a82a83(a84a47)a85a84a47
a21
? a86a87
a7a88a89
a68a69
a11a70
a58a90a91a92a4a14a93(a79
a70)
a80
a7
a14a94a95a24a25a14a93a82a83(a84a47)a85a84a47a16a17a18a96
a97a21
? a41a42a43a44a45
a11a70p
a16a68a69
a11a70
a63a98
a86a87a99
a88a89
a48
1. a100a101
a8a9a40e(ξ),?ξ
a16a44a45a54a102a103a104
a21
2. a68a69
a11a70q(ξ)
a105a14
a8a9a40e(ξ)
a16a44a45a54a102a54a102a103a104a16a106a107 -0a11a70a7a86a14a108
a40a7
a83(3.4.1)
a50
a109z a40e(ξ)
a105a110
q(e(ξ)) =
summationdisplay
ζ∈Ξ
e(ξ)(ζ)q(ζ) = q(ξ)
? a80a22a83a111a112a44a45a24a25a50a113a87a7a114a68a69a11a70a115a116a40a19a20a96a117a54a16a118a14a119a96a120a16a21
a121a122 3.4.1
a33a34a60a61a123a124
q(ξt)pj(ξt) =
summationdisplay
ξt+1?ξt
q(ξt+1)[pj(ξt+1) + xj(ξt+1)], ?ξt, t ≥ 0, ?j (3.4.3)
a125a126q(ξ
0) a127a128a129 1
a21
c?a242a243a244 21 September 6, 2005
3.4a130a131
a132a133a134a135
a247a248
a249a250a251a252 a245a136a246
a130a131
a132a133a134a135
a44a137a48
a138a139
a86a87a17a18a44a45a54a102a103a104
?h:
a83a106a107t ≥ 1a16a68a69ξt
a140a141
a17a142a44a45j,a143a144a83a106a107t+1
a16a62a17
a63a145
a16ξt a16a146a68a69ξt+1 ? ξt
a147a148
a7
a3a4
a53
z(?h,p)(ξt) = ?pj(ξt)
z(?h,p)(ξt+1)) = pj(ξt+1) + xj(ξt+1), ?ξt+1 ? ξt
z(?h,p)(ζ) = 0, ?ζ ∈ Ξuniondisplay
ξt+1?ξt
{ξt,ξt+1}
a149
a43
?h0 = 0a7a53
q(z(?h,p)) = p0?h0 = 0
a31a32a149(3.4.2)
a110
0 = ?q(ξt)pj(ξt) +
summationdisplay
ξt+1?ξt
q(ξt+1)[pj(ξt+1) + xj(ξt+1)].
a86a105a14a150(3.4.3)a51t ≥ 1a55a151
a21
a51 t = 0 a16a96a117 (3.4.3)a63a152a153a154a155a48a83a106a107 0
a140a141
a17a142a44a45 j, a143a144a83a106a107 -1 a156a68a69
a147
a148
a21a157
a44a45a54a102a103a104a83a106a107 -1a68a69ξ1 a16
a8a9a40p
j(ξ1) + xj(ξ1),a83a49a92a68a69a16
a8a9a40 0,
a83a106
a1070a16
a11a70a40
a86pj(ξ0). a43a14
a149(3.4.1)a53
pj(ξ0) =
summationdisplay
ξ1?ξ0
q(ξ1)[pj(ξ1) + xj(ξ1)],
a158a159t = 0
a16(3.4.3).
? a160
a10
a44a45
a11a70p,
a118a96a117a54(3.4.3)a63a161
a148
a68a69
a11a70q.
a162a163
a40
a48
1. a161a118a106a107 1 a16a68a69
a11a70a21
a83 (3.4.3) a50
a164 t = 0 a7
a110a165
a53 J
a18a96a117a166 k(ξ0)a18a167
a5a168
a16a96
a117a54
a7
a49a169
a168a170a171
a105a14a83 ξ0 a16a17a112
a8a9a170a171a21a172
a24a25a14a26a27a28a29a16a106
a7a157a170a171
a16a173a174a43
k(ξ0),a108
a32a157
a96a117a54
a53a175
a17a16a118q(ξ1),ξ1 ? ξ0.
2. a51a62a17ξ1,a161a118a49a146a68a69a16a106a107-2a68a69
a11a70a21
a83(3.4.3) a50
a164t = 1,
a58a176
a10ξ
1,a110a96a117a54
summationdisplay
ξ2?ξ1
q(ξ2)[pj(ξ2) + xj(ξ2)] = q(ξ1)pj(ξ1), j = 1,...,J
a157
a96a117a54
a53J
a18a96a117a166k(ξ1)a18a167
a5a168a7
a49a169
a168a170a171
a105a14a83 ξ1 a16a17a112
a8a9a170a171a21a172
a24a25
a14a26a27a28a29a16a106
a7a157a170a171
a16a173a174a43 k(ξ1)
a7
a108
a32a157
a96a117a54
a53a175
a17a16a118q(ξ2),ξ2 ? ξ2.
3. a177a178a15
a116a179
a117a241
? a83a68a69
a11a70
a81
a400
a16a180a181
a7
a3a4
a63a182a183
a41a51a68a69
a11a70
q(ξt+1)
q(ξt)
a99a177a184a96a117a54(3.4.3),a185
a161
a148
a41a51a68a69
a11a70a7
a143a144
a31
a41a51a68a69
a11a70
a161
a148
a68a69
a11a70a21
a24a25a16a26a27
a28a29a20a186a44a187a118a16
a175
a17a20
a21
? a188a189a190a23
a114
a83a1918a192
a154a193
a101a194a28a29a24a25
a21
September 6, 2005 22 c?a242a243a244
a245a136a246
a130a131
a132a133a134a135 3.5
a195a196a197
a198a199
a134a135
a247a248
a249a250a251a252
§3.5 a200a201a202a203a204a205a206a253
a254a255a0a1a2
a47a67a96a117(3.4.3)a7a2073.3.1 a50a16a208a209a66a44a45a24a25a50a16a68a69
a11a70
a63a210a211a161
a148
a21
a51a86a212a18a44a45
a7
a83
a62a18a68a69ξt a3a4
a53
a212a18a96a117a48
q(ξt) = uq(ξut+1) + dq(ξdt+1)
q(ξt) = ˉrq(ξut+1) + ˉrq(ξdt+1)
a49a50ξut+1 a74ξdt+1 a14ξt a16a212a18a146a189a213
a21
a118a214a110a41a51a68a69
a11a70
q(ξut+1)
q(ξt) =
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
1 d
1 ˉr
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
u d
ˉr ˉr
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
= ˉr?dˉr(u?d)
q(ξdt+1)
q(ξt) =
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
u 1
ˉr 1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
u d
ˉr ˉr
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
= u? ˉrˉr(u?d)
a86a215a41a51a68a69
a11a70
a51a62a18ξt a78a14a17a87a16a21a108a158a7a22a23a101a106a107-ta68a69ξt a40a216down
a148a217
a187la218
a7a30
ξt a16a68a69
a11a70a40
q(ξt) =
parenleftbigg u? ˉr
ˉr(u?d)
parenrightbigglparenleftbigg ˉr?d
ˉr(u?d)
parenrightbiggt?l
a219
a143
a7q(ξ
t)a14a79
a70
a80a16? u > ˉr > d ?a81a82a83a84a47
q(ξt)a14a80a16? u ≥ ˉr ≥ d ?a81a82a83a85a84a47
§3.6 a220a221a222a223a205a206a224
a225a226a227
? a228a112a44a45a24a25a50
a229a230a231
a16a232a233 -a44a45a54a102a234a235a236a237
a40
max
c,h
u(c) (3.6.1)
s.t. c0 = w0 ?p0h0 (3.6.2)
ct = wt + zt(h,p), t = 1,...,T (3.6.3)
a149
a43
p0h0 = q(z(h,p)) = q(c1+ ?w1+)
a49a50
c1+ = (c1,...,cT), w1+ = (w1,...,wT)
a238
a95
a64a65
a31
a106a1071a239a16a232a233
a88a240a74a241a242a7a243a89a244a245 (3.6.2)
a63
a184
a40
c0 = w0 ?q(c1+ ?w1+)
c?a246a247a248 23 September 6, 2005
3.7 Pareto-a249a250a251a252 a253
a136a254
a130a131
a132a133a134a135
a32(3.6.3)
a63
a184
a40
c1+ ?w1+ ∈M(p)
a108
a158a7a255a0
a236a237(3.6.1)~(3.6.3)a63a177a184
a40
maxc u(c) (3.6.4)
s.t. c0 = w0 ?q(c1+ ?w1+) (3.6.5)
c1+ ?w1+ ∈M(p) (3.6.6)
a22a23a24a25a14a26a27a28a29a16
a7a113a1M(p) = Rk a7a31a32a244a245(3.6.6)
a2a143a55a151
a21a3
a17a162
a7a149
a43q(·)a14
a19a20a16
a7a244a245(3.6.5)
a63a4
a184a55
c0 + qc1+ = w0 + qw1+ (3.6.7)
a49a50q a14a41a42a43a44a45
a11a70p
a16a68a69
a11a70a76a77a21
? a15a5a16
a238a6
a150a137
a7
a22a23a232a233
a88a240 c
a7a8(3.6.2)a74(3.6.3)a7a30ca7a8(3.6.7). a9a214
a7
a22a23 ca7
a8
a244a245(3.6.7),a30c
a10a43z(h,p) = c1+ ?w1+ a7a8
a243a89a244a245(3.6.2)a74(3.6.3)a21
? a108
a158a7a255a0
a236a237(3.6.1)~(3.6.3)a174
a11
a43
maxc u(c) (3.6.8)
s.t. c0 + qc1+ = w0 + qw1+ (3.6.9)
a86a14
a229a230a231
a5a51a28a29a16a11
a53a12a13
a24a25a106a16a232a233a234a235a236a237
a7
a49a14a213a118a16a17a15a16a69
a40
q(ξ) =
?u
?c(ξ)
?u
?c(ξ0)
, ?ξ ∈ Ξ (3.6.10)
a15a66a150a137
a7a17a18a19a229a20
a174a43a68a69
a11a70a21
a108
a158a7a52a53a229a230a231
a16
a17a18a19a229a20a21a22
a41a174
a21
? a23
a11a70q(ξ)a229a230a231
a63a24
a140
a17a111a25a83a68a69ξ a16a232a233
a7a32
a17a111a25a106a1070a16a232a233a16
a11a70a401 a21
? a232a233-a44a45a54a102a234a235a236a237(3.6.1)-(3.6.3)a26a232a233a234a235a236a237(3.6.8)-(3.6.9)a16a174
a11
a20a27a28a3a4a48
a232a233
a238a29 {ci} a74
a11
a53a12a13a11a70 q
a14a11
a53a12a13
a24a25a50a16a17a18a30a31 ? a71a87a16 {ci} a74a44a45a11a70
p a14a26a27a28a29a24a25 (a83 p a32) a50a16a17a18a30a31
a7
a49a50a30a31a44a45
a11a70 p a74
a11
a53a12a13a11a70 q
a33a34a66
(3.4.3)a41a35a169
a7a159q
a14a41a42a43pa16a68a69
a11a70a21
§3.7 Pareto- a36a37
a226a227
? a26a111a112a38a39a17a87
a7
a17a18a232a233
a238a29
a59
a40
a14Paretoa40a41a42
a7
a22a23a81
a63a145
a177a43
a238a29a44
a16
a241a242a45
a110a46
a229a230a231
a16a47a67a79
a70
a48a49a32
a81a79
a70a50a51
a49a52
a229a230a231
a16a47a67
a21
a165a53a99a150
a7a238a29{ci}
a14Pareto-a54
a255
a16
a7
a22a23a81a82
a83a49a92
a238a29{cprimei}a45
a110
Isummationdisplay
i=1
cprimei =
Isummationdisplay
i=1
wi, (3.7.1)
ui(cprimei) ≥ ui(ci), ?i, (3.7.2)
September 6, 2005 24 c?a246a247a248
a253
a136a254
a130a131
a132a133a134a135 3.7 Pareto-
a249a250a251a252
a55
a66(3.7.2)a56
a51
a51a46a18ia40a79
a70
a81a174a66a57
a66(3.7.1)a64a65a238a29{cprimei}a14
a63a58
a16a59
a159
a83a60a61a106a107a156
a229a230a231
a16a232a233a214
a74
a174a43
a241a242
a214
a74a62
a66
(3.7.2)a64a65a62a18
a229a230a231i
a63a64a65cprimei,a54a144a17a18a16a69
a64a65
a56
a51
a17a18
a229a230a231i
a79
a70
a64a65cprimei.
? a191a17a66a47a67a230a48a12a13a24a25a50a16a30a31a238a29a14 Paretoa54a255a16a21
a22a23a44a45a24a25a14a26a27a28a29a16a59
a113a1a149§3.6
a68a59a62a18a30a31a232a233
a238a29a69
a14a28a29a11
a53a12a13
a24a25
a16a17a18a30a31
a238a29a21
a182a183
a191a17a66a47a67
a230
a59a86a18a30a31a232a233
a238a29
a14 Paretoa54
a255
a16
a21
a121a122 3.7.1
a70a71a72a73a74a75a76a77a78a60a61a79a80a81a82a83
a84
a42a59
a85a86a87a88a89
a42a90a91a92a93a80a94a61a95a96a42a59
a97a98a99a100
a77a78a101a102
a103a104
a80 Pareto a40a41a42
a21
a44a48a105{c
i}
a14a17a18Paretoa54
a255a238a29
a59
a30ci
a14a236a237
maxc ui(c)
s.t. c0 + qc1+ ≤ wi0 + qwi1+
(3.7.3)
a16a54
a255
a118
a21
a22a23{ci}a81a14Paretoa54
a255
a16a59
a30
a82a83
a63a58
a238a29{ˉci}a45
a110
ui(ˉci) ≥ ui(ci), i = 1,...,I, (3.7.4)
ui0(ˉci0) > ui0(ci0), a51a46 i0 ∈{1,...,I}. (3.7.5)
a149
a43a156ui a14a79
a70a106a107
a16a59
a149(3.7.4)a53
ˉci0 + qˉci1+ ≥ wi0 + qwi1+, i = 1,...,I, (3.7.6)
a93
a30
a63
a100a101(3.7.3)a16
a63a58
a118a59
a108ˉci
a16a109
a110a111
a119a112a59
a31a32a108ci
a16a109
a110a111
a119a112a59a86a26ci a14(3.7.3)
a16a54
a255
a118a113a114
a21a149(3.7.5)a53
ˉci0 + qˉci01+ > wi00 + qwi01+, (3.7.7)
a93
a30
a59
a115a1ˉci
0
a40(3.7.3)
a16
a63a58
a118a59
a115a1
a63
a100a101
a108ˉci
0
a16a109
a110a111
a119a112a16(3.7.3)a16
a63a58
a118a59
a31a32
(3.7.5)a26ci0 a40(3.7.3)a16a54
a255
a118a113a114a57
a114(3.7.6)
a10a43
a52a53a229a230a231
a41a116a59a58a117a118a101 (3.7.7),a110a101
Isummationdisplay
i=1
ˉci0 + q
Isummationdisplay
i=1
ˉci1+ > ˉw0 + q ˉw1+,
a49a50ˉw =summationtextIi=1 wia40a241a242a44a74a57a15a66a26a232a233
a238a29{ˉci}
a16
a63a58
a20(a159summationtextIi=1 ˉci = ˉw0,a31a32summationtextIi=1 ˉci0+
qsummationtextIi=1 ˉci1+ = ˉw0 + q ˉw1+)a41a113a114a57
c?a246a247a248 25 September 6, 2005
3.7 Pareto-a249a250a251a252 a253
a136a254
a130a131
a132a133a134a135
September 6, 2005 26 c?a246a247a248
a119a120a121 a122a123
§4.1 a124a125
a126a127
a67a128
a12a13 q
a129a129a67
a57
a83a130a131a132a55a133a134 M(p) a15
a21
a83a135a18a11
a53a115
a161a136 (
a167a67
a136a137)
a133a134Rk
a15a67
a57a138
a128a139a140a141
a53
a67a16
a21
? a121a142 4.1.1 a143a60a144a92a80a145
a100a146a147
a144a92
Q : Rk →R,
a148
a80a149a150a128a60a144a92 q a151a152
a153a154a155a156a157M(p)
a158a159a128a160a161
a156a157Rk
a42a145
a100a162a163
a59a164
Q(z) = q(z), ?z ∈M(p).
? a86a87
a63
a67
a138
a128a139a140a51a60a118
a126a127a3
a58
a67a128a59a49a67a128a190a165a26a166a167a67
a126a127
a67a128a139a140a168a41a71a169
? a170a171a172a173a174a168a141a79
a70
a80(a80)a168
a138
a128a139a140a59a108
a40
a86a175a176a177a118a178a179a81a82a83a84a47(a85a84a47)a169a83a32a180
a192a92a171a181
a114
a67a43a228a112a38a39a50a168a68a69a128
a70a74a182a183
a50a176a184
a20
a169
§4.2 a185a186a187a188a189a190a191
? a192a193a194a56a188a67
a230
a150a168a141a79
a70
a80 (a80)a168
a138
a128a139a140a168a82a83a176a169
a121a122 4.2.1 (
a195a196a197
a198a199
a128
a88)
a72a73a60a61a200a201a202
a203a204?
a205a76a94a61a206a42a143a60a144a92a169
a121a122 4.2.2 (
a195a196a197
a198a199
a128
a88
a59a207a208a209) a72a73a60a61a200a201a202
a210a203a204?
a205a76a206a42a143a60a144a92a169
a44a137a48 ?)a211a82a83a79
a70
a80(a80)a168
a138
a128a139a140a59
a30
a82a83a79
a70
a80 (a80)a168
a126a127
a67a128a139a140(a138a128a139a140a83
M(p)a212a168a213a214a105a141a180a175
a126a127
a67a128a139a140) a59
a31a32a149
a67
a2302.3.2(2.3.3),
a81a82a83a84a47(a85a84a47)a169
?) a105a44a45a128
a70a215a216
a187a84a47 (a85a84a47) a59
a30a149
a67
a230 2.3.2(2.3.3)
a59
a126a127
a67a128a139a140 q : M(p) → R
a141a79
a70
a80(a80)a168a169a32a5a170a171
a114q
a217a218
a40Rk →R
a168a79
a70
a80(a80)a168a219a176a140
a168
a169
a220a179
a211a221a218a217a218
a222
a62a218a223a217a2181a75a99a28a55a169a191a180a162a59
a109
a180a175a167a67
a136a137 ?z ∈Rk \M(p)
a59a58
a114q
a217a218a101
a149M(p)
a74 ?z
a224a55a168a146a133a134a59a86a175a146a133a134a168a75
a168
a174a43M(p)a168a75
a168
a1161 a169
a115a225
a217
a86a175a217a218a59
a226
a160 ?z a227
a67a180a175a139a140
a111pi. a40
a186a228
a157
a217a218a141a79
a70
a80(a80)a168a59a234a235a168pia21a22a7a8a48M a50a112a43
a222
a81a174a43 ?z
a168a60a61
a126a127
a165
a53
a79
a70
a112(a112)a43pi a168a128
a70
a59M a50
a229
a43
a222
a81a174a43 ?z a168a60a61
a126a127
a165
a53
a79
a70a229(a229)
a43 pi a168a128
a70
a169a86a215a213a214a67
a57
a187a180a175a230a231 pi a168a232a134a169a233a175a217a218a141
a149
a165a234
a126a127 {x
1,...,xJ}a235a128
a236{p
1,...,pJ}a168J a175a237a238a235a239a234
a126a127 ?z
a235a128
a236 pi
a168a237a238a240a241a168a242a243a168
a126a127
a67a128a139a140a169a244a208
a245
a59
a246
a180a175a247a248a233J +1a237a238a168a130a131a132a241a133a134a249a168a250a67a251
a137
a59
a252a253
a244a180
a245
a249a217a218a254a168
a126a127
a67a128
a139a140a217a218a255a0a167a1J + 1a175a237a238a235a233a175a2a168a250a67a251
a137
a224a241a168a3a133a134a169
a4a5k?d (d = M
a168a6
a7)a245
a254a8a170a171a9a10a11a180a175a255a135a175a12a13a133a134Rk a168a217a218a169a0
a14
a233a175a15a16a168a17
a245
a141a18a19a168a8a170a171
a20a21a22
a244a180
a245
a169
? a23z ∈Rk,a21z a168a24a25a26a27a212a28(a29a30a29a31z a32a237a238a240a33a34a35a32a36a37a24
a236)
qu(z) = min
h
{p0h0 : z(h,p) ≥ z}
27
4.2a38a39a40
a41a42a43a44 a45a46a47 a48a49
a235a50a28(a29a30a51z a29a31a32a237a238a240a33a34a35a32a36a52a24
a236)
ql(z) = max
h
{p0h0 : z(h,p) ≤ z}
a233a53a8a54a55 {h : z(h,p) ≥ z} = ?, a56a57a26 qu(z) = ∞; a54a55 {h : z(h,p) ≤ z} = ?, a56a57a26
ql(z) = ?∞a58a59a54a60a61M = span{(1,0)}, z = (1,1),a56{h : z(h,p) ≥ z} = ?.
a62a63 4.2.3
a64a65a66a67a68a69a70a71a72
a73a74a75
a8a76
qu(z) = ql(z) = q(z), ?z ∈M(p).
a237a60a77a78a79a50a28a32a26a27a8a234
qu(z) ≤ q(z) ≤ ql(z), ?z ∈M(p).
a80
a61a81a248z ∈M(p)a82a11qu(z) < q(z)a58a56a81a248a237a238a240a33a34a35 hprime a82a11
z(hprime,p) ≥ z, p0hprime0 < q(z).
a83h
a84a85a86a237a238a240a33a34a35a82a11
z(h,p) = z, p0h0 = q(z)
a14
a84
z(hprime ?h,p) ≥ 0, p0(hprime ?h)0 < 0
a87a88hprime ?h
a84a85a86a89a90a91a8a92a93
a14a80
a23a58
a87a88
qu(z) = q(z), ?z ∈M(p)
a94a95a96
a237ql(z) = q(z), ?z ∈M(p)a58 a50
a62a63 4.2.4
a64a65a66a67a68a69a70a71a72
a73a74a75
a8a76
qu(z) ≥ ql(z), ?z ∈Rk
a237a60
a80
a61a81a248z ∈Rk a82a11qu(z) < ql(z)a58
a97
a77a78a79a50a28a32a26a27a81a248a237a238a240a33a34a35hprime a235hprimeprime a82
a11
z(hprime,p) ≤ z ≤ z(hprimeprime,p), p0hprime0 > p0hprimeprime0
a14
a84
z(hprimeprime ?hprime,p) ≥ 0, p0(hprimeprime ?hprime)0 < 0
a98hprimeprime ?hprime
a84a85a86a89a90a91a8a92a93
a14a80
a23a58 a50
a62a63 4.2.5
a64a65a66a67a68a69a70a71a72
a74a75
a8a76
qu(z) > ql(z), ?z ∈Rk \M(p).
September 6, 2005 28 c?a99a100a101
a45a46a47 a48a49 4.2
a38a39a40
a41a42a43a44
a237a60
a97
a77a102a1034.2.4,a104a105a237a106
qu(z) negationslash= ql(z), ?z ∈Rk \M(p)
a80
a61a81a248z ∈Rk \M(p)a82a11qu(z) = ql(z)a8a56a81a248a237a238a240a33a34a35hprime a235hprimeprime a82a11
z(hprime,p) ≤ z ≤ z(hprimeprime,p), p0hprime0 = p0hprimeprime0
a0
a14z ∈Rk \M(p), z
a247
a96a107
a0
a108
a86a237a238a240a33a34a35a109a241a8
a98z(hprime,p) ≤ z
a235z ≤ z(hprimeprime,p) a249a32a110
a111a112
a247
a96a107
a241a113a8
a87a88
a8
z(hprimeprime ?hprime,p) > 0, p0(hprimeprime ?hprime)0 = 0
a98hprimeprime ?hprime
a84a85a86a90a91a8a92a93
a14a80
a23a58 a50
? a78a114a115
a4a21a22a116a117a118
a250a26a251a119a32a25a32a78a79a50a28a8a50a114a120a121a54a122a91a123a78a79a50a28a124a125a126a29a30a26a24
a127a128
a58
? a129a26a85a86a250a26a251a119 ?z negationslash∈M(p)a58a26a27
N = {z + λ?z : z ∈M(p), λ ∈R}
a56N a84Rk a32a3a130a131a8N a132a133M(p)a235 ?z a58N a32a6
a7
a110
a14M(p)
a32a6
a7+1
a8N a84a29a30a134
{x1,...,xJ}a235 ?z a32J + 1a86a237a238a32a135a136a109a241a130a131a58
? a54a55a247a81a248a89a90a91a8a110a24a137a8a54a55a29a30a26a24
a127a128
a84a138a32a8a56a0a102a1033a139qu(?z) ≥ ql(?z). a140a141a142
a143a96a246pi
a144a145
ql(?z) ≤ pi ≤ qu(?z)
a253q
a125a126a134N a78a32a146a147a148a149Q : N →R,
Q(z + λ?z) = q(z)+ λpi
? a50a114a237a106Qa84a142a143a150a151a32q a32a138a32a125a126a58
a62a63 4.2.6
a152a153 4 a64a65 q : M(p) →Ra154a155a156a8a76 Q : N →Ra157a154a155a156a58
a237a60
a83y ∈N, y ≥ 0.
a56?z ∈M(p),λ ∈R,a82a11
y = z + λ?z
1. a23λ > 0a8a56a0y ≥ 0a8a158
?z ≥?zλ.
a97
a77ql a32a26a27a8ql a84a159a160a32a58
a253q
l a161
a123a255a78a162a163a164a11
ql(?z) ≥ ql(?zλ).
a0
a14?z
λ ∈M(p),
a97
a77a102a1034.2.3,
ql(?zλ) = q(?zλ) = ?1λq(z).
c?a99a100a101 29 September 6, 2005
4.2a38a39a40
a41a42a43a44 a45a46a47 a48a49
a87a88
a8
pi ≥ ql(?z) ≥ ql(?zλ) = ?1λq(z),
a98
Q(y) = q(z)+ λpi ≥ 0.
2. a23λ < 0a8a56a0y ≥ 0a8a158
?z ≤?zλ.
a97
a77qu a32a26a27a8qu a84a159a160a32a58
a253q
u a161
a123a255a78a162a163a164a11
qu(?z) ≤ qu(?zλ).
a0
a14?z
λ ∈M(p),
a97
a77a102a1034.2.3,
qu(?zλ) = q(?zλ) = ?1λq(z).
a87a88
a8
pi ≤ qu(hatwidez) ≤ qu(?zλ) = ?1λq(z),
a98
Q(y) = q(z)+ λpi ≥ 0.
3. a23λ = 0a8a56y = z ≥ 0, Q(y) = q(z) ≥ 0 (a87a134q a84a138a32).
a165
a78a142
a143
a115a237a11Qa84a138a32a58 a50
? a54a55a247a81a248a90a91a8a110a24a137a8a54a55a29a30a26a24
a127a128
a84a166
a236
a138a32a8a56a142
a143a246 pi
a144a145
ql(?z) < pi < qu(?z)
a167
a102a1034.2.6a32a237a106
a168a169
a18a19a8a142
a143a96
a11
a62a63 4.2.7
a64a65 q : M(p) →Ra154a170a69a155a156a8a76 Q : N →Ra157a154a170a69a155a156a58
? Qa171a172a78a84a24
a236
a134{p1,...,pJ}a235pi a32J + 1a86a237a238a32a135a136a109a241a130a131N a78a32a29a30a26a24
a127a128
a58
a87a88
a8Qa248N a78a84a166
a236
a138(a138)a32?a29a30a134{x1,...,xJ}a235 ?z a32J +1a86a237a238a32a242a243a84a173a90
a91(a89a90a91)a32a58
? a50a114a174a85a86a59a3a124a175a106a78a79a50a28a58
a176 4.2.8
a177a178 1.2.1 a179a8a180a181a182a183a66a67a60a184a185 1 a186a187a156a188a189a190a67 (a66a67 1) a8a184a185 2 a186a187a156a188
a189a190a67 (a66a67 2). a191a192a8a193a187a190a67a156a194
a75
a154
x1(ξg) = x1(ξb) = 1, x1(ξ) = 0, ?ξ ∈F2
a195
a187a190a67a156a194
a75
a154
x2(ξg) = x2(ξb) = 0, x2(ξ) = 1, ?ξ ∈F2
a180a193a187a190a67a177a184a185 0 a156a68a69a196
p1(ξ0) = 0.9
September 6, 2005 30 c?a197a198a199
a45a46a47 a48a49 4.2
a38a39a40
a41a42a43a44
a195
a187a190a67a156a68a69a196
p2(ξ0) = 0.75, p2(ξg) = 0.9, p2(ξb) = 0.8
a200a201
a154a202a203
a204
a156a8
a205
a196a206a2073.2.1 a156a208a209a210a177a184a1851a156a182a183a211a210a212a213a214a215(a182a183a193a187a216a217a218a219
a212a196
parenleftBigg
0 0
1 1
parenrightBigg
a8
a220
a208a1961a8a213a221a222a223a224
a225
a183a2262 )a58
a227
a206a228a229a230a231Rk a1546a232a156(a233k = 6),
a234a235a236a237
a214a230a231M(p) a154 4 a232a156a58a211a238
a239
a8a193a183
a227
a206a228a229
z = [z(ξg),z(ξb),z(ξgg),z(ξgb),z(ξbg),z(ξbb)]
a240a241a242
a193a183a66a67a243a244a245a246
a237
a214a8a247
a248a249
a247
z(ξgg) = z(ξgb), z(ξbg) = z(ξbb).
a250a251
a193a183
a227
a206a228a229 ?z:
?z1 = (0,0), ?z2 = (2,1,1,0)
a252a253 ?z negationslash∈M(p)
a8 ?z a156a68a254a156
a239a255 q
u(z) = minh{p0h0 : z(h,p) ≥ z}a0a1a2a3a64a4a5a6a7a8a153
a9a10
a60
min
h
p1(ξ0)h1(ξ0)+ p2(ξ0)h2(ξ0)
s.t. h2(ξg) ≥ 2
h2(ξg) ≥ 1
h2(ξb) ≥ 1
h2(ξb) ≥ 0
h1(ξ0) + 0.9[h2(ξ0)?h2(ξg)] ≥ 0
h1(ξ0) + 0.8[h2(ξ0)?h2(ξb)] ≥ 0
a191a154a193a183a146a147a11a12a8a153a8
a220
a3a154a60
h2(ξg) = 2, h2(ξb) = 1, h2(ξ0) = 10, h1(ξ0) = ?7.2
a5a6a13
a14
a254a196 1.02a8a233qu(?z) = 1.02.
a191a183a66a67a243a244a245a246a156a216a217a177a184a185 1 a196 (0,0), a177a184a185 2 a196 (2,2,1,1). a15a154
a235a236a237
a214a230a231
M(p) a179
a16
a1 ?z a156a5a17
a227
a206a228a229a58
a242
a222a66a67a68a69a70a71a72
a74a75
a8a191a183a66a67a243a244a245a246a156a184a185 -0a68
a69 1.02a18a206a154a5a17a156a58
a177a191a183a178a223a179a8a5a6a66a67a243a244a245a246
a240a241
a191a192a19a206a60a20a21a177
a235a236a237
a214a230a231a179
a22
a186
a16
a1 ?z a156
a5a17
a227
a206a228a229a8
a253a23a24a25a237
a214a191a183
a227
a206a228a229a156a66a67a243a244a245a246a58a26a191a27a2a3a28a29a193a30a213a31a32a8
a205
a196a0a33
a235a236a237
a214a230a231a179a191a183a5a17a34a213a35a177a58
a205a36
a193a30a37a2a3a146a147a11a12a8a153a58
c?a197a198a199 31 September 6, 2005
4.3a48a49a38a39a40a41a42a43 a45a46a47 a48a49
a44
a207a8?z a156a68a254a156a4
a255q
l(z) = maxh{p0h0 : z(h,p) ≤ z}a0a1a2a3a64a4a5a6a7a8a153
a9a10
a60
max
h
0.9h1(ξ0)+ 0.75h2(ξ0)
s.t. h2(ξg) ≤ 2
h2(ξg) ≤ 1
h2(ξb) ≤ 1
h2(ξb) ≤ 0
h1(ξ0) + 0.9[h2(ξ0)?h2(ξg)] ≤ 0
h1(ξ0) + 0.8[h2(ξ0)?h2(ξb)] ≤ 0
a220
a5a6a3a45a46a47
a44
a8a71a72h2(ξ0) = 9a48a49a5a6a13
a14
a254a1960.27, a233ql(?z) = 0.27. a191a183a66a67a243a244a245
a246
a236a237
a156a216a217 (0,0,1,1,0,0)a154
a235a236a237
a214a230a231a179a17a222a221a222 ?z a156a5a50a216a217a58
? a18a51
a14a112a52
a29a30a26a24
a127a128
a32a85a86a166a53a138 (a138) a32a54a24
a127a128a55a96a56
a0
a57a58a59
a32a60a61 0 a62
a253
a124a60
a61a63a64a65a131a32a66a172a67
a57a68a21a22
a58a54a55
a57a58a59
a32
a112a52
a63a64a84a69
a70a71a72a73
a123
a128a7
a84a166a53a159a160(a159a160)
a32a8
a74a75
a66a172a67
a57a68
a121
a76( ?u
?c(ξ)/
?u
?c(ξ0),ξ ∈ Ξ)a26a27a85a86a166a53a138(a138)a32a54a24
a127a128summationtext
ξ∈Ξ z(ξ)
bracketleftBig
?u
?c(ξ)/
?u
?c(ξ0)
bracketrightBig
.
a77a78a79a80a81
a60a82a83a84a84a85a32a82a85a56a86a84a85a82
§4.3 a87a88a89a90a91a92a93a94
? a29a30a26a24
a127a128a95
a54a24
a127a128
a32a125a126a85a96a124a175a86a84a84a85a32a58
a77a78a79a97a80a81
a60a82a98
a117
a122a86a99a135a136a109
a100
a130a131a32a101a26a102a119a82a81a99a85a86a103a104a105a32a25a82a106a85a86a25a26a27
a116
a29a30a26a24
a127a128
a32a85a86a166a53a138 (a138)
a32a125a126a58
a77a78a79
a84a107a108
a80a81
a32a60a82a135a136a109
a100
a130a131M(p)a110
a14
a101a26a102a119a130a131Rk a82a29a30a26a24
a127a128
a62a54a24
a127a128
a84a19a85a86a82
a14
a84a142
a143
a158
? a109a110 4.3.1 a180a66a67a68a69a70a71a72
a74a75
a82a66a67
a200a201
a154a111a112a203
a204
a156a247
a248a249
a247a35a177a113a193a156a170a69a155a156a114
a68a148a149a58
September 6, 2005 32 c?a99a100a101
a115a116a117 a118a119a120a121a122a123a124a125a126a127a128a122a129a120a130
§5.1 a131a132
? a169a133a21a22a54a24a127a128a32a163a86a134a135a136a137a32a138a139—a85a86a123a140a141a24a53a82
a142
a85a86a123a143a144a145
a146a147a68
a82
a55a148
a149
a29a30a150a151
a127a128
a123a150a151a152a32a138a139a58
? a166a53a138(a138)a32a140a141a151a53a32a81a99
a146a153
a139a154a86a81a99a90a91(a89a90a91)a58a140a141a151a53a32a84a85
a146a153
a139a154
a78a79
a84a107a108
a80a81
a58
? a140a141a151a53
a161
a134a155
a146a156a157a158
a32a159
a96a56a160a149
a58a85a161a140a141a151a53a115a139a82
a117
a122a29a30a32a151a53
a112a96a162a95
a82a173
a141a105a163a164a109
a100a165
a86a29a30a32a166a167
a158
a33a34a35a58
? a143a144a145
a146a147a68
a84a123a168a169
a87a170a171a172a173a174a116
a32a140a141a151a53a58a150a151a152a32a81a99
a146
a84Riesz a138a139a150
a58
a32a175
a176
a58
§5.2 a177a178a88a179
a54a55a166a167
a78a79
a84a107a108
a80a81
a32a82
a74a75
a29a30a150a151
a127a128 q
a150a180a99a181a86a182a150a102a119a130a131Rk a78a82
a183a71
a140a141
a151a53q(ξ)a150a180a134Arrowa166a167 e(ξ)a32a151a53q(e(ξ))(a184a185a186
a133).
a54a55
a78a79
a84
a97a80a81
a32a82
a74a75
a135a136a109
a100
a130a131M(p)a84a182a150a102a119a130a131Rk a32a187
a170
a130a131a82
a108a188Arrow
a166a167a86
a107
a123a29a30a150a151
a127a128
a150a151a58
a189a190a191a168a169
a150
a58 4.2.1(4.2.2)
a192a193a142
a143
a60a54a55a166a167a151a53a194a195
a116
a90a91 (a89a90a91) a82
a74a75
a29a30a150a151
a127a128a96a56
a125a126a134a150a180a99a181a86a182a150a102a119a130a131a78a32a166a53a138(a138)a32a54a151
a127a128
a82a140a141a140a141a151a53
a96a56
a123a54a151
a127a128
a124a150a180a58
a83Q
a134a54a151
a127a128
a82
a183a83
q(ξ) = Q(e(ξ)), ?ξ ∈ Ξ, (5.2.1)
a72
a145e(ξ) a134R
k
a145a32a140a141 -ξ a196a197a121
a76
a82
a98
a136a51a198 ξ a32 Arrowa166a167a32a199a91a58a200 q(ξ) a84a140a141 ξ a99a54
a151
a127a128Q
a50a32a211a210a68a69a58a54a55Qa84a166a53a138(a138)a32a82a56a106a86a140a141a151a53a201a84a166a53a138(a138)a32a58
a202
a198a106a86a182a150a102a119z ∈Rk a96a56a203a100
z =
summationdisplay
ξ∈Ξ
z(ξ)e(ξ),
a142
a143
a158
Q(z) =
summationdisplay
ξ∈Ξ
z(ξ)q(ξ) = qz,
a72
a145q = (q(ξ),ξ ∈ Ξ)a134a140a141a151a53a121
a76a204a205
a162
Q(z) = qz (5.2.2)
a84a54a151
a127a128
a123a140a141a151a53a32a138a139
a204
a98a29a30 z ∈M(p),a158
q(z) = qz (5.2.3)
33
5.2a206a207
a49a208 a45a209a47
a206a207
a49a208
a79a210a211a212
a43a213a214
a79
a43a49a215
a165a216
a82a217a218a219a151a53a220a221a222a140a141a151a53a223a224a225a82a226a86a227a228a150a229
a100a74a230
a217a218a219a166a167
a158a231a232a233a234
a235a236a77a78a79a237
a107a108
a80a81
a219
a74a216 (
a1853.4a174)a82a86
a80a81a78a79
a145a219a140a141a151a53a238a239a240a241a242a155
a146a156a157a158
(3.4.3)a219
a235
a159a225
a95a204
a242a243a166a244
a165a245a70
a82a246a247
a245a230
a166a167
a158a231a232a233 ?h
a248a99a249a250t ≥ 1a219a140a141ξt
a251a252
a245
a253
a166a167j a183a99a106a245a230a170a140a141 ξt+1 ? ξt
a254
a83a255
a149
a82a0
z(?h,p)(ξt) = ?pj(ξt),
z(?h,p)(ξt+1) = pj(ξt+1) + xj(ξt+1), ?ξt+1 ? ξt
z(?h,p)(ζ) = 0, ?a1a83ζ
a202
a198
?h(ξ0) = 0,
a2a3a4q(z(?h,p)) = p(ξ0)?h(ξ0) = 0.
a254
q(z) = qz a5a222a198a217a218z(?h,p),a2a3a4
q(ξt)pj(ξt) =
summationdisplay
ξt+1?ξt
q(ξt+1)[pj(ξt+1) + xj(ξt+1)], j = 1,...,J, ?t ≥ 1, ?ξt ∈Ft. (5.2.4)
a6a7
a220a166a8a9a10a198t = 0a11a12a13a14a1a145q(ξ0) = 1.
a156a157a158(5.2.4)
a15a16a17a18a19a20a21a145a219
a156a157a158 (3.4.3)a237
a136a22a219
a204a23a24a245 ξ
t a14
a156a157a158(5.2.4)
a4J
a230a156a157a25k(ξ
t)
a230a26a27a28q(ξ
t+1)/q(ξt).
a29a30
a14a2a3a31
a32
a166a244a243a136a5a198a33a151a34a35a219a140a141a151a36
a237a156a157a158 (5.2.4)
a219a159
a234
a226a37a14
a38
a36
a235 (a235)
a219a219a33a151a34a35a150a180a243
a38
a36
a235(a235)
a219a159
a234a236a39
a20a21
a237a40
a18a19a219a14a0a41
a23a42a230
a33a151a34a35(a184a150a434.3.1)
a14a44a226
a156a157a158(5.2.4)
a4
a42a230
a159
a234
a45a46 5.2.1
a47a48a49a50a51a52a53a54a55a56?a57a58a59 (5.2.4) a47a48a49a50a51a52a60a61
a62a63
a49a50a51a52a60 q a64a65a66
a67
a63
a49a50a51a52a53a54a55a56 Q(z) = qz.
a68
a244a248 ?)a8a69a219a70a71a31
a72a73a68
a244
a234
?)a74qa237a75a76a77(5.2.4)a219
a245a230a38
a36
a235
a219a78a14a0a79Q(z) = qza80a81a219a34a35Qa237a82a83a219
a25a38
a36
a235
a219
a234
a84a85a86a87a68
a244Q a23M(p) a8a219a88a89a90
a237a91
a218a80a92a34a35 q a234a93 z ∈ M(p) a14a0a41
a23a68a94a77a231a232a233 h
September 6, 2005 34 c?a95a96a97
a98a99a100 a101a102a103a104a25a105a106a107a108a109a110a25a111a103a112 5.2a101a102a103a104
a113
a225z = z(h,p)
a234a114a115a116
a222
a75a76a77(5.2.4)
a14a4
q(z) = p0h0 =
summationdisplay
j
pj(ξ0)hj(ξ0) =
summationdisplay
j
hj(ξ0)
summationdisplay
ξ1?ξ0
[pj(ξ1) + xj(ξ1)]q(ξ1)
=
summationdisplay
ξ1?ξ0
q(ξ1)
summationdisplay
j
[pj(ξ1) + xj(ξ1)]hj(ξ0)
=
summationdisplay
ξ1?ξ0
q(ξ1)
?
?z(h,p)(ξ1) +summationdisplay
j
pj(ξ1)hj(ξ1)
?
?
= q1z1 +
summationdisplay
ξ1?ξ0
summationdisplay
j
q(ξ1)pj(ξ1)hj(ξ1)
= q1z1 +
summationdisplay
ξ1?ξ0
summationdisplay
j
?
?summationdisplay
ξ2?ξ1
q(ξ2)[pj(ξ2) + xj(ξ2)]
?
?hj(ξ1)
= q1z1 +
summationdisplay
ξ2∈F2
q(ξ2)
summationdisplay
j
[pj(ξ2) + xj(ξ2)]hj(ξ?2 )
= q1z1 +
summationdisplay
ξ2∈F2
q(ξ2)
?
?z(h,p)(ξ2) +summationdisplay
j
pj(ξ2)hj(ξ2)
?
?
= q1z1 + q2z2 +
summationdisplay
ξ2∈F2
summationdisplay
j
q(ξ2)pj(ξ2)hj(ξ2)
= ...
= q1z1 + q2z2 +···+ qTzT +
summationdisplay
ξT∈FT
summationdisplay
j
q(ξT)pj(ξT)hj(ξT)
= qz = Q(z)
a117Q(z) = q(z), ?z ∈M(p).
a118
a30Qa237
a33a92a34a35
a234
a6a7a119
a14
a45a46 5.2.2
a47a48a51a52a53a54a55a56?a57a58a59 (5.2.4) a47a48a51a52a60a61
a62a63
a51a52a60 q a64a65a66
a67
a63
a51a52a53a54
a55a56 Q(z) = qz.
a80a435.2.1a1205.2.2a121a244
a75a76a77(5.2.4)
a122a123a243a124a125a92a36a219a18a126a250a127
a234a128a129
a14a124a125a92a36a220a130a92
a119
a80a81
a242
a75a76a77(5.2.4)
a219a78
a234a131a132a133a134a135
a80a43a220a136a137a242a248
a68a94
a92a36a138a139a243a140
a116(
a141a140
a116)?a75a76a77(5.2.4)
a41
a23a38
a36
a235(a235)
a219a78
a234
a236a39a68a94
a92a36
a237a142a143
a92a36a14
a144a145a146a147
a242a148
a149a150a24a230a151
a43a152
a150a153a154a155a151a156a157a158
a80a81a243
a245a230 (a245a159
a223a121a160a22
a150)
a124a125a92a36
a157a158(
a1614.2a162).
a163 5.2.3
a164a165 4.2.8 a14a57a58a59 (5.2.4) a166a167a168a169a170a248
q(ξgg) + q(ξgb) = 0.9q(ξg)
q(ξbg) + q(ξbb) = 0.8q(ξb)
q(ξg)+ q(ξb) = 0.9
0.9q(ξg) + 0.8q(ξgb) = 0.75
c?a171a172a173 35 September 6, 2005
5.3a174
a105a106a175a176a177a178a179a180a181 a98a99a100 a101a102a103a104a25a105a106a107a108a109a110a25a111a103a112
a182a183
a57a58a184
a67a185a186
a64a66
a187a188 1
a189a190
q(ξg) = 0.3, q(ξb) = 0.6
a191a187a188 2
a189a190a54a50a192a193a194a195
a63
a57a58
q(ξgg) + q(ξgb) = 0.27
q(ξbg) + q(ξbb) = 0.48
a52a196a197a51 (a198a49a50a51a52) a52a60a61a49a50a51a52a189a190a54a50a52a47a48a199a200a201
a202
a47a48a203a204a14
a205
a189a190a54a50a52a206a184
a67
a199a200a201
a207a208
a193a206a209
a210
a52
a234
§5.3 a211a212a213a214a215a216a217a218a219a220
? a68a94j a23a124a125ξt+1 (a221a222)a150a67a223a224a225a237a226a227a23ξt+1 (a221a222)a150a245a228(a229a230)a91a231a139a232
a227a23ξ
t+1
a150a233
a162
a149ξ
t = ξ?t+1
a150
a92a36a14
rj(ξt+1) = pj(ξt+1)+ xj(ξt+1)p
j(ξt)
(5.3.1)
? a234rj,t+1
a235a236
a68a94j a23
a249a250t + 1
a150a245a228a237a238
a14
a117
rj,t+1 = (rj(ξt+1),ξt+1 ∈Ft+1)
? a23a249a250 t + 1 a150a245a239a245a228a237a238a240a242a241 a242a243a244a52a14a245
a39a227a23a246a247a248a239a249
a4a250a22
a233
a162
a149a150
a249a250
-t+ 1a124a125a251a250a22
a150a252a253
? a234 ˉr(ξt+1)
a235a236
a23ξ
t+1 a221a222
a150a245a228a254a255a0a237a238a253
? ˉr(ξt+1)a160a1a2a3a124a125ξt+1,a86a4ξt+1 ? ξt. a5a1a2a3a124a125ξt.
a118
a30
a14
a23
a249a250t+ 1a221a222
a150a245a228a254a255a0a237a238 ˉr
t+1 a6
a242a7a17
a150
a35
a28
a241Ft
a8a9
a150
a61
? a249a4a23a249a250t+1a150a245a228a254a255a0a237a238a150a68a94a150a10a11a248a23a249a250ta12a13
a150a245a228a254a255a0a14a94a15
a249a2500
a12a13
a150a25
a249a250t+ 1a16
a228a150a17
a222
a14a94a253
? a2a3a18a18a19a74a248
a23a24a245
a249a250
a150a24a245
a124a125a41
a23a249
a4
a245a228a254a255a0a237a238a150a68a94 (
a20
a68a94a77a21)a253
? a245
a39a23a24a245
a249a250
a150a24a245
a124a125a41
a23a68a94(
a20
a68a94a77a21)a249
a4
a38
a36a22
a150a25a254a255a0a150a245a228a237a238
a14a0a2
a3
a8
a232a80a81
a23
a124a125ξt
a150a23a24a25a26
a242a27a28
a254a255a0a237a238a150a29a28
a248
ρ(ξt) =
tproductdisplay
τ=1
[ˉr(ξτ)]?1, t = 1,...,T (5.3.2)
a1a30ξt a242ξτ a150a233a31a14
a117ξ
τ ? ξt
a253
? ρ(ξt)a10
a249
a4a250a22
a233
a162
a149a150a144a32
a249a250-ta124a125ξt a241a250a22
a150
a14
a117ρ
t a241Ft?1-a8a9
a150a253
? a93ρ(ξ0) = 1. a79(5.3.2)a4
ρ(ξt) = ˉr(ξt+1)ρ(ξt+1) (5.3.3)
September 6, 2005 36 c?a95a96a97
a98a99a100 a101a102a103a104a25a105a106a107a108a109a110a25a111a103a112 5.4a105a106a107a108a109a110
§5.4 a212a213a33
a34a35a36
? a23a249a250T a150a124a125ξT a150a243a244a37a199a38a39a80a81a242a227a150a124a125a92a36a15a17a222a118a11a150a40a156a248
pi?(ξT) = q(ξT)ρ(ξ
T)
(5.4.1)
a23
a249a250t < T
a150
a124a125ξt
a150a255a0
a30
a83a41a156
a80a81a242
pi?(ξt) =
summationdisplay
ξT?ξt
pi?(ξT) (5.4.2)
? a255a0a30
a83a41a156
a241
a38
a36a22(a22)a150?a124a125a92a36a241
a38
a36a22(a22)a150a253
? a246a247a124a125ξt a150a255a0a30
a83a41a156a42a43
pi?(ξt) = q(ξt)ρ(ξ
t)
(5.4.3)
a68
a244a248
a44a45
a14
a46a47
a80a81(5.4.1)a14a8a9(5.4.3)a10a249a250T a124a125a12a13
a253
a1a48a14
a254
(5.4.1)a151a49 (5.4.2)
a50
pi?(ξt) =
summationdisplay
ξT?ξt
q(ξT)
ρ(ξT) (5.4.4)
a254
a124a125a92a36
a42a43a150a75a76a77(5.2.4)
a5a234a3
a23ξ
t
a150a254a255a0a68a94
a14
a50
q(ξt) =
summationdisplay
ξt+1?ξt
ˉr(ξt+1)q(ξt+1) (5.4.5)
a79(5.3.3)a4 ˉr(ξt+1) = ρ(ξt)ρ(ξt+1) a14
a151a49(5.4.5)a50
q(ξt) =
summationdisplay
ξt+1?ξt
ρ(ξt)
ρ(ξt+1)q(ξt+1)
a116
a234
a30a75a76a51a52
a13a53a54a14
a50
a16
q(ξt) =
summationdisplay
ξt+1?ξt
summationdisplay
ξt+2?ξt+1
ρ(ξt)
ρ(ξt+1)
ρ(ξt+1)
ρ(ξt+2)q(ξt+2)
=
summationdisplay
ξt+2?ξt
ρ(ξt)
ρ(ξt+2)q(ξt+2)
...
=
summationdisplay
ξT?ξt
ρ(ξt)
ρ(ξT)q(ξT) (5.4.6)
a234(5.4.4)a120(5.4.6)a117a50(5.4.3)a253
? a10a249a250-0a124a125ξ0 a14(5.4.3)a12a242
pi?(ξ0) = q(ξ0)ρ(ξ
0)
= 11 = 1
c?a95a96a97 37 September 6, 2005
5.5a105a106a107a108a109a110a55a56a57a58a175a176 a98a99a100 a101a102a103a104a25a105a106a107a108a109a110a25a111a103a112
? a47a80a81(5.4.2)a14a4
1 = pi?(ξ0) =
summationdisplay
ξT?ξ0
pi?(ξT)
a118
a30
a14pi? a59a221a241a245a239a41a156
a9a60
a253
? a61a9(5.4.3)
a235
a244
a255a0
a30
a83a41a156
a241a136a62a63a162a243
a150
a124a125a92a36
a253
? a131a132a133a150a134a135a80a43
a8
a136a137a242a248
a38
a36a22(a22)a150a255a0a30
a83a41a156a150
a41
a23a83
a130a92a3
a68a94
a92a36a138a139a243a140
a116(
a141a140
a116)a253
? a255a0a30
a83a41a156
a241a64
a245a150?
a20a21a241a16a17a18a19
a150a253
? a245
a39a255a0
a30
a83a41a156
a241
a38
a36a22
a150
a14a0
a8
a232a80a81a65a125
a41a156
pi?(ξt+1 | ξt) = pi
?(ξt+1)
pi?(ξt) , ?ξt+1 ? ξt (5.4.7)
a79(5.4.7)a25(5.4.3)a66(5.3.3)a14a4
pi?(ξt+1 | ξt) = q(ξt+1)q(ξ
t)
ˉr(ξt+1) (5.4.8)
a254
a30a151a49(5.2.4)a50
pj(ξt) = [ˉr(ξt+1)]?1
summationdisplay
ξt+1?ξt
pi?(ξt+1 | ξt)[pj(ξt+1)+xj(ξt+1)], ?t = 1,...,T, ?ξt, ?j. (5.4.9)
a8a9a122a123a243
a255a0
a30
a83a41a156a150
a18a126a250a127
a253a227
a3
a8
a232a234a67a68a69a65a125
a255a0
a30
a83a41a156
a14a44a70
a153a154a255a0
a30
a83a41a156
a8
a116
a234a61a9(5.4.7)a53a54
a119a71a50
a248
pi?(ξt+1) = pi?(ξt+1 | ξt)·pi?(ξt), pi(ξ0) = 1.
§5.5 a212a213a33
a34a35a36a72a73a74a75
a214a215
? a76a77a78a79
a255a0
a30
a83a41a156
a14a7a17a80S
a8a81
a12a82
a239a41a156a83a84a253S
a8a85a4
a150
a8a9
a35
a28
a14a245a86a87ta146
a147
a68a88a14
a68a94a77a21a89a90
a14
a68a94
a92a36a14a91
a116
a14a130a130a14
a8a81
a12a92a93a94
a158a253
? a92a93a94
a158a150a228a95a252
a14
a40
a245a121
a68a94j a23
a86a87ta150a82
a228a237a238r
jt a96
a3
a255a0
a30
a83a41a156pi? a150a228a95a252a97
a98E?[r
jt],a99a100a235a236
a228a95
a241
a96
a3pi? a251
a150
a61
a85
a69a14
a101a102
a234E[rjt]
a235a236a96
a3“a103
a104a41a156”(a114a105a151
a43
a152a10a7a17
a150a106a107a108a109)a150a228a95a253
? a234E?[rj,t+1 | ξt]
a235a236
a23a41a156pi? a85r
j,t+1 a96
a3a124a125ξt a150a65a125
a228a95
a14
a117
E?[rj,t+1 | ξt] =
summationdisplay
ξt+1?ξt
pi?(ξt+1 | ξt)rj(ξt+1) (5.5.1)
a234 E?t[rj,t+1]
a235a236
rj,t+1
a96
a3 Ft a150a65a125
a228a95
a14
a227
a241a82
a239 F
t a8a9a92a93a94
a158
a14
a23
a124a125 ξt a251
a252
E?[rj,t+1 | ξt]a253
? a116a234a65a125
a228a95a150a110
a100a14
a8
a102 (5.4.9)
a111a12
pjt = (ˉrt+1)?1E?t[pj,t+1 + xj,t+1] (5.5.2)
September 6, 2005 38 c?a95a96a97
a98a99a100 a101a102a103a104a25a105a106a107a108a109a110a25a111a103a112 5.5a105a106a107a108a109a110a55a56a57a58a175a176
a128
a90a241a121a14
a68a94 j a150
a86a87 -t a92a36a130a3
a227a150
a82
a228a91a231a150
a65a125
a228a95a23
a82
a228a254a255a0a237a238a85a150a17
a222
a252
a14a112a30
a228a95
a241
a96
a3
a255a0
a30
a83a41a156
a251
a150a253
? (5.5.2)a113
a8
a232
a46a47a237a238
a111a12
ˉrt+1 = E?t[rj,t+1] (5.5.3)
a117
a14
a24
a82
a68a94a150
a82
a228a237a238a150
a65a125
a228a95
a130a3a82
a228a254a255a0a237a238
a14a112a30
a228a95
a241
a96
a3
a255a0
a30
a83a41a156
a251
a150a253
? a163 5.5.1 a48a165 4.2.8 a37a14
a67a223
a242a243a244
a224a225a114
ˉr1(ξ0) = 1p
1(ξ0)
= 10.9 = 1.11
ˉr2(ξg) = 1p
2(ξg)
= 10.9 = 1.11
ˉr2(ξb) = 1p
2(ξb)
= 10.8 = 1.25
a23a24a25a26
a114
ρ(ξgg) = ρ(ξgb) = [ˉr2(ξg)ˉr1(ξ0)]?1 = 0.81
ρ(ξbg) = ρ(ξbb) = [ˉr2(ξb)ˉr1(ξ0)]?1 = 0.72
ρ(ξg) = ρ(ξb) = [ˉr1(ξ0)]?1 = 0.9
a243a244a37a199a38a39a115a116a117a57a58a59 (5.4.9) a60a118
a253
a191
a117
a119a120a121a122a123
a48a165 5.2.3 a37
a124a125
a66a189a190a54a50a14
a120
a121
a115a116
a126 (5.4.3)
a127a128
a124a125
a243a244a37a199a38a39
a253
a189a190a54a50
a114
q(ξgg) = 0.05, q(ξgb) = 0.22, q(ξbg) = 0.18, q(ξbb) = 0.3,
q(ξg) = 0.3, q(ξb) = 0.6
a129
a243a244a37a199a38a39
a114
pi?(ξg) = q(ξg)ρ(ξ
g)
= 0.30.9 = 0.33
pi?(ξb) = q(ξb)ρ(ξ
b)
= 0.60.9 = 0.67
pi?(ξgg) = q(ξgg)ρ(ξ
gg)
= 0.050.81 = 0.061
pi?(ξgb) = q(ξgb)ρ(ξ
gb)
= 0.220.81 = 0.272
pi?(ξbg) = q(ξbg)ρ(ξ
bg)
= 0.180.72 = 0.25
pi?(ξbb) = q(ξbb)ρ(ξ
bb)
= 0.30.72 = 0.417
c?a171a172a173 39 September 6, 2005
5.6a105a106a107a108a130a103 a98a99a100 a101a102a103a104a25a105a106a107a108a109a110a25a111a103a112
a131
a197
pi?(ξgg) + pi?(ξgb) + pi?(ξbg) + pi?(ξbb) = 1
pi?(ξg)+ pi?(ξb) = 1
pi?(ξgg) + pi?(ξgb) = pi?(ξg)
pi?(ξbg) + pi?(ξbb) = pi?(ξb)
§5.6 a212a213a33a34a132a133
a102a255a0
a30
a83a41a156
a61a134(5.4.3)a151a49(5.2.3)a135
a50
Q(z) = qz =
summationdisplay
ξ∈Ξ
q(ξ)z(ξ) =
Tsummationdisplay
t=1
summationdisplay
ξt∈Ft
q(ξt)z(ξt)
=
Tsummationdisplay
t=1
summationdisplay
ξt∈Ft
pi?(ξt)ρ(ξt)z(ξt) =
Tsummationdisplay
t=1
E?[ρtzt]
a61a134
Q(z) =
Tsummationdisplay
t=1
E?[ρtzt], ?z = (z1,...,z2) ∈Rk (5.6.1)
a241a136a92a137a138a234
a255a0
a30
a83a41a156a150
a235a236
a253a227
a235a139
a140a141
a80a142
a238a150
a92
a252
a130a3
a17
a222
a91a231
a96
a3
a255a0
a30
a83a41a156a150
a228a95a150
a120
a253a143a144a119
a135
q(z) =
Tsummationdisplay
t=1
E?[ρtzt], ?z ∈M(p) (5.6.2)
a163 5.6.1 (
a145a146a170
a223a147
a64a54)a48a165 3.3.1 a37
a120a121a148a149
a135a48
a187a188t
a52
a67
a63
a189a190a135a167a150a48
a187a1880
a151
a187a188t
a152a153
a118
a24 l
a154 “down”, a129a155a189a190a54a50
a114
parenleftbigg u? ˉr
ˉr(u?d)
parenrightbigglparenleftbigg ˉr?d
ˉr(u?d)
parenrightbiggt?l
a187a188 t a23a24
a39 ρt = (ˉr)?t a193
a186
a64a52
a253
a117(5.4.3) a135a243a244a37a199a38a39
a114
parenleftbiggu? ˉr
u?d
parenrightbigglparenleftbiggˉr?d
u?d
parenrightbiggt?l
a117
a119
a48
a187a188 t
a156
parenleftBigg
t
l
parenrightBigg
a63
a189a190a48
a187a188 0
a151 ta152a153a157a156 l a154 down a135a158
tsummationdisplay
l=0
parenleftBigg
t
l
parenrightBiggparenleftbigg
u? ˉr
u?d
parenrightbigglparenleftbiggˉr?d
u?d
parenrightbiggt?l
=
parenleftbiggu? ˉr
u?d +
ˉr?d
u?d
parenrightbiggt
= 1
a164a196a159 t a135
a187a188 t
a160a156a189a190a52a243a244a37a199a38a39
a152
a151a161
a119 1 a253
a117
a119
a145a146a170a162a163
a207a208
a193a164a165a209
a210
a52a135
a62
a63a166
a64
a147a225a167
a48a168
a169a170a171a172
a153
a135a173
a205
a115
a126a174a175
a64a54a55a56a176a64a54
a253
September 6, 2005 40 c?a171a172a173
a98a99a100 a101a102a103a104a177a105a106a107a108a109a110a177a111a103a112 5.7a103a178a56a179
a180a181
a67
a63a182
a170a183
a147
a135
a155a184
a52a168
a169
a114a185a186
a184
a135
a149
a223a187a114 T
a135
a188a189
a54a50
a114 K
a253
a185a223a147
a48
a187a188 T
a52
a174a175
a114
max{uT?ldl ?K,0}
a190a191a192a119a187a188 0
a151 T a152a153down a118
a24
a52a154a193 l; a48
a155a190a187a188
a52
a174a175
a114 0
a253
a204
a126a194
a170 (5.6.2) a135a195
a149
a223a147
a48
a187a188 0
a52a54a50
a114
E?[ρTzT] =
Tsummationdisplay
l=0
parenleftBigg
T
l
parenrightBigg
1
ˉrT
parenleftbiggu? ˉr
u?d
parenrightbigglparenleftbiggˉr ?d
u?d
parenrightbiggT?l
max{uT?ldl ?K,0} (5.6.3)
a182a196
a193a145a146a170
a223a147
a64a54
a194
a170
a253
§5.7 a133a197a73a198
a199a228
a141
a80a142
a238a150
a92
a252a150a200a201
a120
a85a201 (
a2024.2)a135
a8
a232a234a124a125a92a203a20
a255a0
a30
a83a41a156
a67a204a205
a253
a206
a82
a239
a141
a80a142
a238z ∈Rk
a135a207a208a209
qu(z) = max
q∈Q
{qz}
ql(z) = min
q∈Q
{qz}
a112a30Q = {q : q ≥ 0a210
a98
a124a125a92a203
a157a158}a253
a245a211z ∈M(p),a144a145qz a206a85a209q ∈Qa241a250a212
a150a213a214
a130a3
q(z)a118a70qu(z)a120ql(z)a214a130a3q(z).
a245a211
a116
a234
a255a0
a30
a83a41a156
a235a236
a124a125a92a203a135a215
a201
a8a235a236
a98
qu(z) = max
pi?∈Π
Tsummationdisplay
t=1
E?[ρtzt]
ql(z) = min
pi?∈Π
Tsummationdisplay
t=1
E?[ρtzt]
a112a30Πa241a85a209
a255a0
a30
a83a41a156a150
a80
a21a253
§5.8 a216
a133a217
a93pi
a241
a199a228a218a219
a30a7a220
a150
a103
a104a41a156
a135Ea241a103
a104a41a156a85a150a228a95
a69
a11a253a199a228a68a94a221a222
a30
a150
a64a54a223
a241a82
a239a91a231k
q ∈M(p)
a113a50
q(z) =
Tsummationdisplay
t=1
E[kqtzt], ?z ∈M(p) (5.8.1)
a116
a234a103
a104a41a156pi
a135
a200
a134
a8
a111a224
q(z) =
summationdisplay
ξ∈Ξ
pi(ξ)kq(ξ)z(ξ), ?z ∈M(p) (5.8.2)
c?a95a96a97 41 September 6, 2005
5.9a225a226
a98a99a100 a101a102a103a104a177a105a106a107a108a109a110a177a111a103a112
a227a228a229a230a231a21a89a90
a140
a232ξ
t(t ≥ 1)a233
a49
a82a234
a229a230j a213a232a235
a82
a11a236a237ξ
t+1 ? ξt
a102
a112a238a239
a253a240a89a90a241a242
a243a244a231a98
z(ξt) = ?pj(ξt)
z(ξt+1) = pj(ξt+1) + xj(ξt+1), ?ξt+1 ? ξt
z(ζ) = 0, ?a112
a227ζ ∈ Ξ
a245
a234(5.8.2)a50
0 = ?pi(ξt)kq(ξt)pj(ξt) +
summationdisplay
ξt+1?ξt
pi(ξt+1)kq(ξt+1)[pj(ξt+1) + xj(ξt+1)]
a246
kq(ξt)pj(ξt) =
summationdisplay
ξt+1?ξt
pi(ξt+1 | ξt)kq(ξt+1)[pj(ξt+1)+xj(ξt+1)], j = 1,...,J, ?ξt, ?t ≥ 0. (5.8.3)
a112a30kq(ξ0) = 1.
a200
a134
a8
a111a224
kqtpjt = Et[kq,t+1(pj,t+1 + xj,t+1)], j = 1,...,J, ?t ≥ 0. (5.8.4)
a245
a234a82
a228a237a238
a135
a200
a134
a8
a111a224
kqt = Et[kq,t+1rj,t+1], j = 1,...,J, ?t ≥ 0. (5.8.5)
a143a144a247
a135a245a211a248
a232
a82
a239a249
a209a82
a228a254a255a0a237a238 ˉr
t+1
a243a229a230
a135a215
kqt = ˉrt+1Et[kq,t+1], (5.8.6)
a249
a220a250a251
a221a222
a30
a243a252a253a254a255a0
a134a1a238
kq(ξ) = q(ξ)pi(ξ) (5.8.7)
a2a3a4a232(5.8.2)
a5
a6z a98e(ξ)a246a7a8a9a10a2a11a12a13
a135
a249
a220a250a251
a221a222
a5
a243a252a253a254a12a14a15a16a17a18a19a20
a21a22a23a243a24a25a253
a203
a10
§5.9 a26a27
? a244a28a243a253a203
a12a14a24a25a253
a203a135
a29a30
a5
a31a17a18
a135
a32a12a14a252a253a254a33a34a35
a135a250a36a37a38a39a40
a10a232a252a253a41a242
a229a230a42a14a29a30
a5
a31a17a18a43a44a45
a39a40a135a46
a12a47a48a29a30
a5
a31a17a18a7a49a50a51a14a52a53a54a244a28a243a229a230a243
a253
a203
a34a35a8a9a55a56a57a58a232a59a229a60a61
a5
a252a253a254a43a44a12a62a63a243a64a65a58a66a67a68
a38
a7a14a52a69a34a70a71a232a15
a16a17a18a0a243
a39a72a73a74a39a72a75
a58a47a76a58a76a42a14a15a16a17a18a77a14a29a30
a5
a31a17a18a78a48
a39a40
a10
September 6, 2005 42 c?a79a80a81
a82a83a84 a85a86a87a88a89a90a91a92a93a94a95a89a96a87a97 5.9
a98a99
? a100
a42a252a253a254a14a101a102a68a33a103a104a58a232a2a105a106a107a0a58a108a252a253a243a244a28a232a235a109a24a25a14a2a109a20a243a244a28a56a110
a111a112a12a56a113a10a114a115a116a68(deflator)a12a2a109a252a253a254a243a102a68a10
a100a117
a61a118a58a119Duffie,a252a120a243a252a253a254a121
a62a63a243a56a122(a112a12a101a102a68)a58a123a124a125a126a48a114a115a116a68a10
? a127a128 “a232a235a129a42a130a248
a232a131
a100
a129a132a133a29a30a70a71a243a229a230a231a134” a112a12a135a136a243a58a137a138a2a139a243a229a230a112
a248
a232a58a140a2325.4a236a243a141a142
a5
a58a7a14a143a144a101a125a131
a100a145
a243a129a132(a29a30)a70a71a243a229a230(
a146
a229a230a231a134a147a148).
a112a12a14a149a150a133a29a30a70a71a33a21a22a24a25a253a151a58a111a12a252a120a129a109a114a115a116a68a48a232a152
a100
a24a25a131
a100a153
a151
a145
a244
a28a243a229a230a231a134a147a148a58a16a154a14a2a109a114a115a116a68a33a21a22a24a25a253a151a10a235a129a109a114a115a116a68a252a120a23a129a109a129a155
a33a13a12a112a122a243a29a30
a5
a31a17a18a243a156a134a10
c?a79a80a81 43 September 6, 2005
5.9a98a99
a82a83a84 a85a86a87a88a89a90a91a92a93a94a95a89a96a87a97
September 6, 2005 44 c?a79a80a81
a157a158a159 a160a161a162a163a164a165a166
§6.1 a167a168
? a169a170a73a169a170a171
a134a243a172a245a7a173a174a44a53a175a55a173
a234a176
a48a177a58a178a179a180a181a182a183a184a185a186a187a172a245a10a2a188a189a58
a3
a100a190a191
a63a192a193a194a195a172a245a7a173a196a197a42
a191
a63a198a7a199a194a195a172a245a10a200a201a247a58a2a202a203a204a58a3
a100a205
a129a206
a207a208a70a209a210a154a243a172a245a198a108a194a195a10
? a53a175a243a172a245a211a212a213a214a169a170a73a169a170a171
a134a253a151
a5
a53a175a243a215a132a216a217a31a10a135a218a219
a169a220
a58a137a138a221a222a223a12
a197
a100a169a170a146a169a170a171
a134a223a224a225a111a112a12a125a63a223a253a151a58
a46a226
a2a105a53a175a223a215a132a216a217a31a219a186a227a228a224a225a12
a229a10
? a230a231a232a233S a234
a223a129a109a235a236a237a238a239a240{y
t}Tt=0
a241
a48a12a17a18a242a243pi a0a223a129a109a229a58a244
i) yt
a245
a52a246a247 F
t
a12a7a242a223a248
ii) Et(yτ) = yt, ?τ ≥ t
a101
a5Et a12pi a0Ft a234
a223a249a25a132a250a35a251a10a252a253
a169a220
a58ii)
a75a254
a52
ii’) Et(yt+1) = yt, ?t < T.
? a169a170a146a169a170a171a134a223a224a225a100a255a105a229a0a189a228a129a109a12a14a29a30a5a31a17a18a58a1a129a109a12a14a15a16a17a18a73a2a254
a254a10
? a135a218a127a2
a228
a205a3
a129a109a24a25a4
a205
a129a109
a169a170a146a169a170a171
a134a131
a100a153
a151
a145
a223a129a132a133a29a30a70a71a10
§6.2 a5a6a7a8a9a5a6
? a205
a42a130t
a10a11
a223a12
a169a170j a223a13a14a15a197a100a147a148a16a17a223a18a28a205a3a109a42a130τ < ta75
a52a172a225x
jτ
a58a111
a205
a42a130t
a75
a52p
jt+xjt
a10a172a225x
jτ a19a20a21
a173a22a6a129a132a133a29a30a70a71a58a101
a205
a42a130ta223
a254a23
a48(ρ
τ/ρt)xjτ,
a101
a5ρτ a12a205 τ a223a24a25a47a251a10a51a42a130 0 a9a42a130 ta197a100a169a170
a152a26a223a224a225a14a42a130 -ta186a27a28a29a33a243
a238a58a15
a2
a120a48a30a13a14a15a197
a100
a147a148a223a42a130 -ta18a28a121a42a130ta210a31a223a18a28
a19a20a21
a173a22a6a129a132a133a29a30
a70a71a223
a254a23
a210
a73
a10
? a145
a212a32a58
a169a170j a205
a24a25ξ
t(t ≥ 1)
a223a224a225g
j(ξt)
a108
a2
a120a48
gj(ξt) = pj(ξt) + [ρ(ξt)]?1
tsummationdisplay
τ=1
ρ(ξτ)xj(ξτ)
a101
a5ξτ a12ξt a205τ a223a33a34a35a36a10a205
a42a1300a223a224a225
a75
a52
a254
a151a228
gj(ξ0) = pj(ξ0)
a37a202a9x
j(ξ0) = 0,a234a255
a212a7a38a129a39a40
gj(ξt) = pj(ξt) + [ρ(ξt)]?1
tsummationdisplay
τ=0
ρ(ξτ)xj(ξτ), t = 0,...,T (6.2.1)
45
6.2 a41
a42a43a44a45
a41
a42 a82a46a84 a47a48a49
a41
a42a43a50
a148a51a24a25a52a53a58
a234
a212a7a54a39a40
gjt = pjt + ρ?1t
tsummationdisplay
τ=0
ρτxjτ, t = 0,...,T (6.2.2)
a55
a169a170 j a205
a42a130 ta223a224a225
a75
a52a30
a169a170a205
a42a130 t
a56
a101a173a31a57a109a42a130a223a172a225
a205
a42a130 ta223
a254a23
a19
a195
a234
a30
a169a170a205
a42a130ta223
a254
a151a10
? a169a170j a205
a42a130ta223a58a59a60a61a12a14a42a130-0a186a27a28a29a243a238a223a224a225a228
djt = ρtgjt = ρtpjt +
tsummationdisplay
τ=0
ρτxjτ, t = 0,...,T (6.2.3)
a55
a169a170j a205
a42a130ta223a24a25a224a225
a75
a52a42a130ta223a24a25
a254
a151a121a51a42a1300a9a42a130ta223a24a25a172a225a210
a73
a10
? a62(6.2.3)a100
dj,t+1 ?dj,t = ρt+1(pj,t+1 + xj,t+1)?ρtpj,t, t = 0,...,T ?1 (6.2.4)
a55a24a25a224a225
a205
a129a132a63a223a237a64
a75
a52
a190
a31a172a225a223a24a25
a23
a195
a234
a24a25
a254
a151a223a237a64a10
? a12a52(a65
a24a25a223)a224a225a58
a62(6.2.2)a100
gj,t+1 ? ˉrt+1gj,t = xj,t+1 + pj,t+1 ? ˉrt+1pj,t, t = 0,...,T ?1 (6.2.5)
a55a66a132a67a186a27a28a29a34a35a223a224a225
a205
a129a132a63a223a237a64
a75
a52a132a67a223a18a28a187a51a132a68
a254
a151
a205
a132a67a223
a254a23
a10
? a69a70
a32a58a137a138a129a109
a169a170a71a205a10a72
a42a130a131
a100
a174a73a172a225a58
a46a226
a125a223a224a225
a205
a174
a10a72
a42a130
a75
a52
a254
a151a58
a205
a10a72
a42a130
a75
a52a172a225a58a125a223a24a25a224a225
a205
a174
a10a72
a42a130
a75
a52a24a25
a254
a151a58
a205a10a72
a42a130
a75
a52a24a25a172a225a228
gjt =
braceleftBigg
pjt, t < T,
xjT, t = T, djt =
braceleftBigg
ρtpjt, t < T,
ρTxjT, t = T.
? a169a170a171
a134a147a148a223a224a225
a73
a24a25a224a225a223
a2
a120a74a75a52a12
a169a170
a223
a2
a120a55
a169a170a171
a134a147a148h
a205
a42a130ta223a224a225g
t(h)a75
a52a30a147a148
a205
a42a130 t
a56
a101a173a31a57a42a130a223a18a28
a205
a42a130 ta223
a254a23
a19
a195
a234
a30
a169a170a205
a42a130ta223
a254
a151a58a55
gt(h) = ptht + ρ?1t
tsummationdisplay
τ=1
ρτzτ(h,p), t = 0,...,T (6.2.6)
a101a76a77
a2
summationtext0
τ=1 = 0,a78a79a80
a13a58g
0(h) = p0h0.
? a169a170a171
a134a223a24a25a224a225
a79a80
a224a225a223a24a25
a23
a58a55
dt(h) = ρtgt(h) = ρtptht +
tsummationdisplay
τ=1
ρτzτ(h,p), t = 0,...,T (6.2.7)
a62(6.2.6),a100
gt+1(h)? ˉrt+1gt(h) = (xt+1 + pt+1)ht ? ˉrt+1ptht, (6.2.8)
a51a111
dt+1(h)?dt(h) = ρt+1(pt+1 + xt+1)ht ?ρtptht (6.2.9)
September 6, 2005 46 c?a81a82a83
a82a46a84 a47a48a49
a41
a42a43a50 6.3a44a45
a41
a42a43a50
§6.3 a8a9a5a6a7a84
a85a86 6.3.1
a87a88a89a87a88a90a91a92a93a94
a58a59a60a61a95a96a97a98a99a100a101a102
a94a103
a58a104
E?t[djτ] = djt, ?τ ≥ t, ?j
E?t[dτ(h)] = dt(h), ?τ ≥ t, ?h
a169
a228 (1)
a62(5.5.2)a58
pjt = (ˉrt+1)?1E?t[pj,t+1 + xj,t+1]
a255a72
a122a113a173a24a25a47a251ρ
t
a58a105
ρtpjt = ρt+1E?t[pj,t+1 + xj,t+1] (6.3.1)
a62
a52E?
t(ρtpjt) = ρtpjt
a58
a234
a212a106a39a40
E?t[ρt+1(pj,t+1 + xj,t+1)?ρtpjt] = 0
a62(6.2.4)a58a234
a212a48
E?t[dj,t+1 ?dj,t] = 0.
a62
a52E?
t[dj,t] = dj,t
a58
a234
a212a40a48
E?t[dj,t+1] = dj,t, ?t < T.
(2)a205(6.3.1)a255a72a122a113a173hjt a58a105
ρtpjthjt = ρt+1E?t[(pj,t+1 + xj,t+1)hjt], j = 1,...,J.
a234
a212
a245
a52j
a107a73
a105
ρtptht = ρt+1E?t[(pt+1 + xt+1)ht].
a62
a52E?
t(ρtptht) = ρtptht
a58
a234
a212a106a39a40
E?t[ρt+1(pt+1 + xt+1)ht ?ρtptht] = 0.
a62(6.2.9)a58a234
a212a48
E?t[dt+1(h)?dt(h)] = 0.
a62
a52E?
t[dt(h)] = dt(h)
a58
a234
a212a40a48
E?t[dt+1(h)] = dt(h), ?t < T.
? a62
a52E?
0 a79a80a245
a52pi? a223a133a249a25a132a250a58
a2
a1816.3.1
a108a109
a204
E?[djτ] = dj0 = pj0, ?τ
E?[dτ(h)] = d0(h) = p0h0, ?τ
a110
a79a80
a13a58a143a144
a169a170a146a169a170a171
a134a147a148
a205a3
a109a42a130a223a24a25a224a225
a245
a52a29a30a76a31a17a18a223a132a250
a75
a52a101
a42a130-0
a254
a151a111
c?a79a80a81 47 September 6, 2005
6.4 a41
a42a43a50 a82a46a84 a47a48a49
a41
a42a43a50
? a12a52a71a205a10a72a42a130a131a100a174a73a172a225a223a169a170 (a77a137j)a33a13a58a2a1816.3.1a40a48
E?t[ρτpjτ] = ρtpjt, ?τ ≥ t, τ < T,
E?t[ρTxjT] = ρtpjt, ?t < T.
a234a112a113
a129a109a212a251a0a189a24a25
a254
a151a131
a100
a229a31a136a111
? a114 6.3.2 a115a116 4.2.8 a98a58a87a88 1 (a117a118a119a88) a94
a58a59a60a61a120
d1(ξg) = d1(ξb) = 0.9×1 = 0.9
d12 = 0.9
a87a88 2(a121a118a119a88) a94
a58a59a60a61a120
d2(ξg) = 0.9×0.9 = 0.81
d2(ξb) = 0.9×0.8 = 0.72
d2(ξgg) = d2(ξgb) = ρ2(ξgg)·x2(ξgg) = 0.9×0.9×1 = 0.81
d2(ξbg) = d2(ξbb) = ρ(ξbg)·x2(ξbg) = 0.8×0.9×1 = 0.72
a115a116 5.5.1 a98a122a123a124a125a96a97a98a99a100a101a228
pi?(ξg) = 13, pi?(ξb) = 23,
pi?(ξgg) = 581, pi?(ξgb) = 2281, pi?(ξbg) = 14, pi?(ξbb) = 512
a126a127a128
a87a129a130a131a87a88a94
a58a59a60a61a132a133a134
a103
a99a135 (
a93) a111
§6.4 a5a6a7a84
a85a86 6.4.1
a136a137a87a88a89a87a88a90a91a92a93a94
a60a61a138a139a140a141
a94a142a143
a95a144a145a100a101a146
a94a103
a58a104
Et[gjτkqτ] = gjtkqt, ?τ ≥ t, ?j
Et[gτ(h)kqτ] = gt(h)kqt, ?τ ≥ t, ?h
a169
a228 (1)
a62(5.8.4)a73(5.8.6)a100
kqtpjt = Et[kq,t+1(pj,t+1 + xj,t+1)] (6.4.1)
kqt = ˉrt+1Et[kq,t+1] (6.4.2)
a147a76a58
Et[kq,t+1(pj,t+1 + xj,t+1 ?pjtˉrt+1)] = 0 (6.4.3)
a62(6.2.5)a58a234
a212a106a39a40
Et[kq,t+1(gj,t+1 ? ˉrt+1gjt)] = 0
September 6, 2005 48 c?a79a80a81
a82a46a84 a47a48a49
a41
a42a43a50 6.4
a41
a42a43a50
a147a148E
t(kq,t+1ˉrt+1gjt) = ˉrt+1gjtEt(kq,t+1) = gjtkqt,a100
Et(kq,t+1gj,t+1) = kqtgjt
(2)a205(6.4.3)a255a72
a122a113a173h
jt
a154
a245a149
j a107a73
a58a105
Et[kq,t+1(pt+1 + xt+1 ? ˉrt+1pt)ht] = 0
a62(6.2.7)a58a234a212a106a39a148
Et[kq,t+1(gt+1(h)? ˉrt+1gt(h))] = 0
a225a150(6.4.2)a58
a62a234
a212a106a105
Et[kq,t+1gt+1(h)] = kqtgt(h), ?t < T.
a62
a149
E0 a79a80
a133a249a151a132a250a58
a2
a1816.4.1
a108a109
Et[gjτkqτ] = gj0 = pj0, ?τ,
Et[gτ(h)kqτ] = g0(h) = p0h0, ?τ.
a62
a149
E[gjτkqτ]a80
a224a225g
jτ
a223a152a130-0
a254
a151a58
a234
a212a153
a220
a143a144
a169a170a146a169a170a171
a134a147a148
a205
a143a144a152a130a223a224a225a223
a152a130-0
a254
a151
a75
a149
a30
a169a170a146a169a170a171
a134a147a148a223a152a130 -0
a254
a151a154
c?a79a80a81 49 September 6, 2005
6.4 a41
a42a43a50 a82a46a84 a47a48a49
a41
a42a43a50
September 6, 2005 50 c?a79a80a81
a157a155a159 a156a157a158a159a162a160a161a160a161
§7.1 a167a168
a162
a149
a186a27a223
a169a170a2a254
a219
a3
a109
a169a170a163a146a169a170a171
a134a164a223a165a166a24a167a121a30
a169a170
a70a71a223
a74a168a72a169a170a171a172
a111
a135a218
a205a173
a132a211a201a223a174a175a176a58a148a131
a100
a150a132a250a177a150a0a189a223a177a150a178a68a223a103a181a179a180a213a110a109
a245
a170
a111
§7.2 a181a182a183a184
? a129a109a186a27a185a247 c ∈ Rk+1 a106a173a186a40a129a109Ft a106a242a178a68 ct a223 T + 1 a187a171{c0,...,cT}a58a125a205a230a231
s ∈ S a176a223a59a25a148c(s) = [c0(s),...,cT(s)].
? a129a109a103a181a179a223a177a150a178a68 u : Rk+1 → R
a241
a148a131
a100a230a231a188a189
a223
a118a190
a191a192a193a194a58a137a138a4
a205
a129a109a178
a68V : RT+1 →R
a73S a234
a223a129a109a195a196a242a243pi,
a197
a105a12?c,cprime ∈Rk+1
a100
u(c) ≥ u(cprime) ?
Ssummationdisplay
s=1
pisV (c(s)) ≥
Ssummationdisplay
s=1
pisV (cprime(s)). (7.2.1)
? a132a250a177a150a0a189a76a223a195a196pi
a241
a148a198a199a195a196a111
a230a231
a156S
a234
a223
a3
a109a106a242a178a68a106a186a40a131
a100
a195a196a242a243pi
a223S
a234
a223a129a109a235a236a237a238a111
a245a149
pi a223a132a250a200a148E,a140a132a250a177a150a178a68a148
E[V (c)] =
Ssummationdisplay
s=1
pisV (c(s)) (7.2.2)
a201a111(7.2.1)a106a0a189a148
u(c) ≥ u(cprime) ?E[V (c)] ≥E[V (cprime)] (7.2.3)
? a178a68V a80a173
a132a186a27a223Von Neumann-Morgenstern (VNM)a177a150a178a68a154 Va223a129a109a202a150a203a212
a80
a152
a233
a106a246a203a212a228
V (y) =
Tsummationdisplay
t=0
δtυ(yt), ?y = (y0,...,yT) ∈RT+1 (7.2.4)
a101a76υ : R → R
a80
a129a109a152
a233
a112a237a223a204a206a177a150a178a68a58 δ
a80
a129a109a152
a233
a112a237a223a24a25a147a251a58 0 < δ
a205
a206a202δ < 1.
? a131a100
a152
a233
a106a246a223VNMa177a150a178a68a223a132a250a177a150
a80
E[V (c)] =
Tsummationdisplay
t=0
summationdisplay
s∈S
pi(s)δtυ(ct(s)) (7.2.5)
a234
a212a106a207a129a208a39a40
E[V (c)] =
Tsummationdisplay
t=0
δtE[υ(ct)] (7.2.6)
51
7.3a90a91a209a210 a82a211a84 a212a213a214a215a49a47a48a216a217
a62
a149
ct a80Ft a106a242a223a218(7.2.5)a219
a106a39a40
E[V (c)] =
Tsummationdisplay
t=0
summationdisplay
ξt∈Ft
pi(ξt)δtυ(c(ξt)) (7.2.7)
a220a76pi(ξ
t) =
summationtext
s∈ξt pi(s)a80a221
a151ξ
t
a223a195a196a111
? a173a222
a186a27a185a247a223a223a224a223
a222
a250a177a150a0a189a223a178a181a64a74a75
a149
a28
a222
a186a27a185a247a223a178a181a64a111
§7.3 a225a226a227a228
? a229a230a222
a250a177a150a178a231(7.2.2)a223a232a233a234
a241
a148
a80
a96a97a235a236
a94
a218a237a238a239a240a241a223a224a242a27a185a247a223
a222
a250a243a244
a242a27a185a247a245a246a218a55
E[V (c)] ≤ V (E(c)), ?c ∈Rk+1
a220a76E(c)a0a247a248a249a250
a2a251a252a173a222
a242a27a185a247 [c
0,E(c1),...,E(cT)].
? a232a233a234
a241
a148
a80
a96a97a98a99
a94
a218a237a238
E[V (c)] = V (E(c)), ?c ∈Rk+1
? a232a233a234
a241
a148
a80a253a254
a96a97a235a236
a94
a218a237a238
E[V (c)] < V (E(c)), ?a255
a250a0
a251
a242a1a185a2c
? (1)a248a249a232a233a234a80
a165a166a3a4
a252?a239a240a241a252VNMa177a150a178a231V a80a5a252
a111
(2)a248a249a232a233a234a80a165a166a76a251a252?a239a240a241a252VNMa177a150a178a231V a80a6a251a252
a111
(3)a248a249a232a233a234a80a7a8a165a166a3a4a252?a239a240a241a252VNMa177a150a178a231V a80a7a8a5a252
a111
a9a10 (1)
?) a11Jensena12a13a14a15a16a17
?) a11a5
a178a231
a252
a0a18
a15a16a17
...
? V a19a6a251a252
a218
a15
V (y) =
Tsummationdisplay
t=0
αtyt, ?y ∈RT+1
a220a20α
t > 0,?t. a21a22a23
a147a24
a19
a152a25
a12a26a252a27
a203a218
a230αt = δt.
§7.4 a28a29a30a31a32a33a31a32
? a173a222a34a35
a20a162
a149
a242a1
a252
a9a36a0a37a38a39a40a41
a252a42
a151a43
a168a44a45a42
a151
a168a44a17
? a9a36j a45k a252
a248
a222
a40a41r
j,t+1 a45rk,t+1 a46
a25
a252a42
a151a43
a168a44a19a47a48
a249a40a41
a252a49a50a252a42
a151
a222a51a52
a53a54a55
a252a42
a151
a222a51a252a49a50
a218
a15
Covt(rj,t+1,rk,t+1) = Et(rj,t+1rk,t+1)?Et(rj,t+1)Et(rk,t+1)
September 6, 2005 52 c?a56a57a58
a59a211a60 a212a213a214a215a61
a62a63
a216a217 7.5a212a213a214a215a61
a62a63
a216a217
? a40a41rj,t+1 a45
a54a198a64
a46
a25
a252a42a65
a43a66
a44a19rj,t+1 a252a42a65
a66
a44
a218a67a68
Vart(rj,t+1) = Et(r2j,t+1)?E2t(rj,t+1)
a69a70
a252a71a72a44
a67a68σ
t(rj,t+1) =
radicalbigVar
t(rj,t+1).
§7.5 a73a74a75a76a77a78a79a80a81
? a232a233a234a252a222a51a82a83a84
a231a85a86a87a88
summationdisplay
s∈S
pisV (c(s)) =
summationdisplay
ξt∈Ft
summationdisplay
s∈ξt
pisV (c(s)), t = 0,...,T
a89a90a242a1
a21a221a65ξt a252a91a92a82a83
a68
summationdisplay
s∈ξt
pis?tV (c(s)) (7.5.1)
a220a20?
tV (c(s))a93
a247 V
a94a95t a249a26a96(a15a97a98t a242a1) a252
a223a99a231
a17a47a100a101
a218a237a238 VNM
a82a83a84
a231V
a12a229a97
a25a85a102
a251a252a103
a218a242a1
a21a104a105a97a98a252a91a92a82a83a106a107a108a109a110a230a97a98a252
a242a1
a17
a111
a83a42a65
a222a51
a218a85a112(7.5.1)a87a88
pi(ξt)E[?tV|ξt] (7.5.2)
a220a20?
tV a93
a247a113a114a68?
tV (c(s))a252a115a116a26a96a17
? a211.6a117
a20a118a55a119a120a121a242a1-a9a36a122a123a124a125a126a127
max u(c)
s.t. c(ξ0) = w(ξ0)?p(ξ0)h(ξ0)
c(ξt) = w(ξt) + z(h,p)(ξt), ?ξt ∈Ft,t = 1,...,T
a128a99a129a121a220a248a130a131a132
a251a42a65
pj(ξt) =
summationdisplay
ξt+1?ξt
[pj(ξt+1)+ xj(ξt+1)] ?ξt+1u?
ξtu
, ?j, ?ξt, t < T
a220a20?
ξtu = ?u?c(ξt) a19
a242a1
a21ξt a252a91a92a82a83
a218a112a220
a83(7.5.2)a232a133a16a134
pj(ξt)E[?tV|ξt] =
summationdisplay
ξt+1?ξt
[pj(ξt+1) + xj(ξt+1)]pi(ξt+1)pi(ξ
t)
E[?t+1V|ξt+1]
=
summationdisplay
ξt+1?ξt
[pj(ξt+1) + xj(ξt+1)]pi(ξt+1)pi(ξ
t)
summationdisplay
s∈ξt+1
pi(s)
pi(ξt+1)?t+1V (c(s))
=
summationdisplay
ξt+1?ξt
summationdisplay
s∈ξt+1
[pj(ξt+1) + xj(ξt+1)] pi(s)pi(ξ
t)
?t+1V (c(s))
=
summationdisplay
s∈ξt
pi(s|ξt)[pj,t+1(s) + xj,t+1(s)]?t+1V (c(s))
= E[(pj,t+1 + xj,t+1)?t+1V|ξt], ?j, ?ξt, t < T (7.5.3)
c?a56a57a58 53 September 6, 2005
7.6 a135a136
a137a138a139
a61
a62a63
a216a217 a59a140a60 a212a213a214a215a61
a62a63
a216a217
a141a53
a221a65a142a143
a218a144
a14
a85a145a87a68
pj,tEt[?tV ] = Et[(pj,t+1 + xj,t+1)?t+1V], ?j, t < T (7.5.4)
a111
a83
a40a41a218a85a86a112a144
a14
a87a88
Et[?tV ] = Et[rj,t+1?t+1V], ?j, t < T (7.5.5)
? a146
a0
a21a147
a248
a97a98t(t < T)a221a65a148a21
a9a36(a240a149a9a36a122a123)
a229a230
a248
a222a150a151a152
a40a41 ˉr
t+1.
a112(7.5.5)
a70
a109a153a151a152
a9a36
a16a134
ˉrt+1 = Et[?tV ]E
t[?t+1V ]
, ?t < T (7.5.6)
? a154a155a156
a99a9a36j
a252a157a158a159a160a161a162a163a164Et[rjt+1]? ˉrt+1 a252a93a165a14a166 rj,t+1
a167
?t+1V
a46
a25
a252a42a65
a43a66
a44
a68
Covt(rj,t+1,?t+1V ) = Et(rj,t+1?t+1V )?Et(rj,t+1)Et(?t+1V )
a89a90a168
a11(7.5.5)a169(7.5.6)a16a134
a9a36j
a252
a248a170a40a41
a252a42a65
a170
a51
a68
Et(rj,t+1) = ˉrt+1 ? ˉrt+1Covt(rj,t+1,?t+1V )E
t[?tV]
(7.5.7)
a144
a14a171a19a172
a170a9a36
a34a35
a20a173a174a175a176a177a178a179a180a181a182
a14a17
a54
a100a101
a168
a147
a248a9a36j
a252a42a65
a248a170
a151a152a22
a183a88a184a185
a109a153
a9a36
a252
a248a170a40a41
a167
a97a98ta169 t + 1
a242a1a25
a252a91a92
a133a232a186
a46
a25
a252a42a65
a43a66
a44a252a187
a114a168a184a185a188a189
a171a19
a248a170
a150a151a152
a40a41ˉr
t+1 a17a7a8a190a100
a168 ?t+1V
Et[?tV ] a12a19
a170
a51a82a83a154a252a91a92
a133a232a186a168
a191
a149
a46
a25a69
a44
a248a249
a42a65a192
a186
a17
? a237a238a232a233a234a252
a242a1
a21a147
a249
a97a98a193a19
a250a0
a251a252
a168a194a195
a91a92a82a83?tV a21a147
a249
a97a98a196a19
a250a0
a251a252
a168
a90
a97a197a109
a242a1
a252
a0a37a182
a14(7.5.7)a198a199a200
a182a201a0a37a168
a15a147
a249a9a36
a252
a248a170
a42a65
a170
a51
a40a41
a13a109
a248a170
a150a151a152
a40a41
a17
§7.6 a202a203a204a205a206a77a78a79a80a81
? a207
a170
a91a92
a133a232a186
a107a108a109a110a208a97a98a252
a242a1a168
a47a209a16
a182
a14(7.5.6)a169(7.5.7)a21
a70
a83a210a211
a20
a12
a66a212
a17
a89a90a168a248a213
a209a83a97
a25a85a102a170
a51a82a83a84
a189(7.2.7).
? a21(7.2.7)a154
a168a242a1
a21a214a65ξt a252a91a92
a170
a51a82a83
a68
pi(ξt)δtυprime(c(ξt))
a109a19
a242a1-a9a36a122a123a124a125a126a127
a252
a248a130a131a132
a251a42a65
a88a68
pj(ξt)υprime(c(ξt)) = δ
summationdisplay
ξt+1?ξt
[pj(ξt+1)+ xj(ξt+1)]pi(ξt+1)pi(ξ
t)
υprime(c(ξt+1))
a15
pj(ξt)υprime(c(ξt)) = δE[(pj,t+1 + xj,t+1)υprime(ct+1)|ξt] (7.6.1)
September 6, 2005 54 c?a56a57a58
a59a140a60 a215a216a217a218a61
a62a63a219a220 7.7
a221a222a223a224
a225a226a227a61a228a229a230
a231a20υprime(c
t+1)a93a232
a113a114a68 υprime(c(ξ
t+1)) a252a115a116a26a96
a168 ξ
t+1 ? ξt.
a141a53
a101
a233
a252a214a65a142a143
a168 (7.6.1)
a85a87a88
pjtυprime(ct) = δEt[(pj,t+1 + xj,t+1)υprime(ct+1)], ?j (7.6.1prime)
a111
a83
a40a41a168a144
a14
a85a86a87a88
υprime(ct) = δEt[rj,t+1υprime(ct+1)], ?j, ?t < T. (7.6.2)
a112a144
a14
a70
a83a109a234
a170
a150a151a152
a40a41a168
a208
ˉrt+1 = δ?1 υ
prime(ct)
Et[υprime(ct+1)], ?t < T (7.6.3)
a11a109rj,t+1
a235
υprime(ct+1)
a46
a25a236
a42a65
a43a66
a44
a68
Covt(rj,t+1,υprime(ct+1)) = Et[rj,t+1υprime(ct+1)]?Et(rj,t+1)Et[υprime(ct+1)]
a89a90a168
a11(7.6.2)
a235
(7.6.3)a16a134
Et(rj,t+1) = ˉrt+1 ?δˉrt+1Covt(rj,t+1,υ
prime(ct+1))
υprime(ct) (7.6.4)
a47a171a19a97
a25a85a102
a154
a236
a197a109a237
a1a236a9a36a0a37a182
a14a17
? a238a239a240a241a242a19a151a152
a20a243a236a168a194a195(7.6.4)
a198a199a200
a182a201a0a37a168(7.6.3)
a198a199a200a234
a170
a150a151a152
a40a41
a13a109
a22a23
a89a24a236a244a189
a17
§7.7 a245a246a247a248a249a250a251a77a252a253a254
a197a109a237
a1a236a9a36a0a37a85
a83a109a156
a99
a207
a170
a91a92
a133
a240
a186a236
a71a72a44
a236
a154a255a17
a0a1(7.5.5)
a235
(7.5.6)a168a208
Et[(rj,t+1 ? ˉrt+1)?t+1V ] = 0 (7.7.1)
a91a92a82a83?t+1V
a235
a234
a170a2a3a40a41r
j,t+1 ? ˉrt+1 a46
a25a236
a42a65
a69a4a188a189a68
ρt = Covt(?t+1V,rj,t+1 ? ˉrt+1)σ
t(?t+1V )σt(rj,t+1 ? ˉrt+1)
=(7.7.1) ?Et(?t+1V )·Et(rj,t+1 ? ˉrt+1)σ
t(?t+1V )σt(rj,t+1)
= (7.5.6) ? Et(?tV )Et(rj,t+1 ? ˉrt+1)ˉr
t+1σt(?t+1V )σt(rj,t+1)
a11a109|ρt|≤ 1a168a208
σt
parenleftbigg ?
t+1V
Et(?tV )
parenrightbigg
≥ |Et(rj,t+1)? ˉrt+1|ˉr
t+1σt(rj,t+1)
, ?j, ?t < T (7.7.2)
a144
a14a100a101
a168
a97a98 t
a235
t + 1a237
a1a25a236
a91a92
a133
a240
a186a236
a42a65a5a6
a186a7
a109a147a234
a9a36a236 sharpe a184a186
a167
a234
a170
a150a151a152
a40a41a236a184a114a236a8
a94
a114
a17
c?a56a57a58 55 September 6, 2005
7.8a9a10
a59a140a60 a215a216a217a218a61
a62a63a219a220
a11
a198(7.5.5)a94a109a104a105
a9a36a122a123a12a141a236
a234
a170a40a41a13a88a14a168a15a16 (7.7.2)
a94a109a104a105
a9a36a122a123a12a141a236
a234
a170a40a41a13a88a14a168a89a90
a94a110a208a234
a170a40a41r
t+1
a113a144a17
a255a16a134a207
a170
a91a92
a133
a240
a186a236
a42a65a5a6
a186a236
a234a18a154
a255
a10
σt
parenleftbigg ?
t+1V
Et(?tV )
parenrightbigg
≥ sup
rt+1
|Et(rt+1)? ˉrt+1|
ˉrt+1σt(rt+1) (7.7.3)
a19
a155a20a21
a236a22a23
a34a35
a189a1
a97
a168a144
a14a24a25
a121
a234a18a26a242a27a28
a236a29
a239
a10
a234
a66
a155
a168a30a31a32a33
a134a234a34a35
a22a23
a34a35a36
a189a236
a151a152a22
a183a69
a94
a7
a109a153a36
a189a40a41a236
a5a6
a186a168a89a16
a153a36
a189a236sharpe a184a186a37a7a168a15a16
a207
a170
a91
a92
a133
a240
a186a236
a42a65a5a6
a186a37a7a38a39
a234
a66
a155
a168a30a31a32a33
a134a237
a1
a5a6
a37a40a168a16a40a236
a237
a1
a5a6a41a208
a19
a240a241
a242a19a42
a231
a151a152
a3a4a236a43a85a44a45
a115
a7a236
a91a92
a133
a240
a186
a5a6
a168a89a68
a151a152
a3a4
a13a46a109a82a83a84
a189a236a47a186a168a7
a151a152
a3a4
a198a199a200
a19
a237
a1
a208a48a49
a236
a26a50a97
a168
a237
a1a236
a91a92a82a83a208a48a51
a236
a26a50
a168a89a16a40
a151a152
a3a4a52a53
a200
a94a12a46
a236
a237
a1a183a201a168
a237
a1a236
a91a92a82a83a44a54a48a49a17a240a241a242a19
a7
a151a152
a3a4a236
a47a234
a29a120a55a56a57a68
a19a234a18
a58a168a89a68a54
a167a59
a9a9a1a60a61a168a16a62
a21a63
a3
a198
a18a144a168
a191
a149a64a65
a193
a52a66a67a68a236
a151a152
a3a4
a17a47a18a69a214
a88a68
a22a23a70a37
a46
a58
a17
§7.8 a71a72
a7a8a190a100
a168a182
a14(7.5.7)
a235
(7.7.3) a20a236 ?t+1VEt(?tV) a12a19a97a98t
a235
t+ 1a237a73
a25a236
a91a92
a133
a240
a186
a17
a0a1(7.5.2)a168
a237a73a21ξt a91a92a82a83
a68pi(ξ
t)E[?tV|ξt]
a168a89a90
a21a214a65ξt
a235
a231a24
a214a65ξt+1
a236
a237a73
a236
a91a92
a133
a240
a186(a68
a91a92a82a83
a236a74a186)a68
pi(ξt+1)E[?t+1V|ξt+1]
pi(ξt)E[?tV|ξt] (7.8.1)
a89a90a168 ?t+1V
Et(?tV ) a75a76
a214a65a192
a186
a235
a21
a102a24a20a236
a42a65
a170
a51a17
a75a76
a42a65
a170
a51a77a19a142a143
a144a236
a214a27
a168a89a68r
j,t+1 a19Ft+1
a85a78a236a168a79a80
a240
a170
a51a81a82a208
Covt(rj,t+1,?t+1V ) = Et(rj,t+1?t+1V )?Et(rj,t+1)Et(?t+1V )
= Et[Et+1(rj,t+1?t+1V )]?Et(rj,t+1)Et[Et+1(?t+1V )]
= Et[rj,t+1Et+1(?t+1V )]?Et(rj,t+1)Et[Et+1(?t+1V )]
= Covt[rj,t+1,Et+1(?t+1V)]
a83a64a236a168
a208
σt
parenleftbigg ?
t+1V
Et(?tV )
parenrightbigg
= σt
parenleftbiggE
t+1(?t+1V )
Et(?tV )
parenrightbigg
a75a76
a192
a186
a100a101a83a84
a236a85
a72
a17
a17
September 6, 2005 56 c?a56a57a58
a86a87a88 a89a90a91a92a93a94a95 CAPM
§8.1 a96a97a98a99
1a166 Hilberta100
a25
a167a101
a50
a102H
a19a103a96a100
a25a168Ha144a236a104a105
a19
a15H×H
a134Ra236a234a18a84
a189a168a67
a211·a168a106a107a154a108a197a109
a243a110a111
?x,y,z ∈H,a,b ∈R,
(1) a94a112
a243a111 x·y = y ·x,
(2) a113
a243a243a111 x·(ay + bz) = a(x·y) + b(x·z),
(3) a114a115a116a243a111 x·x ≥ 0,a62x·x = 0 ? x = 0.
a101
a50a208a97a196a112
a68a117a118a105a119a149a120a105a121
a122a123a121
a101
a50
a236
a103a96a100a124a112
a68a104a105a125a126a121
a101
a50a127
a99a236a128a129(a119a149a130)
bardblxbardbl = √x·x
a231a131
a208a238a154a132a35
a243a110a111 ?x,y ∈H,
(1) a133a134
a85a135a136a111 bardblx + ybardbl≤bardblxbardbl+bardblybardbl
(2) Cauchy-Schwarza85a135a136a111 |x·y|≤bardblxbardblbardblybardbl
a122a123a121a137a189a236
a103a96a100a124a112
a68a138a128a139a118a125a126a121
a208
a121a137a189a168a85a86a122a123a140a141
a192a142
a235a143a144
a243a121
a102{x
n}∞n=1 ?H, a ∈H. a238a239
limn→∞bardblxn ?abardbl = 0,
a82a112a145a108{xn}∞n=1
a146a147
a109aa168a67a211
limn→∞xn = a, a119 xn → a(n →∞)
a128a62a90
a97a112{xn}
∞n=1 a68H
a148
a236
a146a147
a120a149a168a16
a112aa68{xn}∞n=1 a236a150a151a121
a145a108{xn}∞n=1 a112
a68Cauchy a149a168
a238a239
?ε > 0,?N = N(ε) ∈N, ? m,n ≥ N, |xn ?xm| < ε
a152a137
a103a96a100a124Ha112
a68a153a154a155a177a168
a238a239H a148
a236
a147a18Cauchya108a193
a140a141
a109H a148
a236a156a121
a238a239
a101
a157
a100a124a158
a231
a101
a157
a127
a99a236a137a189
a110a159
a88a236a152a137
a103a96a100a124
a153a160a161a236a168
a82a112a162a18
a101
a157
a100a124
a153a154
a155a177a121
a160a161a236
a101
a157
a100a124a112
a68
a112
a68Hilbert a125a126.
2a166
a170a163
a101
a157
a164a165
a234
a170a166a167a168a169a168
a26S a68a170a171a172a173a174a168a196a83Sa93a232sharp(S).
a175a122a176a177(a119
a97a981a236a237a73a178a179) a100a124RS a153a234a18Hilberta100a124
a121
(1) a180a181
a101
a157
x·y =
summationdisplay
s∈S
xsys
57
8.1a182a183a184a185 a186a187a188 a189a190a191a192
a219a220a193CAPM
(2) a170a163
a101
a157
x·y = E[xy] =
summationdisplay
s
pisxsys
a231
a148pis a68Sa144a236a192
a186a78a68a121
a170a163
a101
a157
a127
a99a236a194a68
bardblxbardbl =
radicalbig
E[x2] =
radicalbig
Var[x] + (E[x])2
3a166a116a195a103a96
a102x,y ∈H, Ha68
a101
a157
a100a124a166
a112x
a167
y a153a196a197a177a168a67a211x⊥ya168a238a239x·y = 0a121
a103a96
a174{z
1,...,zn}?Ha112
a68a196a197a198a199a168
a238a239zi⊥zj,? i negationslash= j.
a238a239bardblzibardbl = 1,? ia168a82a116a195
a188a200{z
1,...,zn}a112a201
a117a202a196a197a198a199a121
a203a204
a116a195
a188a200a153a231a205a206a207a236a117a202a196a197a173a121
a208a209 8.1.1 Pythagorean
a210
a211a212a213a214a215a216a180a217a111 a218a219{z
1,...,zn}?Ha220
a196a197a198a199a221a222
vextenddoublevextenddouble nsummationdisplay
i=1
zivextenddoublevextenddouble2 =
nsummationdisplay
i=1
bardblzibardbl2.
a166a223a111a224a225a226a227
a101
a157a228
a232
a221a229a227
a116a195
a122a123a230a231a232
a233a234a111a235a236a79a237a238
a103
a239a240a241a236
a116a195a242
a200
a234
a122a153
a113
a243a243a4a236a121
a166a223a111a102{z
1,...,zn}
a153
a116a195a242
a200a221z
i negationslash= 0,? i.
a102a244λ
i ∈Ra245
a231
nsummationdisplay
i=1
λizi = 0
a79a246{λ
1z1,...,λnzn}a247
a153
a116a195a242
a200a221a79a122
a241
a244
nsummationdisplay
i=1
λ2ibardblzibardbl2 =vextenddoublevextenddouble
nsummationdisplay
i=1
λizivextenddoublevextenddouble2 = bardbl0bardbl2 = 0
a248a249λ
i = 0, ? i. a250a251z1,...,zn a113a252
a243a253a121
4a232a116a195a254a255a112a103
a239x ∈H
a116a195
a246a0
a100a124Z ?Ha221a1a2x⊥Z a221a3a4
x·z = 0, ? z ∈ Z
a3a4Z = span{z
1,...,zn}
a221
a82x⊥Z ? x⊥zi,? i
a174Z⊥ = {x ∈H : x⊥Z}
a112a201Z a5
a196a197a6a221a230a7a0
a100a124Z a116a195a5a8
a244
a103
a239
a159
a241
a5
a174a9a221a10a153
Ha5
a0
a100a124
a121
a208a209 8.1.2
a11a12a13
a217a111 a14 Hilbert a125a15H
a16a17a18a19
a151a20a21a125a15Z
a22a17a18
a139a118 x ∈Ha221a23a24a25a26
xz ∈ Z a22 y ∈ Z⊥ a27a28 x = xz + y.
a166a223
a29a30{z1,...,zn}
a153
a116a195a242
a200a221
Z = span{z1,...,zn}defines
braceleftBigg
z =
nsummationdisplay
i=1
λizi : λi ∈R, i = 1,...,n
bracerightBigg
September 6, 2005 58 c?a31a32a33
a186a187a188 a189a190a191a192a34a35
a193CAPM 8.1
a182a183a184a185
Z
Z⊥
x
xZ
a368.1:
a37a38a39a40
a122a123
xz =
nsummationdisplay
i=1
x·zi
zi ·zizi, y = x?x
z
a41a171xz ∈ Z,
y ·zj =
parenleftBigg
x?
nsummationdisplay
i=1
x·zi
zi ·zizi
parenrightBigg
·zj =
parenleftbigg
x? x·zjz
j ·zj
zj
parenrightbigg
·zj = 0
a248a249y⊥z
j, ? j. a250a251y ∈ Z⊥
a42a166xz a153a43a44
a5
a221a45x = xz
1 +y1 = xz2 +y2, xz1,xz2 ∈ Z, y1,y2 ∈ Z⊥. a46a47Pythagorean
a122
a48a244
bardbly2bardbl2 = bardblxz1 ?xz2bardbl2 +bardbly1bardbl2
bardbly1bardbl2 = bardblxz1 ?xz2bardbl2 +bardbly2bardbl2
a250a251bardblxz1 ?xz2bardbl2 = 0a221a49a251xz1 = xz2
a233a234 8.1.3 a218a219 Z
a220 Hilbert a125a15Ha16a210a19
a151a20a216a21a125a15a221a222H
a50a51a52a53
H = Z + Z⊥, a54a55Z ∩Z⊥ = {0}
(a196a197a51a52a13
a217)
a254a255a56
a48
a148a5xz a57a201xa58Z a59a5
a196a197
a11a12
a221a60a136x = xz +y
a57
a201xa253a246Z a5a61a195a62a63
a136a64
a3a4
a254a255a65
a241a253a246a66a163a67a157a221
a46
x·zi
zi ·zi =
E[xzi]
E[Z2i ]
a250a251
xz =
nsummationdisplay
i=1
E[xzi]
E[Z2i ]zi
a59a68
a7a69
a252a70
a71a72a73a74a75a221a76
a56a77
a78a239
a5a79
a221a80a248a78a239
a5a79
a49a81a82a83
a5
a72a73
a61a84a59a68
a64
c?a85a86a87 59 September 6, 2005
8.1a88a89a90a91 a92a93a94 a95a96a97a98a34a35a99CAPM
a100 8.1.4
a101a102 Hilbert a103
a15R2,
a54a104a105a106
a107a108a109a110 (1
4,
3
4) a111a13
a221a112 Z = span{(1,1)},x = (1,2). a222
a113a114
a11a12
xz = (1,2)·(1,1)(1,1)·(1,1)(1,1) = 74(1,1) = (74, 74)
5a232 Riesza228a115a56a48
a208a209 8.1.5 a218a219F : H→R
a220Hilbert a103
a15H
a116a16a117a118
a205a206a119a120a221a222a23a24a25a26
a16a121
a122 k
f ∈Ha27a28
F(x) = kf ·x, ? x ∈H (8.1.1)
a123a223
a29
a3a4F
a84
a238a124a125a221
a46a65kf = 0a230a126a232a127a45F a128
a237a238a124a125a221
a30N = {x ∈H : F(x) = 0}
a128F a5
a238a129a130a221N⊥
a128N a5a61a131a132
a221
a46
a244H = N + N⊥, N⊥ negationslash= {0}.
a65z ∈ N⊥, z negationslash= 0, F(z) = 1. a235a236x ∈Ha126a133a241
x = [x?F(x)z] + F(x)z
a134a135x?F(x)z ∈ N a221
a47
a246z ∈ N⊥ a221a244
z ·x = z ·[F(x)z]
a30
kf = zz ·z
a46
kf ·x = F(x)(z ·z)z ·z = F(x)
a136a42a123a223k
f a84
a43a44
a5
a221a3a4a137
a58kf
a138
kprimef
a139a140
(8.1.1)a221a46
(kf ?kprimef)·x = 0, ?x ∈H
a250a251a141
a244k
f = kprimef.
(8.1.1) a142a5a143
a239k
f a57a128Riesz a144.
a145a146a228a115
a56
a48a80a147a148a149a150a151
a5
a135a152
a58
a246
a29
a3a4a123a153
a5a154a155a8a156
a241
a5a157a158a159a160
a129a130a244a161a162
a5
a69
a252a56a163
a124a125a221a164a165a10a44
a56
a126a166a167a168a169 a170a171a127a248a0a172a173a228a115a64
6a232 Riesza174a5a175a176
a64
a177a178a179Hilberta129a130RS
a59a5
a69
a252
a124a125F.
(1) a3a4RS a5
a67a180
a128a181a182
a67a180a183
a46a184F a5a174kf
a185a186a187
a232a188a189
a59
a183k
f a5a190s
a169
a62
a239
a128
kfs = F(es)
a191
a142es a128
a74a192a246a193a194s
a5a195a196a143
a239a232a246
a84
a183
a47F a5
a69
a252a252
a183
F(x) = F
parenleftBiggsummationdisplay
s
xses
parenrightBigg
=
summationdisplay
s
kfsxs = kf ·x
September 6, 2005 60 c?a31a32a33
a92a93a94 a95a96a97a98a34a35a99CAPM 8.1a88a89a90a91
(2) a3a4RS a5
a67a180
a128
a66a197a67a180a183
a46a184kf a247
a185a186a187
a232a248a249F a126a133a241
F(x) =
summationdisplay
s
piskfsxs =
summationdisplay
s
ksxs
a191
a142ks = piskfs
a183a229a227(1)a183a244k
s = F(es),a250a251kfs = F(es)pis .
Hilberta129a130a5a235a236a198a199a0a129a130a183a58a191a67a180a42a200a201a128Hilberta129a130a232a248a249Riesza228a115a56a48a126a192a227
a246Hilberta129a130
a5
a198a199a0a129a130a232a246
a84
a183a3a4Z
a84Hilberta129a130Ha5
a198a199a0a129a130a183F
a84Z a59a5
a69
a252
a124a125a183
a46
a137
a58
a43a44
a5kf ∈ Z a183a245
a231F(z) = k
f ·z, ? z ∈ Z.
a3a4Z = span{z
1,...,zn},a46
a69
a252
a124a125F : Z →R
a5a174kf a126a175a176a3a42a29
a30F
a58Z a5a202a143
a239
a5a79a128
wi = F(zi), i = 1,...,n
a46kf
a203
a139a140
a72a73a240
wi = kf ·zi, i = 1,...,n
a47
a246k
f ∈ Z,
a244k
f =
summationtextn
j=1 ajzj. a204a205a59a68
a183a244
wi =
nsummationdisplay
j=1
aj(zj ·zi), i = 1,...,n
a206
a84a207
a244na169a208a209a210a
1,...,an a138
na169a72a73a5a69a252a72a73a240a183a227a211a212a72a213a126a214a184a63
a183
a250a251
a126
a184
a231k
f.
a100 8.1.6 a112 Z = span{(1,1)}?R2 a183
a106
a107a215a108a109a110 (1
4,
3
4) a111a216a16a104a105a106
a107a183 F : Z →R
F(z) = 2z1, ? (z1,z2) ∈ Z.
a108a217
a121
a122 (1,1)
a218a53 Z a16a219
a183
a144 kf a50a220a221a53
kf = a(1,1)
a54a55a ∈Ra222a13
a232a108a217 F(1,1) = 2,
a19
2 = a(1,1)·(1,1) = a(14 + 34) = a
a223a = 2,k
f = (2,2).
7a232a66a197a174
a224a225a226a241a129a130(a224a225a227)
a84Hilberta129a130RS(a207
a244a66a197a67a180)
a5
a0a129a130a183
a250a251
a10a228a229
a247a84Hibert
a129a130a232a248a249a183Riesza228a115
a56
a48a126a192a227a246
a56
a152
a58
a224a225a227M
a59a5
a69
a252
a124a125a183a230a231
a160a232a233a234a235Ma59a5
a236a169a69
a252
a124a125
a29
a66a197a124a125
a138
a154a155a56a163
a124a125a64a230a231a177a237a238a239a240a183a241a240
a58
a42a44a242a243a237a238a64
a56
a152a66a197a67a180
a5a244a245
a83a246pi
a65a128a204
a48a247
a5a248a249a244a245
a83a246a250a3a4
a204
a48a247
a5a251a252a207a253
a66a197a254a255a0
a115a183a164a165pi
a1a84
a66a197a254a255
a5a244a245
a83a246 (a80a2
a8a253a204
a48a247a3a74a75)
a104a105
a4
a119E : M→R,
z →E[z].
c?a31a32a33 61 September 6, 2005
8.1a88a89a90a91 a92a93a94 a95a96a97a98a34a35a99CAPM
a10
a5Riesza174ke ∈Ma84
a139a140
a42
a68a5
a43a44
a154a155
a29
E[z] = E[kez], ? z ∈M.
a126a2556
a142a5
a72a213
a175a176a174ke.
a3a4a5a6a7
a154a155a58M a142
a183
a46ke = e := (1,...,1) ∈RS.
a3a4a5a6a7
a154a155a8a58M a142
a183
a46ke
a9
a2e
a58Ma5a61a131a254a255
a250a188a189
a59
a183
a47
a2
E[(e?ke)z] = E[ez]?E[kez] = E[z]?E[kez]
= 0, ? z ∈M
a10e?k
e⊥M. a11
e = (e?ke)+ ke
a248a249 k
e a84 ea58Ma59a5a61a131a254a255
a250a12 e ∈ M
a13
a183 e?k
e ∈ M
a64a10 (e?k
e)·(e?ke) = 0
a183
a250a251
ke = e.
a100 8.1.7
a14
a23a24a15a16a17a18a19a20a183a21a16a22a23a183
a54a24a25
a215x
1 = (1,1,0), x2 = (0,1,1). a26
a16a19a20
a16
a109a110
a215 1
3.
a108a217E[x
1] = 13 + 13 = 23, E[x2] = 13 + 13 = 23
a183
a19a27a28a29
2
3 = E[kex1]
2
3 = E[kex2]
a108a217 k
e ∈M
a183?a22a23
a29a30 (h1,h2) a27a28
ke = h1x1 + h2x2 = (h1,h1 + h2,h2)
a31
a116a32a33a34a27a28a29
a183
a28
2
3 =
1
3h1 +
1
3(h1 + h2)
2
3 =
1
3(h1 + h2) +
1
3h2
a52
a28 h1 = h2 = 2
3
a183a217a35
ke =
parenleftbigg2
3,
4
3,
2
3
parenrightbigg
.
8a250a56a163a174
a56
a152
a58Ma59a5a154a155a56a163
a124a125 q
a5 Riesz a174
a57
a128a13a36a144kq a183a10a84
a139a140
a42
a68a5 M a142a5
a43a44
a154
a155
a29
q(z) = E[kqz], ? z ∈M
a126a2556
a142a5
a72a213
a175a176kq.
September 6, 2005 62 c?a31a32a33
a92a93a94 a95a96a97a98a34a35a99CAPM 8.1a88a89a90a91
a3a4
a8
a137
a58a37a38(a39a37a38)a183a46
a137
a58a40a41a61(a61)a5
a193a194
a163a41a143
a42q = (q
1,...,qs)a43a44
q(z) =
summationdisplay
s
qszs, ? z ∈M
a178a179a255
a244a245a45a46a47
a243a48
a5
a193a194
a163a41a143
a42
q
pi =
parenleftbiggq
1
pi1,...,
qs
pis
parenrightbigg
a46
q(z) = E
bracketleftBigq
piz
bracketrightBig
a250a251a253
E
bracketleftBigparenleftBigq
pi ?kq
parenrightBig
z
bracketrightBig
= 0, ? z ∈M
a49 q
pi ?kq⊥M. a11 q
pi =
parenleftBigq
pi ?kq
parenrightBig
+ kq
a10k
q a84 qpi a58Ma59a5a61a131a254a255
a250
a56a163a174a84
a43a44
a5
a183
a8a50a51a52a84a53
a198a199a250a3a4
a51a52a84a8
a198a199
a5
a183
a46
a137
a58a54
a169a193a194
a163a41a143
a42a250a12a255
a244a245a45a46a47
a243a241a183
a8a253
a206a55
a143
a42
a58
a224a225a227
a59a253
a74a75
a5a254a255
a183a56a57
a254a255a128a56a163a174 kq. a58a51a52a84
a198a199
a5
a183
a46
a137
a58
a43a44
a5
a193a194
a163a41a143
a42 q a183a56
a56a163a174kq
a9
a2 q
pi.
a3a4q
a84a59a60a154a155a56a163
a124a125a183
a46
q(z) = E
bracketleftbigg?
1υ
?0υz
bracketrightbigg
, ? z ∈M.
a191
a142
?1υ
?0υ a84a207a253
a66a197a254a255a0a115E[υ(c)]a56a191
a59a60a61a62a128
a67a63
a5a204
a48a247
a5a64a65a66a204a245a143
a42a250a57
a143
a42
a58
a224a225a227M
a59a5a254a255
a9
a2
a56a163a174kq a64a3a4a51a52a84
a198a199
a5
a183a57
a64a65a66a204a245a143
a42
a1
a9
a2
a56a163a174kq a183a206
a80
a207a253
a67a63
a61a62a5a8a253a204
a48a247
a59a67a68
a64
a58
a60
a68Ebracketleftbigparenleftbigqpi ?kqparenrightbigzbracketrightbig= 0 a142a65z = ke a183a44
E
bracketleftBigq
pi
bracketrightBig
= E[kq]
a248a249a183a3a4a193a194
a163a41a143
a42 q
a84a61a5
a56a69a70a183
a46a56a163a174a5
a66a197
a84a40a41a61a5
a250a3a4a5a6a7
a154a155a58
a224a225
a227
a142
a183
a46a477a209ke = ea183a250a251
E[kq] = E[kqke] = q(ke) = q(e) = 1ˉr
a100 8.1.8
a14
a23a24a15a16a17a18a19a20a183a109a110a215 (1
3,
1
3,
1
3)
a183a21a16a22a23a183
a36a71
a215 p
1 = 1, p2 = 43
a183
a24a25
a215
x1 = (1,1,0), x2 = (0,1,1). a215a72a13a36a144
a183
a101a102
a22a23
a36a71a27a28
?
?
?
1 = E[kqx1]
4
3 = E[kqx2]
c?a85a86a87 63 September 6, 2005
8.1a88a89a90a91 a92a93a94 a95a96a97a98a34a35a99CAPM
a108a217 k
q ∈M
a183?a22a23
a29a30 (h1,h2) a27a28
kq = h1x1 + h2x2 = (h1,h1 + h2,h2)
a33a34a27a28a29a19 ?
??
??
1 = 13h1 + 13(h1 + h2)
4
3 =
1
3(h1 + h2) +
1
3h2
?
??
?
??
h1 = 23
h2 = 53
a73
kq =
parenleftbigg2
3,
7
3,
5
3
parenrightbigg
.
9a250a59a79-a72a74a64a75a154a155
a44
a154a155
a57
a128a59a79 -
a72a74
a64a75a154a155
a183a3a4
a8
a137
a58
a191a10
a154a155a43a44a207a253
a74a75
a5a163a41
a138
a74a75
a5
a66a197a183
a76a77a242
a5
a72a74a250a78a49
a58
a76
a56a5a163a41
a138
a66a197a42a79a242a80a72a74a64
a30ε = span{ke,kq}
a84a47
a66a197
a174ke
a138
a56a163a174kq a156a67a5Ma5
a0a129a130a64
a81a82 8.1.9 a26a16
a24a25
a35a83a84 -
a27a85a86a87a24a25a88
a89a90
a88
a91a92a24 ε
a55
a250
a123a93
a29a94a95
a135
a154a155z ∈Ma58εa59a96a61a131a97a98(a99
a2a66a197a67a180)
z = zε + epsilon1, zε ∈ ε, epsilon1 ∈ ε⊥
a47
a2epsilon1
a61a131
a2k
e a138
kq a183a253
E[epsilon1] = E[keepsilon1] = 0, q(epsilon1) = E[kqepsilon1] = 0
a49epsilon1
a253
a70a66a197
a138
a70
a163a41
a183a100a101z
a138
zε a253
a74a75a102a66a197
a138
a74a75a102
a163a41
a250a49a44a103a183
a47
a2epsilon1
a61a131
a2ε,a214a104
E[epsilon1] = 0a183a253
Cov(epsilon1,zε) = E[epsilon1zε]?E[epsilon1]E[zε] = 0
a100a101
Var(z) = Var[zε] + Var(epsilon1) ≥ Var(zε)
a105a106epsilon1 negationslash= 0a183
a59a107
a102
a8
a9
a68a128a40a41a8
a9
a68
a250a108a109
a59a79 -a72a74a64a75a154a155
a44
a56a58ε a142
a250
a110a111a183a230a231
a203
a123ε
a142
a102a112a169
a154a155
a44
a56a84a59a79-a113
a74
a64a75a154a155
a250a114a45a115a238
a8a116
a183
a46
a137
a58a154a155z ∈ ε,
a117
a8a84a59a79-a113
a74
a64a75a154a155
a183a100a101a137
a58a118
a44
a154a155z
prime ∈M
a43a44
E[zprime] = E[z], q(zprime) = q(z), Var(zprime) < Var(z)
a119a120
a141a121a122
a102a123a93a183zprime
a58εa59
a102
a61a131a97a98zprimeε ∈ ε
a139a140
E[zprime] = E[zprimeε], q(zprime) = q(zprimeε), Var(zprime) ≥ Var(zprimeε)
a2
a84
E[zprimeε] = E[z], q(zprimeε) = q(z), Var(zprimeε) < Var(z)
September 6, 2005 64 c?a31a32a33
a92a93a94 a95a96a97a98a34a35a99CAPM 8.1a88a89a90a91
zε
z
ke
kq
ε
a368.2: ε
a123a124
a100a101
E[kq(z ?zprimeε)] = q(z ?zprimeε) = q(z)?q(zprimeε) = 0
E[ke(z ?zprimeε)] = E[z ?zprimeε] = E[z]?E[zprimeε] = 0
a49a101z ?zprimeε⊥ε.
a11a47
a2z ?zprimeε ∈ εa183
a253z = zprimeε a183a206a125Var(zprimeε) < Var(z)a126a127
a64
a105a106k
e a138
kq a84a128
a69
a122
a102a183a49a137
a58γ negationslash= 0a43a44kq = γke,a46a59a79-a113
a74
a64a75a154a155a129εa84
a44a130a131
a69a64
ke
a138
kq a84a128
a69
a122
a102?
a132a253
a224a225a133a134
a253
a74a75a102a66a197a135a136 (= 1
γ).
a188a189
a59
a183
a95
a135a133a134a102a135a136 r
a9
a2a191
a154a155z a125a163a41q(z)a102a137a183a253
E(r) = E
bracketleftbigg z
q(z)
bracketrightbigg
= E[z]q(z) = E[kez]E[k
qz]
a10
E[kez]
E[kqz] =
1
γ, ? z ∈M ? kq = γke.
a105a106a5a6a7
a154a155a58
a224a225a227M
a142
a183a138
braceleftBigg
ke = e
ke a125kq a128
a69
a122
? a60a139a56a163(a49a112a169a123a153j a102a66a197a135a136E[rj]
a9
a2a5a6a7a135a136 ˉr).
a58
a60a139
a56a163a140
a183k
e = e, kq = 1ˉre
a183a191
a142e = (1,...,1) ∈RS. a188a189a59
a183
E[erj] = E[rj] = E[kerj] ? j ? E[(ke ?e)rj] = 0 ? j.
a108e ∈M, k
e ?e ∈M
a183
a253ke = e. a12ke
a138
kg a69a128
a69
a122
a183ε
a128a141
a139
a107
a250
a105a106a142
a253
a236a169a69a143a144a123a153a183a138a224a225a227M
a84a141
a139
a107
a250a145a101a183a105a106k
e a138
kg a69a128
a69
a122
a183a138a224a225a227
Ma125a59a79a146a113
a74
a64a75a154a155a129 εa74a75a183a49a112a169a154a155a147a84a59a79-a113
a74
a64a75a154a155
a64
c?a148a149a150 65 September 6, 2005
8.1a88a89a90a91 a92a93a94 a95a96a97a98a151a152a99CAPM
re
ke rqk
q
ε
a1538.3: k
e a154kq a155a156a157a158
10a250a64a75
a135a136
a154a155
a102a135a136=
a154a155÷a154a155
a102
a163a41
a250
a64a75
a135a136
a1a84a64a75a154a155
a102a135a136
a66a197
a174ke
a138a159
a163a174kq a102a135a136a160a232a128
re = keE[k
q]
, rq = kqE[k2
q]
a105a106k
e a138kq a128
a69
a122
a183a138r
e = rq
a183
a64a75
a135a136
a129a128a195
a63
a129{re}.
a145
a141
a103a183a105a106a5a6a7
a154a155a161M
a142
a183a138r
e = ˉr.
a214
a140
a114a162k
e a138
kq a69a128a69a122a183a138a64a75a135a136a129a128a167 re
a138
rq a102a131a69a163
rλ = re + λ(rq ?re)
a191
a142?∞ < λ < +∞.
a188a189a164a183
a95
a141a64a75
a135a136a126a133
a67
a163
αke + βkq
q(αke + βkq) =
αreE[kq] + βrqE[k2q]
αE[kq] + βE[k2q]
= αE[kq]αE[k
q] + βE[k2q]
re + βE[k
2q]
αE[kq] + βE[k2q]rq
= (1?λ)re + λrq = re + λ(rq ?re)
a191
a142λ = βE[k
2
q]
αE[kq]+βE[k2q], α,β ∈R.
a100 8.1.10
a14a165
a15a16a166a167a168a19a20a169a15a16
a36a71
a83a215 1
a170
a114a171
a22a23a183a22a23a172a173a215
r1 = (3,0,0), r2 = (0,6,0), r3 =
parenleftbigg6
7,
3
7,
9
7
parenrightbigg
a174a175a176
a105
a177a178a179a180a181a182a183
a86a87a116a184
a215a185a186a72 r
e
a169 r
q a187
September 6, 2005 66 c?a85a86a87
a92a93a94 a95a96a97a98a151a152a99CAPM 8.1a88a89a90a91
a108a217a188a189a35a190a191
a170
a183a192a193a194
a24a25
a183a195a196a197a180a183a198a199a183
ke = e = (1,1,1);
a188a189a190a191a200a201a202a203a204
a36a144 kq a35a205a19a20a109a110a206a207a208a170
a19a20
a36a71
q
pi
a183a199a19a20
a36a71
a35
a27a28a29
?
???
???
1 = 3q1
1 = 6q2
1 = 67q1 + 37q2 + 97q3
a170a209a210a211 q1 = 13, q2 = 16, q3 = 12. a73
kq = qpi =
parenleftbigg
1, 12, 32
parenrightbigg
ke a169kq a170a36a71
a215
q(ke) = qke = 13 + 16 + 12 = 1
q(kq) = qkq = 13 + 112 + 34 = 76
a172a173a215
re = keq(k
e)
= (1,1,1), rq = kqq(k
q)
=
parenleftbigg6
7,
3
7,
9
7
parenrightbigg
= r3
a212a185 r
3
a183
a86a87
a172a173a183a213 r
1
a169r
2 a214
a35a183a212a215a91a175
a214
a183 r
e
a169r
q a170a117a215a116a187
a64a75
a135a136r
λ
a102a216a197
a128
E[rλ] = E[re] + λ(E[rq]?E[re])
a113
a74
a128
Var[rλ] = Var[re] + 2λCov(re,rq ?re) + λ2Var(rq ?re)
a211a212a74
a128
σ[rλ] =
radicalbig
Var[rλ]
a105a106k
e a84
a5a6a7a102a183a138r
e = ˉr
E[rλ] = ˉr + λ(E[rq]? ˉr)
Var[rλ] = λ2Var[rq]
σ[rλ] = |λ|σ(rq)
a217a2k
q a84a253
a6a7a102(
a161
a114a162k
q a138
ke a69a128a218a122a140)a183a253
E[k2q] = [E[kq]]2 + Var(kq) > [E[kq]]2
a100a101
E(rq) = E[kq]E[k2
q]
< 1E[k
q]
= ˉr
c?a148a149a150 67 September 6, 2005
8.1a88a89a90a91 a92a93a94 a95a96a97a98a151a152a99CAPM
0 λ
E[rλ]
E[re]
E[rq]
1
(a)
0 λ
σ[rλ]
λ0
(b)
0 λ
σ[rλ]
a49
ˉr > E(rq)
a219a137
a161a207a253
a79a242
a113
a74a102
a64a75
a135a136a163
(1) a105a106a5a6a7a154a155a161
a224a225a227
a142
a183a138a79a242
a113
a74
a64a75
a135a136
a1a84
a5a6a7a135a136
a187
(2) a105a106a5a6a7a154a155a8a161
a224a225a227
a142
a183a138
a132a253
a135a136
a59a253a40a41a220
a102
a113
a74a250a79a242
a113
a74
a64a75
a135a136a126a214a166a167
a99
a2λa79a242a80Var[r
λ]a221a44
a183a217a2 Var[r
λ]a84λ
a102a222a223a125a210a183a79a242a80a224a225 min
λ Var[rλ]
a102a226
a141
a79a227a228λa183a229a217
a141a230
a130a231
a184a44
a163
λ0 = ?Cov(re,rq ?re)Var(r
q ?re)
a135a136a102a216a197a125a211a212a74a102
a99a232
a105
a140a233a132a234
a187
11a250a70a235a113
a74
a64a75
a135a136
a217a2
a64a75
a135a136
a129a236a141
a130a131
a218
a183
a95a237
a236a238
a8a239
a102
a64a75
a135a136a229a255a240a241
a204 re
a242
rq a214a243a244a57a131a218
a187
a245a48a79a242
a113
a74
a64a75
a135a136a246a247a248a112a238
a64a75
a135a136 r
λ a147a249a161a118a141a64a75
a135a136 r
μ(a250rμ a251
rλ a102a70a235a113
a74
a64a75
a135a136)
a43a44
a222a240a102a235
a113
a74
a251
a70a250a252a253a164a247a217
0 = Cov(rλ,rμ) = Var(re)+ (λ + μ)Cov(re,rq ?re) + λμVar(rq ?re)
a228
a44
μ = ? Var(re) + λCov(re,rq ?re)Cov(r
e,rq ?re)+ λVar(rq ?re)
September 6, 2005 68 c?a148a149a150
a254a255a0 a1a2a3a4
a151a152a5CAPM 8.1a6a7a8a9
σ[rλ]
E[rλ]
ˉr
cjkD3D0cjkD0A7cjkB1DFcjkBDE7
cjkCEDEcjkD0A7cjkB1DFcjkBDE7
(c) a10a11a12a13a14a15a16a17a18a19
σ[rλ]
E[rλ]
cjkD3D0cjkD0A7cjkB1DFcjkBDE7
cjkCEDEcjkD0A7cjkB1DFcjkBDE7
(d) a20a10a11a12a13a14a15a16a17a18a19
a108a109a247a142
a121
a160a21a22a23a24a25a247 μ
a26a236
a159a27
a93a28a102a29a101a160a21a23a24a25a247a30a31a32a30 λ = λ
0
a247a33r
λ a251a34a35
a113a36
a135a136
a187
a34a35
a113a36a37a38
a135a136a22
a249a161
a25a235
a113a36a37a38
a135a136
a187
a39a40a41a42a43a44a45
a161a46a47a48a49
a247a138a50a238
a37a38
a135a136(
a34a35a51
a36a37a38
a135a136a245a246)
a52
a25a235
a51
a36a37a38
a135a136
a251
a41a42a43a135a136(a33μ = 0).
12a29a53a54
a159a55
a56r
λ a236(a57a34a35a51
a36
a135a136)
a37a38
a135a136a247r
μ a236a58
a25a235
a51
a36a37a38
a135a136a29
a59a60a61j
a52
a44a45z
j a161a37a38
a44a45a139a62εa164a63
a220a64a65a66(a67
a216a68a69a70):
zj = zεj + epsilon1j, zεj ∈ ε, epsilon1j ∈ ε⊥.
a217a24epsilon1
j a71
ke
a242
kq a220a64
a247a72a73epsilon1
j a74
a25a216a68
a242
a25
a55a75
a163
E[epsilon1j] = E[epsilon1jke] = 0
q(epsilon1j) = E[epsilon1jkq] = 0
a76a73a247z
j a71
zεj
a74a77
a239a52
a55a75
a247a72a73j
a52a78a79
a251
rj = rεj + ?epsilon1j
a58a49rεj
a251
a37a38a78a79
a247?epsilon1
j =
epsilon1j
q(zj). a67rλ a242rμ
a243a244
a37a38a78a79a80a218
a247a81rε
j
a229a82
a234
a251
rεj = rμ + βj(rλ ?rμ)
a76a73
rj = rμ + βj(rλ ?rμ) + ?epsilon1j
a83a84a241a216a68a85
E(rj) = E(rμ) + βj[E(rλ)?E(rμ)]
a241
a71
rλ a52
a235
a51
a36
a85(
a86a87rλ
a71
rμ
a88
?epsilon1j a22
a77a89a90
βj = Cov(rj,rλ)Var(r
λ)
c?a91a92a93 69 September 6, 2005
8.1a6a7a8a9
a254a255a0 a1a2a3a4a94a95
a5CAPM
a39a40a41a42a43a44a45a96
a46a47a48a49
a247a81
E(rj) = ˉr + βj[E(rλ)? ˉr]
a97a62a83a98
a250
a251a99
a100a101a102a103a98a247a104a82a105
a106
a107a108a60a61
a52
a42a43a109
a55a110a111
a112a24a113a60a61
a52a78a79
a71a114a115
a37
a38a78a79a52
a235
a51
a36a116a117
a238a103a98
a71
CAPMa52
a60a61a118a119a120a103a98a121a122a247a123a124a118a119
a78a79a125a126a117
a124
a52 rλ.
a53a54a127
a55
a103a98a248a107
a237
a78a79r a128
a110a129
a106
E(r) = ˉr + β[E(rλ)? ˉr]
β = Cov(r,rλ)Var(r
λ)
13a29a128a130a131
a51
a36
a74a132
a78a79
a108a238
a78a79a250
a251
a236a128a130 -
a51
a36
a74a132
a52
a247a39a40a22
a249
a96
a58
a104
a78a79
a247a133
a74a77
a239a52
a51
a36a134a135a136a52a137
a68a138
a33
a128a130-
a51
a36
a74a132
a78a79a236
a96a139a127
a51
a36a140a141a52a142a143a144
a34
a136a145a137
a68
a78a79a116
a96
a233a146
a97a247
a128a130-
a51
a36
a74a132
a78a79a236a137
a68
a78a79
a23a24a147a148
a136
a24
a34a35a51
a36a78a79a52a137
a68
a52a37a38a78a79a116
a30
a137
a68a149
a236
a41a42a43
a52a150a151
a247a152a24 ˉr > E(r
q)
a247
a128a130
a51
a36
a74a132
a78a79a236λ ≤ 0a52a37a38a78a79rλ.
14a29a60a61a118a119a120
a125a153a154ia52a150a1551a156a157w
i1 a229a158a108a159a228
a110
wi1 = wi1M + wi1N
a58a49wi1M ∈Ma236a125a153a154ia156a157a52
a229
a64a160a161
a159a247wi
1N ∈ N = M
⊥
a236
a22a229
a64a160a161
a159a29
a239a153
a247a162
a156a157
a229a159a228
a110
ˉw1 = ˉw1M + ˉw1N
a163a164a165a166ma127
a27a251
a162
a156a157a52
a229
a64a160a161
a159
a106
m = ˉw1M
a163a164a167a168r
m
a127
a27a251
a118a119a44a45ma245a169
a128a170
a55a75
q(m)(a171a172negationslash= 0).
a152CAPMa247a118a119
a78a79rm
a251
a37a38a78a79
a247a173a174
a171a172
a104a22
a236
a34a35a51
a36a78a79
a247a81
a249
a96a175a108
a37a38a78a79
rm0 a247a104
a71
rm a52
a235
a51
a36
a251
a25a247a59r
m a242
rm0 a67
a24a53a54a127
a55
a103a98a247
a74
a176a177 8.1.11
a178a179
a163a164a167a168a180a181a182 -
a183a184a185a186a187
a247a188
E(rj) = E(rm0) + βj[E(rm)?E(rm0)], ? j
a189a190β
j =
Cov(rj,rm)
Var(rm) .
a97a98
a26a236a191a192
a163a164a193
a51a194
a29a39a40a41a42a43a44a45a96
a46a47a48a49
a247a81r
m0 a251
a41a42a43
a78a79ˉra247a76a73a97a98
a110a251
E(rj) = ˉr + βj[E(rm)? ˉr], ? j
a117
a82a105
a106
a50a108a60a61
a52
a42a43a109
a55
E(rj)? ˉr
a71
a232
a115
βj
a110a111
a112a247
a111
a112
a232
a115a251
a118a119
a78a79a52
a42a43a109
a55
(a250
a251
a163a164a195a196a197a102). β
j a198
rj a248a118a119a78a79a52a199
a200a201
a115
a247
a198
a60a61a42a43
a52a202
a30a203a204
a116
September 6, 2005 70 c?a91a92a93
a254a255a0 a1a2a3a4a94a95
a5CAPM 8.1a6a7a8a9
a60a61a118a119a120
a51a194
a248a107
a87a78a79a128
a110a129
a106
E(r) = E(rm0) + β[E(rm)?E(rm0)], ? r
a58a49β = Cov(r,rm)Var(rm)
a198
a78a79 r a248a118a119a78a79a52a199
a200a201
a115
a116
a248a118a119
a78a79
a247 β = 1; a248a25a205
a51
a36a78a79 rm0,
β = 0. a206rm0
a207
a250a208
a99
a100a167a168
a116
14a29a128a130-
a51
a36a209a210
a125a153a211
a133
a74
a181a182 -
a183a184a212a213
a247a39a40
a58
a132
a67a214
a115
u(c0,c1)a215
a75a216a217a218
a82a219
a251
u(c0,c1) = v0(c0) + f[E[c1],Var(c1)]
a58a49v0 : R → R, f : R×R → R. a97a98a220a105a125a153a211a52a209a210
a198
a150a221a222
a159
a52
a31a248
a150a155 1 a223a224a225a226a52a209
a210
a32a227a228a24
a137
a68a229
a51
a36a116
a128a130-
a51
a36a209a210a52a125a153a211
a198a230a231
a183a184a232a233a234
a247a39a40f
a89
a24
a51
a36a215
a75a216a235
a116
a144a236a237a146
a59a238a239
a128a130
a51
a36a209a210
a106
(1) VNM
a132
a67a214
a115a251a240a241
a52
(2) a60a61a44a45a229a150a1551a223a224a225a226a242
a76a243a244a245a246a159a247
(3) a60a61a44a45a229a150a1551a223a224a225a226a242
a76a248a249a159a247
a176a177 8.1.12
a178a179a250a251a252a253a254
a181a255a181a182 -
a183a184a212a0a234a1
a230a231
a183a184a232a233a234a2
a188a181a3a4a163a164a167a168a180a181a182
- a183a184a185a186a187a116
a60
a106
a56ci
1 a5
a125a153a211ia52a128a170a150a1551a223a224a2
a59ci
1
a159a6
a110
a5
a222a64a160a161
a159a229a22
a222a64a160a161
a159
a106
ci1 = ci1M + ci1N (8.1.2)
a58a49ci1M ∈M, ci1N ∈ N = M⊥.
a7a8a60a105a50a9
a125a153a211a52a150a1551a223a224a52a222a64a160a161
a159ci
1M
a96
a128a130-
a51
a36a37a38
a44a45a10ε
a49a2
a72
a5
a39
a40
a117
a198a11
a52a2
a123a12a162
a223a224a52a222a64a160a161
a159
a207
a96ε
a49a116a134
a198
a2
a152a24
a132
a67a214
a115a198
a215
a75a216a217
a52a2
a34a13
a223a224a14
a15a23a98a16a17a18a19 (ci
0 = wi0 ?phi, ci1 = wi1 + hiX)a2
a76a73a162
a223a224a52a222a64a160a161
a159a23a24a162a20
a157a52a222a64a160
a161
a159
a2a21
a148a22a127
a27
a5
a118a119a44a45
a116
a72a23a118a119
a78a79
a5
a37a38a78a79a116
a5
a60a105ci
1M ∈ εa2
a59ci
1M a65a66a24εa2a74
ci1M = ci1ε + ci1I (8.1.3)
a58a49ci1ε ∈ ε, ci1I ∈ ε⊥(εa96M a49a52
a245
a64a25).
a26a60a27
a2a171a172a28ci1M negationslash∈ εa2
a81ci
1I negationslash= 0. a29a30
a175a108a9
a150a1551a223a224a225a226
?ci1 := ci1ε + ci1N = ci1 ?ci1I (8.1.4)
a152a24ci
1 ?wi1 ∈Ma2 ?ci1 ?wi1 = (ci1 ?wi1)?ci1I,a74
?ci1 ?wi1 ∈M (8.1.5)
a33
a223a224a225a226 ?ci1 a222a31a32a33a64a160a34
a85a29a152a24 ci
1I⊥ε = span{kq,ke},
q(ci1I) = E(kqci1I) = 0 (8.1.6)
E(ci1I) = E(keci1I) = 0 (8.1.7)
c?a91a92a93 71 September 6, 2005
8.2a35a36
a37t
a38a39a40a41
a42a43a44a45a46 a47a48a49 a50
a39a51a52
a94a95a53CAPM
a152(8.1.6)
a74
q(?ci1 ?wi1) = q(ci1 ?wi1), a33 ?ci1 ?wi1
a71
ci1 ?wi1
a74a77a54
a52
a55a75
a29a72a23
a2
a152(8.1.5)
a222a55
(ci0,?ci1)
a207
a14
a15
a125a153a211 i a52
a16a17a18a19
a116
a152(8.1.7)
a74
E(?ci1) = E(ci1). a152a24 ci1ε,ci1N,ci1I
a56
a77a57
a80a2
a152
(8.1.7)
a74
Cov(ci1ε,ci1I) = Cov(ci1I,ci1N) = 0
a76a73a152(8.1.4)
a74
Cov(?ci1,ci1I) = 0a2
a24
a198
a152ci
1I negationslash= 0a74
Var(ci1) = Var(?ci1)+ Var(ci1I) > Var(?ci1)
a97a62a60a105a58E(?ci
1) = E(ci1), Var(?ci1) < Var(ci1).
a152a24
a125a153a211i
a198
a215
a75a51
a36a59a60a52a2a61 ?ci1 a52a209a210a215
a75
a62a24ci
1 a2a117a71ci1 a52a34a13a63a64a65a116
§8.2 a66a67a68 t a69a70a71a72a73a74a75a76a77
a96a50a108a9
a57a78
a84a79
a143ξt a2a222a80a81
a108a9a108
a137
a60a61a118a119
a106
a59a96ξ
t a52a82
a204a83
a5
a150a1550a52a82
a204
a2
a96ξ
t
a52a84a85a86a52a82
a204a83
a5
a150a1551a52a82
a204
a116
a96ξ
t+1 a52
a108
a137
a44a45
a5
[p(ξt+1)+ x(ξt+1)]h(ξt).
a125a153a211a87
a58a96 ξ
t a88a89
a108a9a60a61a90a91 h(ξ
t) a92a2a93a94
a96 ξ
t a88
a58a84a85a86 ξt+1
a88a89
a108a9
a223a224a225a226
(c(ξt);c(ξt+1) : ξt+1 ∈ ξt).
a171a172
a50a9
a125a153a211a52
a132
a67a214
a115
a5
a150a221a222
a159 VNM
a132
a67a214
a115
a106
V i(y) =
Tsummationdisplay
t=0
(δi)tυi(yt), ? y = (y0,...,yT) ∈RT+1 (8.2.1)
a58a49δi > 0. a171a172a95
a74
a125a153a211
a74a96a54
a52
a79
a143a97a98pi.
a125a153a211ia61
a243
a137a223a224a225a226 ca52a137
a68
a132
a67
a5
E[V i(c)]a116
a96ξ
t a52
a108
a137
a60a61a118a119
a2a125a153a211 ia52
a132
a67a214
a115
a5
υi(c(ξt)) + δiE[υi(ct+1)|ξt]
a29a30
a243
a137
a60a61a118a119
a49a52
a108a9
a128a170{p,{h
i},{ci}}
a2a58a49p
a5
a60a61
a55a75a99
a204
a2hi a229ci a159a100
a5
a125
a153a211ia52
a60a61a90a91a101a102a229
a223a224a225a226a116
a96ξ
t a52
a108
a137
a60a61a118a119
a2a125a153a211 ia96ξt a52
a20
a157
a5
wi(ξt)+ [p(ξt) + x(ξt)]hi(ξ?t )
a96ξ
t+1 ? ξt a52
a20
a157
a5
wi(ξt+1)?p(ξt+1)hi(ξt+1)
a152a24summationtext
i h
i = 0
a2
a96ξ
t a52
a162a20
a157
a5
ˉw(ξt) =summationtexti wi(ξt)a2
a96ξ
t+1 ? ξt a52
a162a20
a157
a5
ˉw(ξt+1).
{p(ξt),{hi(ξt)},{ci(ξt)},{ci(ξt+1)}}a80
a110
a58a96ξ
t a52
a108
a137
a60a61a118a119
a52
a108a9
a128a170(a103
a60a105).
September 6, 2005 72 c?a91a92a93
a47a48a49 a50
a39a51a52
a94a95a53CAPM 8.3a50
a39a51a52
a94a95
§8.3 a104a70a105a106a107a108
a109a110a59a60a105
a2
a111
a137
a60a61a118a119
a52
a53a54a127
a55
a103a98
a222a112a113a24
a96ξ
t a52
a108
a137
a60a61a118a119
a2
a114a23
a5
a142a143
a53a54
a127
a55
a116
a96 ξ
t a88a89
a52
a60a61a90a91
a52
a108
a137
a44a45a10a114
a5
a96 ξ
t a52a115a116a117
a118a119
a2a120
a5
Mξt(p) a2
a104
a198
Rk(ξt) a52
a84a121a221a2
a245a98a122
a2
Mξt(p) = {z ∈Rk(ξt) : z(ξt+1) = [p(ξt+1)+ x(ξt+1)]h(ξt), ? ξt+1 ? ξt, a61a28h(ξt) ∈RJ}
a96ξ
t a52a115a116
a165a166a101a102a123a124q
ξt : Mξt(p) →R
a127a125
a5
qξt(z) = p(ξt)h(ξt), ? z ∈Mξt(p)
a104
a61Mξt(p) a49a52
a50a9a44a45z
a126
a127a58a108a9
a55a75
a2a127a128a47a129z a52
a60a61a90a91h(ξ
t)
a96ξ
t a52a55a75
a116
Mξt(p)
a198
Hilberta121a221a2a130a131a132a133
a58a134a135
a116a136a137
a138
y ·z = E(yz|ξt), ? y,z ∈Mξt(p)
=
summationdisplay
ξt+1?ξt
pi(ξt+1|ξt)y(ξt+1)z(ξt+1)
a139a22Riesza82a219a127
a153a2a140
a96
a115a116
a101a102a141kq
ξt ∈Mξt(p)a2a142
a85
qξt(z) = E(kqξtz|ξt), ? z ∈Mξt(p).
a121a122a122
a2a140
a96a134a135
a116a136
a141ke
ξt ∈Mξt(p)a142
a85
E(z|ξt) = E(keξtz|ξt), ? z ∈Mξt(p).
a130a131
a96ξ
t a140
a96a60a61a147a148a60a61a90a91a133
a74
a108
a137a143a144a145a146a147a2
a81 ke
ξt = e = (1,...,1) ∈R
k(ξt).
a108a9a108
a137a146a147
a114
a5
a108
a137a142a143a148a149a146a147a2a130a131a150a140
a96a151a104a108
a137a146a147
a133
a74a77a54a152a153a75
a229
a77a54a152
a142
a143a137a154a134a155a156
a152
a142a143a157a158a2a159
a5
a96a139a127
a153a160
a229
a142a143a137a154a144a142a142a143a157a158a161a156
a152
a146a147a116
a162ε
ξt ∈Mξt(p)
a5
a142a143a148a149a141a163a2a159
a152a96ξ
t a152
a108
a137a164a165
a118a119a166
a152
a148a149a146a147
a90
a110a152
a84a121a221a116
a167a111
a137a164a165
a118a119a108a168
a2
a173a174a169
εξt = span{kqξt,keξt}
a108
a137
a127
a153
a149a229
a142a143a137a154
a149
a152a170a171
a5
rqξt = k
q
ξt
qξt(kqξt), r
e
ξt =
keξt
qξt(keξt)
a96ξ
t a152
a108
a137a142a143a148a149
a170a171
a10
a198
a32rqξt a229reξt
a152a172
a120
a106
rλ = reξt + λ(rqξt ?reξt), ?∞ < λ < +∞
a7
a94rλ a150
a198
a161a156a142a143a157a158
a170a171
a2a173a140
a96a108
a137a142a143a148a149
a170a171
rμ a2a142a174 rλ a229rμ
a152
a142a143
a205
a157a158
a5a175
a116
c?a91a92a93 73 September 6, 2005
8.4a176a177a178a179a180a181a40
a50
a39CAPM a47a48a49 a50a39a51a52
a94a95a53CAPM
a182r
λ
a229r
μ a183a184
a108
a137a142a143a148a149
a170a171a172
a120
a2a222a174
a134a135 β a101a102a103a98
E(rj,t+1|ξt) = E(rμ|ξt) + βj(ξt)[E(rλ|ξt)?E(rμ|ξt)], ? j
a151a166β
j(ξt) =
Cov(rj,t+1,rλ|ξt)
Var(rλ|ξt) .
a102a185a79
a143a186a187a2a142a143β a127
a153
a103a98
a110
a5
Et(rj,t+1) = Et(rμ) + βtj[Et(rλ)?Et(rμ)]
§8.4 a188a189a190a191a192a193a71a104a194 CAPM
a109a110a229
a144
a108a110
a29a30
a243
a137a164a165
a118a119
a128a170a195
a171a172
a118a119
a198a196
a246a197a198
a152
a2
a199a200a96a201a9a202
a78a203
a79
a143ξt
a152
a108
a137a164a165
a118a119
a198
a197a198
a152
a195a128
a198
a2
a96ξ
t+1 ? ξt
a152
a162a20
a157a204a205
a96ξ
t a152
a108
a137a206a207a208
a166
a2
a209a200
a140
a96a96ξ
t a152
a164a165
a90a91?h(ξ
t)a2a142a174
a104
a152
a108
a137a146a147a127a128
a162
a20
a157
a106
[p(ξt+1) + x(ξt+1)]?h(ξt) = ˉw(ξt+1), ? ξt+1 ? ξt
a114?h(ξ
t)
a5a210a211a212
a191a192a213a214a2
a104a96ξ
t+1 a152
a108
a137
a170a171
a5
rˉw(ξt+1) = [p(ξt+1) + x(ξt+1)]
?h(ξt)
p(ξt)?h(ξt)
a182a108
a137a146a147
a127
a153a215
a214a222a216
a110
rˉw(ξt+1) = ˉw(ξt+1)q
ξt(ˉwt+1)
a171a172a125a153a211
a152a132
a182
a214
a115
a5
V i(y) =
Tsummationdisplay
t=0
(δi)tυi(yt)
a151a166VNM
a132
a182
a214
a115
υi
a5
a240a241
a214
a115
υi(yt) = ?(yt ?αi)2, yt < αi, ? t
a128
a198
a2
a96ξ
t a152
a108
a137a164a165
a118a119
a2a125a153a211i
a152a132
a182
a214
a115
a5
?[c(ξt)?αi]2 ?δiE[(ct+1 ?αi)2|ξt]
= ?[c(ξt)?αi]2 ?δiVar(ct+1|ξt)?δi[E(ct+1|ξt)?αi]2.
a173a174
a55a217a2
a96a111
a137a164a165
a118a119a166
a2
a118a119
a146a147
a5
a162a20
a157
a152
a222a218a160a161
a159
a2
a200a118a119
a170a171
a5
a148a149
a170a171
a195
a219a23
a85a131a220
a182
a24
a96ξ
t a152
a108
a137a164a165
a118a119
a55a2
a108
a137
a170a171
rˉw,t+1
a5
a142a143a148a149
a170a171
a2
a209a23a104
a222a221
a5
a142a143β
a127
a153
a103a98a166
a152a114
a29
a170a171
a195a171a172
a108
a137a143a144a145a146a147
a96a108
a137a206a207a208
a166
a2a173
a169a134a135
a191a192
a163a164a193
E(rj,t+1|ξt) = ˉr(ξt+1) + βj(ξt)[E(rˉw,t+1|ξt)? ˉr(ξt+1)]
a151a166β
j(ξt) =
Cov(rj,t+1,rˉw,t+1|ξt)
Var(rˉw,t+1|ξt) . a117
a220a105a108
a137a142a143a144a145
a109
a153
E(rˉw,t+1|ξt+1)?ˉr(ξt+1)
a110a111
a112
a128βj(ξt).
a222a185a79
a143a186a187a2a142a143a164a165
a118a119a120
a110
a5
Et(rj,t+1) = ˉrt+1 + βtj[Et(rˉw,t+1)? ˉrt+1].
September 6, 2005 74 c?a223a224a225
a47a48a49 a50
a39a51a52a226a227
a53CAPM 8.5
a228
a42a45a46a229a230
§8.5 a231a73a76a77a232a233
a111
a137a234a235
a152a236a237
a164a165
a90a91
a152
a61a127a238a2
(1) a239ξt
a152a240a241
a164a165
a236a237
a166
a5a242
a20a243
a164a165
a90a91 ?h(ξ
t)
(2) a239
a243
a241
a164a165
a236a237
a166
a5a244
a168
a152
a164a165
a90a91a101a102 ?h
a2a245a207a129
a152
a243
a241
a146a147
a5a242
a20a243a246
(pt+1 + xt+1)?ht ?pt+1?ht+1 = ˉwt+1, ? t < T.
a247a168a101a102
a152
a140a239
a63a248a249a196
a246a197a198
a236a237a152a250a251
a2a252a253
a114 ?h
a5a254
a116a255a0a1a2a213a214a3a4. a5a6a2a239
a201
a240
a7a8T ?1
a152
a79a9ξ
T?1 a10
?h(ξT?1) = ?h(ξT?1).
a11
a100
a10
a130a131T = 1
a10
a173
a242
a20a243
a164a165
a90a91a12a13
a241a236a237
a164a165
a90a91a14
a54a10a15
a167a111
a241a236a237
a164a165
a90a91a14
a54a16
a13
a241a236a237
a164a165
a90a91a101a102 ?h
a152a240a241a170a171a17
rm,t+1 = (pt+1 + xt+1)
?ht
pt?ht =
ˉwt+1 + pt+1?ht+1
pt?ht
a18
a128a19a20
a166
a161a21a21a203a22
a152a23a24a10a170a171
rm,t+1
a240a25
a150a26a27
a9
a148a149
a170a171a10
a209a200
a150a28a29a30a27
a9
a164a165
a236a237
a31
a157a32
a166
a152a170a171
rˉw,t+1.
§8.6 a33a34a35a36a37a38
a39a40
a194 CAPM
a2398.1a41
a166a42a43a44
a241
CAPMa7
a10a45
a169
a250a251a236a237
a197a198
a195
a46
a2398.4a41
a42a43
a27
a9CAPMa7
a10
a252a253
a250a251a196a47
a197a198
a195
a48a13
a241a236a237
a202a197a198a7
a10a49a50a51a52a53
a27
a9
a164a165
a236a237
a31
a10
a247a54a55a56a57
a242a58
a243a59
a17
a245a239
a240a241
a206a207a208
a19
a152a60a61
a195
a162 ˉwM
t+1 a17 ˉwt+1 a239Mξt(p)a19a152a60a61a10a62a63
ˉrˉw,t+1 = ˉw
Mt+1
qξt(ˉwMt+1)
a64a65
a30a66a67
a152a68
a182a69a70
a26a71a72a235a73
a10
a173a239a74a75
a7 ˉr
ˉw,t+1 a17
a27
a9a76a77
a170a171a10
a199a200
a19a41a73a27
a9
a164a165
a236
a237
a31
a157a32a78a79
a16
c?a223a224a225 75 September 6, 2005