基于提升方法(lifting scheme)的小波变换.提升法被称为第二代小波,可见其重要性。
下面先举一个Harr小波的例子。在一序列中有相邻数据 a, b 我们计算出其低频l = (a+b)/2 高频 h =b-a如果不引入新数据,仅对a ,b 更新, 可写作 b - =a , a+=b/2 这样我们发现其可在自身位置上完成小波变换,而且还大大简化了计算过程(在复杂的变换中更明显)。
仔细分析,我们知道b是差异高频,它是当前值及前一个值对当前值的预测差,然后低频a ,由当前值及差异计算出。这样就提供了我们一个新思想。
提升法的是实现步骤。1. 分裂:将原始信号Sj分裂成Sj-1(保存低频数据部分) 和 Dj-1(保存高频数据部分)2. 预测:用Sj-1预测Dj-1,并计算出预测差作为高频数据,保存于Dj-1中3. 更新:根据高频数据Dj-1 更新低频部分Sj-1
这样就完成了一次提升变换,呵呵,很简单吧,其逆变换可相应推导出。
为防止误解,这里指出的预测可以使用多个数据来预测一个数据。例下
 Dk - = ( Sk+Sk+1 ) /2 Sk + = (Dk+ D k+1) /4
你也可以结合上节所讲的滤波器,构造出更多的提升小波变换。