los?l
2003
M=
??? I I I
!!!
1,I,Daubechies,Ten lectures on wavelets,Siam,Philadelphia,PA 1992.
2,S,Mallat,A wavelet tour to signal processing,Academic Press,Boston,1998.
3,Y,Meyer,loD
0?B 
W?m
?
1992.
4.
C ?ú?los
W?m
?
1995b
5.1y°,f
i,?£?,L?Wfs ?
ê
Z SD/
?
1979.
???BBBccc!!!???
M
M
M
'c|o
BtA1¥!?
Mb?B?1Hilbert bW?¥à
Q?=?1L?
0¥
?l? ??1μ1s¥?é?
1?|o
 ODRieszb
1,Banach b b bWWWDDDHibert b b bWWW
!X1
×K
¥L? bW ?f
!X !R+
@ ?/ ??Hq
1. ????
T!(x+y)? !(x)+!(y);8x;y 2 X,
2.
Q?!(fix) = jfij!(x);8fi 2 K;x 2 X,
3.???!(x) = 0,x = 0,
5?!1X
¥?Sf
X1L??S bWbYè:!(x)= kxki?-1í
íx¥S
b
???!!!??? ?fxjg ‰ X1Cauchy
'8? > 0;9N = N(?),
P¤?j;l > N
Hμkxj?xlk <
,5fxjgμK.
Banach b b bWWW:?!¥L??S bW?1Banach bWb
1
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 2
èLp(R)(1? p?1).
!fR
 V? O
+1Z
1
jf(x)jp dx < +1;?1? p < 1esssupx2Rjf(x)j < +1;?p = +1:
5?f 2 Lp(R).
^?!¥Banach bW í
íf¥S
V?l1
kfkp =
8
><
>:
+1R
1
jf(x)jpdx
1p;1? p < 1;
esssupx2Rjf(x)j;p = +1:
BBBttt??????
T
T
T
!f;g 2 Lp(R)
a) Minkowski??
T:
kf +gkp 6kfkp +kgkp;p > 1:
b) H¨older??
T:
kfgk1 6kfkp ¢kgkq; 1p + 1q = 1;p? 1;q? 1:
c) Cauchy-Schwarz??
T
'p = q = 2
H¥H¨older??
T):
kfgk1?kfk2 ¢kgk2:
=
=
=:
!X1
×K
¥L? bWf
!,X £X?!K, ?/
 ??Hq
@
(i) !(x;y) = !(y;x);8x;y 2 X;
(ii) !(fix+fly;z) = fi!(x;z)+fl!(y;z);8x;y;z 2 X;fi;fl 2 K;
(iii) !(x;x)? 0; O!(x;x) = 0? O??x = 0
5?f
!1X
¥
=f
bN
H?X1
= bWbè:< x;y >= !(x;y).
^
x
f bW
?
_
W
=¥w<b
Hilbert b b bWWW:?!¥
= bW?1Hilbert bW.
£
ü
=f
p!(x;x)
^B?Sf
.
è
1) l2(Z) = ff,f = (fj)+1j=?1;P
j2Z
jfjj2 < +1g.
=1< f;g >= P
j2Z
fjgj:
2) L2(R),
=1< f;g >= R+1?1 f(x)g(x)dx
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 3

ì? I
n Vs¥Hilbert bW
9'
μ V
¥
á0"b
1?? VsHilbert bW
¥ è V? IóD5¥p.152b
?????????: ?hf;gi = 05?fDg??b
???êêê
O
O
O


: ?kfk = 15?f1?ê
O
b
SSS??????""":
!I1 V
·S"fejgj2I ‰ X ?
hek;eli = –k;l; 8k;l 2 I
5?fejgj2I1S??"b
Bessel??????
T
T
T: ?iS??"fejgj2I;#(I) < +1 ?ix 2 X,μ
X
j2I
jhx;ejij2?kxk2
£
0?
x? P
n2I
hx;enien
2
= hx?Pnhx;enien;x?Pnhx;enieni
= kxk2?Pnhx;enihen;xi?P
n
hx;enihx;eni+P
n;k
hx;enihx;ekihxn;eki
= kxk2?2Pjhx;enij2 +P
n;k
hx;enihx;eki–n;k
= kxk2? P
n2I
jhx;enij2
:£
üjhx;yij?kxk¢kyk;8x;y 2 X.
www
 ?fejg1j=11S??"5í k)
1X
j=1
j < x;ej > j2
l ?
1£?[)
μ
?
VBessel??
Tw¤:
1X
j=1
j < x;ej > j2?kxk2,(1)

Tμ V
^?¥??
T
  èb ??
T? ??Bessel??
T¥£
üá
ì

x?
nP
j=1
< x;ej > ej
! 0(n !1)b'μ
x =
1X
j=1
< x;ej > ej (2)
?(2)? ?
H?fejg1j=11Hilbert bWX¥S??b
??? ? ? ?1S??"fejg1j=11X¥¥ sA1Hq
^
< x;ej >= 0;j = 1;2;¢¢¢ ;) x = 0 (3)
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 4
£ ?fejg1j=11?
2w¤?< x;ej >= 0
Hμx = 0bQ- ?fejg1j=1?
^
#ix0
P(1)?1?ì??
TV7x0 = x0?Pj < x0;ej > ej 6= 0b?μ< x0;ej >=
0;8j,V7D(3)
±b#fejg1j=1
^X¥b
Hq(3)?1"fejg1j=1¥? ??b
èL2 [0;1]?¥Haar"b?lHaarf
′(k)n (t)1
′(0)0 (t) = 1;0? t? 1 (f
)
′(1)0 (t) =
8
><
>:
1;0? t < 1=2;
1;1=2 < t? 1;
0;
(lof
)
′(1)1 (t) =
8
><
>:
21=2;0? t < 1=4;
21=2;1=4 < t? 1=2;
0;
′(2)1 (t) =
8
><
>:
21=2;1=2? t < 3=4;
21=2;3=4 < t? 1;
0;
′(k)n (t) =
8
><
>:
2n=2;(2k?2)=2n+1? t < (2k?1)=2n+1;
2n=2;(2k?1)=2n+1 < t? (2k=2)n+1;
0;
n = 0;1;¢¢¢ ;k = 1;2;¢¢¢ ;2n.
5f′(k)n (t)g
^L2[0;1]¥S??b
£:á
ìs
? ?£
üb
1fx(k)n (t)g
^S??"b ?^£jj′(k)n jj=1b
i)A ?R10 ′(0)0 (t)′(k)m (t)dt = R10 ′(k)m (t)dt = 0,8k > 0b
ii)?j > k? 1
H??lμ
x(j)n (t)x(k)n (t) · 0,(]B

ün
).
iii)?m > n
H
P′(k)m (t) 6= 0¥0 bW? ?c′(j)n |è′¥0 uW?yN ?j

Z 1
0
′(k)m (t)′(j)n (t)dt =è
Z 2k=2m+1
(2k?2)=2m+1
′(k)m (t)dt =è
[
p2m
2m+1?
p2m
2m+1] = 0:
2? ??b
!f 2 L2[0;1]b?Cauchy-Schwarz??
T
j
Z 1
0
f(t)dtj?
Z 1
0
f2(t)dt
1=2
#f(t) 2 L1[0;1]b
7
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 5
F(t) =
Z t
0
f(s)ds:
5F(t)
^ ??f
b
!
< f;′(k)m >=
Z 1
0
f(s)′(k)m (s)ds = 0;k = 1;2;¢¢¢ ;2m;m = 0;1;2¢¢¢,
#μ
F((2k?1)=2m+1)?F((2k?2)=2m+1)?F(2k=2m+1)+F((2k?1)=2m+1) = 0;
'
F((2k?2)=2m+1)?2F((2k?1)=2m+1)+F(2k=2m+1) = 0
|m = 0,¤
F(0)?2F(1=2)+F(1) = 0:
N1 ??(0;F(0));(1=2;F(1=2));(1;F(1))
L¥Hqb? |m = 1;k = 1,? wLy = F(t)
USt = 0;1=4;1=2)¥?9BH°L
b |m = 1;k = 2,?H wLt = 1=2;3=4;1)
¥?ê?BH°L
b
[y = F(t)USt = 0;1=4;1=2;3=4;1)¥?ê?]B°L
b
??/ ?y = F(t)USk=2m)¥?(k = 0;1;2;¢¢¢ ;2m;m = 0;1;2;¢¢¢)?ê?BH°
L
b??F(t)
^ ??f
y = F(t)¥m^
^BH°LbyN
?
F(t) = fit+fl;fi;fl
^è
:
??F(0) = 0,#fl=0b7F(1) = R10 f(s)ds = R10 f(s)′(0)0 (s)ds = 0.
[fi=0b'F(t) =
0.#f(t) = 0 a.e.,?£
ü
Haar"¥? ??b

6£F(0) = 0;F(1) = 0 ) F(1=2) = 0.?m = 1;k = 1w¤F(1=4) = 0;m = 1;k =
2w¤F(3=4) = 0;¢¢¢,KaF(k=2m) = 0.? ???F(t) = 0
/L2(R)?¥Haar"b
2.LLL???
000DDD]]]

ìo I
n Vs¥Hilbert bWb
!T,X ! Y
1L?
0 ?
T(fix+fly) = fiT(x)+flT(y):
? ? ???? ?xn ! x(X) ) Txn ! Tx(Y)
μμμ???iè
K > 0
P¤kTxkY? KkxkX
SSS
kTk1

T?Kl¥K'kTk = sup
x6=0
kTxk
kxk
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 6
L?
0 ???Dμ??
^?N¥b
!X;Y1Hilbert bW5
ì¥
}X? = X;Y? = Yb?lL?
0T,X ! Y¥
a
0T?,Y ! X1
< Tx;y >Y =< x;T?y >X;8x 2 X;y 2 Y;
?<;>X;<;>YsY1XDY?¥
=b
111
aaa ?T
^X?1
&¥
0 OT? = T,5?T
^1
a¥b
è
!fejg1Hilbert bWX¥S??b?lT,X ! l21
Tx = f< x;ej >g

a
0T?,l2 ! X1
T?fcjg =
X
j
cjej
]]]???



!T,X ! Y
^1-1¥
?
b5?T
^X?Y¥]?
b
+Y ?hTx;TxiY = hx;xiX ;8x 2 X.5?T
^? ¥b
? ?
|S??M1S??b
3.μμμ111sss¥¥¥???ééé
!E ‰ Rn1 V?"b
Fatou??? ? ? ?:
!ffjg1E
¥ Vf
. ?iE
¥ Vf
g,
P¤g? fj;j = 1;2;¢¢¢a:e:; O
lim
j!1
Z
E
fjdx < 1
5f
lim
j!1
fjE
 V, O
Z
E
lim
j!1
fjdx? lim
j!1
Z
E
fjdx:
Lebesque e e e???
l
l
l ? ? ???? ? ? ?
!ffjg
^E
¥ Vf
bf
FE V
è?1 e?f
b ?
(1) jfj(x)j? F(x); j = 1;2;¢¢¢ ;
(2) fj(x) ! f(x); a:e:
5f(x) V O
lim
j!1
Z
E
fj(x)dx =
Z
E
f(x)dx:
(' pKDsQ? VD)
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 7
Fubini??? ? ? ?
!A;B1 V?"E = A£B
^
ì¥2 5:ebfE
 V?7 Of¥
? ?QsR
A
R
B
jf(x;y)jdydx,R
B
R
A
jf(x;y)jdxdy?μB?i5
¥
6B?=Qs[
#=×sR
E
f(x;y)dxdy9i Oμ
Z
E
f(x;y)dxdy =
Z
A
Z
B
f(x;y)dydx =
Z
B
Z
A
f(x;y)dxdy
è
!f 2 L1(R1) ?! 2R1?lf
g(!) =
+1Z
1
e?ix!f(x)dx:
5gR1
 ??b
£??jf(x)e?ix!j = jf(x)j7 Oe?ix!
^!¥ ??f
 |jf(x)jT1fe?ix! f(x),! 2
(?1;+1) g¥ e?f
? e?
l ?? ??g(!)
^!¥ ??f
b
/
¥? ?)
0?
¥
l ??(óD[5]¥p.82-82).
??? ? ? ?2
!X,Y1Banach bW,Tj,X ! Yj=1,2,.......1μ?L?
0?
. O8x 2
X,fTjxg
l ?? O??
1) fkTjkg
^μ?
,
2)?X¥
?
á0"M?¥
?íx,fTjxg
l ?b
? ?
?x 2 X;fTjxg
l ?
7Tx = limj!1Tjx.5T
^L?μ?
0 OkTk?
limj!1kTjk.
4,Hilbert b b bWWW???¥¥¥ggg???
000   OOODDDRiesz
ggg???
000
a?¥μ?L?
0.
!P1X
¥g?
05P Vs31
X = M?+N;(?+ bW°'M \N = 0)
?M = fPx;x 2 Xg;N = fx?Px;x 2 Xg.
£8x 2 XA ?μx = Px + (x? Px)bQ£M \ N = 0b
!x 2 M \ N5i
z1;z2 2 X
P¤x = Pz1 = z2? Pz2baB?
T
HT¨P¤P2z1 = Pz2? P2z2
?P2 = P¤Pz1 = 0#x = 0b
Hilbert bW?á
ì÷?? ???°'X = M 'N
??? ? ? ?3,P1Hilbert bWX?¥??g?
0? O??P2 = P;P? = P
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 8
£:
!X = M 'N ?M = PX;N = X?PX,'M
^P¥′×N
^P¥
, bWb
!P
^??g?
0Z 2 X V·Bs31
z = x+y;x 2 M;y 2 N;< x;y >= 0('x?y)
#
< P?z;z >=< z;Pz >=< x+y;x >=< x;x >=< x;x+y >=< Pz;z >,
[P? = P.
Q-??x 2 X,μ
kPxk2 =< Px;Px >=< P?Px;x >=< Px;x >?kPxk¢kxk
[kPxk?kxkb#Pμ?b
C£M?Nb
!x 2 M;y 2 N5
< x;y >=< Px;y >=< x;Py >=< x;0 >= 0:
/
?¨S??w??g?
0¥V
U
T.
??? ? ? ?4:
!P
^X?M
¥??g?
0fejg‰ M
^M¥ ?BS??5
Pf =
X
j
< f;ej > ej8f 2 X:
£:??M
¥??g?
0
^·B¥
1£o3£

T·
?l¥
0?P
^??
g?
0b??fejg
^S??¥#?Pej = ej#?P2 =?P
??
<?Pf;g >=
X
j
< f;ej > < g;ej > =< f;
X
j
< g;ej > ej >=< f;?Pg >
[?P? =?Pb
C)
Hilbert bWX?¥ O
frame.
???lll
!fejg‰ X
^B? O ?
Akfk2?
X
j
jhf;ejij2? Bkfk2 ;8f 2 X; (4)
?A;B1?è
b
?A"B5?fejg1? O
tight frameb
è
!e1 = (0;1);e2 =
p3
2 ;?
1
2
·;e3 =
p
3
2 ;?
1
2
·
:R2?, ?x = (x1;x2)μ
3X
j=1
jhx;ejij2 = x22 +
p3
2 x1?
1
2x2
!2
+
p3
2 x1 +
1
2x2
!2
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 9
= 32?x21 +x22¢ = 32 hx;xi
#fe1;e2;e3g
^? OA = B = 32b
?
 è OB??
^
'
PA = B = 1?μ ?/¥ sHqb
??? ? ? ?5:
!fejg
^? OA = B = 1kejk = 18j5fejg
^B?S??b
£: ? OAf??? bW#o3£S???b |f = ejμ
kejk2 =
X
k
jhej;ekij2 = kejk4 +
X
k6=j
jhej;ekij2:
??kejk = 1#hej;eki = 0?k 6= jb
??o
^
4?¥·H??
T? ?
H?fejgμ O
??
H
afejg1Bessel?
b ?
1?o
^PH??
T? ?
H?fejgμ O/?b
1? O¥
??éá
ìμ
??? ? ? ?1:
!fejg‰X
^ ?ií
í
5/
5?N
X
j
cjej
ckfcjgk2 8fcjg2 ‘
2; (5)
X
j
jhf;ejij2
!1
2
ckfk 8f 2 X; (6)
£:?^
! p1μK?5¨KVb
!(5)? ?5
X
j
jhf;ejij2
!1
2
= sup
fcjg;kfcjgk2?1
flfl
flfl
fl
X
j
cj hf;eji
flfl
flfl
fl
= sup
fcjg;kfcjgk2?1
flfl
flfl
fl
*
f;
X
j
cjej
+flfl
flfl
fl? ckfk:
?
1?(6) V¤
X
j
cjej
= supf;kfk?1
flfl
flfl
fl
*
f;
X
j
cjej
+flfl
flfl
fl = supf
flfl
flfl
fl
X
j
cj hf;eji
flfl
flfl
fl? ckfcjgk2,
1?Bessel?
á
ìμ ?/¥ Y.
!fejg‰X5fejg
^?1B¥Bessel?
? O??
Rfcjg!
X
j
cjej
??B??l2?X¥?
 OkRk?pBb
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 10
£:
!fejg1Bessel?
 O?1Bb
!fcjg2 l2.
(i) R(fejg)μ?l'Pcjej
l ?.8n;m;n > mμ
P
jjj?n
cjej? P
jjj?m
cjej
=
nP
jjj=m+1
cjej
"sup
kgk=1
flfl
flfl
fl
*
nP
jjj=m+1
cjej;g
+flfl
flfl
fl? supkgk=1
nP
jjj=m+1
jhcjej;gij
nP
jjj=m+1
jcjj2
!1
2
sup
kgk=1
"
nP
jjj=m+1
jhej;gij2
#1
2
pB
nP
jjj=m+1
jcjj2
!1
2
:
??fcjg 2 l2P
jjj?n
jcjj2n2 N
^Cauchy?
#P
jjj?n
cjej9
^Cauchy?
y7
l
?.
[R(fcjg)μ?l.
(ii)A ?R
^L?¥.
(iii)?kR(fcjg)k = sup
kgk=1
jhT (fcjg);gij ?
?

¥w ? V¤Rμ? OkRk?pBb
Q- ?Rμ?l O?1pB?? ?1w¤fejg1Bessel?
b
?S??fejg?l
0
T,f !fhf;ejig:
?? ?4T
^X?l2¥? ]b7
¥
a
0
£
T?,fcjg!
X
j
cjej
9
^Vl2?X¥? ]b
7? Oá
ì|y ?
?il/¥
} Ob
!fejg
^X¥B? O5
T,f !fhf;ejig (7)
^X?l2
=¥μ?L?
0
?1 O
0
0S
B12b
¥
a
0
T?,fcjg!
X
j
cjej (8)
9
^l2?X
=μ?¥ B1=2.
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 11
TDT?
^
a¥??
< Tf;fcjg >=
X
j
< f;ej > cj =< f;
X
j
cjej >=< f;T?fcjg >
N?μ
X
j
j< f;ej >j2 = kTfk22 =< T?Tf;f >;8f 2 X:
?Ná
ì V| OHq?1
AI? T?T? BI;I1?
0b(9)
:::|||:9? ?s9x,xt? 08x 2 XN
H?91?
0b?N?lT1? T2,
'T1?T2? 0b
??? ? ? ?:
!8
^=?¥μ?L?
0S? AI(A > 0).5
^1
a¥ V
I¥ 
I
0S?1
@
S?1? A?1; AkSk?2 I? S?1? A?1I; (S?1)? = S?1:
£
i
^¥b ?x = 0,5kxk2? A?1 < Sx;x >= 0.
(ii) S¥′×Ran(S)
^>¥b
!fxng‰ Ran(S);xn ! x05ifyng
P¤Syn = xn:?
< xn?xm;yn?ym >? Akyn?ymk2
fkxnkgμ??fyng
^Cauchy
V7μKy0b?"
x0 = lim
n!1
xn = lim
n!1
Syn = Sy0;
[x0 2 Ran(S):
(iii) Ran(S)X?by?Ran(S),μkyk2? A?1 < Sy;y >= 0,
[S?1ib
(iv)??kS?1xkkxk?< S?1x;x >=< S?1x;SS?1x >? AkS?1xk2
[kS?1k? A?1b
(v)?(iv)μ< S?1xx >? A?1kxk27 OμkSS?1xk = kxk? kSkkS1xk#kS?1xk?
kSk?1kxkbV7< S?1xx >? AkS?1xk2? AkSk?2kxk2b
(vi) S1
a? O??< Sx;x >
^
L¥ ?x 2 Xb
!< Sx;x >
^
L¥5< Sx;x >= < Sx;x > =< x;Sx >=< S?x;x > ?x 2 X
[S1
abQ_2
V ?
¥£
üb
(vii) ?μ? V
I
0S
@
(S?)?1 = (S?1)?x:
< (S?)?1x;y > < (S?)?1x;SS?1y >=< x;S?1y >=< (S?1)?x;y >,
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 12
??? ? ? ?3:
!S1Hilbert bW?¥μ?L?
0< Sx;x >= 0 ?x 2 Xb5S = 0b
£ ?x;y 2 Xμ
< S(x+y);x+y >= 0 )< Sx;y > + < Sy;x >= 0
< S(x+iy);S(x+iy) >= 0 )?i < Sx;y > +i < Sy;x >= 0:
[< Sx;y >= 0 |y = Sx¤Sx = 0b
??? ? ? ?6:
!fejg;f?ejg‰ X
@ O
?Hq
'Bessel?

X
j
j< f;e
j >j
2 +j< f;?e
j >j
2¢? Ckfk2 8f 2 X (10)
O
< f;g >=
X
j
< f;ej >< g;?ej > 8f;g 2 X0 (11)
?X0
^X¥

á0 bWb
?l
0
fTng
n?
Tn
o
Tnf =
X
jjj?n
< f;?ej > ej;?Tnf =
X
jjj?n
< f;ej >?ej:
5fTng;
n?
Tn
o
^Báμ?L?
0
 O
kfk2? C ¢min
X
j
j< f;ej >j2;
X
j
j< f;?ej >j2
!
(12)
f =
X
j
< f;?ej > ej =
X
j
< f;ej >?ej 8f 2 X0 (13)
£?? ?1
10w
X
j
cjej
+
X
j
cj?ej
Ckfcjgk2 8fcjg2 l
2
|cj =< f;?ej >i ?¨
10¤
kTnfk =
X
jjj?n
< f;?ej > ej
C
0
@X
jjj?n
j< f;?ej >j2
1
A
1
2
Ckfk
[fTng ?
1
n?
Tn
o
^Báμ?¥b
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 13
?
10
118f 2 X0μ
f?
P
jjj?n
< f;?ej > ej
= sup
g:kgk?1
flfl
flfl
fl< f?
P
jjj?n
< f;?ej > ej;g >
flfl
flfl
fl
= sup
g
flfl
flfl
fl
P
jjj>n
< f;?ej > < g;ej >
flfl
flfl
fl
sup
g
P
jjj>n
j< g;ej >j2
!1
2
P
jjj?n
j< f;?ej >j2
!1
2
C ¢ sup
g:kgk?1
kgk¢
P
jjj>n
j< f;?ej >j2
!1
2
= C
P
j>n
j< f;?ej >j2
!1
2
! 0
y1)
P
j
j< f;?ej >j2
l ?

T
l ??0b
[
13f 2 X0? ?b
??fTng
n?
Tn
o
^Báμ??
X0

ìsYμK
Tf =
X
j
< f;?ej > ej?Tf =
X
j
< f;?ej >?ej
?? ?2 V£

T ?if 2 Xg? ?b?ü£
ü

13b
 ?if;g 2 X?
10μ
kfk = sup
g2X;kgk?1
j< f;g >j = sup
g
flfl
flfl
fl
X
j
< f;ej > < g;?ej >
flfl
flfl
fl
sup
g
Ckgk¢(
X
j
j< f;ej >j2)1=2? C(
X
j
j< f;ej >j2)1=2
?N£¤
12b
?
1(11)è?1(13)¥ D?
T O(11)o30"
? ?b
2(10)
^ O
?(12)
^ O/?'? ?£
ü O/? V?
?D D?
T¥?
Tw
b9' ?Bessel?

@ D?
T(13)5
1 Ob
/
a
ü?fejgó?
H8"/f?ejgb
??? ? ? ?7:
!fejg
^X?¥ O 
a/?sY1A;Bb
7
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 14
e
j = (T?T)?1ej (14)
T,X ! l2
f !f< f;?ej >gj (15)
?TDT??(7)(8)
?lb5
(i) f?ejg
^X¥ O 
a/?sY1B?1A?1b
(ii)
T = T(T?T)?1;?TT = (T?T)?1 (16)
(iii)?T T? = T?T?
^l2?Ran(T) = Ran(?T)
¥??g?
0b
(iv)?T?T = I = TT'
f =
X
j
< f;ej >?ej =
X
j
< f;?ej > ejX?b(17)
£,(i)(ii)?
9? ?2(T?T)?1
^1
a
0bV(?Tf)j =< f;?ej >=< f;(T?T)?1ej >=<
(T?T)?1f;ej >(T(T?T)?1f)j =< (T?T)?1f;ej >¤?T = T(T?T)?1b?Pj j < f;?ej >
j2 = Pj j < (T?T)?1f;ej > j2 = kT(T?T)?1fk2 =< T(T?T)?1f;T(T?T)?1f >=< (T?T)?1f;f >b
???
T(9)? ?2w¤f?ejg
^ Ob 
?1A?1
/?1AkT?Tk?2b
(iii)T¥?lw¤?T T? = T?T?'?T T?
^1
a¥bT = T(T?T)?1¤Ran(?T) ‰
Ran(T)??T =?T(T?T)¤Ran(T) = Ran(?T)
[Ran(T) = Ran(?T)b
:P1l2?Ran(T)
¥??g?b1£?TT?"T?T?=P,á
ì£Ran(T)
^P¥???
Ran(T)?
^
¥
,?"'
TT?Tf = Tf;8f 2 X;?TT?(fcjg) = 0;8fcjg?Ran(T)
?B
TTT?Tf = T(T?T)?1T?Tf = Tf°¤wb?=
T?
fcjg?Ran(T)w¤hc;Tfi = 0;8f 2 X;9'T?(fcjg) = 0:
[?TT?(fcjg) = 0.
(iv)??lμ
T?T = (T(T?T)?1)?T = (T?T)?1T?T = I
TT = T?T(T?T)?1 = I
?N'¤(17)b
1?(17)?)
¥
l ??£
ü V? I? ?6b
:/á
ìw? Of?ejg¥/?9bá
ìμ
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 15
kfk2 =
X
j
hf;ejihf;?eji? (
X
j
jhf;ejij212
X
j
jhf;?ejij2)
1
2
Bkfk
X
j
jhf;?ejij2)
1
2
#f?ejg¥ O/?1B?1b
?
1?T;T?¥?lμ
TT?f =
X
j
hf;ejiej
y1fejg
^ O?
9
TTT? V
I# V
f =
X
j
hf;eji(T?T)?1ej
'á
ìê4?ej = (T?T)?1ej
2) f?ejg¥ê4B?
^?·B¥b
è
!"1 =
1
0
!;"2 =
0
1
!
1R2?¥S?? I
n ?
A =
1 0
p2
2
p2
2
0 1
p2
2?
p2
2
!
7(e1;e2;e3;e4) = ("1;"2)A5fejg1? Ob
!(?e1;?e2;?e3;?e4) = ("1;"2)BB12£4 ? OA¢BT = I2£2.5 ?x 2 R2μ
x =
X
j
hx;?ejiej = ABTx =
4X
j=1
fijej:
A ?B?
^·B¥'f?ejg?
^·B¥b
:?? ?7¥ZEsf?ejg
!x =
1
0
!
ù pf?ejgsY
Pa) kfikKl b) fiK

'μK¥d
,í.
1 Y Oá
ì£
ü
?£ù2T
'
&9μ??¥ilb
??? ? ? ?4
!S,X ! Y
^L?μ?
5iμ?
0Sr,Y ! X
P¤
SSrf = f;8f 2 X
£¨N:S¥
, bW'N = fx,Sx = 0gbN?1NX?¥???|SK?N?

¤SN?,N? ! Y5
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 16
i) SN?
^L?μ?¥
ii) SN?
^?
 ?SN?x = 05x 2 N \N? = 0
iii) SN?
^
 ?óy 2 Yix 2 X
P¤Sx = y:x = x1 + x2; x1 2 N?;x2 2
Ná
ìμ
SN?x1 = Sx1 = S(x1 +x2) = Sx = y0
[SN?μμ?
I?

Sr = S?1N?,Y ! N?
V7SSrf = f;8f 2 X.
??? ? ? ?5:
!S,X ! Y1L?μ?
0bó?y 2 Y I
n
0Z?Sx = y0
μ·B¥
l
3x = Sry.
£:?? ?4Sry
^3b
[ 
e3 V1
x = Sry +z;
?z 2 Nb??Sry 2 N?#B?3x¥

@
jjxjj2 = jjSry +zjj2 = jjSryjj2 +jjzjj2
?z = 0
H |lb
?Srè?1S¥
E
I
psedo-inverseb
??? ? ? ?8:?
fejg1X¥ O? O???

R,fcjg!
X
j
cjej
^l2?X¥
?
b
?iR'?
8?l¥T?
£
!fejg1 O?1?Bessel?
¥2TR
^l2?X¥μ?L?
0b?
9RT1
?

[R1
?
bQ-
!R
^
?
??jjRjjμ? 
a
0R?9μ?,i
OjjRjj = jjR?jj OR? V1
R?f = f< f;ej >g
?
H
jjR?fjj2 =
X
j
j < f;ej > j2? (jjR?jj¢jjfjj)2 = jjR?jj2 ¢jjfjj2 = jjRjj2 ¢jjfjj2
[fejg
^Bessel?
b
/
? O/?.
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 17
!Rr,X ! l2
^R¥
E
If 2 X,μ
f = RRrf =
X
j
(Rrf)jej;
?(Rrf)j
^Rrf¥?j?s

[
jjfjj4 =< f;f >2=< P
j
(Rrf)jej;f >2= (P
j
(Rrf)j < ej;f >)2
P
j
j(Rrf)jj2P
j
j < f;ej > j2?jjRrjj2jjfjj2P
j
j < f;ej > j2
#P
j
j < f;ej > j2? 1jjRrjj2jjfjj2
Cá
ì)

} Ob
???lll:
!fejg;f?ejg
^X? ?i
??
 ?(17)X?
l ?¥il/? ?5?fej;?ejgo1

}b ?Tfejg;f?ejg?
^ O OoM
}5?fej;?ejg
^
} Ob
?μ
hej;?eki = –j;k;
5?fej;?ejg
^B
?? Ob
???lllX?¥?
fejgX?L?? ? ?Toμ
,?
fcjg?
PP
j
cjejX?
l ??
,b
??? ? ? ?9:
!fej;?ejg
^
???
5fejgDf?ejg?
^? ?¥.
£
!fcjg
PPcjejX?
l ??
,5
0 =<
X
k
ckek;?ej >=
X
k
ck < ek;?ej > = cj;8j
#fejg? ?b ?
1£
üf?ejg9? ?.
??? ? ? ?10
!fejg
^X?¥ O OL?? ?5
¥
}f?ejg
^·B¥ Ofej;?ejg
^
??
¥b
£
!fejg
^B? O O? ?b
!f?e1jg;f?e2jg
^fejg¥
?
}b5X?
l ?il/μ
f =
X
j
< f;
e1j > ej =
X
j
< f;
e2j > ej
#X
j
(< f;
e1j >? < f;
e2j >)ej = 0 (18)
?
f< f;e1j? >? < f;e2j? >g
P(18)?)
X?
l ??0?fejg-? ??μ
< f;
e2j?
e1j >= 0;8f 2 X
?w
e2j =
e1j 8j·B?¤£.
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 18
!f?ejg
^fejg¥·B
}
?? ?7
ó.5X?
l ?il/μ
ej =
X
k
< ej;?ek > ek
?fejg¥? ??μ< ej;?ej >= –j;k?? ?7,f?ejg9
^ O#fej;?ejg
^
?? O.
??? ? ? ?11:
!fejg
^ O,? ?,f?ejg
^ ·B
}.5?
f ! f< f;ej >gDf ! '< f;e?j >“
?
^X?l2
¥].
£:??fejg
^ O O? ?,f?ejg9
^ O.#

=?
?
^μ?l¥.C£
ì?
^
.
!fcjg2 l2?l
f =
X
j
cjej;g =
X
j
cj?ej
?? ?1,f;g 2 X Okfk;kgk? ckfcjgk2,?fej,?ejg¥
???,?
cj =< f;?ej >=< g;ej > ; 8j
?£
ü
?
¥′×
^
¥b
? O?é,μ
A(kfk2 ;kgk2)?
X
j
jcjj2? B(kfk2 ;kgk2)
#N?
1X?l2
¥?
ê].

ìC)
? ?¥ Ob
???lll::span(fejg) = ff,f
^fejg¥μKL?Fgb
RieszHilbert bWX?¥?
fejg1Riesz ?span(fejg) = X O
A(
X
j
jcjj2)1=2?
X
j
cjej
B(
X
j
jcjj2)1=2;8fcjg2 l2 (19)
?
1(19)i?"?
fcjg ! P
j
cjej
^l2?span(fejg)
¥]b
V1? ?8
* úX£
ü
1
?
b
2? ?11£
ü? ?¥ O?
f ! f< f;ej >g
^X?l2
¥]b????
0
D
0fcjg ! P
j
cjejo1
ab#f ! f< f;ej >g
^X?l2
¥]?N?fcjg !
P
j
cjej
^l2?X
¥]b?£
ü? ?¥ ODRiesz
^]Bà
Qb
Lecture Notes on Wavelets,Chapter 1,by D.Q,Dai,2003 19
1?
üM.
!g 2 L2(R)bá
ì I
n
üM
?¥"fg(t?j)gj2Zb5μ
??? ? ? ?12:
a ?gfejg(ej(t) = g(t?j))? V
^L2(R)¥ O
nChristensen O.,etc.ACHA
bfejg
^span(fejg)¥Riesz? O??9A;B > 0;
P¤
A?
X
k
j?g(w +2…k)j2? B;a:e:
g1g¥FourierMDb