Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 1
??? ? ? ?ccc ? ? ????llloooMMMDDD
'c)
??loMDb?B?|? ?lo¥à
QloMDD×
Tb?=?|o

é? ? ?a¥=éloMDb? ??|¨loMD Yf
¥?5?b
1 ? ? ????llloooMMMDDD
!? 2 L1(R)\L2(R).á
ì? ?
üM
%
ê??¥à
Qb
???lll:s 2 Rnf0g,t 2R?l?s;b(t)1
s;b(t) = 1pjsj?(t?bs ),(1)
s;b(t)? ??
?i)
üMb,ê??
,ii)
%
ês,(1/
q),iii)??1pjsj,?
′¥??.
è è è1: I
nHaarlo
(t) =
8>
<
>:
1; 0? t < 1=2;
1; 1=2 < t? 1;
0; 
.

%
êD
üMa¥f
, 2;0(t),?1=2;0(t)#?0;1(t) ?/m?
è è è2:
! (t) = 1p2…e?t2=21Gaussf
b(t) =? 00(t) = 1p2…(1?t2)e?t2=2b
¥FourierM
D1(!) = !2e?!2=2.
Vm? V[ A?jsj9F
Hlof
s;0(t)¥“ z”9Fy7
H×
¥sO
q
Mμ ?7d?s;0(!)¥ zMN#
qsO
q9 <bQ-g ?b
??? ? ? ?1ü
%
êD
üMa?s;b(t)¥
 ??M'
k?s;bk = k?k(??s13
d1
I
1? ?y01pjsj):
£T9Du = (t?b)=s5μ
k?s;bk2 = R
R
j?s;b(t)j2 dt
= R
R
1
jsj
flfl?(t?b
s )
flfl2 dt
= R
R
j?(u)j2 du
= k?k2,
???lllf
2 L2 (R)(\L1 (R))?1
lo
mother wavelet ?
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 2
C? =
Z
R
flfl
fl(!)
flfl
fl
2
j!j d! <+1,(2)

T(2)?1lof
¥ V ???Hq
admissible conditionb
? 2 L1;#
¥FourierMD(!) ??b?
2
Tw¤
Z 1
1
j(!)j2
j!j d! < 1:
1Ns
l ?A?μ(0) = 0.9'
Z +1
1
(t)dt = 0,(3)

TV
ü?¥?¥?sDμ¥?sDtà
?¥

^M]¥
¥m`
^??¥b ?
???obá
ì|?¥;á?[# ??TéB?¥K?y7¤? ?¥o?#
μ“lo”?B
?b
è è è1ú
f
¥μ
DOG
(t) = fi?2e?t2=(2fi2)?e?t2=2;fi < 1;
(!) = e?fi2!2=2?e?!2=2:
2)Morletlo
(t) = eikte?t2=2?e?k2=2e?t2=2;
(!) = e?(!?k)2=2?e?k2=2e?!2=2:
?k?6
H?=[
^
′ V-
{¥y7
M1
(t) = eikte?t2=2;
(!) = e?(!?k)2=2:
3"Hf
(t) =
8
>>><
>>>
:
3t2?2t; 0? t? 1=2
(t?1)2; 1=2? t < 1;
0; t? 1;
(t)1 f
:

ì I3V?s;ba
¥
H—
(Heisenberg)3 g¥Mb??lμ
?^
!s >
0b
ü (ê?usμ
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 3
us = 1k?
s;bk
2
R+1
1 tj?s;b(t)j
2dt
= 1k?k2 R+1?1 t1s flfl?(t?bs )flfl2dt
= su+b;
'
üM
ba
%
ê
sb7
q
μ
s = 12…k?
s;bk
R+1
1 !
flfl
fls;b(!)
flfl
fl
2d!
= 12…k?k2 R+1?1 !s
flfl
fl(s!)
flfl
fl
2d!
= 1s 12…k?k2 R+1?1 !
flfl
fl(!)
flfl
fl
2d!
=?s
V7
ì¥
ü ( zsY
@
( st)2 = 1k?
s;bk
2
R (t?us)2j?
s;b(t)j
2dt
= 1k?k2 R (t?(su+b))21s flfl?(t?bs )flfl2dt
= s2( t)2

( s!)2 = 1k?
s;bk
2
R (!s)2flflfl
s;b(!)
flfl
fl
2d!
= 1k?k2 R (!s)2s
flfl
fl(s!)
flfl
fl
2d!
= ( !)2s2,
?? st,s! = t,!
[Heisenberg0¥
 ??Mb?
�
"s¥M7
Mb?
^D3 gFourierMD?M]¥1Zb

ìC I
nloMDb
???lll
!?1
lo,f 2 L2(R)?l
¥loMD1
(Wf)(s;b) = hf;?s;bi
= R
R
f(t)?s;b (t)dt
= R
R
f(t) 1pjsjt?bs ¢dt:
?¨Plancherel
TloMD9 V[
q×
=1
(Wf)(s;b) = 12…
Z
R
f(!)pjsj(s!)eib!d!,(4)

ìB?1 plof

H×D
×?μ
z¥ ?? è ??|"a·
h?b

ì I3sê?b¥loMD
H×D
×Vf
f
 |¤?b
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 4
??(Wf)(s;b) = R
R
f(t)?s;b(t)dt
H×

?¨¥f¥?"?
H Yb z1 st =
s t¥ê?
b

H×

"?
b¥?M7T
üMb?sMl
H st9MlV
7?s;b¥sO
q9 <(Wf)(s;b)4 |? ?? ?¥%?b?9F
H st9v?s;b¥s
O
qh D(Wf)(s;b) |¥
^f¥?8¥?ébs ?
?1m??
¨¥“1 è”b
ú1 è V¤?8¥
jm ?
W?1m ?1 è??`ì
gB ?¥ ?¥1mb?9
?`¥3
dê??
¥T¨b


??(Wf)(s;b) = 1=(2…)R
R
f(!)s;b (!)d!
?¨¥?f¥
q z1 s! =
!=sDs?Q1b
[?sMl
HloMD¥
×sO
qMμ7?s9v
H

?9 <b??loMD?
^FourierMD°4
sD
q?Q11"by7á
ì V[
AloMD?
Hμ?z¥sO
q?
^[
5
H×¥sO
q1}N7¤?¥b
ú
¥
H
??lsloMD¥sO
qMμb
???
1=pjsj
^??BB1 pV
D

?¥b
'
&9μt ?ilb1 ?A±
??X??%?
H
F?
A?B?l3 g[?¥bN3 g
=%?¥ <?9 <
?
??j?s;b(t)j¥?′'9F1=pjsjbV??il
loMD V AT?“
DA±?”b
??? ? ? ?2
!f 2 L2 (R).5%?¥s 6= 0μ
kWf(s;¢)k2?
p
jsjk?k1 ¢kfk2 (5)
£
!?
(t) = 1pjsjts¢.5μ
1
=
p
jsjk?k1
?
H(Wf)(s;b) =
f
(b)b?Young??
T¤
k(Wf)(s;¢)k2?
1
kfk2 =
p
jsjk?k1 ¢kfk2,
??? ? ? ?3,(Calderon(1964),Grossman,Morlet(1984))
!f;g 2 L2 (R).5μ
Z
R
Z
R
(Wf)(s;b)(Wg)(s;b)dbdss2 = C? hf;gi (6)
OL2il/μ
f (t) = C?1?
Z
R
Z
R
(Wf)(s;b)?s;b (t) dsdbs2,(7)
£:?
4(Wf)(s;b)1?b¥FourierMDdWf(s;?) =?f(?)pjsj(s?).|Parseval?
T?¨
?1?b¥s¤
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 5
R
R
R
R
(Wf)(s;b)(wg)(s;b)dbdss2 = 12… R
R
R
R
(Wf?)(s;?)?Wg(s;?)d?dss2
= 12… R
R
R
R
f(?)pjsj(s?)?g(?)pjsj(s?)d?ds
s2
= 12… R
R
R
R
f(?)?g(?)flflfl(s?)flflfl2 d?ds
jsj
= 12… R
R
f(?)?g(?)(R
R
j(s?)j2
j?j ds)d?
= C?2… R
R
f(?)?g(?)d? = C? < f;g >;
?ü£
ü

6
Tb
1£
ü
7
T I
ns
1
C?
Z Z
s1?jsj? s2
jbj? B
(Wf)(s;b)?s;b(t)dsdbs2 (8)
?s1 ! 0;s2;B ! 1
H¥Kb:?1 = f(s;b),s1?jsj? s2;jbj? Bg;?2 =R21á
ì

f? 1C?R R?1(Wf)(s;b)?s;b(t)dsdbs2
= sup
kgk?1
flfl
fl< g? 1C?R R?1(Wf)(s;b)?s;b(t)dsdbs2 ;g >
flfl
fl
sup
kgk?1
flfl
flC1R R?2(Wf)(s;b)(Wg)(s;b)dsdbs2
flfl
fl
sup
kgk?1
C1(R R?2
flfl
flWf(s;b2dsdbs2 )
flfl
fl)1=2 ¢(R R?2 jWg(s;b)j2 dsdbs2 )1=2
sup
kgk?1
C?1? (R R?2 j(Wf)(s;b)j2 dsdbs2 )1=2(R R
R2
jWg(s;b)j2 dsdbs2 )1=2
(C?1? R R?2 j(Wf)(s;b)j2 dsdbs2 )1=2

T
l ??
,y1?
6
TsC1RR
R2
j(Wf)(s;b)j2 dsdbs2
l ?b

8
T?¥s?Dg 2 L2T
=ab
flfl
flR R?1(Wf)(s;b) <?s;b;g > dsdbs2
flfl
fl? R R?1jWfj¢j<?s;b;g >jdsdbs2
R R?1kfk¢k?s;bk¢k?s;bk¢kgk dsdbs2
= 4B( 1A1? 1A2)kfk¢kgk¢k?k2,
V7
8
T
?L2(R)b
(7)
TV
üVf
f¥loMD"
Wf V[YVlo?s;b×f
fbs3
H¨¥l
o VD×
H
¨¥lo?] ?/
¥? ?
¥
??? ? ? ?4
!?1?2 2 L1(R)
@C?1;?2 = R1(!)2(!)j!j d! 6= 0;?2 V± O?02 2 L2(R);?2(t) 2
L1(R)1(0) =2(0) = 0b ?f 2 L1(R) Oμ?5f¥ ???tμ
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 6
f(t) = C?1?1;?2 lim
s1!0
s2!1
Z ds
s2
s1?jsj?s2
1Z
1
< f;?1;s;b >?2;s;b(t)db
£nI.Daubechiespp,2830b
2===éééllloooMMMDDD
? ?34? ?¨

μ¥1 < s < +1b ?|K??s > 0f
|μ?
ìBt¥1 pb'μ
C? =
1Z
0
flfl
fl(!)
flfl
fl
j!j d! =
0Z
1
flfl
fl(!)
flfl
fl
j!j d! < +1:
(
^
L′f
H?(?!) =(!)#?=??
T1?? ?b)

ìμ ?
?? ?3¥×
T
f = C?1?
1Z
0
ds
s2
+1Z
1
(Wf)(s;b)?s;b(t)db:
?éB? ? ?s
o |=é
′s = 2j(j 2Z)1 ??f
μ÷¥K?b
???lll
!f
2 L2(R), ?i?è
A;B(0 < A? B < +1)
P¤
A?
X
j
flfl
fl(2?j!)
flfl
fl
2? B; a:e,(9)
51=élo(dyadic wavelet)
??? ? ? ?5
!?1=élo ?(9)
T? ?5μ
Aln2?
1Z
0
flfl
fl(!)
flfl
fl
2
! d!
0Z
1
flfl
fl(!)
flfl
fl
2
! d!? Bln2:
7 O ?TA = B5
C? =
+1Z
1
flfl
fl(!)
flfl
fl
2
j!j d! = 2Aln2
£
ü??
2Z
1
flfl
fl(2?j!)
flfl
fl
2
! d! =
2?j+1Z
2?j
flfl
fl(!)
flfl
fl
2
! d!
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 7

9
T
[¨!M"i uW(1;2)
s¤
A
Z 2
1
d!
!?
X
j
Z 2?j+1
2?j
flfl
fl(!)
flfl
fl
2
! d!? B
Z 2
1
d!
!
[
Aln2?
Z 1
0
flfl
fl(!)
flfl
fl
2
! d!? Bln2:
?
1¨?!"i uW(?2;?1)
s¤
Aln2?
Z 0
1
flfl
fl(!)
flfl
fl
2
! d!? Bln2:
=élo?? ?=éloMD ?/
(Wjf)(b) =?f(t);2j?(2j(t?b))fi
?ilo -¥è
12jb
?^£Wjf1?b¥FourierMD1
dWjf(?) =?f(?)(2?j?),(10)
??? ? ? ?6:×??Hq(9)?N?
Akfk2?
X
j
kwjfk2? Bkfk2 ;8f 2 L2(R),(11)
£
ü(9)
T
He[?f(?) ?¨(10)
TPlancherel
Tá
ìw¤(11)bQ- ?(11)
T
? ??(10)
Tá
ìμ
A
2…
f
2?X 1
2…
f(?)?(2?j?)
2? B
2…
f
2 ;
'
A?
X
j
Z +1
1
jg(!)j2
kgk2
flfl
fl(2?j!)
flfl
fl
2 d!? B;8g 2 L2(R):
 ?!0 2 R |f
g
P¤jg(!)j2kgk2 = 12p…fie?(!?!0)
2
4fi
Gaussf
i
7fi ! 0+á
ì
¤(9)b
? ?63
d
1
I
1Hq(9)$?1×??Hqb
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 8
???lllf
2 L2(R)?1=élo?¥=é
} ?
f(t) =
X
j
Z +1
1
(Wjf)(b)¢2j(2j(t?b))db;8f 2 L2(R):
=é
}9??
^·B¥ü`
} O¥ f?B"b?×?¥=éloá
ì9
V[/
¥
}=élob
??? ? ? ?7:
!f
(t)
^?
¥FourierMD(!)
?l
(!) =(!)
P
k
flfl
fl(2?k!)
flfl
fl
2,(12)
5
^×?¥=élo'μ
1
B?
X
j
flfl
fl(2?j!)
flfl
fl? 1A; (13)
7 O
^?¥=é
}b
£££
ü
ü
ü?i?(12)
T¥s

^2j
%
ê?M¥y7á
ìμ
X
j
j(2?j!)j2 =
P
j j(2
j!)j2
(Pk j(2?k!)j2)2 =
1P
k j(2?k!)j2
:
?(9)w¤(13).
/
£
ü
^?¥=é
}bá
ìμ
P
j
R1
1(Wjf)(b)¢2
j(2j(t?b))db
= Pj 1=(2…)R1?1?f(?)(2?j)(2?j?)eit?d?
= 1=(2…)R1?1?f(?)eit?d?
= f(t);
?á
ì ?¨

Th1?h2 = F?1(?h1?h2),i|?B
T1 ¥?
Tb
3 H¨older???555??? Y Y Y
??loMD V[¨ ? Yf
¥;á?b
???lllf
fR

^·
fi(0 < fi? 1)H¨older ??¥ ?
jf(t)?f(s)j? Kjt?sjfi;8t;s 2R:
??? ? ? ?8
!f

@R(1+jtj)j?(t)jdt < +1;(0) = 0. ?f
f
^fi-H¨older ??¥5μ
j(Wf)(s;b)j = j < f;?s;b > j? Cjsjfi+1=2:
£
ü??R?(t)dt = 0á
ìμ
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 9
hf;?s;bi = jsj?12
Z
t?b
s
(f(t)?f(b))dt
[
jhf;?s;bij
jsj?12 R flflt?bs ¢flfl¢ kjt?bjfi dt
kjsjfi+12 R j?(t)j jtjfi dt
k0jsjfi+12,

ì9μ ?/¥Q_2T
??? ? ? ?9
!?
^?|"¥lof
bL?f 2 L2(R) ?? Oμ?b ?
fi 2 (0;1)
¥l
oMD
@
j< f;?s;b >j? kjsja+12
5f
^fi-H¨older ??¥b
£££ | ?? V±?|¥f
2
P¤2(0) = 0;C?;?2 = 15?? ?4μ
f(t) =
Z +1
1
ds
s2
Z +1
1
< f;?s;b >?2;s;b(t)db:

ì|1?s¥ss1
?sisY:1fL(t)(vs;jsj? 1)fs(t)(l
s;jsj? 1)b

ì|£
üfL(t)9
^?5¥
1fL(t)1?tBáμ?
jfL(t)j? R
jsj?1
ds
s2
R+1
1 kfk¢k?s;bk¢j?2;s;b(t)jdb
C R
jsj?1
ds
s2
R+1
1 jsj
12j?2?t?b
s
¢jdb
C R
jsj?1
jsj?32jj?2jjL1ds? C0 < 1:
28jhj < 1,μjfL(t+h)?fL(t)j? Cjhj:
jfL(t+h)?fL(t)j
Rjsj?1 dsjsj3 R1?1dbR1?1dyjf(y)jj?((y?b)=s)jj?2((t+h?b)=s)2((t?b)=s)j:
??j?2(z +t)2(z)j?jtj, O
?R > 0,supp’;supp?2 ‰ [?R;R],y7

T??V
CjhjRjsj?1jsj?4dsRjb?tj?jsjR+1 dbRjy?bj?jsjRjf(y)jdy
C0jhjRjsj?1jsj?3dsRjy?tj?2jsjR+1jf(y)jdy
C00jhjkfkRjsj?1jsj?3(4jsjR +2)1=2ds
C000jhj:
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 10
??B?¥2T?jhj > 1
Tá
ìA ?μjfL(t + h)?fL(t)j? Cjhj.àNá
ì?¨?
1?lo"
¥Hqb
3fs(t)1?tBáμ?.
jfs(t)j?Rjsj?1 dss2 R1?1j < f;?s;b > jj?2;s;b(t)jdb
KRjsj?1 dss2 R1?1jsjfi+1=2jsj?1=2j?2((t?b)=s)jdb
Kk?2k1Rjsj?1jsj?1+fids
C < 1:
4?jhj < 1
H,jfs(t+h)?fs(t)j? Cjhjfi.
jfs(t+h)?fs(t)j
Rjsj?1 dss2 R1?1j < f;?s;b > jjsj?1=2j?2((t+h?b)=s)2((t?b)=s)jdb
Rjsj?jhj dss2 R1?1dbjsjfi(j?2((t+h?b)=s)j+j?2((t?b)=s)j)
+Rjhj?jsj?1 dss2 Rjt?bj?jsjR+jhjjsjfiCjh=sjdb
C0k?2k2Rjsj?hjsj?2jsjfijsjds+C00jhjRjhj?jsj?1jsj?3+fi(jsjR +jhj)ds
C000jhjfi:
? ?8? ?9 Y
?8H¨older ???b? ? ???á
ìμ ?/¥2Tb
ì
n
5$HolschneiderTchmitchian¨ ?ù?Riemannf
P1n=1 n?2 sin(n2…t)¥ V±?b
??? ? ? ?10
!f

@R(1 + jtj)j?(t)jdt < +1(0) = 0. ?f
fμ? Ot0μfi(0 <
fi? 1)¨H¨older ???'
jf(t0 +h)?f(t0)j? Cjhjfi:
5
j < f;?s;t0+b > j? Cjsj1=2(jsjfi +jbjfi):
£YV
üMá
ì V[?t0 = 0.?R?(t)dt = 0,¤
j < f;?s;b > j = R jf(t)?f(0)jjsj?1=2j?((t?b)=s)jdt
CR jtjfijsj?1=2j?((t?b)=s)jdt
Cjsjfi+1=2R jy +b=sjfij?(y)jdy
C0jsjfi+1=2R(jyjfi +jb=sjfi)j?(y)jdy
C00jsj1=2(jsjfi +jbjfi):
Q-á
ìμ
??? ? ? ?11:
!lof
μ?|"bf
f 2 L2(R) ??μ?b ?
? > 0fi 2 (0;1],μ
jhf;?s;bij? Cjsjr+121?bBá

jhf;?s;b+t0ij? Cjsj12
jsjfi + jbj
fi
jlogjbjj;
Lecture Notes on Wavelets,Chapter 3,by D.Q,Dai,2003 11
5ft0
^fi-H¨older ??¥b
£nDaubechies,pp,49-50
?D? ?8? ?9?]? ?10? ?11i?
^o
I¥b? ?11?3Cy
0logjbjb?By0B??
??b

ì9 V[)
ú?¥ ??loMDb?
Hlof
μò?ê |ZEy7
= ?÷~
?b
??loMD Yf
¥ s?m`¥H?_??ù5?μ<W¥?¨b