__
__
__
209
CHAPTER 9
ALKYNES
SOLUTIONS TO TEXT PROBLEMS
9.1 The reaction is an acid–base process; water is the proton donor. Two separate proton-transfer steps
are involved.
9.2 A triple bond may connect C-1 and C-2 or C-2 and C-3 in an unbranched chain of five carbons.
One of the C
5
H
8
isomers has a branched carbon chain.
3-Methyl-1-butyne
CH
3
CHC CH
CH
3
1-Pentyne
CH
3
CH
2
CH
2
C CH
2-Pentyne
CH
3
CH
2
C CCH
3
H11001 CCHH
Acetylene
H O
H11002
Hydroxide ion
H11001 C
H11002
CH
Acetylide ionWater
HHO
H11001H11001
Carbide ion
CH
Acetylide ion
HO
H11002
Hydroxide ionWater
HHOC
H11002
C
H11002
C
H11002
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
210 ALKYNES
9.3 The bonds become shorter and stronger in the series as the electronegativity increases.
NH
3
H
2
OHF
Electronegativity: N (3.0) O (3.5) F (4.0)
Bond distance (pm): N@H (101) O@H (95) F@H (92)
Bond dissociation energy (kJ/mol): N@H (435) O@H (497) F@H (568)
Bond dissociation energy (kcal/mol): N@H (104) O@H (119) F@H (136)
9.4 (b) A proton is transferred from acetylene to ethyl anion.
The position of equilibrium lies to the right. Ethyl anion is a very powerful base and depro-
tonates acetylene quantitatively.
(c) Amide ion is not a strong enough base to remove a proton from ethylene. The equilibrium lies
to the left.
(d) Alcohols are stronger acids than ammonia; the position of equilibrium lies to the right.
9.5 (b) The desired alkyne has a methyl group and a butyl group attached to a @C>C@ unit. Two
alkylations of acetylene are therefore required: one with a methyl halide, the other with a butyl
halide.
It does not matter whether the methyl group or the butyl group is introduced first; the order of
steps shown in this synthetic scheme may be inverted.
(c) An ethyl group and a propyl group need to be introduced as substituents on a @C>C@unit.
As in part (b), it does not matter which of the two is introduced first.
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
Br
Acetylene 1-Pentyne 3-Heptyne
CHHC
1. NaNH
2
, NH
3
2. CH
3
CH
2
Br
CH
3
CH
2
CH
2
C CH CH
3
CH
2
CH
2
C CCH
2
CH
3
1. NaNH
2
, NH
3
2. CH
3
Br
Acetylene Propyne 2-Heptyne
CHHC
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
CH
2
Br
CH
3
C CH CH
3
C CCH
2
CH
2
CH
2
CH
3
H11001
Amide ion
(stronger base)
NH
2
H11002
Ammonia
(weaker acid)
K
a
10
H1100236
(pK
a
36)
NH
3
2-Butyn-1-olate anion
(weaker base)
CH
3
C CCH
2
O
H11002
H11001
2-Butyn-1-ol
(stronger acid)
K
a
H11015 10
H1100216
H1100210
H1100220
(pK
a
H11015 16H1100220)
HCH
3
C CCH
2
O
H11001
Ammonia
(stronger acid)
K
a
10
H1100236
(pK
a
36)
NH
3
Vinyl anion
(stronger base)
CH
2
CHH11001
Amide ion
(weaker base)
NH
2
H11002H11002
Ethylene
(weaker acid)
K
a
H11015 10
H1100245
(pK
a
H11015 45)
HCH
2
CH
CH
3
CH
3
Ethane
(weaker acid)
H11001H11001
Acetylide ion
(weaker base)
HC C
H11002H11002
Ethyl anion
(stronger base)
CH
2
CH
3
Acetylene
(stronger acid)
HC C H
K
a
10
H1100226
(pK
a
26)
K
a
H11015 10
H1100262
(pK
a
H11015 62)
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
9.6 Both 1-pentyne and 2-pentyne can be prepared by alkylating acetylene. All the alkylation steps
involve nucleophilic substitution of a methyl or primary alkyl halide.
A third isomer, 3-methyl-1-butyne, cannot be prepared by alkylation of acetylene, because it re-
quires a secondary alkyl halide as the alkylating agent. The reaction that takes place is elimination,
not substitution.
9.7 Each of the dibromides shown yields 3,3-dimethyl-1-butyne when subjected to double dehydro-
halogenation with strong base.
9.8 (b) The first task is to convert 1-propanol to propene:
After propene is available, it is converted to 1,2-dibromopropane and then to propyne as
described in the sample solution for part (a).
(c) Treat isopropyl bromide with a base to effect dehydrohalogenation.
Next, convert propene to propyne as in parts (a) and (b).
(d) The starting material contains only two carbon atoms, and so an alkylation step is needed at
some point. Propyne arises by alkylation of acetylene, and so the last step in the synthesis is
The designated starting material, 1,1-dichloroethane, is a geminal dihalide and can be used to
prepare acetylene by a double dehydrohalogenation.
1. NaNH
2
,
NH
3
2. H
2
O
CH
3
CHCl
2
1,1-Dichloroethane
HC CH
Acetylene
1. NaNH
2
,
NH
3
2. CH
3
Br
HC CH
Acetylene
CH
3
CCH
Propyne
(CH
3
)
2
CHBr
NaOCH
2
CH
3
PropeneIsopropyl bromide
CH
3
CH CH
2
CH
3
CH
2
CH
2
OH
H
2
SO
4
heat
Propene1-Propanol
CH
3
CH CH
2
1. 3NaNH
2
2. H
2
O
or or(CH
3
)
3
CCCH
3
Br
Br
2,2-Dibromo-3,3-
dimethylbutane
(CH
3
)
3
CCH
2
CHBr
2
1,1-Dibromo-3,3-
dimethylbutane
Br
(CH
3
)
3
CCHCH
2
Br
1,2-Dibromo-3,3-
dimethylbutane
(CH
3
)
3
CC CH
3,3-Dimethyl-1-butyne
H11001H11001
E2
CH
3
CHCH
3
Br
Isopropyl
bromide
HC CH
Acetylene
CH
2
CHCH
3
Propene
HC
Acetylide
ion
C
H11002
1. NaNH
2
, NH
3
2. CH
3
CH
2
Br
Acetylene 1-Butyne 2-Pentyne
CHHC
1. NaNH
2
, NH
3
2. CH
3
Br
CH
3
CH
2
C CH CH
3
CH
2
C CCH
3
Acetylene 1-Pentyne
CHHC CHCH
3
CH
2
CH
2
C
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
Br
ALKYNES 211
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(e) The first task is to convert ethyl alcohol to acetylene. Once acetylene is prepared it can be
alkylated with a methyl halide.
9.9 The first task is to assemble a carbon chain containing eight carbons. Acetylene has two carbon
atoms and can be alkylated via its sodium salt to 1-octyne. Hydrogenation over platinum converts
1-octyne to octane.
Alternatively, two successive alkylations of acetylene with CH
3
CH
2
CH
2
Br could be carried out to
give 4-octyne (CH
3
CH
2
CH
2
C>CCH
2
CH
2
CH
3
), which could then be hydrogenated to octane.
9.10 Hydrogenation over Lindlar palladium converts an alkyne to a cis alkene. Oleic acid therefore has
the structure indicated in the following equation:
Hydrogenation of alkynes over platinum leads to alkanes.
9.11 Alkynes are converted to trans alkenes on reduction with sodium in liquid ammonia.
9.12 The proper double-bond stereochemistry may be achieved by using 2-heptyne as a reactant in the
final step. Lithium–ammonia reduction of 2-heptyne gives the trans alkene; hydrogenation over
Lindlar palladium gives the cis isomer. The first task is therefore the alkylation of propyne to
2-heptyne.
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
CH
2
Br
2-Heptyne
CCH
2
CH
2
CH
2
CH
3
CH
3
CCHCH
3
C
Propyne
CC
H
H
3
C H
CH
2
CH
2
CH
2
CH
3
(E)-2-Heptene
CH
2
CH
2
CH
2
CH
3
CC
H
H
3
C
H
(Z)-2-Heptene
H
2
Lindlar Pd
Li, NH
3
1. Na, NH
3
2. H
3
O
H11001
C(CH
2
)
7
CO
2
HCH
3
(CH
2
)
7
C
Stearolic acid
CC
H
CH
3
(CH
2
)
7
H
(CH
2
)
7
CO
2
H
Elaidic acid
2H
2
Pt
C(CH
2
)
7
CO
2
HCH
3
(CH
2
)
7
C
Stearolic acid Stearic acid
CH
3
(CH
2
)
16
CO
2
H
H
2
Lindlar Pd
C(CH
2
)
7
CO
2
HCH
3
(CH
2
)
7
C
Stearolic acid
CC
H
CH
3
(CH
2
)
7
H
(CH
2
)
7
CO
2
H
Oleic acid
NaNH
2
NH
3
H
2
Pt
BrCH
2
(CH
2
)
4
CH
3
HC CH
Acetylene
HC CNa
Sodium
acetylide
HC CCH
2
(CH
2
)
4
CH
3
1-Octyne
CH
3
CH
2
CH
2
(CH
2
)
4
CH
3
Octane
1. NaNH
2
, NH
3
2. H
2
O
1. NaNH
2
, NH
3
2. CH
3
Br
H
2
SO
4
heat
Br
2
CH
3
CH
2
OH
Ethyl alcohol
BrCH
2
CH
2
Br
1,2-Dibromoethane
HC CH
Acetylene
CH
3
CCH
PropyneEthylene
H
2
CCH
2
212 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
9.13 (b) Addition of hydrogen chloride to vinyl chloride gives the geminal dichloride 1,1-
dichloroethane.
(c) Since 1,1-dichloroethane can be prepared by adding 2 mol of hydrogen chloride to acetylene
as shown in the sample solution to part (a), first convert 1,1-dibromoethane to acetylene by
dehydrohalogenation.
9.14 The enol arises by addition of water to the triple bond.
The mechanism described in the textbook Figure 9.6 is adapted to the case of 2-butyne hydration as
shown:
9.15 Hydration of 1-octyne gives 2-octanone according to the equation that immediately precedes this
problem in the text. Prepare 1-octyne as described in the solution to Problem 9.9, and then carry out
its hydration in the presence of mercury(II) sulfate and sulfuric acid.
Hydration of 4-octyne gives 4-octanone. Prepare 4-octyne as described in the solution to
Problem 9.9.
9.16 Each of the carbons that are part of @CO
2
H groups was once part of a @C>C@ unit. The two
fragments CH
3
(CH
2
)
4
CO
2
H and HO
2
CCH
2
CH
2
CO
2
H account for only 10 of the original 16 carbons.
The full complement of carbons can be accommodated by assuming that two molecules of
CH
3
(CH
2
)
4
CO
2
H are formed, along with one molecule of HO
2
CCH
2
CH
2
CO
2
H. The starting alkyne
is therefore deduced from the ozonolysis data to be as shown:
CH
3
(CH
2
)
4
CO
2
HHO
2
C(CH
2
)
4
CH
3
HO
2
CCH
2
CH
2
CO
2
H
CH
3
(CH
2
)
4
C C(CH
2
)
4
CH
3
CCH
2
CH
2
C
H11001H11001
Carbocation 2-Butanone
CH
3
CH
2
CCH
3
O
Water
O
H
H
Hydronium ion
H O
H
H
H11001
CCH
3
CH
3
CH
2
O H
H11001
H11001
Water
O
H
H
Carbocation
CCH
3
CH
3
CH
2
OH
H11001
CH
3
CH
2
CCH
3
OH
H11001
Hydronium
ion
2-Buten-2-ol
CCH
3
CH
3
CH
OH
OH
H
H
H11001
CCH
3
H11001 H
2
OCH
3
C
2-Butyne 2-Butanone
CH
3
CCH
2
CH
3
O
2-Buten-2-ol (enol form)
CHCH
3
CH
3
C
OH
CHHC
Acetylene
CH
3
CHCl
2
1,1-Dichloroethane
CH
3
CHBr
2
1,1-Dibromoethane
2HCl
1. NaNH
2
, NH
3
2. H
2
O
CHClH
2
C
Vinyl chloride
CH
3
CHCl
2
1,1-Dichloroethane
HCl
ALKYNES 213
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
9.17 Three isomers have unbranched carbon chains:
Next consider all the alkynes with a single methyl branch:
One isomer has two methyl branches. None is possible with an ethyl branch.
9.18 (a)
(b)
(c)
(d)
(e)
( f )
(g)
9.19 (a)
(b)
(c)
(d)
(e)
( f ) 4-Ethyl-1-hexyne is CH
3
CH
2
CHCH
2
C
CH
2
CH
3
CH
2,5-Dimethyl-3-hexyne is CH
3
CHC
CH
3
CCHCH
3
CH
3
4-Octyne is CH
3
CH
2
CH
2
C CCH
2
CH
2
CH
3
3-Octyne is CH
3
CH
2
C CCH
2
CH
2
CH
2
CH
3
2-Octyne is CH
3
C CCH
2
CH
2
CH
2
CH
2
CH
3
1-Octyne is HC CCH
2
CH
2
CH
2
CH
2
CH
2
CH
3
CH
3
CC
CH
3
CH
3
CCCH
3
is 2,2,5,5-tetramethyl-3-hexyne
CH
3
CH
3
324651
CH
3
CH
2
CH
2
CH
2
CHCH
2
CH
2
CH
2
CH
2
CH
3
is 4-butyl-2-nonyne
C CCH
3
45 6 7 8 9
321
(Parent chain must contain the triple bond.)
CCH
2
23
CH
2
C
113
is cyclotridecyne
CH
2
CH
2
CH
2
C CH is 5-cyclopropyl-1-pentyne
543 2 1
CH
3
C
H
3
C
CCHCHCH
3
is 4,5-dimethyl-2-hexyne
CH
3
564321
CH
3
CH
2
C CCH
3
is 2-pentyne
54321
CH
3
CH
2
CH
2
C CH is 1-pentyne
543 2 1
CH
3
CC
CH
3
CH
3
CH
3,3-Dimethyl-1-butyne
CH
3
CHC
CH
3
CCH
3
4-Methyl-2-pentyne
CH
3
CH
2
CHC
CH
3
CH
3-Methyl-1-pentyne
CH
3
CHCH
2
C
CH
3
CH
4-Methyl-1-pentyne
CH
3
CH
2
CH
2
CH
2
CCH CH
3
CH
2
CH
2
C CCH
3
CH
3
CH
2
C CCH
2
CH
3
1-Hexyne 2-Hexyne 3-Hexyne
214 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(g)
(h)
9.20 Ethynylcyclohexane has the molecular formula C
8
H
12
. All the other compounds are C
8
H
14
.
9.21 Only alkynes with the carbon skeletons shown can give 3-ethylhexane on catalytic hydrogenation.
9.22 The carbon skeleton of the unknown acetylenic amino acid must be the same as that of homoleucine.
The structure of homoleucine is such that there is only one possible location for a carbon–carbon
triple bond in an acetylenic precursor.
9.23 (a)
(b)
(c)
(d)
1-Hexene is then converted to 1-hexyne as in part (b).
9.24 (a) Working backward from the final product, it can be seen that preparation of 1-butyne will
allow the desired carbon skeleton to be constructed.
CH
3
CH
2
C CCH
2
CH
3
3-Hexyne
CH
2
CH
2
C C
H11002
BrCH
2
CH
3
H11001prepared from
CH
2
CH
3
CH
2
CH
2
CH
2
CH
1-Hexene
CH
3
CH
2
CH
2
CH
2
CH
2
CH
2
I
1-Iodohexane
KOC(CH
3
)
3
DMSO
CHHC
Acetylene
CHCH
3
CH
2
CH
2
CH
2
C
1-Hexyne
C
H11002
Na
H11001
HC
NaNH
2
NH
3
CH
3
CH
2
CH
2
CH
2
Br
1-Hexene 1,2-Dibromohexane
CHCH
3
CH
2
CH
2
CH
2
CCH
3
CH
2
CH
2
CH
2
CH CH
2
1-Hexyne
Br
2
CCl
4
1. NaNH
2
, NH
3
2. H
2
O
CH
3
CH
2
CH
2
CH
2
CHCH
2
Br
Br
1. NaNH
2
, NH
3
2. H
2
O
CH
3
CH
2
CH
2
CH
2
CH
2
CHCl
2
1,1-Dichlorohexane
CHCH
3
CH
2
CH
2
CH
2
C
1-Hexyne
HC CCHCH
2
CHCO
H11002
CH
3
H11001
NH
3
O
CH
3
CH
2
CHCH
2
CHCO
H11002
CH
3
H11001
NH
3
O
H
2
Pt
C
7
H
11
NO
2
Homoleucine
H
2
Pt
or or
3-Ethyl-1-hexyne 4-Ethyl-1-hexyne 4-Ethyl-2-hexyne 3-Ethylhexane
3-Ethyl-3-methyl-1-pentyne is CH
3
CH
2
CC
CH
2
CH
3
CH
3
CH
CEthynylcyclohexane is CH
ALKYNES 215
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
The desired intermediate, 1-butyne, is available by halogenation followed by dehydrohalo-
genation of 1-butene.
Reaction of the anion of 1-butyne with ethyl bromide completes the synthesis.
(b) Dehydrohalogenation of 1,1-dichlorobutane yields 1-butyne. The synthesis is completed as in
part (a).
(c)
1-Butyne is converted to 3-hexyne as in part (a).
9.25 A single dehydrobromination step occurs in the conversion of 1,2-dibromodecane to C
10
H
19
Br.
Bromine may be lost from C-1 to give 2-bromo-1-decene.
Loss of bromine from C-2 gives (E)- and (Z)-1-bromo-1-decene.
9.26 (a)
(b)
(c) CH
3
CH
2
CH
2
CH
2
CCH
NH
3
Li
CH
3
CH
2
CH
2
CH
2
CH CH
2
1-Hexyne 1-Hexene
CH
3
CH
2
CH
2
CH
2
C
1-Hexyne
H11001CH H
2
Lindlar Pd
CH
3
CH
2
CH
2
CH
2
CH
1-Hexene
CH
2
CH
3
CH
2
CH
2
CH
2
C
1-Hexyne
H11001CH 2H
2
Pt
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
Hexane
Br
BrCH
2
CH(CH
2
)
7
CH
3
1,2-Dibromodecane
KOH
ethanol–water
CC
Br
H
H
(CH
2
)
7
CH
3
(E)-1-Bromo-1-decene
H11001 CC
H
Br
H
(CH
2
)
7
CH
3
(Z)-1-Bromo-1-decene
H
2
C
2-Bromo-1-decene
Br Br
BrCH
2
CH(CH
2
)
7
CH
3
1,2-Dibromodecane
KOH
ethanol–water
C(CH
2
)
7
CH
3
HC HCCH
Acetylene
NaNH
2
NH
3
C
H11002 H11001
Na
CH
3
CH
2
Br
HC
1-Butyne
CCH
2
CH
3
1. NaNH
2
, NH
3
2. H
2
O
CH
3
CH
2
C CH
1-Butyne
CH
3
CH
2
CH
2
CHCl
2
1,1-Dichlorobutane
CH
3
CH
2
CCH
3
CH
2
C CH
1-Butyne
NaNH
2
NH
3
C
H11002 H11001
Na
CH
3
CH
2
Br
3-Hexyne
CH
3
CH
2
C CCH
2
CH
3
Br
2
1. NaNH
2
, NH
3
CH
3
CH
2
CHCH
2
BrH11001
2. H
2
O
CH
3
CH
2
C CH
1-Butyne
Br
CH
3
CH
2
CH CH
2
1-Butene
216 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(d)
(e)
( f )
(g)
(h)
(i)
( j)
(k)
(l)
9.27 (a)
(b)
3-Hexyne
Lindlar Pd
CH
3
CH
2
C CCH
2
CH
3
H
2
H11001 CC
H
CH
3
CH
2
CH
2
CH
3
H
(Z)-3-Hexene
3-Hexyne
Pt
Hexane
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
CH
3
CH
2
C CCH
2
CH
3
2H
2
H11001
CH
3
CH
2
CH
2
CH
2
CCH
1-Hexyne
1. O
3
2. H
2
O
Pentanoic acid
CH
3
CH
2
CH
2
CH
2
COH
O
Carbonic acid
H11001 HOCOH
O
CH
3
CH
2
CH
2
CH
2
CCH
1-Hexyne
H
2
O, H
2
SO
4
HgSO
4
2-Hexanone
CH
3
CH
2
CH
2
CH
2
CCH
3
O
CH
3
CH
2
CH
2
CH
2
CCH
1-Hexyne
Cl
2
(2 mol)
1,1,2,2-Tetrachlorohexane
CH
3
CH
2
CH
2
CH
2
CCHCl
2
Cl
Cl
CH
3
CH
2
CH
2
CH
2
CCH
1-Hexyne
Cl
2
(1 mol)
CC
Cl
CH
3
CH
2
CH
2
CH
2
H
Cl
(E)-1,2-Dichloro-1-hexene
CH
3
CH
2
CH
2
CH
2
CCH
1-Hexyne 2,2-Dichlorohexane
CH
3
CH
2
CH
2
CH
2
CCH
3
Cl
Cl
HCl
(2 mol)
CH
3
CH
2
CH
2
CH
2
CCH
1-Hexyne 2-Chloro-1-hexene
CH
3
CH
2
CH
2
CH
2
CCH
2
Cl
HCl
(1 mol)
Sodium 1-hexynide tert-Butyl
bromide
CH
3
CH
2
CH
2
CH
2
C (CH
3
)
3
CBr
H11002
Na
H11001
C H11001 CH
3
CH
2
CH
2
CH
2
CCH
1-Hexyne 2-Methylpropene
H11001 (CH
3
)
2
CCH
2
CH
3
CH
2
CH
2
CH
2
C CCH
2
CH
2
CH
2
CH
3
5-DecyneSodium 1-hexynide 1-Bromobutane
CH
3
CH
2
CH
2
CH
2
CCH
3
CH
2
CH
2
CH
2
Br
H11002
Na
H11001
C H11001
CH
3
CH
2
CH
2
CH
2
CCH
NH
3
NaNH
2
1-Hexyne Sodium 1-hexynide
CH
3
CH
2
CH
2
CH
2
C
H11002
Na
H11001
C
ALKYNES 217
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(c)
(d)
(e)
( f )
(g)
(h)
(i)
9.28 The two carbons of the triple bond are similarly but not identically substituted in 2-heptyne,
CH
3
C>CCH
2
CH
2
CH
2
CH
3
. Two regioisomeric enols are formed, each of which gives a different
ketone.
H11001
O
CH
3
CCH
2
CH
2
CH
2
CH
2
CH
3
CH
3
C CCH
2
CH
2
CH
2
CH
3
2-Heptyne
CH
3
C
OH
CHCH
2
CH
2
CH
2
CH
3
2-Hepten-2-ol
2-Heptanone
O
CH
3
CH
2
CCH
2
CH
2
CH
2
CH
3
CH
3
CH
OH
CCH
2
CH
2
CH
2
CH
3
2-Hepten-3-ol
3-Heptanone
H
2
O, H
2
SO
4
HgSO
4
3-Hexyne
1. O
3
2. H
2
O
Propanoic acid
2CH
3
CH
2
COH
O
CH
3
CH
2
C CCH
2
CH
3
3-Hexyne
H
2
O, H
2
SO
4
HgSO
4
3-Hexanone
CH
3
CH
2
CCH
2
CH
2
CH
3
O
CH
3
CH
2
C CCH
2
CH
3
3-Hexyne
Cl
2
(2 mol)
CH
3
CH
2
C CCH
2
CH
3
3,3,4,4-Tetrachlorohexane
CH
3
CH
2
C
Cl
CCH
2
CH
3
Cl
Cl Cl
3-Hexyne
Cl
2
(1 mol)
CH
3
CH
2
C CCH
2
CH
3
CC
Cl
CH
3
CH
2
CH
2
CH
3
Cl
(E)-3,4-Dichloro-3-hexene
3-Hexyne
HCl
(2 mol)
CH
3
CH
2
C CCH
2
CH
3
3,3-Dichlorohexane
CH
3
CH
2
CCH
2
CH
2
CH
3
Cl
Cl
3-Hexyne
HCl
(1 mol)
CH
3
CH
2
C CCH
2
CH
3
CC
Cl
CH
3
CH
2
CH
2
CH
3
H
(Z)-3-Chloro-3-hexene
3-Hexyne
Li
NH
3
CH
3
CH
2
C CCH
2
CH
3
CC
H
CH
3
CH
2
CH
2
CH
3
H
(E)-3-Hexene
218 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
9.29 The alkane formed by hydrogenation of (S)-3-methyl-1-pentyne is achiral; it cannot be optically
active.
The product of hydrogenation of (S)-4-methyl-1-hexyne is optically active because a stereogenic
center is present in the starting material and is carried through to the product.
Both (S)-3-methyl-1-pentyne and (S)-4-methyl-1-hexyne yield optically active products when their
triple bonds are reduced to double bonds.
9.30 (a) The dihaloalkane contains both a primary alkyl chloride and a primary alkyl iodide functional
group. Iodide is a better leaving group than chloride and is the one replaced by acetylide.
(b) Both vicinal dibromide functions are converted to alkyne units on treatment with excess
sodium amide.
(c) The starting material is a geminal dichloride. Potassium tert-butoxide in dimethyl sulfoxide is
a sufficiently strong base to convert it to an alkyne.
(d) Alkyl p-toluenesulfonates react similarly to alkyl halides in nucleophilic substitution
reactions. The alkynide nucleophile displaces the p-toluenesulfonate leaving group from ethyl
p-toluenesulfonate.
H11001
Phenylacetylide ion
C C
H11002
Ethyl p-toluenesulfonate
OS
O
O
CH
2
CH
3
CH
3
1-Phenyl-1-butyne
C CCH
2
CH
3
KOC(CH
3
)
3
, DMSO
heat
CCH
3
Cl
Cl
1,1-Dichloro-1-
cyclopropylethane
CHC
Ethynylcyclopropane
BrCH
2
CHCH
2
CH
2
CHCH
2
Br
1,2,5,6-Tetrabromohexane
1. excess NaNH
2
,
NH
3
2. H
2
O
HC CCH
2
CH
2
C CH
Br Br
1,5-Hexadiyne
ClCH
2
CH
2
CH
2
CH
2
CH
2
CH
2
IH11001NaC CH ClCH
2
CH
2
CH
2
CH
2
CH
2
CH
2
C CH
Sodium
acetylide
1-Chloro-6-iodohexane 8-Chloro-1-octyne
H
2
Pt
H
H
3
C
CH
2
C
CH
3
CH
2
CH
(S)-4-Methyl-1-hexyne
CH
2
CH
2
CH
3
H
H
3
C
CH
3
CH
2
(S)-3-Methylhexane
C C
H
2
Pt
CH
3
CH
2
CHCH
2
CH
3
CH
3
3-Methylpentane
(does not have a stereogenic
center; optically inactive)
H
H
3
C
CCH
CH
3
CH
2
(S)-3-Methyl-1-pentyne
C
ALKYNES 219
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(e) Both carbons of a unit are converted to carboxyl groups on ozonolysis.
( f ) Ozonolysis cleaves the carbon–carbon triple bond.
O
<
(g) Hydration of a terminal carbon–carbon triple bond converts it to a @CCH
3
group.
(h) Sodium-in-ammonia reduction of an alkyne yields a trans alkene. The stereochemistry of a
double bond that is already present in the molecule is not altered during the process.
(i) The primary chloride leaving group is displaced by the alkynide nucleophile.
H11001
O O(CH
2
)
8
Cl
8-Chlorooctyl
tetrahydropyranyl ether
CCH
2
CH
2
CH
2
CH
3
NaC
Sodium 1-hexynide
O O(CH
2
)
8
C CCH
2
CH
2
CH
2
CH
3
9-Tetradecyn-1-yl tetrahydropyranyl ether
(Z)-13-Octadecen-3-yn-1-ol
CC
H
CH
3
CH
2
CH
2
CH
2
H
CH
2
(CH
2
)
7
C CCH
2
CH
2
OH
(3E,13Z)-3,13-Octadecadien-1-ol
CC
H
CH
3
CH
2
CH
2
CH
2
H
CH
2
(CH
2
)
7
CC
H
H
CH
2
CH
2
OH
1. Na, NH
3
2. H
2
O
CH
3
CHCH
2
CC CH
CH
3
CH
3
OH
3,5-Dimethyl-1-hexyn-3-ol
CH
3
CHCH
2
C CCH
3
CH
3
CH
3
HO O
3-Hydroxy-3,5-dimethyl-2-hexanone
H
2
O, H
2
SO
4
HgO
1. O
3
2. H
2
O
H11001 HOCOH
O
Carbonic acid1-Ethynylcyclohexanol
OH
C
CH
1-Hydroxycyclohexane-
carboxylic acid
OH
COH
O
1. O
3
2. H
2
O
Cyclodecyne
HOC(CH
2
)
8
COH
O O
Decanedioic acid
( CO
2
H)CC
220 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
( j) Hydrogenation of the triple bond over the Lindlar catalyst converts the compound to a cis
alkene.
9.31 Ketones such as 2-heptanone may be readily prepared by hydration of terminal alkynes. Thus, if we
had 1-heptyne, it could be converted to 2-heptanone.
Acetylene, as we have seen in earlier problems, can be converted to 1-heptyne by alkylation.
9.32 Apply the technique of reasoning backward to gain a clue to how to attack this synthesis problem.
A reasonable final step is the formation of the Z double bond by hydrogenation of an alkyne over
Lindlar palladium.
The necessary alkyne 9-tricosyne can be prepared by a double alkylation of acetylene.
It does not matter which alkyl group is introduced first.
The alkyl halides are prepared from the corresponding alcohols.
CH
3
(CH
2
)
12
OH
1-Tridecanol
CH
3
(CH
2
)
12
Br
1-Bromotridecane
HBr
or PBr
3
CH
3
(CH
2
)
7
OH
1-Octanol
CH
3
(CH
2
)
7
Br
1-Bromooctane
HBr
or PBr
3
1. NaNH
2
, NH
3
2. CH
3
(CH
2
)
7
Br
1. NaNH
2
, NH
3
2. CH
3
(CH
2
)
12
Br
C(CH
2
)
12
CH
3
CH
3
(CH
2
)
7
C
9-Tricosyne
CHCH
3
(CH
2
)
7
C
1-Decyne
CHHC
Acetylene
H
2
Lindlar Pd
CC
H
CH
3
(CH
2
)
7
H
(CH
2
)
12
CH
3
(Z)-9-Tricosene
C(CH
2
)
12
CH
3
CH
3
(CH
2
)
7
C
9-Tricosyne
HC C(CH
2
)
4
CH
3
CH
3
CH
2
CH
2
CH
2
CH
2
BrHC C
H11002
Na
H11001
H11001
NaNH
2
NH
3
HC CH HC C
H11002
Na
H11001
H
2
O
H
2
SO
4
, HgSO
4
CH
3
C(CH
2
)
4
CH
3
O
2-Heptanone
HC C(CH
2
)
4
CH
3
1-Heptyne
O O(CH
2
)
8
C CCH
2
CH
2
CH
2
CH
3
9-Tetradecyn-1-yl tetrahydropyranyl ether
O O(CH
2
)
8
CC
HH
CH
2
CH
2
CH
2
CH
3
(Z)-9-Tetradecen-1-yl tetrahydropyranyl ether
H
2
Lindlar Pd
ALKYNES 221
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
9.33 (a) 2,2-Dibromopropane is prepared by addition of hydrogen bromide to propyne.
The designated starting material, 1,1-dibromopropane, is converted to propyne by a double
dehydrohalogenation.
(b) As in part (a), first convert the designated starting material to propyne, and then add hydrogen
bromide.
(c) Instead of trying to introduce two additional chlorines into 1,2-dichloropropane by free-
radical substitution (a mixture of products would result), convert the vicinal dichloride to
propyne, and then add two moles of Cl
2
.
(d) The required carbon skeleton can be constructed by alkylating acetylene with ethyl bromide.
Addition of 2 mol of hydrogen iodide to 1-butyne gives 2,2-diiodobutane.
(e) The six-carbon chain is available by alkylation of acetylene with 1-bromobutane.
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
CH
2
Br
HC CCH
2
CH
2
CH
2
CH
3
1-Hexyne
HC CH
Acetylene
H11001HC CCH
2
CH
3
1-Butyne
2HI
Hydrogen
iodide
2,2-Diiodobutane
CH
3
CCH
2
CH
3
I
I
NaNH
2
NH
3
CH
3
CH
2
Br
HC CCH
2
CH
3
1- Butyne
HC C
H11002
Na
H11001
Sodium acetylide
HC CH
Acetylene
Propyne
CH
3
CCH
1. NaNH
2
, NH
3
2. H
2
O
1,2-Dichloropropane
CH
3
CHCH
2
Cl
Cl
1,1,2,2-Tetrachloropropane
CH
3
CCHCl
2
Cl
Cl
2Cl
2
Propyne
CH
3
CCH
1,2-Dibromopropane
1. NaNH
2
, NH
3
2. H
2
O
CH
3
CHCH
2
Br
Br
2,2-Dibromopropane
CH
3
CCH
3
Br
Br
2HBr
Propyne
CH
3
CCH
1,1-Dibromopropane
CH
3
CH
2
CHBr
2
1. NaNH
2
, NH
3
2. H
2
O
H11001 2HBr
Hydrogen
bromide
Propyne
CH
3
CCH
2,2-Dibromopropane
CH
3
CCH
3
Br
Br
222 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
The alkylating agent, 1-bromobutane, is prepared from 1-butene by free-radical (anti-
Markovnikov) addition of hydrogen bromide.
Once 1-hexyne is prepared, it can be converted to 1-hexene by hydrogenation over Lindlar
palladium or by sodium–ammonia reduction.
( f ) Dialkylation of acetylene with 1-bromobutane, prepared in part ( f ), gives the necessary ten-
carbon chain.
Hydrogenation of 5-decyne yields decane.
(g) A standard method for converting alkenes to alkynes is to add Br
2
and then carry out a double
dehydrohalogenation.
(h) Alkylation of the triple bond gives the required carbon skeleton.
Hydrogenation over the Lindlar catalyst converts the carbon–carbon triple bond to a cis dou-
ble bond.
H
2
Lindlar Pd
C CCH
3
1-(1-Propynyl)cyclohexene (Z)-1-(1-Propenyl)cyclohexene
C
CH
H
H
3
C
CCH C CCH
3
1. NaNH
2
, NH
3
2. CH
3
Br
1-Ethynylcyclohexene 1-(1-Propynyl)cyclohexene
Br
2
NaNH
2
NH
3
(CH
3
)
13
CH CH
Cyclopentadecene
(CH
2
)
13
CH CH
Br Br
1,2-Dibromocyclopentadecane
(CH
2
)
13
CC
Cyclopentadecyne
5-Decyne
2H
2
Pt
Decane
CH
3
(CH
2
)
3
CH
2
CH
2
(CH
2
)
3
CH
3
CH
3
(CH
2
)
3
C C(CH
2
)
3
CH
3
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
CH
2
Br
CHCH
3
CH
2
CH
2
CH
2
C
1-Hexyne
CH
3
CH
2
CH
2
CH
2
C CCH
2
CH
2
CH
2
CH
3
5-Decyne
HC CH
Acetylene
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
CH
2
Br
1-Hexyne
CH
3
CH
2
CH
2
CH
2
CCH
1-Hexene
CH
3
CH
2
CH
2
CH
2
CH CH
2
H
2
, Lindlar Pd
or Na, NH
3
CH
3
CH
2
CH
2
CH
2
Br
1-Bromobutane
H11001
1-Butene
CH
3
CH
2
CH CH
2
Hydrogen
bromide
HBr
peroxides
ALKYNES 223
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(i) The stereochemistry of meso-2,3-dibromobutane is most easily seen with a Fischer projection:
Recalling that the addition of Br
2
to alkenes occurs with anti stereochemistry, rotate the
sawhorse diagram so that the bromines are anti to each other:
Thus, the starting alkene must be trans-2-butene. trans-2-Butene is available from 2-butyne
by metal-ammonia reduction:
9.34 Attack this problem by first planning a synthesis of 4-methyl-2-pentyne from any starting material
in a single step. Two different alkyne alkylations suggest themselves:
Isopropyl bromide is a secondary alkyl halide and cannot be used to alkylate accord-
ing to reaction (a). A reasonable last step is therefore the alkylation of (CH
3
)
2
CHC>CH via reac-
tion of its anion with methyl iodide.
The next question that arises from this analysis is the origin of (CH
3
)
2
CHC>CH. One of
the available starting materials is 1,1-dichloro-3-methylbutane. It can be converted to
(CH
3
)
2
CHC>CH by a double dehydrohalogenation. The complete synthesis is therefore:
9.35 The reaction that produces compound A is reasonably straightforward. Compound A is 14-bromo-1-
tetradecyne.
H11001
Sodium acetylide
NaC CH Br(CH
2
)
12
Br
1,12-Dibromododecane
CHBr(CH
2
)
12
C
Compound A (C
14
H
25
Br)
(CH
3
)
2
CHCH
2
CHCl
2
1. NaNH
2
,
NH
3
2. H
2
O
1. NaNH
2
2. CH
3
I
(CH
3
)
2
CHC CCH
3
1,1-Dichloro-3-methylbutane 4-Methyl-2-pentyne3-Methyl-1-butyne
(CH
3
)
2
CHC CH
CH
3
C C
H11002
4-Methyl-2-pentyne
CH
3
C CCH(CH
3
)
2
CH
3
C C
H11002
from and BrCH(CH
3
)
2
(a)
CH
3
Ifrom and(b) CCH(CH
3
)
2
H11002
C
Br
Br
H
H
CH
3
H
3
C
meso-2,3-Dibromobutanetrans-2-Butene
CC
H
H
3
C
CH
3
H
2-Butyne
CH
3
C CCH
3
Br
2
Na, NH
3
H
Br
Br
H
CH
3
CH
3
Br
Br
H
H
CH
3
CH
3
CH
3
CH
3
H
Br
Br
H
which is equivalent to
H
Br
Br
H
CH
3
CH
3
224 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
Treatment of compound A with sodium amide converts it to compound B. Compound B on ozonol-
ysis gives a diacid that retains all the carbon atoms of B. Compound B must therefore be a cyclic
alkyne, formed by an intramolecular alkylation.
Compound B is cyclotetradecyne.
Hydrogenation of compound B over Lindlar palladium yields cis-cyclotetradecene (compound C).
Hydrogenation over platinum gives cyclotetradecane (compound D).
Sodium–ammonia reduction of compound B yields trans-cyclotetradecene.
The cis and trans isomers of cyclotetradecene are both converted to O?CH(CH
2
)
12
CH?O on
ozonolysis, whereas cyclotetradecane does not react with ozone.
9.36–9.37 Solutions to molecular modeling exercises are not provided in this Study Guide and Solutions Man-
ual. You should use Learning By Modeling for these exercises.
SELF-TEST
PART A
A-1. Provide the IUPAC names for the following:
(a) CH
3
C
CH
3
CCHCH(CH
3
)
2
(CH
2
)
12
CC
Na, NH
3
H
H
Compound E (C
14
H
26
)
(CH
2
)
12
CC
H
2
Pt
Compound D (C
14
H
28
)
(CH
2
)
12
CC
H
2
Lindlar Pd
HH
Compound C (C
14
H
26
)
(CH
2
)
12
CC
1. O
3
2. H
2
O
HOC(CH
2
)
12
COHBr(CH
2
)
12
CCH
OO
NaNH
2
(CH
2
)
11
C
H
2
C
Br
C
H11002
Na
H11001
Compound A Compound B
ALKYNES 225
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(b)
(c)
A-2. Give the structure of the reactant, reagent, or product omitted from each of the following
reactions.
(a)
(b)
(c)
(d)
(e)
( f )
(g)
(h)
A-3. Which one of the following two reactions is effective in the synthesis of 4-methyl-2-hexyne?
Why is the other not effective?
1.
2.
A-4. Outline a series of steps, using any necessary organic and inorganic reagents, for the prepa-
ration of:
(a) 1-Butyne from ethyl bromide as the source of all carbon atoms
(b) 3-Hexyne from 1-butyne
(c) 3-Hexyne from 1-butene
(d)
A-5. Treatment of propyne in successive steps with sodium amide, 1-bromobutane, and sodium in
liquid ammonia yields as the final product ______.
A-6. Give the structures of compounds A through D in the following series of equations.
A
NaNH
2
, NH
3
B H11001 D
B
C
HBr, heat
D
CH
3
CH
2
CH
2
C CC(CH
3
)
3
CH
3
CCH
2
CH(CH
3
)
2
from acetylene
O
CH
3
ICH
3
CH
2
CHC CNa H11001
CH
3
CH
3
CCH
3
CH
2
CHCH
3
CNaH11001
Br
CH
3
CH
2
CH
2
CHC ?CCH
2
CH
3
CH
3
1. O
3
2. H
2
O
CH
3
C CCH
2
CH
3
?
Cl
2
(1 mol)
CH
3
C CCH
2
CH
3
(E)-2-pentene
?
(CH
3
)
2
CHC CCH
2
CH
3
?
1. NaNH
2
2. CH
3
CH
2
Br
CH
3
C CCH
3
?
H
2
Lindlar Pd
CH
3
CH
2
CH
2
CCH
3
CH
2
CH
2
CCH
3
CH
?
O
CH
3
CH
2
CH
2
CCH
HCl (2 mol)
?
CH
3
CH
2
CH
2
CCH
HCl (1 mol)
?
CH
3
CH
2
CH
2
CHCHC
CH
2
CH
2
CH
3
CH
2
CH
3
CH
226 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
A-7. What are the structures of compounds E and F in the following sequence of reactions?
A-8. Give the reagents that would be suitable for carrying out the following transformation. Two
or more reaction steps are necessary.
PART B
B-1. The IUPAC name for the compound shown is
(a) 2,6-Dimethyl-3-octyne
(b) 6-Ethyl-2-methyl-3-heptyne
(c) 2-Ethylpropyl isopropyl acetylene
(d ) 2-Ethyl-6-methyl-4-heptyne
B-2. Which of the following statements best explains the greater acidity of terminal alkynes
(RC>CH) compared with monosubstituted alkenes (RCH?CH
2
)?
(a) The sp-hybridized carbons of the alkyne are less electronegative than the sp
2
carbons
of the alkene.
(b) The two H9266 bonds of the alkyne are better able to stabilize the negative charge of the
anion by resonance.
(c) The sp-hybridized carbons of the alkyne are more electronegative than the sp
2
carbons
of the alkene.
(d ) The question is incorrect—alkenes are more acidic than alkynes.
B-3. Referring to the following equilibrium (R H11005 alkyl group)
(a) K H11021 1; the equilibrium would lie to the left.
(b) K H11022 1; the equilibrium would lie to the right.
(c) K H11005 1; equal amounts of all species would be present.
(d ) Not enough information is given; the structure of R must be known.
B-4. Which of the following is an effective way to prepare 1-pentyne?
(d ) All these are effective.
B-5. Which alkyne yields butanoic acid (CH
3
CH
2
CH
2
CO
2
H) as the only organic product on treat-
ment with ozone followed by hydrolysis?
(a) 1-Butyne (c) 1-Pentyne
(b) 4-Octyne (d ) 2-Hexyne
(a)
1. Cl
2
2. NaNH
2
,
heat
(b)
1. NaNH
2
2. CH
3
CH
2
CH
2
Br
1-Pentene
Acetylene
1,1-Dichloropentane(c)
1. NaNH
2
, NH
3
2. H
2
O
RCH
2
CH
3
CH11001 RC
H11002
H11002
RCH
2
CH
2
CHH11001 RC
CH
3
CHCH
2
C CCH(CH
3
)
2
CH
2
CH
3
CCH CH
2
CH
2
OH
1. NaNH
2
, NH
3
2. CH
3
CH
2
Br
H
2
O, H
2
SO
4
HgSO
4
CH
3
CH
2
CCH
2
CH
2
CH
3
Compound FCompound E
O
ALKYNES 227
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
B-6. Which of the following produces a significant amount of acetylide ion on reaction with
acetylene?
(a) Conjugate base of CH
3
OH (pK
a
16)
(b) Conjugate base of H
2
(pK
a
35)
(c) Conjugate base of H
2
O (pK
a
16)
(d) Both (a) and (c).
B-7. Which of the following is the product of the reaction of 1-hexyne with 1 mol of Br
2
?
B-8. Choose the sequence of steps that describes the best synthesis of 1-butene from ethanol.
(a) (1) NaC>CH; (c) (1) HBr, heat; (2) NaC>CH;
(2) H
2
, Lindlar Pd (3) H
2
, Lindlar Pd
(b) (1) NaC>CH; (d) (1) HBr, heat; (2) KOC(CH
3
)
3
, DMSO;
(2) Na, NH
3
(3) NaC>CH; (4) H
2
, Lindlar Pd
B-9. What is (are) the major product(s) of the following reaction?
(c)
B-10. Which would be the best sequence of reactions to use to prepare cis-3-nonene from
1-butyne?
(a) (1) NaNH
2
in NH
3
; (2) 1-bromopentane; (3) H
2
, Lindlar Pd
(b) (1) NaNH
2
in NH
3
; (2) 1-bromopentane; (3) Na, NH
3
(c) (1) H
2
, Lindlar Pd; (2) NaNH
2
in NH
3
; (3) 1-bromopentane
(d) (1) Na, NH
3
; (2) NaNH
2
in NH
3
; (3) 1-bromopentane
B-11. Which one of the following is the intermediate in the preparation of a ketone by hydration of
an alkyne in the presence of sulfuric acid and mercury(II) sulfate?
HO
OH OH
OH OH
(b)(c)(d)(e)(a)
(d) HC CCH
2
CH(CH
3
)
2
(b) H11001 HC CHH
2
C CCH
3
CH
3
H
3
C
H
3
C
CH
3
(CH
3
)
3
CC(a)CH
(CH
3
)
3
CBr H11001 ?HC C
H11002
Na
H11001
Br
Br
Br
Br
Br
Br
(a)
(c)
Br
Br
(b)
Br
Br
(d)
(e)
228 ALKYNES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
B-12. Which combination is best for preparing the compound shown in the box?
(a)
(b)
(c)
(d) C
CH
3
CH
2
Br
H
CH
3
1. NaNH
2
, NH
3
CH2. BrCH
2
CH
2
CH
2
C
C
CH
3
CH
2
Br
H
H
3
C
1. NaNH
2
, NH
3
CH2. BrCH
2
CH
2
CH
2
C
C
CH
3
CH
2
CH
2
CH
2
CH
2
Br
CH
H
CH
3
NaC
C
CH
3
CH
2
CH
2
CH
2
CH
2
Br
H
H
3
C
CHNaC
C
CH
3
CH
3
CH
2
CH
2
CH
2
CH
2
CCH
H
ALKYNES 229
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website