16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 1 of 6
Lecture 19
Last time:
03 1 3 3 3 1 3 3 1
()() ()()0 for 0
ii D is
wR d wR dττττ ττττ τ
∞∞
?∞ ?∞
?? ?= ≥
∫∫
Solution in the Free Configuration, Non-Real-Time Filter Case
The applicable condition in this important case is:
() ()
03 1 3 3 3 1 3 3
() () 0
ii D is
wR d wR dτ τττ τ τττ
∞∞
?∞ ?∞
?? ?=
∫∫
for all
1
τ .
[]
1
1
0
s
ed
τ
τ
∞
?
?∞
=
∫
Since this function of
1
τ must be zero for all
1
τ , its transform must also be zero.
()
()
()
()
13 133 3
1303 13 133 13
() () 0
ss
ii D is
ddwR ee ddwR ee
ττ ττ
τττ ττ τττ ττ
∞∞ ∞∞
?? ??
?∞ ?∞ ?∞ ?∞
?? ?=
∫∫ ∫∫
0
0
() () () () 0
() ()
()
()
ii is
is
ii
HsSs DsSs
DsS s
Hs
Ss
?=
=
with
()Ds= desired signal transfer
() () ()
() () () () ()
is ss ns
ii ss sn ns nn
Ss Ss Ss
Ss Ss S s S s S s
=+
=+++
This is the optimum filter “transfer function.” Since it is non-real-time, it is
usually implemented as a weighting sequence in a digital computer. The
continuous weighting function is
00
1
() ( )
2
j
st
j
wt Hseds
jπ
∞
?∞
=
∫
I will give an integral form which is useful in evaluating this integral.
0
()Hs
typically has poles in both left and right hand planes. This does not imply
instability in the case of a two-sided transform.
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 2 of 6
()
0
() ( )ot i w t dτ ττ
∞
?∞
=?
∫
In terms of s , the integrals are written:
1. If the real part of a is positive,
()
()
()
()
1
1
0
1
1!
2
00
nat
j
st
n
j
te t
e
n
ds
j
sa
t
π
??
∞
?∞
?
>
?
?
=
?
+
?
<
?
∫
2. If the real part of a is negative,
()
()
()
()
1
1
0
1
1!
2
00
nat
j
st
n
j
te t
e
n
ds
j
sa
t
π
??
∞
?∞
??
<
?
?
=
?
+
?
>
?
∫
In writing power density spectra, which are rational functions of
2
ω - if rational
at all – we note that
2
ω is replaced by
2
s? .
Note that the inverse transform of
0
()Hs can be done by expanding
0
()Hs in a
partial fraction expansion and integrating each term separately.
This expended problem is more general than the case treated in the text for two
reasons:
1. A more general expression for the desired output is permitted
2. Non minimum phase fixed parts of the system, ()Fs, may be handled
without stability problems due to cancellation of unstable modes.
Solution in the Real Time case
It now remains to solve this integral equation for the optimum weighting
function,
0
()wt. As in the case of other operations with linear, invariant systems,
the use of transformed functions is most convenient. We define
()
()
1 2 2 303 4 4 1234
22 33 123
() () () ()
() ()
FFi
FDis
ldwdwdwR
dw dw R
τ ττ ττ ττ ττττ
ττ ττ τττ
∞∞∞
?∞ ?∞ ?∞
∞∞
?∞ ?∞
=+?
?+?
∫∫∫
∫∫
and we wish to find
0
()wt to render
1
() 0l τ = for
1
0τ ≥ .
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 3 of 6
()
()
()
()
1
1234324
12332
11
223034411234
22 33 1123
0
() ( )
() () ()
() ()
( ) () () () (
s
ssss
FFi
sss
FD is
ii
Ls l e d
dw e dw e dw e dR e
dw e dw e dR e
FsHsFsSs F
τ
τ ττττττ
τττττ
ττ
ττ ττ ττ τττττ
ττ ττ ττττ
∞
?
?∞
∞∞∞ ∞
?+??? ?
?∞ ?∞ ?∞ ?∞
∞∞ ∞
?+??
?∞ ?∞ ?∞
=
=+
?+
=? ?
∫
∫∫∫∫
∫∫∫
)() ()
is
sDsS s?
()
1
() ()
2
j
s
j
jsj
lLed
j
ee ee
τ
σωττστω
τ
π
∞
?∞
+
=
==
∫
If ()Ls varies as
1
s
for large s , the line integral is equal to the contour integral
around the LHP for 0τ > due to the convergence of e
στ
if σ and τ are of
opposite sign. Also in that case the line integral is equal to the negative of the
contour integral around the RHP for 0τ < .
May as well use the change of variable sjω= immediately.
1
11
() ( )
s
Ls l e d
τ
τ τ
∞
?
?∞
=
∫
If ()Ls is analytic in LHP, and decreasing at least as fast as
1
s
for large s , then
() 0l τ = for ( )0τ > .
If ()Ls is analytic in RHP, then () 0l τ = for ( )0τ < .
If ()Ls is analytic in LHP, and varies for large s as:
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 4 of 6
So () 0l τ = for ( )0τ > and finite for ( )0τ = implies ()Ls must be analytic in LHP
and decrease at least as fast as
1
s
for large .s
We now take the step called “spectrum factorization”. If the input spectrum is
rational – as is or can be always the case in our work – it is clear that the
numerator and denominator polynomials in
2
s can be factored into terms which
display poles and zeroes in symmetric quads in the s plane, except for pairs on
the imaginary axis. If the numerator and denominator factors which give poles
and zeroes in the LHP are multiplied together, this gives the function we defined
to be ()
ii L
Ss. The remaining factors multiplied together give ()
ii R
Ss it has all its
poles and zeroes in the RHP. If constants are associated equally with ()
ii
Ss and
()
ii R
Ss, then () ( )
ii L ii R
Ss S s=?. This is clear from the fact that the poles and zeroes
of ()
ii L
Ss are the negatives of the poles and zeroes of ()
ii R
Ss.
() () ()
ii ii L ii R
Ss SsSs=
Also, if ()Fs is rational, we can collect those factors defining poles and zeroes in
the LHP into ()
L
Fs and those factors defining poles and zeroes in the RHP into
()
R
Fs . If ()Fs is not rational, it is not clear that factorization can be done since it
is almost never a real-valued function. This eliminates from our consideration
fixed parts which include, for example, a time delay unless we first approximate
the time delay by a non minimum phase rational transfer function. This can be
done to any degree of accuracy by including more factors.
For rational ()Fs then, it is factored into
() () ()
LR
Fs Fs Fs=
and in the same way
() () ()
LR
Fs FsFs?= ? ?
The transform exists only for stable functions. So if ()Fs has a pole on the jω
axis, treat it as the limit of a LHP pole.
0
0
11
lim
ss
ε
ε
ε
→
>
→
+
0
0
() ( ) ( ) () () () () () ( ) ( ) () ()
() () ( ) ()
() ( ) () ()
() ( ) () () ()
LR LRiLiR LRis
Lis
LLiL
R R ii R R ii R
Ls F s F s H sFs Fs S s S s F s F s DsS s
Ls DsF s S s
Fs F s S s H s
Fs F s S s Fs S s
=? ? ?? ?
?
=? ?
?
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 5 of 6
We are looking for the solution () 0lt= for 0t ≥ ; thus ()Ls must be analytic in
LHP. But by definition, the denominator functions have no zeroes in LHP so the
entire function is analytic in LHP. Its inverse transform must vanish for 0t > .
The same must then be true of the right hand side of the equation.
0
11()
() ( ) () ()
22
jj
st st
Lis
LLiL
Rii R
DsF s S s
Fs F s S s H seds eds
ππ
∞∞
?∞ ?∞
?
?=
∫∫
, for 0t >
Now if
0
()Hs is to be a stable system – as it must be to minimize the mean
squared error – it will be analytic in RHP. Also, by definition, the other functions
in the integrand of the left hand side of this equation are analytic in RHP. The
left hand integral is then a function of t , call it ()gt , which is zero for 0t < .
0
1
() () ( ) () () 0
2
j
st
LLiL
j
gt Fs F s S s H seds
jπ
∞
?∞
=? =
∫
, for 0t <
Then the direct transform of ()gt would yield the transformed function
0
0
0
0
() ( ) () () ()
()
1
() ( ) () ()
2j
st
LLiL
st
j
st pt
LLiL
j
Fs F s S s H s gte dt
gte dt
dte F p F p S p H p e dp
π
∞
?
?∞
∞
?
∞∞
?
?∞
?=
=
=?
∫
∫
∫∫
In this integral, t takes only positive values; but in this range of t , the second
integral can be replaced by its equal from the former equation.
0
0
1()(()
()
2()()() ()()
j
st pt
Lis
L L ii L R ii Rj
DpF p S p
H s dte e dp
jFsFsSs FpSpπ
∞∞
?
?∞
?
=
?
∫∫
This is a closed expression for the optimum system function.
In the usual case, ()Fs is a stable, minimum phase function. In that case,
() ()
L
Fs Fs= , () 1
R
Fs = ; that is, all the poles and zeroes of ()Fs are in the LHP.
Similarly, () 1
L
Fs?=.
Then
0
() ()
()
()
() ()
is
ii R
L
ii L
DsS s
Ss
Hs
FsS s
??
??
??
=
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 6 of 6
Thus in this case the optimum transfer function from input to output is
0
() ()
()
() ()
()
is
ii R
L
ii L
DsS s
Ss
FsH s
Ss
??
??
??
=
and the optimum function to be cascaded with the fixed part is obtained from
this by division by ()Fs, so that the fixed part is compensated out by
cancellation.