16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 1 of 8
Lecture 21
Last time:
()
()
()
cs
Fs K
sd s
?
=
+
()
()
()()()
()
()
()()
L
Ac s
s
ascsbs
Ac a
caba
B
s
as as
+
=??
??
+??
?
++
=≡??
??
Plugging in for the optimum compensator:
()
()()
()()()
()
()()
0
()
() ( ) ()
L
LLiL
n
n
s
Hs
Fs F s S s
Bs d s a s
asKcsSbs
Bs d s
SKc s b s
??
??
=
?
++
=
+++
+
=
++
This means that in the cascade of
0
()Hs with ()Fs, the effect of the RHP zero on
the amplitude of the product is cancelled out, but the effect on the phase is not.
In fact, the phase lag due to the RHP zero is doubled in the product.
Note:
? Cancellation of K and two LHP poles in ()Fs
? Zero at sc= (RHP) is not cancelled, but a pole is placed at the symmetric
point sc=?
? Another pole is added at sb=? which is beyond the signal cut-off by an
amount which depends on
n
A
S
? Also the gain
n
B
S
depends on
n
A
S
directly
Also: ()
R
s??
??
has the form
( )
()()
efs
CD
csbs csbs
+
+=
?? ??
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 2 of 8
Then
()
()()( )
()()()()()
()
()()()
() ( ) () ()
RRiR
R
Ls F s Fs S s s
Kc s b s e fs
sdsascsbs
Ke fs
sdsas
ε
ε
=? ? ? ?
??
??+
=?
?????
+
=?
???
which is analytic in the LHP and varies as
2
1
s
for large .s
Necessary condition: ()Ls must be analytic in LHP and go to zero for large s at
least as fast as
1
s
.
Now find the loop compensator if the feedback transfer is unity.
()
0
20
1
n
nn
B
sd s
H KS
C
HFD B Bc
sbc scb
SS
+
==
+ ????
+++ + ?
????
????
Cancellation of the pole at the origin leaves the system with an uncontrollable
mode corresponding to that pole. This is not good since that normal mode does
not attenuate. As a practical matter, it might be better to move that zero away
from the origin a bit.
That also means the system will not have unit input-output sensitivity.
Also note that the in-the-loop compensator need not be stable. It depends on the
parameter values.
End of Quiz 2 material.
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 3 of 8
Estimation
We wish to estimate the values of a set of parameters which may be
- static
- dynamic
based on all available information
- measurements
- prior knowledge
- physical constraints
The measurements may be
- direct
- inferential (e.g. airspeed indicator – infers airspeed from dynamic
pressure measurement)
- of varying quality.
Discussion
Problem formulation
- static or dynamic parameters
- static affords some simplifications but consider the whole problem: what
is to be done with the estimates?
All information should be used
- better quality information weighted more heavily than poorer
Value of measurements depends both on noise and sensitivity to least certain
parameters.
Suppose you have a radar looking at satellites overflying your position. Having
a second location 90 degrees around the world would clarify parameters that are
not were characterized by a single sensor.
Include the knowledge you have prior to the current set of measurements.
Physical constraints add information – use all known.
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 4 of 8
Differential equations relating dynamic parameters
Physical characteristics of environment
Suppose you are given a set of data and asked to smooth it. Unless you know
the physics of the situation you cannot opt for one scheme over another (e.g.,
elevation data for a satellite overpass).
To determine where to point your telescope, you can use prior data to calculate
the constants that describe the satellite’s orbit, but it may be easier to use the
satellite’s current position and velocity to estimate its future position.
Direct measurements are convenient, but not always possible e.g., temperature of
a star. Inferential measurements depend on physical constraints relating
measured to estimated quantities. There may be uncertainty in these
relationships, which should be modeled somehow.
A basic principle: should formulate the complete estimate problem at once –
especially if any non-linear relations would be involved in deriving the desired
quantities.
Example estimation problems
Example: Estimate x scalar constant
A deterministic quantity, x , is being observed directly – these observations
are not necessarily each of equal quality.
The observations:
kk
zxn=+
The noises are independent, unbiased, normal random variables. They may
have different variances
2
k
σ . The conditional probability density function for
k
z , conditioned on a given value of x , is just the density function for
k
n
centered around x .
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 5 of 8
Classical Maximum Likelihood estimate:
The ?x maximizes
1
( ,..., | )
N
f zzx
()
2
2
21
(|) ( )
2
k
k
zx
knk
k
fz x f z x e
σ
πσ
??
?
???
??
=?=
In scalar form,
()
2
1
1
2
1
2
1
1
( ,..., | )
2 ...
N
k
k
k
zx
N N
N
fz z x e
σ
πσσ
=
? ?
???
? ??
??
? ?
??
? ?
∑
=
The maximum value of f is
()
2 2
2
11
min min
NN
k
k
kkkk
zx
zx
σσ
==
???
?
=
??
??
∑∑
The numerator ()
2
k
zx? is the measurement residual.
()
2
1
2
1
2
1
20
?
1
N
k
k k
N
k
k k
N
k k
zx
x
z
x
σ
σ
σ
=
=
=
??
=? =
?
=
∑
∑
∑
We call this the weighted least squares estimate.
So the estimator is a linear combination of all the observations – the constants
of the combination being inversely proportional (note proportional) to the
variances of the measurement noises. This says that every piece of data
should be used and will have a nonzero effect if its variance is less than
infinite.
The statistics of the estimate are:
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 6 of 8
22
11
22
11
1
?
NN
k
kkkk
NN
kkkk
z
x
x x
σσ
σσ
==
==
== =
∑∑
∑∑
, an unbiased estimate
error 0=
2
1
2
2
1
Var
?Var( )
1
N
k
k k
N
k k
z
x
σ
σ
=
=
??
??
??
=
??
??
??
∑
∑
since the central statistics of the
k
z are those of the
k
n which are independent.
But note that the standard deviation of
k
z is
k
σ , so the standard deviation of
k
k
z
σ
is 1 and that of
2
k
k
z
σ
is
1
k
σ
. The variance of
2
k
k
z
σ
is then
2
1
k
σ
.
2
1
2
2
2
1
1
1
1
?Var( )
1
1
N
k k
N
N
k k
k k
x
σ
σ
σ
=
=
=
==
??
??
??
∑
∑
∑
An easier way to remember this result is
22
1?
11
N
kxk
σ σ
=
=
∑
The addition of any new piece of data, no matter how large its variance, thus
reduces the variance of ?x .
In the special case of equal quality data,
kn
σ σ=
2
1
1
2
1
1
1
?
1
1
N
k
N
kn
kN
k
kn
z
x z
N
σ
σ
=
=
=
==
∑
∑
∑
the ordinary average, or arithmetic mean, of the data.
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 7 of 8
22 2
1?
22
?
?
11
1
1
1
N
kxn n
xn
x
N
N
N
σ σσ
σσ
σσ
=
==
=
=
∑
The standard deviation of the estimate (the average) goes down with the square
root of the number of observations.
This estimator for x can be shown to be the optimum linear estimate of x in the
mean squared error sense for arbitrary distributions of the
k
n if x is treated as an
arbitrary constant. That is, any other linear combination of the
k
z will yield a
larger mean squared difference between ?x and x if x is an arbitrary constant.
For normal noise the min variance linear estimate is the min variance estimate.
An important factor which should bear on the estimation of x and which has not
yet been mentioned is the possibility of some a priori information about x .
Clearly if we already had a reasonably accurate notion of the value of x and then
took some additional data points – say of poor quality – we certainly would not
want to derive an estimate based simply on the new data and ignore the a priori
information.
Example: Supplemental measurements
Take
1
N measurements starting with no prior information
1
1
2
1
1
2
1
?
1
N
k
k k
N
k k
z
x
σ
σ
=
=
=
∑
∑
Later, we take more measurements, total of N
1
1
1
22
2
11
1
22 2
11
?
11 1
N N
N
kk
k
kkNkk
k k
NN
kkkNkk k
zz
z
x
σ σ
σ
σ σσ
==+
=
===+
+
==
+
∑∑
∑
∑∑∑
11
122
11
1
?
NN
k
kkkk
z
x
σ σ
==
=
∑∑
16.322 Stochastic Estimation and Control, Fall 2004
Prof. Vander Velde
Page 8 of 8
1
1
1
1
1
1
22
1?
1
22
1 ?
1
22
1?
22
1?
11
?
?
?
11
N
kxk
N
k
k kx
N
k
kNxk
N
kNxk
zx
x z
x
σσ
σσ
σ σ
σ σ
=
=
=+
=+
=
=
+
=
+
∑
∑
∑
∑