The Art and Science of
Total Synthesis
1. Prologue
¡°Your Majesty, Your Royal Highnesses, Ladies and Gentle-
men.
In our days, the chemistry of natural products attracts a very
lively interest. New substances, more or less complicated,
more or less useful, are constantly discovered and investi-
gated. For the determination of the structure, the architecture
of the molecule, we have today very powerful tools, often
borrowed from Physical Chemistry. The organic chemists of
the year 1900 would have been greatly amazed if they had
heard of the methods now at hand. However, one cannot say
that the work is easier; the steadily improving methods make
it possible to attack more and more difficult problems and the
ability of Nature to build up complicated substances has, as it
seems, no limits.
In the course of the investigation of a complicated
substance, the investigator is sooner or later confronted by
the problem of synthesis, of the preparation of the substance
by chemical methods. He can have various motives. Perhaps
he wants to check the correctness of the structure he has
found. Perhaps he wants to improve our knowledge of the
reactions and the chemical properties of the molecule. If the
The Art and Science of Total Synthesis at the Dawn
of the Twenty-First Century**
K. C. Nicolaou,* Dionisios Vourloumis, Nicolas Winssinger, and Phil S. Baran
Dedicated to Professor E. J. Corey for his outstanding contributions to organic synthesis
At the dawn of the twenty-first cen-
tury, the state of the art and science of
total synthesis is as healthy and vigor-
ous as ever. The birth of this exhilarat-
ing, multifaceted, and boundless sci-
ence is marked by W hler s synthesis
of urea in 1828. This milestone event¡ª
as trivial as it may seem by today s
standards¡ªcontributed to a ¡°demysti-
fication of nature¡± and illuminated the
entrance to a path which subsequently
led to great heights and countless rich
dividends for humankind. Being both a
precise science and a fine art, this
discipline has been driven by the con-
stant flow of beautiful molecular archi-
tectures from nature and serves as the
engine that drives the more general
field of organic synthesis forward.
Organic synthesis is considered, to a
large extent, to be responsible for some
of the most exciting and important
discoveries of the twentieth century in
chemistry, biology, and medicine, and
continues to fuel the drug discovery
and development process with myriad
processes and compounds for new
biomedical breakthroughs and appli-
cations. In this review, we will chroni-
cle the past, evaluate the present, and
project to the future of the art and
science of total synthesis. The gradual
sharpening of this tool is demonstrated
by considering its history along the
lines of pre-World War II, the Wood-
ward and Corey eras, and the 1990s,
and by accounting major accomplish-
ments along the way. Today, natural
product total synthesis is associated
with prudent and tasteful selection of
challenging and preferably biologically
important target molecules; the dis-
covery and invention of new synthetic
strategies and technologies; and explo-
rations in chemical biology through
molecular design and mechanistic
studies. Future strides in the field are
likely to be aided by advances in the
isolation and characterization of novel
molecular targets from nature, the
availability of new reagents and syn-
thetic methods, and information and
automation technologies. Such advan-
ces are destined to bring the power of
organic synthesis closer to, or even
beyond, the boundaries defined by
nature, which, at present, and despite
our many advantages, still look so far
away.
Keywords: drug research · natural
products · synthetic methods · total
synthesis
[*] K. C. Nicolaou, D. Vourloumis, N. Winssinger, P. S. Baran
Department of Chemistry
and The Skaggs Institute for Chemical Biology
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
and
Department of Chemistry and Biochemistry
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093 (USA)
Fax: ( 1) 858-784-2469
E-mail: kcn@scripps.edu
[**] A list of abbreviations can be found at the end of the article.
REVIEWS
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000 1433-7851/00/3901-0045 $ 17.50+.50/0 45
REVIEWS
K. C. Nicolaou et al.
substance is of practical importance, he may hope that the
synthetic compound will be less expensive or more easily
accessible than the natural product. It can also be desirable to
modify some details in the molecular structure. An antibiotic
substance of medical importance is often first isolated from a
microorganism, perhaps a mould or a germ. There ought to
exist a number of related compounds with similar effects; they
may be more or less potent, some may perhaps have
undesirable secondary effects. It is by no means, or even
probable, that the compound produced by the microorgan-
ism¡ªmost likely as a weapon in the struggle for existence¡ªis
the very best from the medicinal point of view. If it is possible
to synthesize the compound, it will also be possible to modify
the details of the structure and to find the most effective
remedies.
The synthesis of a complicated molecule is, however, a very
difficult task; every group, every atom must be placed
in its proper position and this should be taken in its most
literal sense. It is sometimes said that organic synthesis
is at the same time an exact science and a fine art. Here
nature is the uncontested master, but I dare say that
the prize-winner of this year, Professor Woodward, is a good
second.¡±
[1]
With these elegant words Professor A. Fredga, a member of
the Nobel Prize Committee for Chemistry of the Royal
Swedish Academy of Sciences, proceeded to introduce R. B.
Woodward at the Nobel ceremonies in 1965, the year in which
Woodward received the prize for the art of organic synthesis.
Twenty-five years later Professor S. Gronowitz, then a mem-
ber of the Nobel Prize Committee for Chemistry, concluded
46 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
K.C. Nicolaou, born in Cyprus and educated in England and the US, is currently Chairman of the Department of Chemistry
at The Scripps Research Institute, La Jolla, California, where he holds the Darlene Shiley Chair in Chemistry and the
Aline W. and L. S. Skaggs Professorship in Chemical Biology as well as Professor of Chemistry at the University of
California, San Diego. His impact on chemistry, biology, and medicine flows from his works in organic synthesis described
in nearly 500 publications and 70 patents as well as his dedication to chemical education, as evidenced by his training of
over 250 graduate students and postdoctoral fellows. His recent book titled ¡°Classics in Total Synthesis¡±,
[3]
which he co-
authored with Erik J. Sorensen, is used around the world as a teaching tool and source of inspiration for students and
practitioners of organic synthesis.
Dionisios Vourloumis, born in 1966 in Athens, Greece, received his B.Sc. degree from the University of Athens and his
Ph.D. from West Virginia University under the direction of Professor P. A. Magriotis, in 1994, working on the synthesis of
novel enediyne antibiotics. He joined Professor K. C. Nicolaou s group in 1996, and was involved in the total synthesis of
epothilones A and B, eleutherobin, sarcodictyins A and B, and analogues thereof. He joined Glaxo Wellcome in early 1999
and is currently working with the Combichem Technology Team in Research Triangle Park, North Carolina.
Nicolas Winssinger was born in Belgium in 1970. He received his B.Sc. degree in chemistry from Tufts University after
conducting research in the laboratory of Professor M. D Alarcao. Before joining The Scripps Research Institute as a
graduate student in chemistry in 1995, he worked for two years under the direction of Dr. M. P. Pavia at Sphinx
Pharmaceuticals in the area of molecular diversity focusing on combinatorial chemistry. At Scripps, he joined the
laboratory of Professor K. C. Nicolaou, where he has been working on methodologies for solid-phase chemistry and
combinatorial synthesis. His research interests include natural products synthesis, molecular diversity, molecular evolution,
and their application to chemical biology.
Phil S. Baran was born in Denville, New Jersey in 1977. He received his B.Sc. degree in chemistry from New York University
while conducting research under the guidance of Professors D. I. Schuster and S. R. Wilson, exploring new realms in
fullerene science. Upon entering The Scripps Research Institute in 1997 as a graduate student in chemistry, he joined the
laboratory of Professor K. C. Nicolaou where he embarked on the total synthesis of the CP molecules. His primary research
interest involves natural product synthesis as an enabling endeavor for the discovery of new fundamental processes and
concepts in chemistry and their application to chemical biology.
K. C. Nicolaou
D. Vourloumis N. Winssinger P. S. Baran
REVIEWS
Natural Products Synthesis
his introduction of E. J. Corey, the 1990 Nobel prize winner,
with the following words:
¡°...Corey has thus been awarded with the Prize for three
intimately connected contributions, which form a whole.
Through retrosynthetic analysis and introduction of new
synthetic reactions, he has succeeded in preparing biologically
important natural products, previously thought impossible to
achieve. Corey s contributions have turned the art of synthesis
into a science...¡±
[2]
This description and praise for total synthesis resonates
today with equal validity and appeal; most likely, it will be
valid for some time to come. Indeed, unlike many one-time
discoveries or inventions, the endeavor of total synthesis
[3¨C6]
is
in a constant state of effervescence and flux. It has been on the
move and center stage throughout the twentieth century and
continues to provide fertile ground for new discoveries and
inventions. Its central role and importance within chemistry
will undoubtedly ensure its present preeminence into the
future. The practice of total synthesis demands the following
virtues from, and cultivates the best in, those who practice it:
ingenuity, artistic taste, experimental skill, persistence, and
character. In turn, the practitioner is often rewarded with
discoveries and inventions that impact, in major ways, not
only other areas of chemistry, but most significantly material
science, biology, and medicine. The harvest of chemical
synthesis touches upon our everyday lives in myriad ways:
medicines, high-tech materials for computers, communication
and transportation equipment, nutritional products, vitamins,
cosmetics, plastics, clothing, and tools for biology and
physics.
[7]
But why is it that total synthesis has such a lasting value as a
discipline within chemistry? There must be several reasons for
this phenomenon. To be sure, its dual nature as a precise
science and a fine art provides excitement and rewards of rare
heights. Most significantly, the discipline is continually being
challenged by new structural types isolated from nature s
seemingly unlimited library of molecular architectures. Hap-
pily, the practice of total synthesis is being enriched constantly
by new tools such as new reagents and catalysts as well as
analytical instrumentation for the rapid purification and
characterization of compounds.
Thus, the original goal of total synthesis during the first part
of the twentieth century to confirm the structure of a natural
product has been replaced slowly but surely with objectives
related more to the exploration and discovery of new
chemistry along the pathway to the target molecule. More
recently, issues of biology have become extremely important
components of programs in total synthesis. It is now clear that
as we enter the twenty-first century both exploration and
discovery of new chemistry and chemical biology will be
facilitated by developments in total synthesis.
In this article, and following a short historical perspective of
total synthesis in the nineteenth century, we will attempt to
review the art and science of total synthesis during the
twentieth century. This period can be divided into the pre-
World War II Era, the Woodward Era, the Corey Era, and the
1990s. There are clearly overlaps in the last three eras and
many more practitioners deserve credit for contributing to the
evolution of the science during these periods than are
mentioned. The labeling of these eras is arbitrary¡ªnot
withstanding the tremendous impact Woodward and Corey
had in shaping the discipline of total synthesis during their
time. As in any review of this kind, omissions are inevitable
and we apologize profusely, and in advance, to those
whose brilliant works were omitted as a result of space
limitations.
2. Total Synthesis in the Nineteenth Century
The birth of total synthesis occurred in the nineteenth
century. The first conscious total synthesis of a natural product
was that of urea (Figure 1) in 1828 by W hler.
[8]
Significantly,
this event also marks the beginning of organic synthesis and
O
NH
2
NH
2
O
Me OH
O
OH
HO
HO
OH
OH
urea
[W?hler, 1828]
[8]
acetic acid
[Kolbe, 1845]
[9]
glucose
[Fischer, 1890]
[12]
Figure 1. Selected nineteenth century landmark total syntheses of natural
products.
the first instance in which an inorganic substance
(NH
4
CNO:ammonium cyanate) was converted into an or-
ganic substance. The synthesis of acetic acid from elemental
carbon by Kolbe in 1845
[9]
is the second major achievement in
the history of total synthesis. It is historically significant that,
in his 1845 publication, Kolbe used the word ¡°synthesis¡± for
the first time to describe the process of assembling a chemical
compound from other substances. The total syntheses of
alizarin (1869) by Graebe and Liebermann
[10]
and indigo
(1878) by Baeyer
[11]
spurred the legendary German dye
industry and represent landmark accomplishments in the
field. But perhaps, after urea, the most spectacular total
synthesis of the nineteenth century was that of ( )-glucose
(Figure 1) by E. Fischer.
[12]
This total synthesis is remarkable
not only for the complexity of the target, which included, for
the first time, stereochemical elements, but also for the
considerable stereochemical control that accompanied it.
With its oxygen-containing monocyclic structure (pyranose)
and five stereogenic centers (four controllable), glucose
represented the state-of-the-art in terms of target molecules
at the end of the nineteenth century. E. Fischer became the
second winner of the Nobel Prize for chemistry (1902), after
J. H. van t Hoff (1901).
[13]
3. Total Synthesis in the Twentieth Century
The twentieth century has been an age of enormous
scientific advancement and technological progress. To be
sure, we now stand at the highest point of human accomplish-
ment in science and technology, and the twenty-first century
promises to be even more revealing and rewarding. Advances
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 47
REVIEWS
K. C. Nicolaou et al.
in medicine, computer science, communication, and trans-
portation have dramatically changed the way we live and the
way we interact with the world around us. An enormous
amount of wealth has been created and opportunities for new
enterprises abound. It is clear that at the heart of this
technological revolution has been science, and one cannot
deny that basic research has provided the foundation for this
to occur.
Chemistry has played a central and decisive role in shaping
the twentieth century. Oil, for example, has reached its
potential only after chemistry allowed its analysis, fractiona-
tion, and transformation into myriad of useful products such
as kerosene and other fuels. Synthetic organic chemistry is
perhaps the most expressive branch of the science of
chemistry in view of its creative power and unlimited scope.
To appreciate its impact on modern humanity one only has to
look around and recognize that this science is a pillar behind
pharmaceuticals, high-tech materials, polymers, fertilizers,
pesticides, cosmetics, and clothing.
[7]
The engine that drives
forward and sharpens our ability to create such molecules
through chemical synthesis (from which we can pick and
choose the most appropriate for each application) is total
synthesis. In its quest to construct the most complex and
challenging of nature s products, this endeavor¡ªperhaps
more that any other¡ªbecomes the prime driving force for
the advancement of the art and science of organic synthesis.
Thus, its value as a research discipline extends beyond
providing a test for the state-of-the-art. It offers the oppor-
tunity to discover and invent new science in chemistry and
related disciplines, as well as to train, in a most rigorous way,
young practitioners whose expertise may feed many periph-
eral areas of science and technology.
[6]
3.1. The Pre-World War II Era
The syntheses of the nineteenth century were relatively
simple and, with a few exceptions, were directed towards
benzenoid compounds. The starting materials for these target
molecules were other benzenoid compounds, chosen for their
resemblance to the targeted substance and the ease by which
the synthetic chemist could connect them by simple function-
alization chemistry. The twentieth century was destined to
bring dramatic advances in the field of total synthesis. The
pre-World War II Era began with impressive strides and with
increasing molecular complexity and sophistication in strat-
egy design. Some of the most notable examples of total
synthesis of this era are a-terpineol (Perkin, 1904),
[14]
camphor (Komppa, 1903; Perkin, 1904),
[15]
tropinone (Rob-
inson, 1917; Willst tter, 1901),
[16¨C17]
haemin (H. Fischer,
1929),
[18]
pyridoxine hydrochloride (Folkers, 1939),
[19¨C20]
and
equilenin (Bachmann, 1939)
[21]
(Figure 2). Particularly im-
pressive were Robinson s one-step synthesis of tropinone
(1917)
[16]
from succindialdehyde, methylamine, and acetone
dicarboxylic acid and H. Fischer s synthesis of haemin
[18]
(1929). These total syntheses are among those which will be
highlighted below. Both men went on to win a Nobel Prize for
Chemistry (Fischer, 1929; Robinson, 1947).
[13]
Figure 2. Selected landmark total syntheses of natural products from 1901
to 1939.
3.2. The Woodward Era
In 1937 and at the age of 20 R. B. Woodward became an
assistant professor in the Department of Chemistry at
Harvard University where he remained for the rest of his
life. Since that time, total synthesis and organic chemistry
would never be the same. A quantum leap forward was about
to be taken, and total synthesis would be elevated to a
powerful science and a fine art. Woodward s climactic
contributions to total synthesis included the conquest of some
of the most fearsome molecular architectures of the time. One
after another, diverse structures of unprecedented complexity
succumbed to synthesis in the face of his ingenuity and
resourcefulness. The following structures (some are shown in
Figure 3) are amongst his most spectacular synthetic achieve-
ments: quinine (1944),
[22]
patulin (1950),
[23]
cholesterol and
cortisone (1951),
[24]
lanosterol (1954),
[25]
lysergic acid (1954),
[26]
strychnine (1954),
[27]
reserpine (1958),
[28]
chlorophyll a (1960),
[29]
colchicine (1965),
[286]
cephalosporin C (1966),
[30]
prostaglan-
din F
2a
(1973),
[31]
vitamin B
12
(with A. Eschenmoser) (1973),
[32]
and erythromycin A (1981).
[33]
Some of these accomplishments
will be briefly presented in Section 3.5.
Woodward brought his towering intellect to bear on these
daunting problems of the 1940s, 1950s, and 1960s with
distinctive style and unprecedented glamour. His spectacular
successes were often accompanied by appropriate media
coverage and his lectures and seminars remained legendary
for their intellectual content, precise delivery, and mesmeriz-
ing style, not to mention their colorful nature and length!
What distinguished him from his predecessors was not just his
powerful intellect, but the mechanistic rationale and stereo-
chemical control he brought to the field. If Robinson
introduced the curved arrow to organic chemistry (on paper),
Woodward elevated it to the sharp tool that it became for
teaching and mechanistic understanding, and used it to
explain his science and predict the outcome of chemical
reactions. He was not only a General but, most importantly, a
generalist and could generalize observations into useful
theories. He was master not only of the art of total synthesis,
but also of structure determination, an endeavor he cherished
48 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
throughout his career. He clearly influenced the careers of not
only his students, but also of his peers and colleagues, for
example, J. Wilkinson (sandwich structure of ferrocene), K.
Block (steroid biosynthesis), R. Hoffmann (Woodward and
Hoffmann rules), all of whom won the Nobel Prize for
chemistry.
[13]
His brilliant use of rings to install and control stereo-
chemical centers and to unravel functionality by rupturing
them is an unmistakable feature of his syntheses. This theme
appears in his first total synthesis, that of quinine,
[22]
and
appears over and over again as in the total synthesis of
reserpine,
[28]
vitamin B
12
,
[3, 32]
and, remarkably, in his last
synthesis, that of erythromycin.
[33]
Woodward s mark was that
of an artist, treating each target individually with total
mastery as he moved from one structural type to another.
He exercised an amazing intuition in devising strategies
toward his targets, magically connecting them to suitable
starting materials through elegant, almost balletlike, maneu-
vers.
However, the avalanche of new natural products appearing
on the scene as a consequence of the advent and development
of new analytical techniques demanded a new and more
systematic approach to strategy design. A new school of
thought was appearing on the horizon which promised to take
the field of total synthesis, and that of organic synthesis in
general, to its next level of sophistication.
3.3. The Corey Era
In 1959 and at the age of 31 E. J. Corey arrived at Harvard
as a full professor of chemistry from the University of Illinois,
Urbana-Champaign. His dynamism and brilliance were to
make him the natural recipient of the total synthesis baton
from R. B. Woodward, even though the two men overlapped
for two decades at Harvard. Corey s pursuit of total synthesis
was marked by two distinctive elements, retrosynthetic
analysis and the development of new synthetic methods as
an integral part of the endeavor, even though Woodward
(consciously or unconsciously) must have been engaged in
such practices. It was Corey s 1961 synthesis of longifolene
[34]
that marked the official introduction of the principles of
retrosynthetic analysis.
[4]
He practiced and spread this concept
throughout the world of total synthesis, which became a much
more rational and systematic endeavor. Students could now
be taught the ¡°logic¡± of chemical synthesis
[4]
by learning how
to analyze complex target molecules and devise possible
synthetic strategies for their construction. New synthetic
methods are often incorporated into the synthetic schemes
towards the target and the exercise of the total synthesis
becomes an opportunity for the invention and discovery of
new chemistry. Combining his systematic and brilliant ap-
proaches to total synthesis with the new tools of organic
synthesis and analytical chemistry, Corey synthesized hun-
dreds of natural and designed products within the thirty year
period stretching between 1960 and 1990 (Figure 4)¡ªthe year
of his Nobel Prize.
Corey brought a highly organized and systematic approach
to the field of total synthesis by identifying unsolved and
important structural types and pursuing them until they fell.
The benefits and spin-offs from his endeavors were even more
impressive: the theory of retrosynthetic analysis, new syn-
thetic methods, asymmetric synthesis, mechanistic proposals,
and important contributions to biology and medicine. Some of
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 49
N
H
N
H
H
H
MeO
2
C H
OMe
O
O
MeO OMe
OMe
H
N
N
N
N
Me
Me
H
2
N
H
2
N
H
2
N
Me
Me
NH
2
Me
H
H
H
H
Me
Me
H
O
O
O
NH
2
O
O
Co
CN
Me
NH
O
O
P
O
Me
O
O O
OH
HO
H
N
N
Me
Me
H
HH
NH
2
O
H
Me
Me
Me
HO
Me
H
Me
O
OH
Me
O
Me
O
Me
O
Me
HO
Me
OH
O
Me Me
O
Me
OMe
Me
OH
O
HO
NMe
2
Me
NMe
H
CO
2
H
HO
HO
CO
2
H
H OH
OH OH O
OH
O
NH
2
NMe
2
H
OH
O
N
O
O
H
H
H
H
N
N
S
H
NH
3
N
O
OAc
CO
2
H
HH
OCO
2
MeO
O
NHAc
MeO
MeO
OMe
O
Me
Me
O
O
OH
OH
H H
H
N
N
N
N
Mg
O
MeO
2
C
O O
HN
H
O
H
H
OHC
O
HO
N
S
O
CO
2
H
R'
H
N
H
O
R
O
N
N
Me
N
O
OH
O
O
O
OH
N
MeO
HO
N
H
H
N
O
O
OMe
CO
2
H
OH
OHC
HO O
OMe
MeO
OMe
HO O
reserpine (1958)
[28]
vitamin B
12
(1973)
[32]
[with A. Eschenmoser]
marasmic acid (1976)
[288]
lanosterol (1954)
[25]
penems (1978)
[290]
erythromycin A (1981)
[33]
lysergic acid (1954)
[26]
PGF
2¦Á
(1973)
[31]
6-demethyl-6-deoxytetracycline (1962)
[285]
strychnine (1954)
[27]
cephalosporin C (1966)
[30]
colchicine (1965)
[286]
isolongistrobine (1973)
[287]
patulin (1950)
[23]
quinine (1944)
[22]
cortisone (1951)
[24]
chlorophyll a (1960)
[29]
illudinine (1977)
[289]
illudalic acid (1977)
[289]
illudacetalic acid (1977)
[289]
Figure 3. Selected syntheses by the Woodward Group (1944 ¨C 1981).
REVIEWS
K. C. Nicolaou et al.
50 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Figure 4. Selected syntheses by the Corey Group (1961 ¨C 1999).
REVIEWS
Natural Products Synthesis
his most notable accomplishments in the field are highlighted
in Section 3.5.
The period of 1950 ¨C 1990 was an era during which total
synthesis underwent explosive growth as evidenced by
inspection of the primary chemical literature. In addition to
the Woodward and Corey schools, a number of other groups
contributed notably to this rich period for total synthesis
[3¨C5]
and some continue to do so today. Indeed, throughout the
second half of the twentieth century a number of great
synthetic chemists made significant contributions to the field,
as natural products became opportunities to initiate and focus
major research programs and served as ports of entry for
adventures and rewarding voyages.
Among these great chemists are G. Stork, A. Eschenmoser,
and Sir D. H. R. Barton, whose sweeping contributions began
with the Woodward era and spanned over half a century. The
Stork ¨C Eschenmoser hypothesis
[35]
for the stereospecific
course of biomimetic ¨C cation cyclizations, such as the con-
version of squalene into steroidal structures, stimulated much
synthetic work (for example, the total synthesis of progester-
one by W. S. Johnson, 1971).
[36]
Stork s elegant total syntheses
(for example, steroids, prostaglandins, tetracyclins)
[37¨C39]
dec-
orate beautifully the chemical literature and his useful
methodologies (for example, enamine chemistry, anionic ring
closures, radical chemistry, tethering devices)
[40¨C43]
have found
important and widespread use in many laboratories and
industrial settings.
Similarly, Eschenmoser s beautiful total syntheses (for
example, colchicine, corrins, vitamin B
12
, designed nucleic
acids)
[44¨C47]
are often accompanied by profound mechanistic
insights and synthetic designs of such admirable clarity and
deep thought. His exquisite total synthesis of vitamin B
12
(with Woodward), in particular, is an extraordinary achieve-
ment and will always remain a classic
[3]
in the annals of
organic synthesis. The work of D. H. R. Barton,
[48]
starting
with his contributions to conformational analysis and bio-
genetic theory and continuing with brilliant contributions
both in total synthesis and synthetic methodology, was
instrumental in shaping the art and science of natural products
synthesis as we know it today. Among his most significant
contributions are the Barton reaction, which involves the
photocleavage of nitrite esters
[49]
and its application to the
synthesis of aldosterone-21-acetate,
[50]
and his deoxygenation
reactions and related radical chemistry,
[51]
which has found
numerous applications in organic and natural product synthesis.
It seemed for a moment, in 1990, that the efforts of the
synthetic chemists had conquerred most of the known
structural types of secondary metabolites: prostaglandins,
steroids, b-lactams, macrolides, polyene macrolides, polyeth-
ers, alkaloids, porphyrinoids, endiandric acids, palitoxin
carboxyclic acid, and gingkolide; all fell as a result of the
awesome power of total synthesis. Tempted by the lure of
other unexplored and promising fields, some researchers even
thought that total synthesis was dead, and declared it so. They
were wrong. To the astute eye, a number of challenging and
beautiful architectures remained standing, daring the syn-
thetic chemists of the time and inviting them to a feast of
discovery and invention. Furthermore, several new structures
were soon to be discovered from nature that offered
unprecedented challenges and opportunities. To be sure, the
final decade of the twentieth century proved to be a most
exciting and rewarding period in the history of total synthesis.
3.4. The 1990s Era
The climactic productivity of the 1980s in total synthesis
boded well for the future of the science, and the seeds were
already sown for continued breakthroughs and a new
explosion of the field. Entirely new types of structures were
on the minds of synthetic chemists, challenging and presenting
them with new opportunities. These luring architectures
included the enediynes such as calicheamicin and dynemicin,
the polyether neurotoxins exemplified by brevetoxins A and
B, the immunosuppressants cyclosporin, FK506, rapamycin,
and sanglifehrin A, taxol and other tubulin binding agents,
such as the epothilones eleutherobin and the sarcodictyins,
ecteinascidin, the manzamines, the glycopeptide antibiotics
such as vancomycin, the CP molecules, and everninomicin
13,384-1 (see Section 3.5).
Most significantly, total synthesis assumed a more serious
role in biology and medicine. The more aggressive incorpo-
ration of this new dimension to the enterprise was aided and
encouraged by combinatorial chemistry and the new chal-
lenges posed by discoveries in genomics. Thus, new fields of
investigation in chemical biology were established by syn-
thetic chemists taking advantage of the novel molecular
architectures and biological action of certain natural products.
Besides culminating in the total synthesis of the targeted
natural products, some of these new programs expanded into
the development of new synthetic methods as in the past, but
also into the areas of chemical biology, solid phase chemistry,
and combinatorial synthesis. Synthetic chemists were moving
deeper into biology, particularly as they recognized the
timeliness of using their powerful tools to probe biological
phenomena and make contributions to chemical and func-
tional genomics. Biologists, in turn, realized the tremendous
benefits that chemical synthesis could bring to their science
and adopted it, primarily through interdisciplinary collabo-
rations with synthetic chemists. A new philosophy for total
synthesis as an important component of chemical biology
began to take hold, and natural products continued to be in
the center of it all. In the next section we briefly discuss a
number of selected total syntheses of the twentieth century.
3.5. Selected Examples of Total Syntheses
The chemical literature of the twentieth century is adorned
with beautiful total syntheses of natural products.
[3¨C5]
We have
chosen to highlight a few here as illustrative examples of
structural types and synthetic strategies.
Tropinone (1917)
Perhaps the first example of a strikingly beautiful total
synthesis is that of the alkaloid ( )-tropinone (1 in Scheme 1)
reported as early as 1917 by Sir R. Robinson.
[5, 16]
In this
elegant synthesis¡ªcalled biomimetic because of its resem-
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 51
REVIEWS
K. C. Nicolaou et al.
N
O
Me
NMe O
CHO
CHO
CO
2
H
CO
2
H
O
CHO
O
CHO
N
Me
O2C CO
2
O
NMe
OH
NMe
O
N
O
Me
HO
CO
2
H
CO
2
H
N
O
Me
CO
2
H
CO
2
H
N
O
Me
CO
2
H
CO
2
H
N
O
Me
H
H
H
H
HCl
-2 CO
2
1
a)
Mannich reaction
Mannich reaction
H
2
NMe
2
H
2
NMe
b)
H
2
O
H
2
O
1: tropinone
+ +
3 4
2: succin-dialdehyde
5 6 7
8910
[intermolecular Mannich reaction]
[intramolecular Mannich reaction]
+
-
H
Scheme 1. a) Strategic bond disconnecions and retrosynthetic analysis of
( )-tropinone and b) total synthesis (Robinson, 1917).
[16]
blance to the way nature synthesizes tropinone¡ªRobinson
utilized a tandem sequence in which one molecule of
succindialdehyde, methylamine, and either acetone dicarbox-
ylic acid (or dicarboxylate) react together to afford the natural
substance in a simple one-pot procedure. Two consecutive
Mannich reactions are involved in this synthesis, the first one
in an inter- and the second one in an intramolecular fashion.
In a way, the total synthesis of ( )-tropinone by Robinson was
quite ahead of its time both in terms of elegance and logic.
With this synthesis Robinson introduced aesthetics into total
synthesis, and art became part of the endeavor. It was left,
however, to R. B. Woodward to elevate it to the artistic status
that it achieved in the 1950s and to E. J. Corey to make it into
the precise science that it became in the following decades.
Haemin (1929)
Haemin (1 in Scheme 2), the red pigment of blood and the
carrier of oxygen within the human body, belongs to the
porphyrin class of compounds. Both its structure and total
synthesis were established by H. Fischer.
[5, 18]
This combined
program of structural determination through chemical syn-
thesis is exemplary of the early days of total synthesis. Such
practices were particularly useful for structural elucidation in
the absence of today s physical methods such as NMR
spectroscopy, mass spectrometry, and X-ray crystallography.
In the case of haemin, the molecule was degraded into smaller
fragments, which chemical synthesis confirmed to be substi-
tuted pyrroles. The assembly of the pieces by exploiting the
greater nucleophilicity of pyrrole s 2-position, relative to that
of the 3-position, led to haemin s framework into which the
iron cation was implanted in the final step. Among the most
remarkable features of Fischer s total synthesis of haemin are
the fusion of the two dipyrrole components in succinic acid at
180 ¨C 1908C to form the cyclic porphyrin skeleton in a single
step by two C
C bond-forming reactions, and the unusual way
in which the carbonyl groups were reduced to hydroxyl groups
prior to elimination of the latter functionalities. In contrast to
the rather brutal reagents and conditions used in this
porphyrin s synthesis, the tools of the ¡°trade¡± when Wood-
ward faced chlorophyll a, approximately thirty years later,
were much sharper and selective.
Equilenin (1939)
The first sex hormone to be constructed in the laboratory by
total synthesis was equilenin (1 in Scheme 3). The total
synthesis of this first steroidal structure was accomplished in
HO
O
Me
H
HO
Me
H
CO
2
Me
CO
2
Me
HO
Me
H
CO
2
H
CO
2
H
MeO
O
MeO
O
MeO
O
MeO
O
CO
2
Me CO
2
Me
Me
MeO
CO
2
H
Me
CO
2
H
MeO
CO
2
H
Me
CO
2
H
H
MeO
CO
2
Me
Me
H
HO
O
Me
H
O Cl
MeO
CO
2
Me
Me
H
O MeO
CO
2
Me
Me
H
CO
2
Me
Arndt-Eistert reaction
a. CH
2
N
2
b. NaOH
c. SOCl
2
Reformatsky
reaction
a. CH
2
N
2
b. Ag
2
O, MeOH [-N
2
]
4: Butenandt's ketone1: equilenin
Dieckmann
cyclization
a. (CO
2
Me)
2
, MeONa
b. 180 °C, glass
MeI, MeONa
a. BrZnCH
2
CO
2
Me
b. SOCl
2
, py
c. KOH, MeOH
d. Na-Hg
a)
b)
a. MeONa
b. HCl, AcOH
1: equilenin
[Arndt-Eistert
reaction] [Dieckmann cyclization-
decarboxylation sequence]
(90%) (92%)
[Reformatsky reaction]
[dehydration]
[saponification]
(39% overall)
(84% overall)
(92%)
2 3
4 5 6
73a8
9 10
:
Scheme 3. a) Strategic bond disconnections and retrosynthetic analysis of
equilenin and b) total synthesis (Bachmann et al., 1939).
[21]
1939 by Bachmann and his group at the University of
Michigan.
[21, 52]
This synthesis featured relatively simple
chemistry as characteristically pointed out by the authors:
¡°The reactions which were used are fairly obvious ones...¡±
[21]
Specifically, the sequence involves enolate-type chemistry, a
Reformatsky reaction, a sodium amalgam reduction, an
Arndt ¨C Eistert homologation, and a Dieckmann cycliza-
tion ¨C decarboxylation process to fuse the required cyclo-
pentanone ring onto the pre-existing tricyclic system of the
starting material. As the last pre-World War II synthesis of
note, this example was destined to mark the end of an era; A
new epoch was about to begin in the 1940s with R. B.
Woodward and his school of chemistry at the helm.
52 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
Before we close this era of total synthesis and enter into a
new one, the following considerations might be instructive in
atempting to understand the way of thinking of the pre-World
War II chemists as opposed to those who followed them. The
rather straightforward synthesis of equilenin is representative
of the total syntheses of pre-World War II era¡ªwith the
exception of Robinson s unique tropinone synthesis. In
contemplating a strategy towards equilenin, Bachmann must
have considered several possible starting materials before
recognizing the resemblance of his target molecule to
Butenand s ketone (4 in Scheme 3). After all, three of
equilenin s rings are present in 4 and all he needed to do
was fuse the extra ring and introduce a methyl group onto the
cyclohexane system in order to accomplish his goal. The issue
of stereochemistry of the two stereocenters was probably left
open to chance in contrast to the rational approaches towards
such matters of the later periods. Connecting the chosen
starting material 4 with the target molecule 1 was apparently
obvious to Bachmann, who explicitly stated the known nature
of the reactions he used to accomplish the synthesis.
Since the motivations for total synthesis were strongly tied
to the proof of structure, one needed a high degree of
confidence that the proposed transformations did indeed lead
to the proposed structure. Furthermore, the limited arsenal of
chemical transformations did not entice much creative devia-
tion from the most straightforward course. This high degree of
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 53
N N
Me
Me
N N
MeMe
HO
2
C CO
2
H
Fe
NH HN
Me
Me
Me
N
H
Me
Me
N
H
Me
OHC
Me
N
H
Me
CO
2
H
CO
2
EtMe
N
H
Me
Me
N
H
Me
O
Me
NH HN
Me
Me
MeMe
HO H
H
NH HN
Me
Me
MeMe
HO H
NH HN
Me
Me
MeMe
N
H
EtO
2
C
Me CO2Et
Me
N
H
Me CO2Et
Me
N
H
Me CO2Et
MeOHC
N
H
Me CO2Et
Me
HO
2
C
N
H
Me CO2Et
Me
HO
2
C
N
H
Me CO2Et
Me
HO
2
C
N
H
CO
2
Et
Me
HO
2
C
H
N
H
CO
2
Et
Me
HO
2
C
Br Br
N
H
CO
2
Et
Me
HO
2
C
Br
H
N
H
CO
2
Et
Me
HO
2
C
Br
N
H
CO
2
Et
Me
HO
2
C
N
H
CO
2
Et
Me
HO
2
C
HO
NH HN
Me
Me
Me
CO2H
CO2H
NH HN
MeMe
HO
2
C CO
2
H
Br Br
N N
Me
Me
N N
MeMe
HO
2
C CO
2
H
Fe
HNNH
Me Me
CO
2
HCO
2
H
N
H
CO
2
Et
Me
HO
2
C
HO
N
H
CO
2
Et
Me NH HN
MeMe
CO
2
H HO
2
C
EtO
2
C CO
2
Et
O
H
HNNH
Me Me
CO
2
HCO
2
H
HO
2
CCO
2
H
BrBr
NH HN
MeMe
HO
2
C CO
2
H
HO
2
C
Br
O
O
H
BrBr
NH HN
Me
Me
Me
NH HN
Me
Me
NH HN
MeMe
CO
2
H HO
2
C
Me
Br
Br
NH HN
Me
Me
NH HN
MeMe
CO
2
H HO
2
C
Br
NH HN
Me
Me
NH HN
MeMe
HO
2
C CO
2
H
H
H
H
H
N HN
Me
O
O
Me
NH N
MeMe
HO
2
C CO
2
H
N HN
Me
Me
NH N
MeMe
HO
2
C
N HN
Me
OH
HO
Me
NH N
MeMe
O
2
C CO
2
CO
2
H HO
2
C
NH HN
Me
Me
Me
H
HBr,
Br
2
2
3
4 5
6
4 5 7 9
11 13 1512
28
14
18
166
2122 20
1: haemin
a)
b)
H
17
19
H Br
¦Ä
+
¦Ä
-
H
2
O
HBr
a. H
2
SO
4
b. ?
HCO
2
H
HCl
piperidine
H
[Knoevenagel]
Na/Hg
28
22 23 25
2
27 329
3130
2624
32
Clb. Fe
3
a. Fe
3
b. Ac
2
O, AlCl
3
c. H
¦Ä
+
¦Ä
-
¨C [CO
2
]
[oxidation]
[fusion in succinic acid]
[Friedel-Crafts acylation]
KOH,EtOH, ?
[reduction]
1: haemin
[dehydration]
a. ?/H
10
Scheme 2. a) Strategic bond disconnections and retrosynthetic analysis of haemin and b) total synthesis (Fisher, 1929).
[18]
REVIEWS
K. C. Nicolaou et al.
confidence that synthetic chemists had in their designed
strategies was soon to decrease as the complexity of newly
discovered natural products increased, thus catalyzing the
development of novel strategies and new chemistry in
subsequent years. In addition, advances in theoretical and
mechanistic organic chemistry as well as new synthetic tools
were to allow much longer sequences to be planned with a
heightened measure of confidence and considerable flexibility
for redesign along the way.
Strychnine (1954)
As the most notorious poison
[53]
of the Strychnos plant
species, strychnine (1 in Scheme 4) occupied the minds of
structural chemists for a rather long time. Its gross structure
was revealed in 1946
[54]
and was subsequently confirmed by
X-ray crystallographic analysis.
[55]
In 1952, Sir Robert Rob-
inson commented that strychnine: ¡°For its molecular size it is
the most complex substance known.¡±
[56]
This estimation had
not, apparently, escaped R. B. Woodward s attention who had
already been fully engaged in strychnine s total synthesis. In
1948 Woodward put forth the idea that oxidative cleavage of
electron-rich aromatic rings might be relevant in the bio-
genesis of the strychnos alkaloids.
[57]
This provocative idea was
implemented in his 1954
[27]
synthesis of strychnine, which
established Woodward as the undisputed master of the art at
the time. The total synthesis of ( )-strychnine by Woodward
(Scheme 4) ushered in a golden era of total synthesis and
54 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 4. a) Strategic bond disconnections and retrosynthetic analysis of ( )-strychnine and b) total synthesis (Woodward et al., 1954).
[27]
REVIEWS
Natural Products Synthesis
installed unprecedented confidence in, and respect for, the
science of organic synthesis. Although several of its steps were
beautifully designed and executed, perhaps the most striking
feature is its reliance on only the simplest of reagents to carry
out what seemed to be rather complex chemical transforma-
tions. With its challenging molecular structure, the molecule
of strychnine continued to occupy the minds of several
subsequent practitioners of the art and several other total
syntheses have since appeared in the literature.
[58, 59]
Penicillin (1957)
Few discoveries of the twentieth century can claim higher
notoriety than that of penicillin (1 in Scheme 5). Discovered
in 1928 by Alexander Fleming
[60]
in the secretion of the mold
Penicillium notatum, penicillin was later shown to possess
remarkable antibacterial properties by Chain and Florey.
[61]
Following a massive development effort known as the
Anglo ¨C American penicillin project
[62, 63]
the substance was
N
S
Me
Me
O
H
N
PhO
O
H
CO
2
H
PhtN
HCl?H
2
N CO
2
H
Me
HS
Me
HCl?H
2
N CO
2
H
Me
HS
Me
N
O
O
CHO
tBuO
2
C
N
O
O
tBuO
2
C HN
S
H
Me
Me
CO
2
H
HCl?H
2
N
tBuO
2
C HN
S
H
Me
Me
CO
2
H
H
N
tBuO
2
C HN
S
H
Me
Me
CO
2
H
O
PhO
H
N
HO
2
C HN
S
H
Me
Me
CO
2
H
O
PhO
H
N
N
S
H
Me
Me
CO
2
K
O
Me
Me
CO
2
H
NH
2
Me
Me
CO
2
H
HN O
Cl
Me
Me
N
O
O
Cl
Me
Me
N
O
O
Me
Me
N
O
O
Me
N
H
CO
2
Me
Me
HS
Me
Me
O
Me
Me
N O
Cl
O
O
O
Me
H
Me
Me
N
O
O
Cl
HS
N
O
O
Me
Me
Me OMe
HS
N
O
O
Me
Me
Me
N
H
S
Me
Me Me
Me
CO
2
H
N
S
Me
Me Me
Me
CO
2
H
O
H
N
O
O
tBuO
2
C
H
O
OH O
a. HCl, H
2
O
PhO
O
PhtN
tBuO
2
C HN
S
H
Me
Me
CO
2
H
2
[isomerization]
NaOAc
PhOCH
2
COCl,
Et
3
N
1:penicillin V
a)
a. N
2
H
4
b. HCl, H
2
O
+
b)
Lactamization
ClCH
2
COCl Ac
2
O, 60 °C
H
2
S, NaOMe
Amide formation
4: D-penicillamine
hydrochloride
5: valine
(72-80%) (75%)
SH
OAc
(75%)
HCO
2
H
Ac
2
Oa. brucine
b. resolution
c. HCl, H
2
O
d. HCl
a. tBuONa
b. tBuOCHO
+
(82%)
(70%)
a. KOH (1.0 equiv)
b. DCC, H
2
O, dioxane
4
[Michael addition]
b. Me
2
CO
(100%)
(74%)
a. HCl
b. py, acetone, H
2
O
(100%)
(12%)
3a
6
7
891011
12 13 14
18
OMe
3
15
17 16
2 19
20[potassium salt of 1]
Ring formation
H
Scheme 5. a) Strategic bond disconnections and retrosynthetic analysis of
penicillin V and b) total synthesis (Sheehan et al., 1957).
[65]
introduced as a drug during World War II and saved countless
lives. Its molecular structure containing the unique and
strained b-lactam ring was under the cloud of some contro-
versy until Dorothy Crowfoot-Hodgkin confirmed it by X-ray
crystallographic analysis.
[64]
Not surprisingly, penicillin immediately became a highly
priced synthetic target attracting the attention of major
players in total synthesis of the time. Finally, it was Sheehan
and Henery-Logan
[65]
at the Massachusetts Institute of
Technology who delivered synthetic penicillin V by total
synthesis of the ¡°enchanted¡± molecule, as Sheehan later
called it.
[66]
Their synthesis, reported in 1957 and summarized
in Scheme 5, was accompanied by the development of the
phthalimide and tert-butyl ester protecting groups and the
introduction of an aliphatic carbodiimide as a condensing
agent to form amide bonds and¡ªin the event¡ªpenicillin s
fragile b-lactam ring. With this milestone, another class of
natural products was now open to chemical manipulation and
a new chapter in total synthesis had begun.
Reserpine (1958)
Reserpine (1 in Scheme 6), a constituent of the Indian
snakeroot Rauwolfia serpentina Benth., is an alkaloid sub-
stance with curative properties
[67]
for the treatment of hyper-
tension, as well as nervous and mental disorders.
[68]
Reserpine
was isolated in 1952 and yielded to structural elucidation in
1955 (Schlittler and co-workers)
[69]
and to total synthesis in
1958 (Woodward et al.).
[28]
The first total synthesis of reser-
pine (Scheme 6), considered by some as one of Woodward s
greatest contributions to synthesis, inspires admiration and
respect by the manner in which it exploits molecular
conformation to arrive at certain desired synthetic objectives.
During this synthesis, Woodward demonstrated brilliantly the
power of the venerable Diels ¨C Alder reaction to construct a
highly functionalized 6-membered ring, to control stereo-
chemistry around the periphery of such a ring, and most
importantly, to induce a desired epimerization by constraining
the molecule into an unfavorable conformation by intra-
molecular tethering. All in all, Woodward s total synthesis of
reserpine remains as brilliant in strategy as admirable in
execution. It was to be followed by several others.
[70]
The synthesis of reserpine appropriately represents Wood-
ward s approach to total synthesis. Even though Woodward
did not talk about retrosynthetic analysis, he must have
practiced it subconsciously. In his mind, reserpine consisted of
three parts: the indole (the AB unit, see Scheme 6), the
trimethoxybenzene system, and the highly substituted E-ring
cyclohexane. Given the simplicity of the first two fragments
and their obvious attachment to fragment 3, Woodward
concerned himself primarily with the stereoselective con-
struction of 3 and the stereochemical problem encountered in
completing the architecture of the CD ring system. He
brilliantly solved the first problem by employing the Diels ¨C
Alder reaction to generate a cyclic template onto which he
installed the required functionality by taking advantage of the
special effects of ring systems on the stereochemical outcomes
of reactions. He addressed the second issue, that of the last
stereocenter to be set at the junction of rings C and D, by
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 55
REVIEWS
K. C. Nicolaou et al.
O
O
O
O
MeO
2
C
H
H
H
OH
H
H
H
O
O
H
H
H
H
H
O
O
H
H
O
H
Br
H
H
H
O
O
H
H
O
H
OMe
H
H
H
O
O
H
H
O
H
OMe
Br
HO
H
H
H
O
O
H
H
O
H
OMe
Br
O
H
H
H
O
HO
H
O
H
OMe
Br
O
H
H
OH
OMe
O
HO
2
C
H
H
H
H
OAc
OMe
MeO
2
C
O
MeO
2
C
N
H
MeO
NH2
N
N
H
MeO
OAc
H
H
OMe
MeO
2
C
O
N
N
H
MeO
OAc
H
H
OMe
MeO
2
C
Cl
N
N
H
MeO
OAc
H
H
OMe
MeO
2
C
N
N
H
MeO
OAc
H
H
OMe
MeO
2
C
H
H
N
N
H
OMe
H
H
OAc
OMe
N
HN
H
H
H
O
MeO
OMe
O
N
N
H
MeO
O
O
H
H
OMe
H
OMe
OMe
OMe
N
N
H
MeO
OH
H
H
OMe
MeO
2
C
H
MeO
2
C
O
OMe
OMe
OMe
Cl
N
HN
H
H
H
O
MeO
OMe
O
N
N
H
MeO
O
O
H
H
OMe
H
OMe
OMe
OMe
MeO
2
C
N
HN
H
H
H
OAc
R
MeO
OMe
N
N
H
MeO
O
O
H
H
OMe
H
OMe
OMe
OMe
MeO2C
OAc
H
H
OMe
MeO
2
C
MeO
2
C
O
O
O
MeO
2
C
H
H
H
O
O CO2Me
N
N
H
MeO
OAc
H
H
OMe
MeO
2
C
O
CO
2
Me
H
[Meerwein-Pondorff-Verley
reduction]
[elimination-conjugate addition]
[reductive amination-lactamization]
?
Al(OiPr)
3
,
iPrOH
Br
2
NaOMe
MeOH
NBS
H
2
SO
4
H
2
O
Zn
AcOH
b)
Zn
AcOH
Zn
[Diels-Alder
reaction]
H
2
Cr
2
O
7
a. CH
2
N
2
b. Ac
2
O
c. OsO
4
d. HIO
4
e. CH
2
N
2
B
B
NaBH
4
, MeOH
E
A
E
D
E
A
B
D
E
POCl
3
A
E
A
B
D
E
C C
NaBH
4
a. KOH, MeOH
b. DCC, py
B
D
1: (¨C)-reserpine
A
B C
D
E
11 910
A
B
D
E
C
py
a. MeOH/CHCl
3
(+)-CSA
b. resolution
c. 1 N NaOH
tBuCO
2
H, ?
[isomerization]
NaOMe, MeOH, ?
A
B C
E
R = CO
2
Me
A
74 8
17
5+6
12
13 2
15
17 19
3 14
18
20
21
23
D
[esterification]
16
22
1: reserpine
Esterification
a)
C-C bond
formation
Diels-Alder
reaction
A
Imine
formation
B C
D
E
E
6
2
3
45
+
A
B
D
E
Lactamization
R
Scheme 6. a) Strategic bond disconnections and retrosynthetic analysis of
reserpine and b) total synthesis (Woodward et al., 1958).
[28]
cleverly coaxing his polycycle into an unfavorable conforma-
tion (through intramolecular tethering), which forced an
isomerization to give the desired stereochemistry.
These maneuvers clearly constituted unprecedented so-
phistication and rational thinking in chemical synthesis
design. While this rational thinking was to be further
advanced and formalized by Corey s concepts on retrosyn-
thetic analysis, the stereocontrol strategies of this era were to
dominate synthetic planning for some time before being
complemented and, to a large degree, eclipsed by acyclic
stereoselection and asymmetric synthesis advances which
emerged towards the end of the century.
Chlorophyll a (1960)
Chlorophyll a (1 in Scheme 7), the green pigment of plants
and the essential molecule of photosynthesis, is distinguished
from its cousin molecule haemin by the presence of two extra
hydrogen atoms (and, therefore, two chiral centers) in one of
its pyrrole rings, the presence of the phytyl side chain, and the
encapsulation of a magnesium cation rather than an iron
cation. Its total synthesis by R. B. Woodward et al. in 1960
[29]
represents a beautiful example of bold planning and exquisite
execution. This synthesis includes improvements over Fisch-
er s routes to porphyrin building blocks and, most important-
ly, a number of clever maneuvers for the installment of the
three stereocenters and the extra five-membered ring residing
on the periphery of the chlorin system of chlorophyll a. The
chemical synthesis of chlorophyll a is a significant advance
over Fischer s total synthesis of haemin,
[18]
and must have
given Woodward the confidence, and prepared the ground, for
his daring venture towards vitamin B
12
in which he was to be
joined by A. Eschenmoser (see p. 61).
Longifolene (1961)
The publication of the total synthesis of longifolene (1 in
Scheme 8) in 1961 by Corey et al.
[34]
is of historical signifi-
cance in that in it Corey laid out the foundation of his
systematic approach to retrosynthetic analysis. Our thinking
about synthetic design has been profoundly affected and
shaped by the principles of retrosynthetic analysis ever since,
and the theory is sure to survive for a long time to come.
Corey s longifolene synthesis
[34]
exemplifies the identification
and mental disconnection of strategic bonds for the purposes
of simplifying the target structure. The process of retrosyn-
thetic analysis unravels a retrosynthetic tree with possible
pathways and intermediates from which the synthetic chemist
can choose the most likely to succeed and/or most elegant
strategies. The total synthesis of longifolene itself, shown in
Scheme 8, involves a Wittig reaction, an osmium tetroxide-
mediated dihydroxylation of a double bond, a ring expansion,
and an intramolecular Michael-type alkylation to construct
the longifolene skeleton. This synthesis remains a landmark in
the evolution of the art and science of total synthesis.
56 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
Lycopodine (1968)
Lycopodine (1 in Scheme 9), first isolated in 1881, is the
most wildly distributed alkaloid from the genus lycopodi-
um.
[71]
In addition to the great challenge of synthesizing this
novel polycyclic framework in a stereocontrolled manner, one
must effectively address the challenge posed by the C13
quaternary center, which is common to all four rings. Gilbert
Stork was one of the first to successfully complete the total
synthesis of lycopodine.
[72]
This masterfully executed synthesis
features a unique ¡°aza-annulation¡± strategy which utilizes the
Stork enamine methodology
[73]
(a generally useful strategy to
generate and trap enolates regiospecifically) to construct
quinolone systems, a stereospecific cationic cyclization to
establish the C13 quaternary center, and a series of functional
group manipulations to elaborate the resulting aromatic ring
into ring D. Several syntheses of lycopodine have since
appeared,
[74]
each featuring a unique strategy complementary
to Stork s beautiful synthesis.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 57
NH
Me
NH
Me
MeO
2
C
H
2
N
HN
Me
Me
HN
Me
OHC
CO
2
Et
O
CO
2
Me
OH Me
Me
Me
Me
Me
HN
Me
Me
HN
Me
HN
Me
Me
Cl
NC CN
HN
Me
CO2Et
NC CN
CO
2
Et
HN
Me
Me
HN
Me
OHC
CO
2
Et
O
CO
2
Me
NH
Me
NH
NH
Me
H
2
N NH
MeO2C
OHC
Me
Me
MeO
2
C
H
3
N
NH
Me
NH
Me
MeO
2
C
H
2
N
NH HN
Me
Me
Me
NH HN
Me
H
3
N
CO
2
MeH
CO
2
MeCO
2
Me
Me
N NH
Me
Me
Me
NH N
Me
AcHN
CO
2
Me
CO
2
Me
Me
CO
2
Me
NH HN
Me
Me
Me
NH HN
Me
AcHN
CO
2
MeH
CO
2
MeCO
2
Me
Me
N NH
Me
Me
Me
NH N
Me
AcHN
CO
2
Me
CO
2
Me
Me
CO
2
Me
NH HN
Me
Me
Me
NH HN
Me
CO
2
Me
CO
2
Me
Me
N
CO
2
Me
O
HN
Me
Me
HN
Me
SHC
CO
2
Et
O
CO
2
Me
NH N
Me
Me
Me
N HN
Me
H
Me
CO
2
Me
H
MeO
2
C
NH N
Me
Me
Me
N HN
Me
H
Me
H
N N
Me
Me
Me
N N
Me
Mg
O
H
CO
2
Me
Me
H
H
O O Me Me Me
Me
Me
O
H
MeO
2
C
NH N
Me
Me
Me
N HN
Me
AcHN
CO
2
Me
MeO
2
C
MeO
2
C
H
Me
NH N
Me
Me
Me
N HN
Me
CO
2
Me
MeO
2
C
MeO
2
C
H
Me
NH N
Me
Me
Me
N HN
Me
H
Me
CO
2
MeCHO
H
NH N
Me
Me
Me
N HN
Me
H
Me
O
O
H
NC
NH N
Me
Me
Me
N HN
Me
CO
2
Me
MeO
2
C
MeO
2
C
H
Me
CHOO
NH N
Me
Me
Me
N HN
Me
HO
2
C
H
Me
O
O
H
HO
CO
2
Me
CO
2
Me
CO
2
Me CO
2
Me
MeO
2
C Cl
O
a. KOH, MeOH
N N
Me
Me
Me
N N
Me
Mg
O
H
CO
2
Me
Me
H
H
O O Me Me Me
Me
Me
AcOH, ? air
2
HCl
[thioaldehyde
formation]
6
5
3 78
(50% overall)
[oxidation]
9
10
1211
13
14
[reduction]
[methylation]
[methanolysis]
NaOH, py
[ester exchange-
magnesium
insertion sequence]
a. Zn, AcOH
b. CH
2
N
2
c. MeOH, HCl
a. NaOH, H
2
O
b. H , 4
[Dieckmann
cyclization]
1: chlorophyll a
21 22
4: phytol
AcOH/?
a. HCl,
MeOH
b. Me
2
SO
4
,
NaOH
[hydrolysis]
[Hofmann
elimination]
16 15
[photooxygenation]
+
1: chlorophyll a
Dieckmann cyclization
2 3
Hofmann elimination reaction
a)
+
HCl
a.
b. NaOH
c. CH
2
N
2
HBr
Ester
formation
b)
a. EtNH
2
,
AcOH
b. H
2
S
a. resolution
with quinine
[cyanohydrin lactone
formation]
HCN, Et
3
N
O
2
, hv
[highly specific
photochemical
cleavage of the
cyclopentadiene ring]
1718
20
c. Mg(OEt)
2
a. I
2
[oxidation]
b. Ac
2
O, py
19
b. CH
2
N
2
NaBH
4
b. NaOH, H
2
O
Scheme 7. a) Strategic bond disconnections and retrosynthetic analysis of chlorophyll a and b) total synthesis (Woodward et al., 1960).
[29]
The locking of 2
and 9 together through formation of a schiff base forces the cyclization to proceed with the desired regioselectivity.
REVIEWS
K. C. Nicolaou et al.
H
Me
Me
Me
O
Me
O
Me
H
O
Me
O
Me
Me
OTs
O
Me
Me
O
O
H
Me
Me
O
O
H
Me
O
Me
OH
H
Me
Me
S
S
Me
H
O
H
Me
Me Me
H
H
Me
Me
Me
HO
OH
HO
OH
HS
SH
H
Me
Me Me
O
H
Me
O
O
O
O O
Me
OH
Me
OTs
O
Me
O
Me
OO
OO
a. Na, NH
2
NH
2
, ?
b. CrO
3
, AcOH
H
LiClO
4
,
CaCO
3
Me
O
OO
2 N HCl, ?
a. OsO
4
, py
b. pTsCl, py
Ph
3
CNa; MeI (60%)
a.
BF
3
?Et
2
O
b. LiAlH
4
, ?
1: longifolene
a. MeLi, ?
b. SOCl
2
, py
b)
a)
1: longifolene
5
a.
pTsOH, ?
b. Ph
3
P=CHMe
Alkylation
3
6 4
Et
3
N , ?
8 3 7
9 10
Olefination
2
Michael
addition
2
pinacol
rearrangement
[pinacol
rearrangement]
5: Wieland-Miescher
ketone
4
(31% overall)
(10-20%)
(49% overall)
3
O
Me
Me
Scheme 8. a) Strategic bond disconnections and retrosynthetic analysis of
longifolene and b) total synthesis (Corey et al., 1961).
[34]
Cephalosporin C (1966)
Cephalosporin C (1 in Scheme 10) was isolated from
Cephalosporium acremonium in the mid-1950s
[75]
and was
structurally elucidated by X-ray crystallographic analysis in
1961.
[76]
Reminiscent of the penicillins, the cephalosporins
represent the second subclass of b-lactams, several of which
became legendary antibiotics in the latter part of the
twentieth century. Having missed the opportunity to deliver
penicillin, the Woodward group became at once interested in
the synthesis of cephalosporin C and, by 1965, they completed
the first total synthesis of the molecule.
[30]
This total synthesis of cephalosporin C was the sole topic of
Woodward s 1965 Nobel lecture in Stockholm. Indeed, in a
move that broke tradition, R. B. Woodward described on that
occasion for the first time, and in a breathtaking fashion, the
elegant synthesis of cephalosporin C. Highlights of this syn-
thesis, which is summarized in Scheme 10, include the
development of the azodicarboxylate-mediated functional-
ization of the methylene group adjacent to the sulfur atom of
l-cysteine, the aluminum-mediated closure of the aminoester
to the b-lactam functionality, the brilliant formation of
cephalosporin s sulfur-containing ring, and the use of the
b,b,b-trichloroethyloxy moiety to protect the hydroxyl group.
This total synthesis stands as a milestone accomplishment in
the field of natural product synthesis.
N O
H
H
Me
H
N CHO
H
Me
H
O
O
Cl
3
C
CO
2
Me
N
H
O Me
OMe
N CH
3
OMe
O
OMe
CO
2
Et
MeO
EtO
2
C
O
CO
2
Et
MeO
O
OMe
OH O Me
OMe
N Me
H
N
Ar
O
H2N
N Me
Ar
H
2
N
O
N
H
O Me
OMe
H
N
N
H
Me
H
O
H
OMe
N
H
H
Me
H
O
OMe
H
H
Me
H
OMe
H
N
O
O
Cl
3
C
Cl O
O
CCl3
N CHO
H
Me
H
O
O
Cl
3
C
CO
2
Me
N
H
Me
H
O
O
Cl
3
C
CO
2
Me
OH
O
O
X
N
H
Me
H
O
O
Cl
3
C
CO
2
Me
OH
O
N
H
Me
H
O
O
Cl
3
C
CO
2
Me
O
O
N O
H
H
Me
H
O
N O
H
H
Me
H
N
H
H
Me
H
O
OMeO
H
Lactamization
Allylic
oxidation
Ozonolysis
Stork enamine
Cationic
cyclization
Conjugate
addition
+
[Isomerization;
Michael addition]
a. NaOEt, 7
b. K
2
CO
3
, H
2
O
[decarboxylation]
a. LiAlH
4
b. MeMgBr,
CuCl
2
a)
[conjugate
addition]
b)
¨C
H
3
PO
4
:HCO
2
H (1:1)
[cationic
cyclization]
[Birch
reduction]
O
3
, MeOH
SeO
2
H
2
O
2
c. KOtBu
d.
[Stork
enamine]
a. NaOMe [formate methanolysis]
b. Zn, MeOH [deprotection of amine]
a. LiAlH
4
b. CrO
3
-H
2
SO
4
(36%)
(90%)
(20-25%
of
desired
isomer)
(55%)
(30%
overall)
1: lycopodine
2
3
4
5
6
7
6
8
9
410
3
11
12 13
2
16
17 18 1: lycopodine
a. LiAlH
4
b. Li-NH
3
1415
Scheme 9. a) Strategic bond disconnections and retrosynthetic analysis of
( )-lycopodine and b) total synthesis (G. Stork et al., 1968).
[72]
Prostaglandins F
2a
and E
2
(1969)
The prostaglandins were discovered by von Euler in the
1930s
[77]
and their structures became known in the mid-1960s
primarily as a result of the pioneering work of Bergstr m and
his group.
[78]
With their potent and important biological
activities and their potential applications in medicine,
[79]
these
scarce substances elicited intense efforts directed at their
chemical synthesis. By 1969 Corey had devised and completed
his first total synthesis of prostaglandins F
2a
(1 in Scheme 11)
and E
2
.
[80]
These syntheses amplified brilliantly Corey s
58 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
N
S
O
H
H
CO
2
H
CH
2
OAc
NH
OCO
2
H
H
H
2
N
NH
O
tBuOC(O)N S
Me Me
HH
tBuOC(O)N S
Me Me
H H
MeO
2
C N
3
H
2
N SH
H
HO
2
C
H
2
N SH
H
HO
2
C
tBuOC(O)N S
Me Me
H
MeO
2
C N N
CO2Me
MeO2C
tBuOC(O)N S
Me Me
H
MeO
2
C
H
N
N
CO
2
Me
CO
2
Me
tBuOC(O)N S
Me Me
H
MeO
2
C
N
NH
CO
2
Me
CO
2
Me
tBuOC(O)N S
Me Me
H
MeO
2
C H
N
NH
CO
2
Me
CO
2
Me
tBuOC(O)N S
Me Me
H
MeO
2
C H
N
N
CO
2
Me
CO
2
Me
tBuOC(O)N S
Me Me
H
MeO
2
C H
N
N
CO
2
Me tBuOC(O)N S
Me Me
H
MeO
2
C
N
N
CO
2
Me tBuOC(O)N S
Me Me
H
MeO
2
C
N
N
CO
2
Me
OAc
tBuOC(O)N S
Me Me
H
MeO
2
C
OAc
tBuOC(O)N S
Me Me
H
MeO
2
C OAc
tBuOC(O)N S
Me Me
H
MeO
2
C
OAc
H
H
tBuOC(O)N S
Me Me
H
MeO
2
C OH
H
tBuOC(O)N S
Me Me
H
MeO
2
C N
3
H
tBuOC(O)N S
Me Me
H H
NH
O
CO
2
H
HO
2
C
H
OH
HO
H
CHO
O O CCl
3
O
H
O
HO
H
CO
2
CH
2
CCl
3
H
O O
CO
2
CH
2
CCl
3
H H
tBuOC(O)N S
Me Me
H H
N
O
O
H
O
H
N
O
S
CHO
CO
2
CH
2
CCl
3
HH
2
N
H
N
O
S
CHO
CO
2
CH
2
CCl
3
HN
H
CO
2
CH
2
CCl
3
H
NHCO
2
CH
2
CCl
3
O
H
N
O
S
CH
2
OAc
CO
2
CH
2
CCl
3
HN
H
CO
2
CH
2
CCl
3
H
NHCO
2
CH
2
CCl
3
O
H
N
O
S
CH
2
OAc
CO
2
CH
2
CCl
3
HN
H
CO
2
CH
2
CCl
3
H
NHCO
2
CH
2
CCl
3
O
H
N
O
S
CH
2
OAc
CO
2
H
HN
H
CO
2
H
H
NH
2
O
NaO
CHO
CO2H
CO2H
H
NHCO2CH2CCl3
[-N
2
]
O
CHO
CO
2
CH
2
CCl
3
H
tBuOC(O)N S
Me Me
H
MeO
2
C
OAc
H
CO
2
CH
2
CCl
3
[equilibration]
6
a. acetone
b. tBuOCOCl
c. CH
2
N
2
OAc
1: cephalosporin C
OAc
OAc
b)
a) Conjugate
addition
Cyclization
Amide bond formation
1: cephalosporin C
Pd(OAc)
4
OAc
+
AcO, MeOH
a. MeSO
2
Cl
b. NaN
3 a. Al/Hg/MeOH
b. iBu
3
Al
a. CCl
3
CH
2
OH, pTsOH
b. NaIO
4 ?
TFA
a. DCC
b. CCl
3
CH
2
OH, DCC
a. BH
3
b. Ac
2
O,
py
py Zn, AcOH
[oxidation]
[S
N
2 with inversion
of configuration]
[reduction of azide]
[lactamization]
19: tartaric acid
[neutral reducing agent]
[reductive removal of
the protecting groups]
2
4
97
8
101112
151413
1617: minor product
5
24
20 21
18
22 3
27
24
28
25
6: L-(+)-cysteine
23
+
3
26
5: major product
Scheme 10. a) Strategic bond disconnections and retrosynthetic analysis of
cephalosporin C and b) total synthesis (Woodward et al., 1966).
[30]
retrosynthetic analysis concepts and demonstrated the uti-
lization of the bicycloheptane system derived from a Diels ¨C
Alder reaction as a versatile key intermediate for the syn-
thesis of several of the prostaglandins. A large body of
Scheme 11. a) Strategic bond disconnections and retrosynthetic analysis of
( )-PGF
2a
and b) the total synthesis (Corey et al., 1969).
[80]
synthetic work
[81¨C83]
followed the initial Corey synthesis and
myriad prostaglandin analogues have since been synthesized,
aiding both biology and medicine tremendously.
Corey s original strategy evolved alongside the impressive
developments in the field of asymmetric catalysis, many of
which he instigated, which culminated by the 1990s, in a
refined, highly efficient and stereocontrolled synthesis of the
prostaglandins.
[84]
Thus, in its original version, the Corey
synthesis of prostaglandins F
2a
and E
2
was nonstereoselective
and delivered the racemate and as a mixture of C15 epimers.
Then, in 1975, came a major advance in the use of a chiral
auxiliary to control the stereochemical outcome of the crucial
Diels ¨C Alder reaction to form the bicyclo[2.2.1]heptane
system in its optically active form.
[85]
The theme of chiral
auxiliaries to control stereochemistry played a major role in
the development of organic and natural products synthesis in
the latter part of the century. In addition to the contributions
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 59
REVIEWS
K. C. Nicolaou et al.
of Corey, those of A. I. Myers,
[86]
D. A. Evans,
[87]
W. Oppolz-
er,
[88]
and H. C. Brown
[89]
as well as many others helped shape
the field.
Finally came the era of catalyst design and here again the
prostaglandins played a major role in providing both a driving
force and a test. In a series of papers, Corey disclosed a set of
chiral aluminum- and boron-based
[90, 91]
catalysts for the
Diels ¨C Alder reaction (and several other reactions) that
facilitated the synthesis of an enantiomerically enriched
intermediate along the route to prostaglandins. And, finally,
the problem of stereoselectivity at C15 was solved by the
introduction of the oxazaborolidine catalyst (CBS) by Corey
in 1987.
[92]
These catalysts not only refined the industrial
process for the production of prostaglandins, but also found
uses in many other instances both in small scale laboratory
operations and manufacturing processes of drug candidates
and pharmaceuticals. For a more in-depth analysis of the
Corey syntheses of prostaglandins F
2a
and E
2
and other
advances on asymmetric catalysis, the reader is referred to
ref. [4] and other appropriate literature sources.
Progesterone (1971)
Progesterone (1 in Scheme 12), a hormone that prepares
the lining of the uterus for implantation of an ovum, is a
member of the steroid class of compounds that is found
ubiquitously in nature. Its linearly fused polycyclic carbon
framework is characteristic of numerous natural products of
steroidal or triterpenoid structures. A daring approach to
progesterone s skeleton by W. S. Johnson
[93]
was inspired by
the elucidated enzyme-catalyzed conversion
[94]
of squalene
oxide into lanosterol or to the closely related plant triterpen-
oid dammaradienol. This biomimetic strategy was also
encouraged by the Stork ¨C Eschenmoser hypothesis, which
was proposed in 1955
[35]
to rationalize the stereochemical
outcome of the biosynthetic transformation of squalene oxide
to steroid. According to this postulate it was predicted that
polyunsaturated molecules with trans C
C bonds, such as
squalene oxide, should cyclize in a stereospecific manner, to
furnish polycyclic systems with trans,anti,trans stereochemis-
try at the ring fusion.
This brilliant proposition was confirmed by W. S. Johnson
and his group through the biomimetic total synthesis of
progesterone (Scheme 12). A tertiary alcohol serves as the
initiator of the polyolefinic ring-closing cascade, in this
instance, but other groups have also been successfully
employed in this regard (for example, acetal, epoxide). The
methylacetylenic group performed well as a terminator of the
cascade in the original work. A number of new terminating
systems have since been successfully employed (for example,
allyl or propargyl silanes, vinyl fluoride). The work of W. S.
Johnson was complemented by that of van Tamelen
[95]
and
others
[3, 4]
who also explored such biomimetic cascades.
Tetrodotoxin (1972)
Tetrodotoxin (1 in Scheme 13) is the poisonous compound
of the Japanese puffer fish and its structure was elucidated by
Scheme 12. a) Strategic bond disconnections and retrosynthetic analysis of
progesterone and b) total synthesis (Johnson et al., 1971).
[93]
Woodward in 1965.
[96]
By 1972 Kishi and his group had
published the total synthesis
[97]
of this highly unusual and
challenging structure. This outstanding achievement from
Japan was received at the time with great enthusiasm and
remains to this day as a classic in total synthesis. The target
molecule was reached through a series of maneuvers which
included a Diels ¨C Alder reaction of a quinone with butadiene,
a Beckman rearrangement to install the first nitrogen atom,
stereoselective reductions, strategic oxidations, unusual func-
tional group manipulations, and, finally, construction of the
guanidinium system. As a highly condensed and polyfunc-
60 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
HN
N
H
H
2
N
HO
H
O
HO
O
O
OH
CH
2
OH
OH
O
O
Me
N
Me
HO
Me
O
O
H
Me
N
HO
Me
O
O
H
AcN
H
Me
O
H
AcN
H
O
HO
H
HO
OH
Me
H
AcN
H
OO
O
OAc
H
AcN
H
O
O
O
OAc
OH
O
O
AcO
OAc
O
H
O
AcN
H
H
AcN
H
O
OAc
OAc
O
AcO
O
O
O
OAc
CH
2
OAc
H
O
H
AcO
AcHN
OAc
O
O
H
H
OAc
CH
2
OAc
H
H
O
H
AcO
H
2
N
OAc
O
O
O
O
H
H
OAc
CH
2
OAc
H
H
O
H
AcO
OAc
O
O
N
H
HN
N
H
H
2
N
HO
H
O
H
HO
O
H
O
OH
CH
2
OH
OH
H
NH
2
NAcHN
H
O
H
AcO
O
OH
OAc
CH
2
OAc
OAc
O
O
O
AcO OAc
O
CH
2
OAc
H
O
Me
O
H
O
HO
H
H
S
H
2
N
O
O
H
H
OAc
CH
2
OAc
H
H
O
H
AcO
OAc
O
O
N
AcHN
AcHN
O
O
H
H
OAc
CH
2
OAc
H
O
H
AcO
OAc
HO
HO
N
H
2
N
AcHN
OAc
AcO
-
, SnCl
4 a. MsCl, Et3N
b. H
2
O, ?
1: tetrodotoxin
[Beckmann
rearrangement]
[Lewis acid catalyzed
Diels-Alder
reaction]
(83%) (61%)
a. NaBH
4
, MeOH
b. mCPBA, CSA
(72%)
b. Ac
2
O, CSA, ?
(80%)
a. OsO
4
, py
b. (MeO)
2
CMe
2
, CSA
c. Et
3
O BF
4
, Na
2
CO
3
; AcOH
(65%)
a. BrCN, NaHCO
3
b. H
2
S
(100%)
a. H
5
IO
6
b. NH
4
OH
1: tetrodotoxin
(9% overall)
Orthoester
formation
C-N Bond
formation
trans-Esterification/
epoxide opening
AcNH
Baeyer-Villiger
oxidation
AcNH
Epoxide opening/
cyclization
Diels-Alder
reaction
[regio- and stereoselective reduction]
[epoxide-mediated etherification]
[diethylketal formation]
[ethyl enol ether formation]
[epoxidation]
[epoxide opening and acetylation]
a. Et
3
O
BF
4
;
Ac
2
O, py
b. acetamide
a. CrO
3
, py
b. BF
3
?Et
2
O,
c. Al(OiPr)
3
, iPrOH, ?
d. Ac
2
O, py
(86% overall)
a. SeO
2
b. NaBH
4
(100%)
d. (EtO)
3
CH, CSA; Ac
2
O, py
e. ?
f. mCPBA, K
2
CO
3
g. AcOH
a. mCPBA
b. Ac
2
O, py
c. TFA, H
2
O;
Ac
2
O, py
(53% overall)
[Baeyer-Villiger
oxidation]
mCPBA
(100%)
a)
b)
(50%)
a. BF
3
, TFA
b. TFA, H
2
O
2
34
4
3
5 6 7
89
1110
13 1214
15
a. KOAc, AcOH
c. vacuum,
300 °C
[acetate elimination]
Scheme 13. a) Strategic bond disconnections and retrosynthetic analysis of
tetrodotoxin and b) total synthesis (Kishi et al., 1972).
[97]
tional molecule, tetrodotoxin was certainly a great conquest
and elevated the status of both the art and the practitioner,
and at the same time was quite prophetic of things to come.
Vitamin B
12
(1973)
The total synthesis of vitamin B
12
(1 in Scheme 14),
accomplished in 1973 by a collaboration between the groups
of Woodward and Eschenmoser,
[3, 32]
stands as a monumental
achievement in the annals of synthetic organic chemistry.
Rarely before has a synthetic project yielded so much
knowledge, including: novel bond-forming reactions and
strategies, ingenious solutions to formidable synthetic prob-
lems, biogenetic considerations and hypotheses, and the seeds
of the principles of orbital symmetry conservation known as
the Woodward and Hoffmann rules.
[98]
The structure of
vitamin B
12
was revealed in 1956 through the elegant X-ray
crystallographic work of Dorothy Crowfoot-Hodgkin.
[99]
The
escalation of molecular complexity from haemin to chloro-
phyll a to vitamin B
12
is interesting not only from a structural
point of view, but also in that the total synthesis of each
molecule reflects the limits of the power of the art and science
of organic synthesis at the time of the accomplishment.
One of the most notable of the many elegant maneuvers of
the Woodward ¨C Eschenmoser synthesis of vitamin B
12
is the
photoinduced ring closure of the corrin ring from a pre-
organized linear system wrapped around a metal template,
which was an exclusive achievement of the Eschenmoser
group. The convergent approach defined cobyric acid (2 in
Scheme 14) as a landmark key intermediate, which had
previously been converted into vitamin B
12
by Bernhauser
et al.
[100]
The synthesis of vitamin B
12
defined the frontier of
research in organic natural product synthesis at that time. For
an in depth discussion of this mammoth accomplishment, the
reader is referred to ref. [4].
Erythronolide B (1978)
The macrolide antibiotics, of which erythromycin is perhaps
the most celebrated, stood for a long time as seemingly
unapproachable by chemical synthesis. The origin of the
initial barriers and difficulties was encapsulated in the
following statement made by Woodward in 1956, ¡°Erythro-
mycin, with all our advantages, looks at present hopelessly
complex, particularly in view of its plethora of asymmetric
centers.¡±
[101]
In addition to the daunting stereochemical
problems of erythromycin and its relatives, also pending was
the issue of forming the macrocyclic ring. These challenges
gave impetus to the development of new synthetic technol-
ogies and strategies to address the stereocontrol and macro-
cyclization problems.
The brilliant total synthesis of erythronolide B
[102]
(1 in
Scheme 15), the aglycon of erythromycin B, by Corey et al.
published in 1979, symbolizes the fall of this class of natural
products in the face of the newly acquired power of organic
synthesis. Additionally, it provides further illustration of the
classical strategy for the setting of stereocenters on cyclic
templates. The synthesis began with a symmetrical aromatic
system that was molded into a fully substituted cyclohexane
ring through a short sequence of reactions in which two
bromolactonizations played important roles. A crucial Baey-
er ¨C Villiger reaction then completed the oxygenated stereo-
center at C6 and rendered the cyclic system cleavable to an
open chain for further elaboration.
As was the case in many of Corey s syntheses, the total
synthesis of erythronolide B was preceded by the invention of
a new method, namely the double activation procedure for the
formation of macrocyclic lactones employing 2-pyridinethiol
esters.
[103]
This landmark invention allowed the synthesis of
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 61
REVIEWS
K. C. Nicolaou et al.
62 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 14. a) Strategic bond disconnections and retrosynthetic analysis of ( )-vitamin B
12
, b) key synthetic methodologies developed in the course of the
total synthesis, c) and final synthetic steps in the Woodward-Eschenmoser total synthesis of vitamin B
12
(Woodward ¨C Eschenmoser, 1973).
[32]
REVIEWS
Natural Products Synthesis
O
Me
OH
Me
OH
Me
Me
OH
OH
Me
Me
O
O
O
Me
O
Me
CO
2
H
Me
O
O
Me
Me
O
O
Me
Br
OBz
Me
Me
O
O
Me
BzO
OBz
Me
CO
2
H
Me
Me
BzO
Me
O
O
S
O
N
Me
MeMe
Me
O
OBz
BzO
O
CO
2
H
Me
MeMe
Me
O
OBz
BzO
N S S N
O
Me
MeMe
Me
O
OBz
BzO
O
Me
OTBS
MeMe
O
Me
MeMe
HO
OBz
Me
OTBS
Me
Me
OBz
Me
O
OH
Me
OH
Me
Me
O
O
Me
Me
OH
Me
Me
Me
Me
Me
HO O
O
Me
Me
OH
Me
Me
O
O
Me
Me
O
O
Me
O
Me
Me
OH
Me
Me
O
O
Me
Me
O
OH
Me
Me
Me
N
N
S S
N
N
tBu tBu
iPriPr
Me
Me
O
OH
MeMe
Me
Br
O
MeMe
Me
Me
O
Me
CO
2
H
Me
O
Me
Me
O
O
Me
Br
O
O
Me
Me
O
O
Me
O
Me
Me
O
O
Me
HO
OBz
Me
Me
O
O
Me
BzO
Me
Me
HO
2
C
OMe
O OMe
Me Me
Me
O
Li
Me I
Me
Me
OTBS
OH
Me
OH
Me
Me
OBz
OBz
Me
Me
OH
Me
Me
HO O
O
Me
OH
Me
OH
Me
Me
OH
OH
Me
Me
O
O
Me
IMe
Me
OTBS
O
S
O
N
Me
MeMe
Me
O
OBz
BzO
O
Me
Me
OTBS
Me
O
Me
OBz
Me
OBzHO
Me
Me
O
OBz
MeMe
BzO
Me
O
O
Br
Me
Me
O
O
O Me
O
Me
Me
O
O
Me
Br
OH
MeMe
Me
OMe
13
15
11
14
(70%)
(65%)
a. H
2
O
2
, Na
2
WO
4
b. resolution
c. ClCO
2
Et
d. NaBH
4
e. POCl
3
,
(76% overall)
(90%)
(98% )
a. H
2
, Pd/C [epoxide reduction]
b. K
2
CO
3
, MeOH
[epimerization at C-10]
c. HCl
Br
2
, KBr
(50% )
1: erythronolide B
Ph
3
P
CH
3
CO
3
H
tBuLi, MgBr
2
Zn(BH
4
)
2a. AcOH
b. LiOH
Ph
3
P;
PhMe, ?
a. MnO
2
b. H
2
O
2
, NaOH
b)
NaOMe
a. BH
3
?THF;
H
2
O
2
, NaOH
b. CrO
3
, H
2
SO
4
(72%)
Br
2
, KBr
(96%)
(91%)
a. KOH, H
2
O (98%)
b. resolution
nBu
3
SnH
AIBN
(93%)
Al/Hg
a. H
2
, Raney-Ni
b. BzCl
9
a. LDA
b. MeI
(75%
overall)
(80%)
a.
b. Amberlyst IRC-50
c. ArSO
2
Cl, py
d. Me
2
CuLi
e. TBSCl, imid.
f. LDA; MeI
g. [Cp
2
ZrHCl]
h. I
2
, CCl
4
d. Amberlyst IRC-50
e. KOH
(61% overall)
8 7
6
5
43
(76%)
10
12
16
17
18
19
2021
24
22
23
25
H
2
O
2
2
a. LiOH
b. CrO
3
, H
2
SO
4
10
1: erythronolide B
a)
C-C bond formation
Functionalization
Lactonization
Alkylation
Baeyer-Villiger
oxidation
BromolactonizationBromolactonization
2
3
4
56
78
a. KOH
b. CH
2
N
2
c. HBr,
[bromolactonization]
[bromolactonization]
[Baeyer-Villiger
oxidation]
Me
Scheme 15. a) Strategic bond disconnections and retrosynthetic analysis of
erythronolide B and b) total synthesis (Corey et al., 1978).
[102]
several macrolides including erythronolide B and, most
significantly, catalyzed the development of several improve-
ments and other new methods for addressing the macro-
cyclization problem.
[104]
Soon to follow Corey s synthesis of
erythronolide B was Woodward s total synthesis of erythro-
mycin A.
[33]
Monensin (1979, 1980)
Monensin
[105]
(1 in Scheme 16), isolated from a strain of
Streptomyces cinamonensis, is perhaps the most prominent
member of the polyether class of antibiotics. Also known as
ionophores, these naturally occurring substances have the
ability to complex and transport metals across membranes,
thus exerting potent antibacterial action.
[106, 107]
These struc-
tures are characterized by varying numbers of tetrahydropyr-
an, tetrahydrofuran, and/or spiroketals. Kishi s total synthesis
of monensin,
[108]
which followed his synthesis of the simpler
ionophore lasalocid,
[109]
represents a milestone achievement
in organic synthesis (Scheme 16). This accomplishment dem-
onstrates the importance of convergency in the total synthesis
of complex molecules and is one of the first examples of
stereoselective total synthesis through acyclic stereocontrol,
and elegantly marked the application of the Cram rules within
the context of natural-product synthesis. By unraveling the
spiroketal moiety of the molecule Kishi was able to adopt an
aldol-based strategy to couple monensin s two segments. A
series of daring reactions (for example, hydroborations,
epoxidations) on acyclic systems with pre-existing stereo-
centers allowed the construction of the two heavily substi-
tuted fragments of the molecule which were then successfully
coupled and allowed to fold into the desired spiroketal upon
deprotection. Kishi s beautiful synthesis of monensin also
provided a demonstration of the importance of 1,3-allylic
strain in acyclic conformational preferences, which in turn can
be exploited for the purposes of stereocontrolled reactions
(for example, epoxidation).
A second total synthesis of monensin was accomplished in
1980 by W. C. Still and his group (Scheme 17).
[110]
Just as
elegant as Kishi s synthesis, the Still total synthesis of
monensin demonstrates a masterful application of chelation-
controlled additions to the carbonyl function. A judicious
choice of optically active starting materials as well as a highly
convergent strategy that utilized the same aldol ¨C spiroketali-
zation sequence as in Kishi s synthesis allowed rapid access to
monensin s rather complex structure.
Endiandric Acids (1982)
The endiandric acids (Scheme 18) are a fascinating group of
natural products discovered in the early 1980s in the
Australian plant Endiandra introsa (Lauraceae) by Black
et al.
[111]
Their intriguing structures and racemic nature gave
rise to the so called ¡°Black hypothesis¡± for their plant origin,
which involved a series of non-enzymatic electrocyclizations
from acyclic polyunsaturated precursors (see Scheme 18).
Intrigued by these novel structures and Black s hypothesis for
their ¡°biogenetic¡± origin, we directed our attention towards
their total synthesis. Two approaches were followed, a
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 63
REVIEWS
K. C. Nicolaou et al.
stepwise (Scheme 19 b) and a direct one-step strategy
(Scheme 19 c). Both strategies involve an 8-p-electron elec-
trocyclization, a 6-p-electron electrocyclization, and a Diels ¨C
Alder-type [4 2] cycloaddition reaction to assemble the
polycyclic skeletons of endiandric acids. The total synthesis
[112]
of these architecturally interesting structures demonstrated a
number of important principles of organic chemistry and
verified Black s hypothesis for their natural origin. In
particular, the ¡°one-pot¡± construction of these target mole-
cules from acyclic precursors from the endiandric acid cascade
is remarkable, particularly if one considers the stereospecific
formation of no less than four rings and eight stereogenic
centers in each final product.
Efrotomycin (1985)
Efrotomycin (1 in Scheme 20; see p. 67), the most complex
member of the elfamycin class of antibiotics
[113]
that includes
64 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
O
O O
O
O
CO
2
H
HMe
HO
Me
H
H
Me
Me
HO
HO
H
Et
HMe
Me
OMe
Me
O
CN
O
Me
O
H
OBn
Me
O
H
Me
O
Me
OH OBn
Me
Ph3P CO2Et
Me
O
Me
OMe
Me
O
O
Me
OMe
Me
Me
OH
(MeO)2P CO2Me
Me
O
O
Me
OMe
Me
OH
Me
OH
HO OH HO OBn
H
HO OBn
H
Et
Et
MgBr
O OBn
H
Et
EtO OBn
H
Et
EtO
2
C
Et
H
OH
O
Ar
Et
O
Ar
H
OH
Et
O
Ar
OH
O
O
Ar
O
OH
Me
HEtH
Me Me
O
OH
MeMe
CO
2
H
O
Ar
OH
Me
HEtH
MeMe
O
Ar
O
Me
HEtH
MeMe
H Br
O
Ar
O
Me
HEtH H
OH
Me Me
H
O
Ar
O
Me
HEtH H
O
Me Me
H
O
CCl
3
OBz
O
O O
Me
HEtH H
Me Me
H
OH
O
OMe
MeO
O O
Me
HEtH H
Me Me
H
OH
O
OMe
MeO
O O
Me
HEt
H
H
Me Me
H
OH
O
OMe
OOHC MeO
O O
Me
HEt
H
H
Me Me
H
OH
O
OMeOH
MeO
Me
OH
Me
O
H
OH
Me
O
Me
O
Me
H
O
H
Me
MeMeO
HO
Et
OBn
CO
2
Me
Me
O
Me
OMe
Me
O
H
O
Me
H
O
H
Me
MeMeO
HO
Et
MeO
MeMe
PPh
3
MeMe
PPh3
MeO
2
C
O
H
Me
OMe
Me
OBn
Me
O
H
OH
Me
O
Me
O
Me
H
O
H
Me
MeMeO
HO
O
H
OH
Me
O
Me
H
O
H
Me
MeMeO
HO
Et
Et
O
OH
Me
CO
2
Me
OBn
Me
OMe
Me
O
O O
O
O
CO
2
Na
HMe
HO
Me
H
H
Me
MeHO
HO
H
Et
HMe
Me
OMe
Me
HO
2
C
OMOM
Me
OMe
Me
OBn
Me
H
H
c. resolution
c. NaOH-MeOH (1:5)
3
[Wittig reaction]
+
iPrNMgBr, 2
1: monensin
b)
a) Spiroketalization
Aldol condensation
a. nBuLi, MeI
b. KOH
c. LiAlH
4
d. PCC
a.
b. LiAlH
4
c. BnBr, KH
BH3
[8:1 mixture]
a. KH, MeI
b. H
2
, 10% Pd/C
c. resolution
d. PCC
(77% overall)
b. LiAlH
4
BH
3
; H
2
O
2
a. PhCHO, CSA
b. LiAlH
4
-AlCl
3
(1:4)
c. resolution
(93%)
a. PCC
b.
CH
3
C(OEt)
3
CH
3
CH
2
CO
2
H, ?
[Johnson
orthoester Claisen
rearrangement]
[hydroxyl-directed
epoxidation]
a. pTsCl
b. LiAlH
4
c. CSA
d. OsO
4
, NaIO
4
(36%)
[7:2 mixture]
d. CrO
3
, H
2
SO
4
e. BCl
3
(31% overall)
mCPBA
11
7
(21%, 92% based on recovered SM)
17 19 21
[8:1 mixture]
1-Na: (+)-monensin sodium salt
MeMgBr
2
13
(78%)
a. mCPBA
b. KOH aq.
14
a. CH
2
N
2
b. HCl
c. PCC
25
(33% from 11)
1215
(22% from 4)
a. O
3
, MeOH
b. HCl, MeOH
c. MeLi
KO
2
,
[18]crown-6
DMSO
(47%)
(66% overall)
26
27
4
BH
3
;
KOH, H
2
O
2
(53% overall)
28
Li, EtOH
NH
3
(l)
a. (CH
3
O)
3
CH
MeOH, CSA
b. O
3
, MeOH
c. MgBr
2
29
[Birch reduction]
12 steps
3031
(57%)
NBS
[bromoetherification]
a. Cl
3
CCOCl, py
b. OsO
4
, py
c. BzCl, py
d. CrO
3
, H
2
SO
4
a. NaOMe, MeOH
b. (CH
3
O)
3
CH
MeOH, CSA
a. MOMBr,
PhNMe
2
b. BnBr, KH
c. O
3
, MeOH
2
10
5 6
(85%)
9
8
(73%)
(80%)
16 18 20
2223
[12:1 mixture]
24
a. LiAlH
4
b. PCC
c. MeOC
6
H
4
MgBr
a.
a. H
2
, 10% Pd/C
b. CSA, H
2
O
3 32
15
(35% overall)
4
Scheme 16. a) Strategic bond disconnections and retrosynthetic analysis of monensin and b) total synthesis (Kishi et al., 1979).
[108]
REVIEWS
Natural Products Synthesis
aurodox, was isolated from Nocardia lactamdurans.
[114]
Its
molecular structure, which contains nineteen stereocenters
and seven geometrical elements of stereochemistry, presented
considerable challenge to the synthetic chemists of the 1980s,
particularly in regard to the oligosaccharide domain and the
all-cis-tetrasubstituted tetrahydrofuran system. The total syn-
thesis of efrotomycin, accomplished in 1985 in our laborato-
ries,
[115]
addressed both problems by devising new method-
ologies for the stereoselective construction of glycosides and
tetrahydrofurans. Scheme 20 summarizes this total synthesis
in which the two-stage activation procedure for the synthesis
of oligosaccharides utilizing thioglycosides and glycosyl
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 65
Scheme 17. a) Strategic bond disconnections and retrosynthetic analysis of monensin and b) total synthesis (Still et al., 1980).
[110]
REVIEWS
K. C. Nicolaou et al.
66 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 19. a) Strategic bond disconnections and retrosynthetic analysis of endiandric acids A ¨C C, b, c) total synthesis, and d) ¡°biomimetic¡± synthesis of
endiandric acid methyl esters A ¨C C (Nicolaou et al., 1982).
[112]
RO
2
C
H
H
H
HO
2
C
H
H
H
H
H
HO
2
C
H Ph
Ph
H
H
H
H
H
CO
2
HH
CO
2
R
Ph
CO
2
R
Ph
Ph
Ph
CO
2
R
CO
2
R
Ph
CO
2
R
Ph Ph
CO
2
R
Ph
RO
2
C
Ph
H
H
H
CO
2
H
Ph
H
H
H
Ph
CO
2
H
H
H
H
Ph
HO
2
C
Ph
H
H
H
H
H
H
CO
2
H
a a a a
b b b b
endiandric acid D endiandric acid E endiandric acid F endiandric acid G
endiandric acid A endiandric acid B endiandric acid C
Diels-Alder Diels-Alder Diels-Alder
Scheme 18. The endiandric acid cascade (Black et al., R Me, H). a) Conrotatory 8-p-electron cyclization; b) disrotatory 6-p-electron cyclization.
[111]
REVIEWS
Natural Products Synthesis
fluorides
[116]
as well as the base-induced zip-type diepoxide
opening were highlighted as powerful methods for organic
synthesis. Numerous applications and extensions of these
synthetic technologies have since followed.
[117]
Okadaic acid (1986)
Okadaic acid
[118]
(1 in Scheme 21) is a marine toxin isolated
from Halichondria Okadai. Besides its shellfish toxicity,
okadaic acid exhibits potent inhibition of certain phospha-
tases and is a strong tumor promotor. With its three spiroketal
moieties and seventeen stereogenic centers, the molecule s
polycyclic structure presented a serious challenge to synthetic
chemistry. The first total synthesis of okadaic acid was
achieved in 1984 by the Isobe group in Japan
[119]
and was
followed by those of Forsyth
[120]
and Ley.
[121]
The Isobe
synthesis of okadaic acid, summarized in Scheme 21, high-
lights the use of sulfonyl-stabilized carbanions in synthesis, the
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 67
H
N
O
Me
OMe
MeO
Me
HO OH
H H
N
OH
O
Me
O
Me
O
Me
Me
O
O
OH
Me Me
O
O
Me
Me
Me Me
O
O
Me
Me
HO
Me Me
O
O
Me
Me
O
O
O
OH
Me
Me
O
O
Me
Me
CO
2
H
O
O
Me
Me
Me P(O)Ph2
O O
O
O
Me
Me
Me
Me
Me
O
O
O
Me
Me
Me
Me
Me
OH
OEt
O
Me
N
Me
OBn
O
O
Me
Ph
3
P
Br
O O
Me Me
O
H H
Me
OMe
Me
OH
NO
O
CCl
3
O O
Me Me
O
OTBS
H H
O
Me
OMe
Me
TMSO OTMS
O
H H
Me
OMe
Me
H
2
N
Me
O
NO
Me
OPMB
MeO3P(O) CO2Me
O
Me
Me
Me
O
O
OH
O
H
Me
OMe
HO O
OMe
Me
OMe
OH
O
F
OMe
Me
OMe
OTBS
O
PhS
Me
OMe
TBSO OH
Me
O
O
Me
Me
Me
OH
O
OH
OH
OO
O O
Me Me
MeO
2
C
O O
Me Me
O
OTBS
MeO
2
C
H H
H
N
O
Me
OMe
MeO
Me
HO OH
H H
N
OH
O
Me
O
Me
O
Me
Me
Me
O
O
OH
O
H
Me
OMe
HO O
OMe
Me
OMe
OH
OH
O
MeO
OH
Me
OMe
OH
O
MeO
OMe
Me
OMe
OBn
CuLi
OMe
O
F
OMe
Me
OMe
OTBS
O
OMe
OMe
HO O
O
Ph
O
OMe
OMe
HO OBz
Br
O
SPh
OMe
TBSO OH
Me
O
O
Me
OMe
TBSO O
OMe
Me
OMe
OTBS
F
O
O
Me
OMe
AcO O
OMe
Me
OMe
OAc
F
Me
O
O
Me
Me
Me
OH
O
OH
Me
O
O
Me
Me
Me
O
O
O
O
H
Me
OMe
HO O
OMe
Me
OMe
OH
OH
13 14
12
3
15
2
24
1: efrotomycin
Glycosidation
7
a)
b)
1: efrotomycin
NBS, AIBN
a. nBu
3
SnH, AIBN
b. TBSCl, imid.
(100%)
(70%)
a. nBu
2
SnO, ?
b. BnBr
c. KH, MeI
a. AgClO
4
, SnCl
2
b. NBS, DAST
a.
[Rh], H
2
b. LiAlH
4
c. CSA, acetone
16
(70%)
a. Swern [O]
b. tBuOK,
(85%)
a. (-)-DET, Ti(iPrO)
4
tBuOOH
b. BnOC(O)Cl, py
c. AlCl
3
; H
2
O
c. , nBuLi
a. AcOH, H
2
O
b. NaOH/EtOH
CH
3
CH
2
CH
2
CO
2
Et,
LDA
(65%)
(90%)
a. (MeO)
2
CMe
2
,
CSA
b. K
2
CO
3
, MeOH;
CSA
c. RuO
2
, NaIO
4
(86%)
(59%)
(85%)
(85%)
c. 16, AgClO
4
, SnCl
2
d. K
2
CO
3
, MeOH
(63%)
(86%)
Amide
formation
Glycosidation
Wittig
olefination
2
3 4
18
5
6
1917 20
22 2123
a. AcOH, H
2
O
b. PCC
a. KCH
2
S(O)CH
3
b. TBSCl, imid.
a.
H
2
, 5% Pd/C
b. TBSCl, imid.
c. PhSTMS, ZnI
2
d. NBS, DAST
(66%)
c. PhSTMS, ZnI
2
;
K
2
CO
3
, MeOH
a.
TBAF
b. Ac
2
O, 4-DMAP
(80%)
a. AlMe
3
, 10
b. HF?py
c. DDQ, MeOH
(55%)
d. KH, MeI
e. AcOH, H
2
O
(26% overall)
10
c. DIBAL-H
a. LiCuMe
2
; TMSCl
b. O
3
; Me
2
S
c.
8 9
11
4
5, 6
Scheme 20. a) Strategic bond disconnections and retrosynthetic analysis of efrotomycin and b) total synthesis (Nicolaou et al., 1985).
[115]
REVIEWS
K. C. Nicolaou et al.
control of stereochemistry through chelation, and the power
of the anomeric effect to exert stereocontrol in spiroketal
formation.
Amphotericin B (1987)
The polyene macrolide family of natural products is a
subgroup of the macrolide class, which poses formidable
challenges to synthetic organic chemistry. Among them,
amphotericin B
[122]
(1 in Scheme 22), isolated from Strepto-
myces nodosus, occupies a high position as a consequence of
its complexity and medical importance as a widely used
antifungal agent. Its total synthesis
[123]
in 1987 by our group
represented the first breakthrough within this class of com-
plex molecules. This total synthesis featured the recognition
of subtle symmetry elements within the target molecule that
allowed the utilization of the same starting material to
construct two, seemingly unrelated, intermediates and the
68 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 21. a) Strategic bond disconnections and retrosynthetic analysis of okadaic acid and b) total synthesis (Isobe et al., 1986).
[119]
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 69
O
O
OH OH OH OH O
Me
Me
Me
OH
MeO
H
CO
2
H
OH
HO
O
OH
Me
OH
NH
2
O
O
OAc
Me
OTBS
N
3
O
O
OTHP
Me
Me
Me
TBSO
CO
2
Et(EtO)
2
P
O
O O
O
(MeO)
2
P
O O
OO
OTBS
TBSO
TBSO
O
O
O
Ph
EtO
2
C
EtO
2
C
OH
OH
H
H
O
O
OEt
H
H
Cl
OCHO
O
O
Me
O
ON
O
Me Ph
O
O
O
Me
N
O
O
O
Ph
Me
Me
HO
OH
Me
OCO
2
tBu
Me
TBSO
SPh
Me
OTHP
Me
O
Me
TBSO
OH
O
Me
Me
Me
TBSO
OTHP
O
Me
Me
Me
TBSO
BnO
BnO
BnO
BnO
BnO
OBn
O
BnO
OBn
Me
OH
O
O
HO
Ph
BnO
O
O
TBSO
Ph
O
TBSO
O
OH
HO
OH
OH
OBn O O
O
O
TPSO
O
O
O
HO
OH
HO
HO
O
O
O OTBS(MeO)
2
P
O
O
OTPS
O
O
O
O
O OTBSBnO OO
O
OTPS
OBnO OO P(OMe)
2
O
O
OH
OBnO OO O
O
OH
HO
SMe
Ph
OR
3
OR
1
OR
2
AcO OO O
O
O
Ph
OMe
O
MeO
OR
3
OR
1
OR
2
O OO
CO
2
Me
OTBS
O
OMe
O
HO
(MeO)
2
P
O
B(nBu)
2
O O O TBSO O
OTBS
OMe
H
CO
2
Me
O
O
Me
Me
Me
TBSO
OH
O
O
Me
Me
Me
TBSO OR
3
OR
1
OR
2
O OO
CO
2
Me
OTBS
O
OMe
O
(MeO)
2
P
O
O
O
O
OH OH OH OH O
Me
Me
Me
OH
MeO
H
CO
2
H
OH
HO
O
OH
Me
OH
NH
2
O
Cl
3
C
NH
OBn
(65% overall)
22
a. Et
2
AlC CH
2
OTPS
b.
NaH, BnBr
c. TBAF
d. Red-Al
19
(38% overall)
3
14
9a
(¨C)-9: (¨C)-xylose
(32% overall)
(68% overall)
a. H
2
, Pd/C
b. L-Selectride
c. TPSCl, imid.
d. TBAF
e. MsCl, Et
3
N
f. NaI, acetone
g. (MeO)
2
P(O)H, NaH
(67% overall)
NaH, DME
12
9b
4
7 steps
a. LDA; MeSSMe
b. LDA; 5
c. TBAF
c. 5 steps (53%)
a. KSAE
b.
Red-Al
c. TBSCl, imid.
d. H
2
, Pd(OH)
2
/C
PCl
5
Phosphonate-aldehyde
condensation
a. H
2
, 10% Pd/C
b. Me
2
C(OMe)
2
, CSA
c. CSA, MeOH
d. PCC
2
5
a. acetonide
formation
b.
TPSCl, imid.
c. PhOC(S)Cl, py
d. nBu
3
SnH, AIBN
[Evans' aldol]
e. PhCH(OMe)
2
, CSA
f. SO
3
?py
LiCuMe
2
K
2
CO
3
,
MeOH
5
(47% overall)
(+)-8: (+)-xylose
(75% overall)
11
a. H
2
, Pd/C
b. imid.
c. TBSOTf
d. LiOH
e. CH
2
N
2
f. PDC
g. CH
2
N
2
h. K
2
CO
3
,
MeOH
i. PDC
j. (MeO)
2
P(O)CH
2
Li
10
a. PPTS [cyclization]
b. NBS, MeOH
(63%)
10 steps
Phosphonate-aldehyde
condensation;
ring closure
(16% overall)
Horner-Wadsworth-Emmons;
hydrogenation
14
1: amphotericin B
Ester bond formation
b)
a. (EtO)
3
CH, AcOH
b. LiAlH
4
c. BnBr, NaH
Ketophosphonate-aldehyde
macrocyclization
a)
Glycosidation
(87%)
13
mixture of R
1
, R
2
= acetonide, R
3
= TBS and R
1
= TBS, R
2
, R
3
= acetonide
15: (+)-diethyl-L-tartrate
a. LDA, 6
b.
DIBAL-H
c. MnO
2
3
(86%)
(72%)
6
a. LiBH
4
b. tBuCOCl, py
c. TBSOTf, lut.
d. AcOH, THF, H
2
O
e. PhSSPh, nBu
3
P
4
(60%)
7
1716
a. Raney Ni
b. DHP, CSA
c. DIBAL-H
d. PCC, NaOAc
18
(69%)
20
29
21
a. K
2
CO
3
, [18]crown-6
b. NaBH
4
24
23
25
(88%)
(86% overall)
28
a. LDA, 6
b. MeOH, PPTS
c.
DIBAL-H
d. MnO
2
(48% overall)
27
26
(70%)
(67% overall) DCC, 4-DMAP
(54% overall)
7
a. HF?py
b. HS(CH
2
)
3
SH·Et
3
N
[azide reduction]
PPTS (cat.)
[glycosidation]
(40% overall)
c. MeOH, CSA
d. LiOH, THF, H
2
O
1: amphotericin B
Scheme 22. a) Strategic bond disconnections and retrosynthetic analysis of amphotericin B and b) total synthesis (Nicolaou et al., 1987).
[123]
REVIEWS
K. C. Nicolaou et al.
employment of the then newly discovered Sharpless asym-
metric epoxidation reaction
[124]
to stereoselectively construct
the 1,3-diol systems.
The Horner-Wadsworth-Emmons process
[125]
emerged as
the most valuable reaction of the synthesis, having been
utilized five times to construct carbon ¨C carbon double bonds.
Particularly striking was the application of an intramolecular
ketophosphonate ¨C aldehyde condensation to construct the
38-membered ring of amphotericin B. A further, notable
feature within this total synthesis is the strategy through which
the carbohydrate moiety was installed stereoselectively on a
derivative of amphoteronolide B to construct the challenging
b-1,2-cis-glycoside bond of the target molecule. Important in
this field is also Masamune s elegant synthesis of 19-dehy-
droamphoteronolide B.
[126]
Ginkgolide B (1988)
Ginkgolide B (1 in Scheme 23) is a highly functionalized
natural substance isolated from the Ginkgo biloba tree, widely
known for its medicinal properties.
[127]
The structural eluci-
dation of ginkgolide B in 1967 was a major accomplishment of
the Nakanishi group.
[128]
Its total synthesis by the Corey group
in 1988
[129]
stands as a landmark achievement in organic
synthesis. Despite its relatively small size, ginkgolide B
proved to be stubborn in its defiance to chemical synthesis,
primarily because of its highly unusual bond connectivity.
Among its most striking structural features are the tert-butyl
group which occurs rather rarely in nature, the eleven
stereogenic centers of which two are quaternary, and its six
five-membered rings. The Corey synthesis of ginkgolide B
abounds with brilliant strategies and tactics, but most
impressive is, perhaps, the intramolecular [2 2] ketene cyclo-
addition reaction, which contributed substantially to the
construction of the required carbon framework by delivering
two of the most challenging rings.
Palitoxin (1989, 1994)
Isolated from soft corals of the Palythoa genus, palitoxin (1
in Scheme 24) is endowed with toxic properties exceeded only
by a few other substances known to man.
[130]
Both its
structural elucidation and total synthesis posed formidable
challenges to chemists. While the gross structural elucidation
of palitoxin was reported independently by the groups of
Hirata
[131]
and Moore
[132]
in 1981, its total synthesis had to
await several more years of intense efforts. Finally, after
heroic efforts from Kishi and his group the synthesis of
palitoxin carboxylic acid was published in 1989
[133]
and that of
palitoxin itself in 1994
[134]
(see Scheme 24). The synthesis of
palitoxin holds a special place in the history of total synthesis
in that palitoxin is the largest secondary metabolite to be
synthesized in the laboratory, both in terms of molecular
weight and number of stereocenters. Most importantly, this
mammoth endeavor led to the discovery and development of
a number of useful synthetic reactions. Amongst them are the
improvement of the NiCl
2
/CrCl
2
-mediated coupling reaction
O
O
Me
HO
O
O
O
HO
HO
H
O
O
tBu
H
H
O
O
tBu
H
O
H
O
tBu
H
OO
?
O
MeO
O
tBu
CO
2
H
MeO
tBu
O
tBu
MeO
O O
O
O O
O
O
tBuTfO
MeO
H
O
O
Me
HO
O
O
O
HO
HO
H
O
O
tBu
H
O
O
H
O
O
tBu
H
O
O
O
H
O
O
tBu
H
OMe
H
O
O
tBu
H
H
O
O
tBu
H
O
MeO
OMeN
O
Ph
PhO2S
O
O
H
O
O
tBu
H
O
O
O
O
H
O
O
tBu
H
O
O
tBuO
Me
HO
O
tBuO
Me
H
O
O
Me
HO
O
O
HO
H
O
O
tBu
H
H
O
O
Me
HO
O
O
TBSO
H
O
O
tBu
H
OH
HO
OMe
OMe
O
OMe
OMe
TMSO tBu
O O
O
O
O
H
O
O
tBu
H
O
O
H
O
O
O
tBu
H
MeO
OMe
H
O
O
tBu
H
O
OMe
OMe
N
O
O
OMe
OMe
O
SSH
H
1: ginkgolide B
(65%)
[ketene-olefin
[2 + 2]
cycloaddition]
Ph
3
COOH, NaOH
1: (±)-ginkgolide B
(68%)
Ph
3
COOH,
BnMe
3
N-OiPr;
then (MeO)
3
P
LDA, HMPA
CSA
a.TBSOTf
b. OsO
4
, py
Aldol
reaction
a. [tBu
2
Cu(CN)Li
2
]
b. TMSCl, Et
3
N
a. (COCl)
2
b. nBu
3
N, ?
(76-84%)
(72%)
a. I
2
, CaCO
3
b. BF
3
?Et
2
O
a. TiCl
4
,
b. LDA; PhNTf
2
b)
a)
Epoxide opening
and lactonization
Epoxidation
Hydroxylation
Ring closure
Baeyer-Villiger
oxidation
Oxidation
Intramolecular ketene-olefin
[2+2] cycloaddition
C-C bond
formation
Tandem vicinal
di-functionalization
a.
b. 6N HCl
(75%)
a. Cy
2
BH
b. AcOH; H
2
O
2
c. 1N HCl
d. pH 11; pH 3
(86%)
(80%)
[Baeyer-Villiger
oxidation]
(86%)
(75%)
(80%)
a. LiNEt
2
b.
c. CSA
a. NBS, hv
b. AgNO
3
c. PPTS, py
(75%)
a. HIO
4
, MeOH, H
2
O
b. CSA, MeOH
a. HS(CH
2
)
3
SH, TiCl
4
b. PDC, AcOH
(40%)
(92%)
(65%)
[lactol oxidation]
(89%)
2
3
4
5
856
7
10
911
12
14413
15317
16
20218 19
2122
[Sonogashira coupling]
[Pd(PPh
3
)]
,
CuI, nPrNH
2
Scheme 23. a) Strategic bond disconnections and retrosynthetic analysis of
ginkgolide B and b) total synthesis (Corey et al., 1988).
[129]
between iodo-olefins and aldehydes, a modified, refined
method for the Suzuki palladium-catalyzed coupling reaction
leading to conjugated dienes, and a new synthesis of N-acyl
ureas.
70 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 71
HO
N
H
N
H
O O
HO
Me HO Me
HO
HO
O
HO
HO
OH
OH
HO
OH
OH
OH
Me
O
HO
O
HO
OH
OH
OH
OH
Me
OH
O
HO
OH
H
OH
OH
O
HO
OH
OH
OH
OH
OH
HO
HO
HO
OH
Me
O
OH
HO
OH
OH
O
OH
O
O
OH
H
2
N
OMe
Me
OH
OH
H
MeO
O
O
TBSO
OTBS
H
OTBS
OTBS
O
TBSO
OTBS
OTBS
OTBS
OTBS
OAc
I
TBSO
OTBS
OTBS
O
O
O
OTBS
O
O TBSO
TBSO
OTBS
Me
O
OTBS
TBSO
OTBS
B
OH
HO
PMBO
O
PMBO
PMBO
OPMB
OPMB
PMBO
OPMB
OPMB
OPMB
H
Me
O
OMe
Me
BzO
O
BzO
OBz
OBz
OMe
Me
OH O
O
AcO
Me O
Me
TBS
MeO
OAc
Me
O
OMe
Me
PPh
3
OTBS
THPO
PMBO
O
PMBO
PMBO
OPMB
OPMB
PMBO
OPMB
OPMB
OPMB
H
O
THPO
PMBO
O
PMBO
PMBO
OPMB
OPMB
PMBO
OPMB
OPMB
OPMB
H
Me
O
OMe
Me
PPh
3
BzO
O
BzO
OBz
OBz
OMe
Me
O
O O
O
PMBO
O
PMBO
PMBO
OPMB
OPMB
PMBO
OPMB
OPMB
OPMB
H
Me
O
OMe
Me
BzO
O
BzO
OBz
OBz
OMe
Me
O O
PMBO
O
PMBO
PMBO
OPMB
OPMB
PMBO
OPMB
OPMB
OPMB
H
Me
O
OMe
Me
BzO
O
BzO
OBz
OBz
OMe
Me
OH O
O
AcO
Me O
Me
TBS
MeO
OAc
O
AcO
Me O Me
I
TBS
MeO
TBSO
OTBS
OTBS
O
O
O
OTBS
O
O TBSO
TBSO
OTBS
Me
O
OTBS
TBSO
OTBS
B
OH
HO
O
O
O
OTBS
O
O
TBSO
TBSO
OTBS
Me
O
OTBS
TBSO
OTBS
O
OCPh
2
(C
6
H
4
-p-OMe)
TBSO
OTBS
OTBS
I
HO N
H
NH2
O
SePh
O
O
TBSO
OTBS
H
OTBS
OTBS
O
TBSO
OTBS
OTBS
OTBS
OTBS
OAc
TBSO
OTBS
OTBS
O
O
O
OTBS
O
O TBSO
TBSO
OTBS
Me
O
OTBS
TBSO
OTBS
P
MeO
O
MeO
77
NiCl
2
/CrCl
2
coupling
Suzuki coupling
Wittig
reaction
Amide bond
formation
NiCl
2
/CrCl
2
coupling
Wittig reactions;
hydrogenation
1: palytoxin
2
22
98
99
4
84
99
115
93
98
85
97
b)
7
a)
c. PPTS, MeOH
d. Swern [O]
1
b
85
115
53
75
c
84
ad
e
f
84
99
115
9397
98
85
8
37
3
51
1
23
37
3
38
22
51
1 7
38
8
51
8
22
23
37
65
23
37
8
22
I
a. 5, nBuLi, THF, -78 °C; then 6
b. H
2
, 10% Pd/C
c. TBAF, THF, 25 °C
d. MsCl, Et
3
N
e. NaI, 2-butanone
f. Ph
3
P, DMF
11
2
8
22
23
37
7
a. CrCl
2
, NiCl
2
, 11
b. Ac
2
O
c. PPTS, MeOH
d. [RuCl
2
(PPh
3
)
3
]
1
38
a. 7, nBuLi, THF; then
28
7
8
99
84
99
115
98
85
115
77
23
37
38
52
51
75
76
77
22
23
53
77
51
9
b. H
2
, 10% Pd/C
I
(ca. 55% overall
from 14)
98
85
14
77
13
a. CrCl
2
, NiCl
2
b. PDC
c. Ph
3
P=CH
2
d. PPTS
e. Swern [O]
f. LiCH[B(OCH
2
CH
2
CH
2
O)]
2
;
then EtOAc, brine/1N HCl
a. [Pd(PPh
3
)
4
], 2
b. LiCH
2
P(O)(OMe)
2
10
84
a. Ketophosponate 10,
NaH; then 3
b. LiBH
4
c. Ac
2
O
d. DDQ, Ac
2
O
e. HClO
4
f. LiOH
g.TBAF
h. AcOH
i. py,
j. camphor sulfonyl
oxaziridine
k. hv[cis-trans isomerization]
12
[Suzuki coupling]
(72% overall)
1: palytoxin
(7.5% overall)
(64-46% overall)
2
2
7
Horner-Wadsworth-
Emmons reaction
TEOCNH
TEOCNH
TEOCNH
TEOCNH
Scheme 24. a) Strategic bond disconnections and retrosynthetic analysis of palytoxin and b) highlights of the total synthesis (Kishi et al. 1989, 1994).
[133, 134]
REVIEWS
K. C. Nicolaou et al.
Cytovaricin (1990)
Cytovaricin (1 in Scheme 25) is a 22-membered macrolide,
isolated from Streptomyces diastatochromogenes in 1981,
[135]
which is endowed with impressive antineoplastic activity and
complex molecular architecture. Possessing seventeen stereo-
genic centers on its main framework, a spiroketal, and a
glycoside moiety with four additional stereocenters, cytovar-
72 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 25. a) Strategic bond disconnections and retrosynthetic analysis of cytovaricin, b) key asymmetric alkylation and aldol reactions, and c) outline of
the total synthesis (Evans et al., 1990).
[137]
REVIEWS
Natural Products Synthesis
icin presented a considerable challenge to synthetic chemistry
in the 1980s. Its structural elucidation by X-ray crystallo-
graphic analysis in 1983
[136]
opened an opportunity for Evans
et al. to apply their elegant alkylation and aldol methodology
for acyclic stereoselection to the solution of the cytovaricin
problem. Indeed, by 1990 the group reported a beautiful total
synthesis
[137]
that clearly demonstrated the new concepts of
stereochemical control by acyclic stereoselection as opposed
to the classical methods applied previously to solve such
problems. It is instructive to compare this synthesis to the
cyclic-template strategy used by Corey,
[102]
Woodward,
[33]
and
Stork
[138]
to achieve stereochemical control in their syntheses
of the erythromycin macrolide framework. This impressive
use of acyclic stereocontrol through the use of the Evans
chiral oxazolidone certainly propelled the area of polyketide
synthesis, a class of compounds that are rather readily
accessible synthetically by today s standards.
Calicheamicin g
I
1
(1992)
The arrival of calicheamicin g
I
1
[139]
(1 in Scheme 26) and its
relatives, collectively known as the enediyne anticancer
antibiotics,
[140]
on the scene in the 1980s presented an entirely
new challenge to synthetic organic chemistry. Isolated from
Micromonespora echinospora ssp calichensis, this fascinating
natural product provided a unique opportunity for discovery
and invention in the areas of chemistry, biology, and medicine.
Its novel molecular structure is responsible for its powerful
biological properties, which include strong binding to duplex
DNA, double-strand cleavage of the genetic material by
formation of a benzenoid diradical, and¡ªas a consequence¡ª
potent antitumor and antibiotic activity.
The structure of calicheamicin g
I
1
is comprised of a carbo-
hydrate domain and an enediyne core carrying a trisulfide
moiety that acts as a triggering device for the cascade of
events which leads, via a Bergman cycloaromatization,
[141]
to
the diradical species and DNA rupture. The oligosaccharide
domain of calicheamicin g
I
1
is endowed with high affinity for
certain DNA sequences, and acts as the delivery system of the
molecule to its biological target. The highly strained 10-
membered enediyne system, the novel oligosaccharide frag-
ment, and the trisulfide unit are but some of the unusual and
challenging features of calicheamicin g
I
1
. Even more challeng-
ing, of course, was the chartering of the proper sequence for
assembling all these functionalities into the final structure.
Two groups rose to the challenge, ours (1992)
[142]
and that of
S. J. Danishefsky (1994).
[143]
Notable features of our total synthesis of calicheamicin g
I
1
(Scheme 26) are the installment of the sulfur atom in the
carbohydrate domain through a stereospecific [3,3]-sigma-
tropic rearrangement and the [3 2] olefin ¨C nitrile oxide
cycloaddition reaction employed in the construction of the
enediyne core. That a molecule of such complexity could be
assembled in the laboratory in less than five years after its
structural elucidation in 1987 is an accurate reflection of the
high level of the state-of-the-art in the early 1990s. Just as
impressive is Danishefsky s synthesis of calicheamicin, which
can be found in the original literature.
[143]
Strychnine (1993)
Although ( )-strychnine had succumbed to the ingenuity
of Woodward in 1954 (see Scheme 4) it can still be considered
a target of choice to demonstrate the application of new
reactions and novel strategies by virtue of its abundant
stereochemical features densely packed in a heptacyclic
framework. Almost 40 years after Woodward s seminal
synthesis, Overman s synthesis of strychnine
[58]
(Scheme 27;
see p. 76) stands as a testimony to the evolution of organic
synthesis. Indeed, powerful palladium-mediated reactions
were used to expedite the assembly of the crucial intermediate
13 (Scheme 27) in a stereospecific fashion, thereby setting the
stage for the key tandem aza-Cope rearrangement and
Mannich reaction. This tandem reaction proved to be
particularly efficient and well-suited to afford an advanced
tricyclic system with concomitant formation of the quaternary
center stereospecifically, under mild conditions, and in nearly
quantitative yield. The sophisticated sequence of reactions
which ultimately led to Overman s ( )-strychnine synthesis
deserves special mention for its elegance.
Rapamycin (1993)
Rapamycin (1 in Scheme 28; see p. 77) is an important
molecule within the field of immunosuppression that was first
isolated in 1975
[144]
from Streptomyces hygroscopicus, a
bacterial strain found in soil collected in Rapa Nui (Easter
Island), and structurally elucidated in 1978.
[145]
Its potent
immunosuppressive properties are reminiscent of those of
cyclosporin and FK506, whose biological and medical im-
portance, particularly in the field of organ transplants, became
evident in the 1980s.
[146]
Although the structures of rapamycin
and FK506 possess striking similarities, the former is consid-
erably more complex and attracted serious attention from the
synthetic chemists in the late 1980s and early 1990s. By 1995
there were four total syntheses of rapamycin,
[147¨C150]
the first
being reported from this group in 1993 (Scheme 28).
[147]
This
asymmetric synthesis of rapamycin is an example of high
convergency and acyclic stereoselection, and is perhaps
known best for the way in which the macrocyclic ring was
formed. A palladium-catalyzed reaction based on Stille s
chemistry allowed a ¡°stitching cyclization¡± process to pro-
ceed, to furnish the required conjugated triene system
concurrently as it formed the 29-membered ring of the target
molecule.
[151]
Taxol (1994)
Taxol (1 in Scheme 29; see p. 78), one of the most
celebrated natural products, was isolated from the Pacific
yew tree and its structure was reported in 1971.
[152]
Its arduous
journey to the clinic took more than 20 years, being approved
by the Food and Drug Administration (FDA) in 1992 for the
treatment of ovarian cancer.
[153]
Synthetic chemists were
challenged for more than two decades as taxol s complex
molecular architecture resisted multiple strategies toward its
construction in the laboratory. Finally, in 1994, two essentially
simultaneous reports
[154, 155]
described two distinctly different
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 73
REVIEWS
K. C. Nicolaou et al.
total syntheses of taxol. These first two syntheses, by our
group
[154]
and that of Holton,
[155]
were followed by those of
Danishefsky,
[156]
Wender,
[157]
Mukaiyama,
[158]
and Kuwaji-
ma.
[159]
All these syntheses, which are characterized by novel
strategies and brave tactics, contributed enormously to the
advancement of total synthesis and enabled investigations in
biology and medicine.
Amongst the most notable features of our total synthesis of
taxol (Scheme 29) are the boron-mediated Diels ¨C Alder
reaction to construct the highly functionalized C ring, the
application of the Shapiro and McMurry coupling reactions,
and the selective manner in which the oxygen functionalities
were installed onto the 8-membered ring of the molecule.
Because of the great drama associated with cancer, this and
the other syntheses of taxol received headliner publicity. The
art and science of total synthesis was once again brought to
the attention of the general public.
Zaragozic Acid (1994)
A new natural product with unprecedented molecular
architecture often gives impetus to synthetic endeavors
directed at its total synthesis. Such was the case with zaragozic
acid A (1 in Scheme 30; see p. 79) whose structure was
released essentially simultaneously in 1992 by groups from
Merck
[160]
and Glaxo
[161]
(the latter naming the compound
squalestatin S 1).
[162]
Isolated from a species of fungi, zaragozic
acid A exhibits impressive in vitro and in vivo inhibition of
cholesterol biosynthesis by binding to squalene synthase.
[163]
Zaragozic acid A, like its many relatives, possesses an unusual
tricarboxylic acid core, whose highly oxygenated nature
added to its novelty and complexity as a synthetic target.
The distinguishing features of our synthesis
[164]
of zaragozic
acid A (Scheme 30) include the utilization of the Sharpless
asymmetric dihydroxylation reaction
[165]
to install the first two
oxygen-bearing stereocenters onto a complex prochiral diene
system and a multi-step, acid-catalyzed rearrangement to
secure the zaragozic acid skeleton.
The synthesis of zaragozic acid was also accomplished and
reported at approximately the same time as ours by the groups
of Carreira (zaragozic acid C)
[166]
and Evans (zaragozic
acid C).
[167]
In addition, Heathcock et al.
[168]
reported another
total synthesis of zaragozic acid A in 1996.
Swinholide A (1994)
Swinholide A (1 in Scheme 31; see p. 80), a marine natural
product with antifungal and antineoplastic activity, was
originally isolated from the Red Sea sponge Theonella
swinhoei.
[169a]
Its structure was fully established in the late
1980s by X-ray cystallographic analysis.
[169b]
The structure of
swinholide A has C
2
symmetry and is distinguished by two
conjugated diene systems, two trisubstituted tetrahydropyran
systems and two disubstituted dihydropyran systems, a 44-
membered diolide ring, and thirty stereogenic centers. Its
challenging molecular architecture coupled with its scarcity
and biological action prompted several groups to undertake
synthetic studies towards its total synthesis. Two laboratories,
that of I. Paterson at Cambridge
[170]
and ours
[171]
have
succeeded in the task.
74 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 26. a) Strategic bond disconnections and retrosynthetic analysis of
calicheamicin g
I
1
and b) total synthesis (Nicolaou et al., 1992).
[142]
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 75
Scheme 26. (Continued)
REVIEWS
K. C. Nicolaou et al.
Paterson s total synthesis,
[170]
shown in Scheme 31 (see
p. 80), came first and was accompanied by the development
and application of a number of various types of asymmetric
boron-mediated aldol reactions to form key C
C bonds.
Indeed, this new aldol methodology
[172]
was utilized to install
three contiguous chiral centers in two steps with high
diastereoselectivity (9!12 in Scheme 31), and represents a
most welcomed progress in acyclic stereocontrol. Our total
synthesis of swinholide A
[171]
(Scheme 32; see p. 81) featured
two relatively new, at the time, methods for C
C bond
construction in complex-molecule synthesis, namely the
Ghosez cyclization
[173]
to form a,b-unsaturated b-lactones
from orthoester sulfones and epoxides, and the dithiane-
stabilized anion opening of cyclic sulfates.
[174]
The macro-
lactonization was performed by the Yamaguchi reagent
[175]
in
both strategies. Both total syntheses are highly convergent
and demonstrated the power of the art in acyclic stereo-
selection and large-ring construction and stand as important
achievements in the field of macrolide synthesis.
Brevetoxin B (1995)
Brevetoxin B (1 in Scheme 33; see p. 82), an active
principle of the poisonous waters associated with the ¡°red
tide¡± phenomena,
[176]
was the first structure of its kind to be
elucidated (1981).
[177]
The beauty of brevetoxin s molecular
architecture, which accommodates eleven rings and twenty-
three stereogenic centers, attracted immediate attention from
the synthetic community. This neurotoxin, whose mechanism
of action involves the opening of sodium channels, shows
remarkable regularity in its structure. Thus, all rings are trans-
fused and each contains an oxygen atom. All ring oxygens are
separated by a C
C bond and each is flanked by two syn-
arranged hydrogen or methyl substituents¡ªexcept for the
first which carries a carbonyl to its ¡°left¡± and the last which is
flanked by two anti-oriented hydrogens. With its imposing
structure, brevetoxin B presented a formidable and daunting
problem to synthetic organic chemistry. Not only did new
methods need to be developed for the construction of the
various cyclic ether moieties residing within its structure, but,
most importantly, the ¡°right strategy¡± had to be devised for
the global assembly of the molecule.
After several abortive attempts, brevetoxin B was finally
conquered, and the total synthesis was reported in 1995 from
these laboratories (Scheme 33).
[178]
Along with the accom-
plishment of the total synthesis, this twelve-year odyssey
[179]
yielded a plethora of new synthetic technologies for the
construction of cyclic ethers of various sizes. Prominent
among them are (see Scheme 33 b): a) the regio- and stereo-
selective routes to tetrahydrofuran, tetrahydropyran, and
76 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
N
O
H H
H
O
N
H
N
H
HO
O
H H
H
N
N
H
N
OH
CO
2
Me
H
N
OtBu
O
N
MeN
NMe
O
H
O
R
2
N
OtBu
F
3
COCHN
N
Me
3
Sn
OtBu
TIPSO
NMeMeN
O
I
OH
AcO
EtO2C OtBu
O
AcO
CO
2
Et
OtBu
O
H
HO
OtBu
TIPSO
Me
3
Sn
OtBu
TIPSO
N
NMeMeN
O
I
O
R
2
N
OtBu
TIPSO
O
R
2
N
OtBu
HO
O
R
2
N
OtBu
F
3
COCHN
N
HO
tBuO
N
HO
tBuO
N
HO
tBuO
N
OtBu
O
N
MeN
NMe
O
H
N
H
N
OH
CO
2
Me
H
N
H
N
OH
H
O
OMe
N
H
N
H
H
ZnO OMe
N
H
N
OH
CO
2
Me
H
H
N
H
HO
O
H H
H
N
N
H H H
H
N
CO
2
H
OH
N
H
O
H H
H
N
HO
2
C
N
O
H H
H
O
N
H
OH
H
H
R
2
NR
2
NR
2
N
18
1716
12
b)
a. MeOCOCl, py
b. NaH, [Pd
2
(dba)
3
],
(89%)
a. NaCNBH
3
,
TiCl
4
b. DCC, CuCl
c. DIBAL-H
d. TIPSCl
[chemo-and stereo-selective
reduction]
¨CH
2
O
(78%)
6
(80%)
(57%)
a. tBuOOH,
Triton-B
b. Ph
3
P=CH
2
c. TBAF
a. CrO
3
,
H
2
SO
4
b. L-Selectride;
then PhNTf
2
c. Me
6
Sn
2
, [Pd(Ph
3
P)
4
]
[Pd
2
(dba)
3
], Ph
3
As, CO
(83%)
a. NaH, ?
b. KOH, H
2
O
[epoxide opening]
(62%)
(84%)
(CH
2
O)
n
,
Na
2
SO
4
,
?
a. MsCl, iPr
2
NEt
b. LiCl, DMF
c. NH
2
COCF
3
, NaH
[Mannich
reaction]
a. LDA, NCCO
2
Me
b. 5% HCl-MeOH, ?
[carboxymethylation;
imine formation;
tautomerization]
Zn
10% H
2
SO
4
,
MeOH, ?
[3,3]
[aza-Cope
rearrangement]
lactone
formation;
reduction
Carboxymethylation;
imine formation;
tautomerization
Tandem Mannich-
aza-Cope
rearrangement
Epoxide
opening
Zn:
H
a. NaOMe, MeOH
b. DIBAL-H
CH
2
(CO
2
H)
2
Ac
2
O, ?
(65%)
1: (¨C)-strychnine
[lactamization]
(65%)
(98%)
(70%)
2: Wieland-
Gumlich
aldehyde
3
4 5
6
7
8 9 10 7
11
5
131415
4 3
2
1: (¨C)-strychnine
a)
H
19
20
[isomerizations]
Scheme 27. a) Strategic bond disconnections and retrosynthetic analysis of ( )-strychnine and b) total synthesis (Overman et al., 1993).
[58]
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 77
O OH
I
I
O
Me
O
Me MeOMeMe
Me
Me
O
N
O
O
Me
OHH
OMe
H
OMe
OH
O
H
O OH
O
Me
O
Me MeOMeMe
Me
Me
O
N
O
O
Me
OHH
OMe
H
OMe
OH
O
H
PMBO OTIPS
O
Me
O
Me MeOMeMe
N
H
OMe
OTBDPS
O
H
I
Me PMB
PMBO
OMeMeMe Me Me
OOTIPS
OMe
OTBDPS
OH
PMB
PMBO
OMeMeMe Me Me
OOTIPS
Me
OMe
OTBDPS
OH
PMB
N CO2H
Boc
Boc
O N
O
Ph Me
O
PMBO
OMeMeMe Me Me
HO
OTBS
PMBO
OMeMeMe Me Me
CHO
OPMBOTIPS
Me
Me Me(+)-Ipc
2
B
O
OTBS
OTBSOH
Me
OTBSPMBO
Me
O
OTBSPMBO
Me
Me
OTBSPMBO
Me
I
Me
O OH
I
O
Me
O
Me MeOMeMe
Me
Me
O
N
O
O
Me
OHH
OMe
H
OMe
OH
O
H
SnnBu
3
OTIPS
I
I
Me
O
Me MeOMeMe
Me
Me
NO
Me
OMe
H
OMe
OTBDPS
O
H
OTIPS
HO
OH
OTES
OTES
OMe
OTBDPS
O
O N
O
Ph Me
OMe
OTBS
O
O N
O
Ph Me
O
P(O)(OEt)2
OMe
OTBS
O
O N
O
Ph Me
Me Me
OPMBO
OMe
O OH
O
Me
O
Me MeMeOMe
Me
Me
O
N
O
O
Me
OHH
OMe
H
OMe
OH
O
H
SnnBu
3
nBu
3
Sn
OTES OTIPS
OTES
Me
O
Me MeOMeMe
Me
HN
H
OMe
OTBDPS
O
I
Me
O
Me
OMe OH
OTIPS
OH
HO
Aldol reaction
TMS Me TMS
Me
I
N
O O
O
Me
MeO
TMS
Me
O O
O
TMS
Me
OMe
O
Li
Me
TMS
Me
OMe OH PMBO
Me
OMe OTIPS PMBO
MeMe
I
OMe OTIPS OH
MeMe
I OH
O
OH
OMe OTIPS O
MeMe
I
HO
OMe
O
TMS
Me
O
O
OMe
SnnBu
3
nBu
3
Sn
(60%)
1: rapamycin
[PdCl
2
(CH
3
CN)
2
], iPr
2
NEt
a. DDQ
b. TESOTf
c. 3, DIC, HOBt
nBu
2
BOTf, Et
3
N,
a. TIPSOTf
b. HF?py
c. Swern [O]
[Nozaki-Takai-Hiyama-Kishi reaction]
(85%)
(98%)
(93%)
(83%)
(+)-Ipc
2
BOMe,
BF
3
?Et
2
O
(75%)
(72%)
a. CBr
4
, Ph
3
P, Zn
b. nBuLi; MeI
a. NaHMDS, PMBBr
b. O
3
; Me
2
S
Cp
2
ZrHCl; I
2
15 16 17
a. LiBH
4
b. pTsCl, Et
3
N, 4-DMAP
(86%)
2
20
18 19
22
23
27
(87%)
32
[Evans asymmetric aldol reaction]
31
c. LiEt
3
BH
26
a. [RhCl(Ph
3
P)
3
], Et
3
SiH
b. aq. HF
Epoxide
opening
Stille couplings
"stitching macrocyclization"
1: rapamycin
Takai reaction
Amide bond formation
a)
I
Esterification
Ni
II
/Cr
II
coupling
b)
a. nBu
3
SnH, cat.
b. I
2
cat. = [Mo(allyl)Br(CO)
2
(CH
3
CN)
2
]
tBuLi;
[2-thienylCu(CN)Li]
a. LiI, LiAlH
4
b. NaH, MeI
(81%)
(88%)
(80%)
(70%)
a. TIPSOTf
b. NIS
a. DDQ
b. Swern [O]
(95%)
a. ,LDA
b. LiOH
(92%)
3
(68%)
5 6
7
8
12
24
(96%)
c. TBDPSCI, imid.
25
iPr
2
NEt, LiCl
(75%)
(70%)
d. Swern [O]
e. HF?py
f. Swern [O]
g. HF, CH
3
CN
(27%)
[inter- followed by intramolecular
Stille couplings]
a.
DIC, iPr
2
NEt
b. OsO
4
, NMO
c. Pb(OAc)
4
d. CHI
3
, CrCl
2
10 11
4
14
3
13
a. CSA, MeOH
b. CF
3
SO
2
Cl, Et
3
N
c. K
2
CO
3
, MeOH
(65%)9
2
nBuLi, tBuOK;
(81%)
28
29
30
CrCl
2
, NiCl
2
,
21
PmBO
PmBO
Scheme 28. a) Strategic bond disconnections and retrosynthetic analysis of rapamycin and b) highlights of the total synthesis (Nicolaou et al., 1993).
[147]
REVIEWS
K. C. Nicolaou et al.
Me
OH
OAcO
HO
OBz
H
O
OAc
ON
H
O
OH
Ph
Ph
O Me
N
TESO Ph
O
Me OTBS
NNHSO
2
Ar
Ph
O
O
TPSO
Me
OBn
O
O
O
Me
OH
OH
EtO
O
O
Me
OEt
O
OH
O
O
OH
EtO
2
C
Me
O
B
Ph
O
O
O
O O
Me
OH
H
HO
EtO
2
C
Me OTBS
Li
Me
Me
OBn
O
O
H
OTBDPS
TBSO
OH
Me
OBn
OHHO
O
O
H
Me
O
O
O
Me
OTES
OAcO
HO
OBz
H
O
OAc
HO
Me
Me
OH
OAcO
HO
OBz
H
O
OAc
ON
H
O
OH
Ph
Ph
O Me
Me
OAc
Cl
CN
Me OAc
Cl
CN
Me OH
O
Me OTBS
NNHSO
2
Ar
HO OH
Me
OBn
OTBS
O
O
H
MeO OMe
Me
OBn
O
O
H
O
Me
Me
OBn
O
O
H
OTBDPS
TBSO
O
O
O
Me
OBn
OAcO
O
O
H
Me
O
O
O
OH
Me
OTES
OAcO
O
O
H
Me
O
OH
OAc
OMs
H
a. [V(O)(acac)
2
],
tBuOOH
b. LiAlH
4
c. KH, COCl
2
[McMurry
coupling]
a. Ac
2
O, 4-DMAP
b. TPAP, NMO
c. BH
3
?THF; H
2
O
2
PhB(OH)
2
3
1: Taxol
Esterification
McMurry coupling
Oxetane formation
Diels-Alder reaction
Diels-Alder reaction
Shapiro coupling
[lactone migration]
a. TBSOTf
b. LiAlH
4
c. CSA, MeOH
d. TBDPSCl, imid.
e. KH, nBu
4
NI, BnBr
[Diels-Alder
reaction]
nBuLi
a. NaHMDS,
b. HF?py
1: Taxol
Oxygenation
b)
a)
+ +
(85%)
?
(65%)
a. TBSCl,
imid.
b. H
2
NNHSO
2
Ar
(68%)
KOH, tBuOH
[boronate
cleavage]
(46% overall)
a. LiAlH
4
b. CSA,
c. TPAP, NMO
(63% overall)
a. TBAF
b. TPAP, NMO
c. TiCl
3
?(DME)
1?5
Zn/Cu
(48%)
a. HCl, MeOH
b. Ac
2
O, 4-DMAP
c. H
2
, Pd(OH)
2
/C
d. TESCl, py
e. MsCl, 4-DMAP
(46% overall)
a. K
2
CO
3
, MeOH
b. nBu
4
NOAc
c. Ac
2
O, 4-DMAP
(34% overall)
d. PhLi
e. PCC
f. NaBH
4
(17%)
2
2 3
[Diels-Alder
reaction]
4
876
5
3
9 1311
10
12
4 1415
17 1918
16
21 20
22
[Shapiro reaction](82%)
(50%)
[selective carbonate opening]
[allylic oxidation]
H
TBDPSO TBDPSO
Scheme 29. a) Strategic bond disconnections and retrosynthetic analysis of
taxol and b) total synthesis (Nicolaou et al., 1994).
[154]
oxepane systems employing specifically designed hydroxy
epoxides; b) the silver-promoted hydroxy dithioketal cycliza-
tion to didehydrooxocanes; c) the remarkable radical-medi-
ated bridging of bis(thionolactones) to bicyclic systems; d) the
photoinduced coupling of dithionoesters to oxepanes; e) the
silicon-induced hydroxy ketone cyclization to oxepanes;
f) nucleophilic additions to thiolactones as an entry to
medium and large ring ethers; g) thermal cycloadditions of
dimethyl acetylene dicarboxylate with cyclic enol ethers as an
entry to medium size oxocyclic systems; and h) the novel and
unprecedented chemistry of dithiatopazine. For a more
detailed analysis of this total synthesis, the reader should
consult ref. [3].
Dynemicin A (1995)
Dynemicin A
[180]
(1 in Scheme 35; see page 84), a dark blue
substance with strong antitumor properties and a member of
the enediyne class of antitumor antibiotics that includes
calicheamicin g
I
1
(Scheme 26), possesses a striking molecular
architecture.
[140, 181]
Isolated from Micromonospora chersina,
dynemicin includes in its structure a highly strained 10-
membered enediyne ring, and a juxtaposition of epoxide,
imine, and anthraquinone functionalities. The lure provided
by this fascinating DNA-cleaving molecule resulted in intense
synthetic studies directed towards its total synthesis. In 1993
Schreiber et al. first reported the total synthesis of di- and
trimethoxy derivatives of dynemicin methyl ester (1 in
Scheme 34; see p. 84).
[182]
This synthesis relies on the powerful
intramolecular Diels ¨C Alder reaction to construct the com-
plex enediyne region of the molecule and a series of selective
follow-up reactions to reach the methylated dynemicin
targets.
Myers et al. reported the first total synthesis of dynemicin
itself in 1995.
[183]
Their synthesis, summarized in Scheme 35,
highlights a stereoselective introduction of the ene ¨C diyne
bridge, the use of a quinone imine as the dienophile in a regio-
and stereoselective Diels ¨C Alder reaction, and a number of
other novel steps to complete the total synthesis. The second
total synthesis of dynemicin was reported from the Danishef-
sky laboratory
[184]
(Scheme 36; see p. 85) and features a
double Stille-type coupling in its assembly of the enediyne
grouping. All three syntheses project admirable elegance and
sophistication.
Ecteinascidin 743 (1996)
A marine-derived natural substance, ecteinascidin (1 in
Scheme 37) possesses an unusual molecular architecture and
extremely potent antitumor properties. Isolated from the
tunicate Ecteinascidia turbinata, ecteinascidin 743 is com-
prised of eight rings, including a 10-membered heterocycle,
and seven stereogenic centers.
[185]
Prompted by its attractive
molecular architecture, impressive biological action, and low
natural abundance, Corey et al. embarked on its total syn-
thesis, and in 1996 they published the first total synthesis
[186]
of
ecteinascidin 743 based on a brilliant strategy (Scheme 37; see
p. 86).
The plan was inspired, at least in part, by the proposed
biosynthesis of the natural product. Of the many powerful
transformations in Corey s total synthesis of ecteinasci-
din 743, at least three stand out as defining attributes; an
intramolecular Mannich bisannulation sequence was instru-
mental in establishing the bridging aromatic core to the
78 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
piperazine ring, which allowed the formation of the desired
aminal functionality, while two asymmetric Pictet ¨C Spengler
reactions played key roles in forming the isoquinoline rings.
The centerpiece of the synthesis is, however, the generation
and biomimetic quinone methide capture by the sulfur atom
to construct the 10-membered lactone bridge. The masterful
use of substrate topology to predict reactivity, inflict asym-
metry, and achieve selectivity is amply demonstrated through-
out Corey s synthesis.
Finally, the success in recognizing subtle retrosynthetic
clues left by nature and applying them in the context of a
chemical synthesis elevates this total synthesis to a unique
level of brilliance. This impressive accomplishment also
speaks for the efficiency that total synthesis has reached and
the complex natural product analogues which can be synthe-
sized in large quantities.
[187]
Epothilone A (1997)
Appearing in the mid-1990s, epothilones A (1 in
Scheme 38; see p. 87) and B
[188]
stimulated intense research
activities in several laboratories.
[189]
The impetus for their total
synthesis came not so much from their modestly complex
macrolide structures but more so from their potent tubulin-
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 79
Scheme 30. a) Strategic bond disconnections and retrosynthetic analysis of zaragozic acid A and b) total synthesis (Nicolaou et al., 1994).
[164]
REVIEWS
K. C. Nicolaou et al.
80 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Me
OH
O
O
MeO
Me
OHHO
Me
O
Me
Me
Me
OH
O
OH OH
Me
Me
Me
OH
Me
O
OMe
Me
O
OMe
O
HO
OMe
OMe
Me
OH
Me
OH
OH Me
OMe
O OMe Me
OMe
O Me
OMe
O
CHO
Me
Me
OMe
O
Me
OH
Me
O
Me
OBn
Me
O
Me
OBn
Me
O
Me
OBn
B(cC6H11)2
Me
OMe
O
Me
O
Me
O
Me
OBn
Si
tBu tBu
Me
OMe
O
Me
O
Me
O
Me
OBn
Si
tBu tBu
Me
OMe
O
Me
O
Me
O
Me
Si
tBu tBu
O
Cl O
Me
]2BCl
BzO
CHO
HO
Cl O
O
O
OTBS
O
OAc
OO OOHO
Me
TMSO
Me
OTBSO
Me
MeO
2
C
BzOBzOBzO
BzO BzO
O
]2B
OTBSO
Me
MeO
2
C
HO
Me
OTBSO
Me
MeO
2
C
MeO
Me
O
Me
OTBSO
Me
HO
2
C
MeO
Me
OO
Ar
Me
O
Me
O
Si
tBu
tBu
Me
Me
OMe
O
O OTBS
Me
CO
2
Me
OMe
Me
O O
Ar
Me
OH
Me
OH
Me
Me
OMe
O
Me
OTBS
O
O
MeO
Me
OO
Me
Me
Me
O
O O
Me
Me
Me
OH
Me
O
OMe
Me
O
OMe
O
O
OMe
OMe
Ar
Ar
OTBS
Me
O OMe
Si
tBu
tBu
Me
OH
O
O
MeO
Me
OHOH
Me
O
Me
Me
Me
OH
O
OH OH
Me
Me
Me
OH
Me
O
OMe
Me
O
OMe
O
HO
OMe
OMe
OTBSO
Me
HO
2
C
MeO
Me
OO
Ar
Me
O
Me
O
Si
tBu
tBu
Me
Me
OMe
O
O OTBS
Me
CO
2
Me
OMe
Me
O O
Ar
Me
OH
Me
OH
Me
Me
OMe
O
(34%)
a. (+)-DIPT, Ti(OiPr)
4
,
tBuOOH
b. Red-Al
[catalytic asymmetric
epoxidation]
[hydroxy-directed
reductive opening of epoxide]
a. O
3
; Me
2
S; HCl
b. NaH, MeI H
2
C=CHCH
2
TMS
TMSOTf
a. O
3
; Me
2
S; HCl
b. Ph
3
P=C(Me)CHO
(cC
6
H
11
)
2
BCl,
Et
3
N
[Paterson anti-aldol coupling]
a. Me
4
NBH(OAc)
3
b. tBu
2
Si(OTf)
2
a. thexylborane;
H
2
O
2
, NaOH
b. (imid)
2
C=S
c. nBu
3
SnH
a. H
2
, 10% Pd/C
b. Swern [O] [deoxygenation]
[hydroboration-oxidation]
(79%)
(96%)
(82%)
(97%)
(83%)
BF
3
?OEt
2
14
a. , iPr
2
NEt
b.
Brown's
syn-crotylboration
Paterson anti-
aldol reaction
(84%)
(70%)
(93%)
a)
Yamaguchi
esterification
Yamaguchi
macrolactonization
Mukaiyama coupling
b)
(78%)
1: swinholide A
Vinylogous Mukaiyama
aldol reaction
654 7
9
12
11
13
10
8
[asymmetric aldol reaction]
(56%)
TMSOTf,
iPr
2
NEt
(61%)
a. NaBH
4
, CeCl
3
?7H
2
O
b. Ac
2
O, iPr
2
NEt
[Luche reduction]
TiCl
2
(OiPr)
2
(85%)
[vinylogous Mukaiyama
aldol reaction]
(87%)
a. (MeO)
2
P(O)CH
2
CO
2
Me, nBuLi
b. TBSOTf
c. K
2
CO
3
, MeOH
d. Dess-Martin [O]
24
(74%)
[stereocontrolled Mukaiyama coupling/
chelation-mediated 1,3-syn reduction/
1,3-diol protection sequence]
[Wacker oxidation]
[Horner-Emmons reaction]
a. MeOTf
b. PdCl
2
,
CuCl, O
2
[Brown's syn
-crotylboration]
a. 25, LiHMDS, TMSCl, Et
3
N
b. 14, BF
3
?OEt
2
c. nBu
2
BOMe; LiBH
4
; H
2
O
2
d. p-MeOC
6
H
4
CH(OMe)
2
, CSA
e. NaOH, H
2
O, MeOH
; H
2
O
2
19 18
15
16
17
22
20
(94%)
23
3
25
2
2,4,6-Cl
3
C
6
H
2
COCl, Et
3
N, 3;
4-DMAP, 2
a. CH
2
N
2
b. HF?py, py
(54%)
(65%)
d. 2,4,6-Cl
3
C
6
H
2
COCl,
Et
3
N; 4-DMAP
e. HF/H
2
O/MeCN
1: swinholide A
(27%)
a. TBSCl, Et
3
N
b. HF?py, py
c. Ba(OH)
2
?8H
2
O,
MeOH
[Yamaguchi
macrolactonization]
26
20 21
(80%)
[Yamaguchi
esterification]
Dimerization
2
3
Scheme 31. a) Strategic bond disconnections and retrosynthetic analysis of swinholide A and b) total synthesis (Paterson et al., 1994).
[170]
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 81
Me
OH
O
O
MeO
Me
OHHO
Me
O
Me
Me
Me
OH
O
OH OH
Me
Me
Me
OH
Me
O
OMe
Me
O
OMe
O
HO
OMe
OMe
O OH
HO
Me
OH
OH
O
HO
Me
OH
OH
OMe
OMe
Me Me
N
N
OMe
OMe
OMe
Me
O
Me
OBn
OBn
Me
O
H
OMe
OMe
O
Me Me
OBn
OBn
Me
OH
OMe
OMe
TBSO
Me Me
OBn
OBn
Me
OBz
OMe
OMe
TBSO
Me Me
O
O
Me
OBz
S
HO OMe
O
Me
PMBO
OH
Me
PMBO
O
Me I
O
O
PMBO
OH
Me
O
PhSO2
OMe
OMe
OMe
PMBO
Me
OMe
O O
TMS
BzO
Me
OMe
O O
OTMS
OMe
SH SH
Me
OMe
O
OTBS
S
S
Me
TBSO
OMe
OMe
TBSO
Me Me
OH
Me
OBz
S S
Me
OMe
O
OTBS
Me
OTBS
OMe
OMe
TBSO
Me Me
O
Me
OH
Me
OMe
O
OTBS
Me
OH
O
Ar
OMe
OMe
TBSO
Me Me
O
Me
OH
Me
OMe
O
OTBS
Me
O
Ar
CO
2
Me
OMe
OMe
TBSO
Me Me
O
Me
OTMS
Me
OMe
O
OTBS
Me
O
Ar
CO
2
H
Me
OH
O
O
MeO
Me
OHOH
Me
O
Me
Me
Me
OH
O
OH OH
Me
Me
Me
OH
Me
O
OMe
Me
O
OMe
O
HO
OMe
OMe
O
O
OTBSO
Me
HO
2
C
MeO
Me
OO
Ar
Me
TMSO
Me
TBSO
Me
Me
OMe
O
O OTBS
Me
CO
2
Me
OMe
Me
O O
Ar
Me
OH
Me
OTBS
Me
Me
OMe
O
5: L-rhamnose
a. Ac
2
O, Et
3
N,
4-DMAP
b. CH
2
=CHCH
2
TMS,
BF
3
?OEt
2
, TMSOTf
c. NaOMe, MeOH
a. nBu
2
SnO; CsF, MeI
b. NaH, CS
2
; MeI
c. nBu
3
SnH, AIBN
a. O
3
; NaBH
4
b. I
2
, Ph
3
P, imid.
c. LDA,
d. O
3
4
TiCl
4
, Et
3
N
a. PhCHO, SmI
2
b. TBSOTf
a. H
2
, 10% Pd/C
b. SOCl
2
, Et
3
N
c. RuCl
3
, NaIO
4
(74%)
(35%)
(67%)
Yamaguchi
macrolactonization
Dithiane-cyclic
sulfate coupling
(68%)
(94%)
[selective methylation/
Barton-McCombie deoxygenation
sequence]
1: swinholide A
b)
a)
Yamaguchi
esterification
[aldol condensation]
(77%)
[Enders alkylation]
Enders alkylation
Mukaiyama aldol
[1,3 anti-reduction;
Evans-Hoveyda modification
of the Tishchenko reduction]
a. PMBCO(NH)CCl
3
,
CSA
b. DIBAL-H
c. (+)-Ipc
2
B(allyl);
NaOH, H
2
O
2
nBuLi;
CO
2
;
I
2
a. NaH, MeI
b.
DMPU, nBuLi; H
2
SO
4
;
pTsOH; Et
3
N, DBU
a. TiCl
2
(OiPr)
2
,
b. TBSOTf
c. K
2
CO
3
, MeOH
d. Swern [O]
e. TiCl
4
,
f. DIBAL-H
g. TBSOTf
[Ghosez lactonization]
a. DIBAL-H
b. BF
3
?OEt
2
,
c. BzCl, Et
3
N
d. OsO
4
, NMO;
Pb(OAc)
4
K
2
CO
3
, MeOH
(74%)
(52% overall)
(84%)
(60%)
(50%)
Ghosez
lactonization
76
9
17
[selective desilylation]
Dimerization
3
8
12 11
1513 14
10
2
21 19
22
23
[cleavage of dithiane functionality]
[syn 1,3-selective reduction]
a. MnO
2
b. (MeO)
2
P(O)CH
2
CO
2
Me, nBuLi
(92% overall)
2
1: swinholide A
a. tBuLi, HMPA;
b. H
2
SO
4
(72%)
(68% overall)
a. NBS, AgClO
4
b. nBu
3
B; NaBH
4
; H
2
O
2
, NaOH
c. p-MeO-C
6
H
4
CH(OMe)
2
, CSA
d. DIBAL-H
e. HF?py, py
20
3
(82%)
a. NaOH, MeOH/THF/H
2
O
b. TMSOTf, iPr
2
NEt
1618
(7% overall)
a. 2,4,6-Cl
3
C
6
H
2
COCl, Et
3
N, 2,
4-DMAP
b. PPTS, MeOH
c. Ba(OH)
2
?8H
2
O
d. 2,4,6-Cl
3
C
6
H
2
COCl, Et
3
N;
4-DMAP
e. HF/H
2
O/MeCN
[Yamaguchi esterification]
[Yamaguchi
macrolactonization]
Scheme 32. a) Strategic bond disconnections and retrosynthetic analysis of swinholide A and b) total synthesis (Nicolaou et al., 1995).
[171]
REVIEWS
K. C. Nicolaou et al.
binding properties and their potential to overshadow taxol as
superior anticancer agents. The first total synthesis of
epothilone A came from the Danishefsky laboratories in
1996
[190]
and was followed shortly thereafter by syntheses from
our laboratories
[191]
and from those of Schinzer.
[192]
Danishef-
sky s first total synthesis of epothilone A (Scheme 38) fea-
tured a Suzuki coupling reaction to form a crucial C
C bond
and an intramolecular enolate ¨C aldehyde condensation to
form the 16-membered macrocyclic lactone. This method as
well as others allowed the Danishefsky group to synthesize
several additional natural and designed members of the
epothilone family, including epothilone B,
[193]
for extensive
biological investigations.
Chemical biology was also on our minds in devising a
solution and a solid-phase total synthesis
[194]
of epothilone A
(1). As shown in Scheme 39 (see p. 87) this new solid-phase
paradigm of complex molecule total synthesis relied on a
novel olefin metathesis strategy.
[195]
Of special note is the
cyclorelease mechanism of this approach by which the 16-
membered epothilone ring was constructed with simultaneous
cleavage from the resin. Most importantly, this solid-phase
strategy allowed the application of Radiofrequency Encoded
Chemistry (REC; IRORI technology)
[196]
to the construction
of combinatorial epothilone libraries
[197]
for chemical biology
studies. The power of chemical synthesis of the 1990s in
delivering large numbers of complex structures for biological
screening was clearly demonstrated by this example of total
synthesis, marking, perhaps, a new turn for the science.
Eleutherobin (1997)
A marine natural product of some note, eleutherobin (1 in
Scheme 40; see p. 88) includes in its structure a number of
unique features. Isolated from an Eleutherobia species of soft
corals and reported in 1995,
[198]
this scarce natural product
elicited immediate attention from the synthetic community as
a result of its novel molecular architecture and tubulin binding
properties. Among the challenges posed by the molecule of
eleutherobin are its oxygen-bridged 10-membered ring and its
glycoside bond. Solutions to these problems were found in our
1997 total synthesis
[199]
as well as in Danishefsky s total
synthesis,
[200]
which followed shortly thereafter. Scheme 40
summarizes our strategy to eleutherobin from ( )-carvone.
Highlights include the intramolecular acetylide ¨C aldehyde
condensation to give the desired 10-membered ring and the
spontaneous intramolecular collapse of an in situ generated
hydroxycyclodecenone to form eleutherobin s bicyclic frame-
work. This total synthesis exemplified the power of chemical
synthesis in delivering scarce natural substances for biological
investigations.
Sarcodictyin A (1997)
Sarcodictyins A and B (1 and 2 in Scheme 41; see p. 88) are
two marine natural products discovered in 1987 in the
Mediterranean stoloniferan coral Sarcodictyon roseum.
[201]
82 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 33. a) Strategic bond disconnections and retrosynthetic analysis of
brevetoxin B, b) key synthetic methodologies developed for the formation
of polycyclic ethers and fundamental discoveries, and c) total synthesis of
brevetoxin B (Nicolaou et al., 1995).
[178]
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 83
O
O
H H
H Me
H
H
O
O
O
H H
Me Me
O
O
O
Me
H
H
H
HO
Me
H
O
H
H
O
O
Me
O
Me H
H
H
O
O
O
H H
H Me H
H
O
O
O
H H
Me Me
O
O
O
Me
H
H
H
TBSO
Me
H
EtS
H
EtS
O
O
Me
Me H
H
OH
O
O
H H
H Me H
H
O
O
O
H H
Me Me
O
O
O
Me
H
H
H
TBSO
Me
H
O
H
H
O
O
Me
Me H
H
O
Me
H
OH
EtS
O
H
Me
H
H
PPh
3
I
Me
H
O
Me
H
O
O
Me
H
OTMS
O
Me
H
H
H
O
Me
H
O
O
H
H
Me
OTBDPS
O
O
O
Me
O
Li
Me
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
R
Me
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
O
O
Me
H
H
TBSO CHO
Me
PivO
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
O
Me
H
H
TBSO
PivO
HO
Me
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
O
Me
H
H
TBSO
PivO
Me
TESO
H
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
O
Me
H
H
H
O
Me
TBSO
H
CO
2
Me
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
O
Me
H
H
H
O
Me
H
O
TBS
O
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
O
Me
H
H
H
O
Me
H
O
O
TBSO
H
H
Me
Me
H
O
Me
H
O
O
OBn
Me
H
OBn
O
Me
H
H
H
O
Me
H
O
O
H
H
Me
O
H
O
Me
H
O
Me
H
O
O
TfO
OBn
Me
H
OBn
O
HO
OH
H
H
HO
O
Me
H
OPh
O
Me
H
OH
O
OPh
H
Me
OH
OMe
O
Me
H
OPh
O
Me
H
O
TBS
O
Me
H
OPh
O
Me
H
O
H
Me
OH
O
Me
H
TBSO
O
Me
H
H
Me
OBn
OBn
TBSO PPh
3
Me
H
HO
O
Me
H
H
Me
OBn
OBn
O
OH
O
O
Me
O
CO
2
Et
O
HO
OH
OH
HO
OH
TMS
OMe
O
TBDPSO
OH
H
O
O
Me
Me
O
TBDPSO
H
OBn
HO
O
TBDPSO
H
OBn
HO
Me
O
TBDPSO
H
OBn
HO
Me
CO
2
Me
H
O
TBDPSO
H
OBn
Me
O
MeO
2
C
H
H
O
TBDPS
O
TBDPSO
H
OBn
Me
O
H
H
HO
O
MeO
2
C
O
TBDPSO
H
OBn
Me
O
H
H
O
MeO
2
C
H
HO
H
O
H
OTBS
Me
O
H
HH
O
TBSO
O
H
OTBS
Me
O
H
H
O
H
H
TBDPSO
O
SEt
EtS
TBDPSO
Me
(75%)
10 steps
G
a. TBSCl, imid.
b. 9-BBN;
H
2
O
2
, NaOHPPTS
F
[6-endo ring closure]13: 2-deoxy-D-ribose
(74%)
F
a. DIBAL-H
b. mCPBA
c. SO
3
?py
(77%)
(49%)
G
d. CH
2
PPh
3
e. TBAF
f. PPTS
15 16 17
c. Swern [O]
d. Ph
3
P=C(Me)CO
2
Et
18
a.
b. H
2
, Pd/C
c. CSA, MeOH
d. Swern [O]
7 steps
F
(89%)
B
K
A
E
DC
F G
DCB
E
I
H
J
A
F
A
I
J
K
G
CB D
E F G
14
(83%)
e. NaClO
2
, NaH
2
PO
4
f. TBAF
F
(65%)
R =
G
19
(58%)
F
A D
E F G
CB
a. nBuLi, HMPA, 3
b. PPTS, MeOH
a. Ph
3
SnH, AIBN
b. PCC
c. TBAF
d. DMP
(42% overall)
a. CH
2
=NMe
2
I
b. HF?py
(76%)
30
[oxygenation]
[hydroxy dithioketal
cyclization]
[reductive desulfurization]
2
38
a. TBAF
b. BrCH
2
COCl, py
c. (MeO)
3
P
d. iPr
2
NEt, LiCl
(65%)
FE G
31
DBA
E F G
C
(69%)
B
[(2-thienyl)(CN)CuLi]
[Murai coupling]
F GE
D
a. PPTS, H
2
O
b. BH
3
?THF; H
2
O
2
, NaOH
c. LiOH, MeOH, H
2
O
E
(85%)
G
a. LiHMDS, HMPA; PhNTf
2
b. CrCl
2
, NiCl
2
,
F
(62%)
[Ni
II
/Cr
II
coupling]
D
F G
2422
a. 2,4,6-Cl
3
C
6
H
2
COCl,
Et
3
N; 4-DMAP
C
2928
26
E F
[Barton-McCombie
deoxygenation reaction]
G
1: brevetoxin B
AgClO
4
,
NaHCO
3
,
SiO
2
, 4 ? MS
a. DIBAL-H
b. BF
3
?Et
2
O, Et
3
SiH
c. Li, (l) NH
3
d. pTsCl, py
e. NaI
f. TMS-imid.
g. Ph
3
P
a. DIBAL-H
b. Ph
3
P=CHCO
2
Et
c. DIBAL-H
d. (+)-DET, Ti(OiPr)
4
tBuOOH
(72%)
G
D
a. TBAF
b. PPTS
c. TBSOTf
d. O
3
; Ph
3
P
e. MeMgCl
f. DMP
C
E
D
E
F
D
E GF
D
a. DIBAL-H
b. DMP
c. (MeO)
2
P(O)CH
2
CO
2
Me,
NaHMDS, [18]crown-6
(47%)
a. KH, CS
2
; MeI
b. nBu
3
SnH, AIBN
c. BH
3
?THF
d. TESOTf
E F G
C
(64%)21
[intramolecular
Horner-Wadsworth-Emmons
olefination]
(58%)
I
J
G
K
I
H
21
20
K
c)
a. Ac
2
O, py
b. BF
3
?Et
2
O, TMSOTf,
(62%)
K
c. Amberlyst-15
d. nBu
2
SnO; BnBr
a. DIBAL-H
b. mCPBA
c. Swern [O]
(69%)
K
a. NaH
[Intramolecular
conjugate addition]
b. DIBAL-H;
Ph
3
P=CHCO
2
Me
J
(58%)
KJ
(71%)
J I I J
(68%)
(55%)
[6-endo hydroxy
epoxide
cyclization]
J
3
I
4: D-mannose
a. Swern [O]
b. AlMe
3
,
MgBr
2
?Et
2
O
d. O
3
; Me
2
S, Ph
3
P
e. Ph
3
P=CHCO
2
Me
K
(61%)
(34%)
K K
a. EtSH, Zn(OTf)
2
b. CSA, MeOH CSA
(35%)
c. NaOMe, MeOH
d. TBDPSCl, imid.;
CSA,
a. Im
2
C=S
b. nBu
3
SnH, AIBN
a. O
3
; Me
2
S, Ph
3
P
b. CH
2
=CHMgBr
c. TPSCl, imid.
d. Ph
3
P=CHCO
2
Me
e. TBAF
5 6 7
8
91011
12
c. SO
3
?py, Et
3
N,
DMSO
12 steps
b. LiHMDS, HMPA;
PhNTf
2
d. 2,4,6-Cl
3
C
6
H
2
COCl,
Et
3
N; 4-DMAP
23
d. CSA, MeOH
e. KH
e. SO
3
?py
f. CH
2
=PPh
3
25
[methylenation]
27
H
H
H H
H
TBDPSO
Scheme 33. (Continued)
REVIEWS
K. C. Nicolaou et al.
H
HN
H
O
OMe
O
O
OMe
OMe
CO
2
Me
OCH
3
Me
H
N
H
OMe
CO
2
Me
OMe
MeO
O
CO
2
Me
O
OMe
OMe
O
Br
H
N
H
OMe
MeO
O
O
O
H
H
MeO
N
OMeO
H
Me
OH
HO
2
C
N
BrMeO
N
BrMeO
TBSO
SnnBu3
Me
MeO
N
Me
OTBS
MeO
N
OMeO
H
Me
OH
MeO
2
C
SiR3BrMg
H
N
H
OMe
MeO
MeO
O
O
H
H
Cl Cl
Cl
COCl
H
N
H
OMe
MeO
O
O
O
H
H
OBz
O
OBz
O
Cl
H
H
S
O
O
NHNH2
O
Me
O
N
O
O(CH
2
)
3
OBz
H
H
H
OMe
N
H
NH
H
N
H
OMe
Me
O
O
H
H
H
H
OMe
Me
H
O
O
O
OH
OBz
H
N
H
OMe
Me
OH
CO
2
Me
O
O
CO
2
Me
O
OMe
OMe
O
Br
H
N
H
OMe
Me
OMe
CO
2
Me
O
O
CO
2
Me
OMeO
OMe
O
H
H
N
H
OMe
Me
OMe
CO
2
Me
O
O
CO
2
Me
OMe
OMe
COCl
H
N
H
OMe
O
OH
OMe
OMe
CO
2
Me
OMe
Me
H
HN
H
O
OMe
O
OH
OMe
OMe
CO
2
Me
OMe
Me
H
HN
H
O
OMe
O
O
OMe
OMe
CO
2
Me
OMe
Me
O
O
N
O
O
O
O
MeO
2
C
HO
BzO
[Pd(PPh
3
)
4
]
[-N
2
]
2
Pd-catalyzed
coupling
a. ClCO
2
Me,
3
Friedel-Crafts
Diastereoselective
epoxidation
+
Allylic
diazene
rearrangement
Tandem
macrolactonization-
Diels-Alder
Pd-catalyzed
coupling
Stereoselective
imine attack
[Sonogashira coupling]
a. MeAlCl
2
,
Et
3
SiH
b. SOCl
2
[Friedel-Crafts]
a. LiOH
b. 4-DMAP,
[tandem Yamaguchi
macrolactonization-
Diels-Alder]
a. KOH
b. py,
a. CAN [oxidation of C-9]
b. MeAlCl
2
; then
a. KHMDS,
MoOPh
b. NaBH
4
c. NaOMe
d. (Cl
3
CO)
2
CO
a. DMP
b. NaClO
2
c. LiOH
d. CH
2
N
2
e. NaIO
4
+
a. AgOTf
b. K
2
CO
3,
Me
2
SO
4
a)
b)
4
a. mCPBA
b. DBU, MeOH
(85%)
(12%)
(33%)
(82%)
(ca. 80%)
(ca. 50%)
[Stille coupling]
b. TBAF
c. BrCH=CHCO
2
Me,
[Pd(PPh
3
)
4
]
(ca. 20%)
(57%)
(82%)
(51%)
[Friedel-Crafts]
(50%)
1: tri-O-methyl dynemicin A
methyl ester
5
6
6 7
584
9
2 3
10
11
11
12
13
141: tri-O-methyl dynemicin A methyl ester
[oxidation at a and
deprotection at b]
3
[reprotection of b]
9
[allylic diazene rearrangement]
a. TMSOTf
b. DDQ
a. CAN
b. Cs
2
CO
3
, MeI
a
b
Scheme 34. a) Strategic bond disconnections and retrosynthetic analysis of
tri-O-methyl dynemicin A methyl ester and b) total synthesis (Schreiber
et al., 1993).
[182]
Scheme 35. a) Strategic bond disconnections and retrosynthetic analysis of
dynemicin A and b) total synthesis (Myers et al., 1995).
[183]
84 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
H
HN
H
O
OH
O
O
OH
OH
H
N
H
O
O
CO
2
MOM
OMe
CO
2
H
OMe
MOMO
MOMO
Me
Me
O
O
O
H
N
O
TBSO
OH
OH
Me
I
I
Me
3
Sn
SnMe
3
O
O
TMS
N
Me
OTBS
OTBS
OH
CHO
OMe
Br
EtO
P
O
OEt
CO2Et
O
OMe
CHO
O
OMe
H
H
Me
CHO
O
O
H
OH
O
Me
N
Me
TBSO
OTBS
N
Me
OTBS
OTBS
O
O
Ph
Ph
Me
O
O
N
O
O
OTBS
TIPS
TIPS
BrMg
Cl
O
O
N
Me
OTBS
OTBS
O
O
Ph
Ph
R
TIPS
H
N
Me
OTBS
O
O
Ph
Ph
TIPS
H
R
O
O
N
Me
OTBS
OAc
OAc
H
R
TMS O
O
Cl
H
N
H
O
OTBS
OH
OH
Me
R
Me3Sn
SnMe3
H
N
H
O
OTBS
OH
OH
Me
O
O
TMS
R
H
N
H
O
OTBS
CO
2
MOM
OMe
Me
R
H
N
H
O
O
CO
2
MOM
OMe
Me MOMO
MOMO
O
O
O
H
HN
H
O
OHO
MOMO
MOMO
CO
2
H
OMe
Me
H
HN
H
O
OHO
MOMO
MOMO
CO
2
H
OMe
Me
H
HN
H
O
OH
O
O
OH
OH
CO
2
H
OMe
Me
O
O
O
H
OH
O
Me
Ph
Ph
b)
+
Carbonylation
Ring stitching
Oxidation
a)
Stereoselective
imine attack
Diels-Alder
Diastereoselective
epoxidation
b. NaH,
c. DIBAL-H
d. Swern [O]
ZnCl
2
[O]
Imine formation
1: dynemicin
2
3
a. K
2
CO
3
,
CAN
a. NH
4
OAc, HOAc, ?
b. TBSCl, imid.
a. OsO
4
, NMO
b. Ph
2
C(OMe)
2
;
TBSCl, imid.
a. Tf
2
O
b. DMP
c. CrCl
2
[triflate
removal]
d. MgBr
2
,
Et
3
N, CO
2
e. MOMCl
f. CH
2
N
2
a. TBAF
b. PhI(OAc)
2
+
a. [Pd(PPh
3
)
4
],
morpholine
b. NaH,
a. HCl
b. Swern [O]
c. Ph
3
P, CBr
4
d. nBuLi
[Corey-Fuchs
homologation]
R=
a. TBAF
b. HCl
c. NaH, TBSCl
d. Ac
2
O, Et
3
N
a. AgNO
3
, NIS
b. [Pd(PPh
3
)
4
],
R=
2
LiHMDS
-[CO
2
]
[Tamura
homophthalic
anhydride
protocol]
a. PhI(OCOCF
3
)
2
, THF
b. air, daylight
MgBr
2
, Et
2
O
(82%)
(60%)
(90%)
(87%)
(80%)
(80%)
(54%)
(60%)
(78%)
(74%)
(29%)
(15%)
45
87
5
9
10
1112
4
13 14 15
1617
3 18 19
201: dynemicin
c. NH
3
, MeOH
d. mCPBA
[selective triflation at C-5]
(60%)
+
5
6
Diels-Alder
[Diels-Alder]
Scheme 36. a) Strategic bond disconnections and retrosynthetic analysis of
dynemicin A and b) total synthesis (Danishefsky et al., 1996).
[184]
Their potent antitumor properties are due, at least in part, to
their tubulin-binding properties, resembling both eleuthero-
bin and taxol in this regard.
[202, 203]
While the structural
similarities of the sarcodictyins to eleutherobin are apparent,
the correspondence of these molecules to taxol is not so
obvious.
[203]
Nevertheless, the excitement generated from
their taxol-like properties, coupled with their scarcity, led to
the launching of programs directed toward their total syn-
thesis.
It is noteworthy that the impetus for the chemical synthesis
of these molecules in the 1990s was provided not only from
their structural novelty, but also from the desire to apply
organic synthesis as an enabling technology for chemical
biology. Thus, the total synthesis of sarcodictyins A and B,
accomplished in these laboratories in 1997,
[204]
went further
than delivering the natural substances. It was applied,
particularly in its solid-phase version (Scheme 41; see p. 88),
to the construction of combinatorial libraries for the purposes
of biological screening.
[203, 205]
That complex natural products
such as the sarcodictyins could be synthesized, at least
partially, on a solid phase is testament to the power and
potential of the recent advances in solid-phase chemistry.
Even more telling is the ability of synthetic chemistry at the
turn of the century to deliver combinatorial libraries of
complex natural or designed products such as those synthe-
sized in this program and in the one described above for the
epothilones.
Resiniferatoxin (1997)
A structural relative of phorbol ester,
[206]
resiniferatoxin (1
in Scheme 43; see p. 92)
[207]
was isolated from the E. resinifere
cactus species and exhibits¡ªunlike phorbol but like capsai-
cin
[208]
¡ªbinding affinity to the vanilloid receptor present in
sensory neurons. Besides its potential in biology and medi-
cine, resiniferatoxin offers opportunities to the synthetic
chemist, among which is the application of new methods of
synthesis to the construction of the molecule. The structure of
resiniferatoxin contains an ABC ring skeleton with two trans
fusions. The C-ring carries five contiguous stereocenters, three
of which bear hydroxyl groups which are engaged in a benzyl
orthoester system. Following their success with phorbol
ester
[209]
the Wender group at Stanford reported the total
synthesis of resiniferatoxin in 1997.
[210]
This synthesis
(Scheme 43) brilliantly blends classical synthetic methods
with modern methodological advances in a strategy that
stands as a hallmark to the progression of natural product
synthesis. Highlights include an intramolecular [3 2] dipolar
cycloaddition reaction between an oxidopyryllium ion and a
terminal olefin to construct the BC framework, and a
transition metal-induced ring closure of an eneyne to form
the cyclopentane system (ring A).
Brevetoxin A (1998)
Within the polluted ¡°red tide¡± waters often resides a more
powerful neurotoxin, and that is brevetoxin A (1 in
Scheme 42; see p. 90). Isolated from the dinoflagellate species
Ptychodiscus brevis Davis (Gymnodium breve Davis), breve-
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 85
REVIEWS
K. C. Nicolaou et al.
toxin A was structurally elucidated in 1986.
[211]
With its ten
fused ring structure and its twenty-two stereocenters, breve-
toxin A rivals brevetoxin B in complexity, but as a synthetic
target it arguably exceeds the latter in difficulty and challenge
because of the presence of the 9-membered ring. Indeed, with
rings ranging in size from 5- to 9-membered, all sizes in
between included, brevetoxin A can be considered as the
ultimate challenge to the synthetic chemist as far as medium-
sized ring construction is concerned. After a ten-year
campaign, our group reported the total synthesis of brevetox-
in A (Scheme 42) in 1998.
[212]
As in the case of brevetoxin B,
this program was rich in new synthetic technologies and
strategies, which emerged as broadly useful spin-offs
(Scheme 42 c). Amongst the most important synthetic tech-
nologies developed during this program was the palladium-
catalyzed coupling of cyclic ketene acetal phosphates gen-
erated from lactones with appropriate appendages to afford
cyclic enol ether diene systems
[213]
suitable for a cycloaddition
reaction with singlet oxygen (24!26 in Scheme 42). This
method provided the crucial turning point in solving the
problems associated with the 7-, 8-, and 9-membered rings of
the target and opened the gates for the final and victorious
drive to brevetoxin A.
Manzamine A (1998)
Manzamine A (1 in Scheme 44; see p. 93) is a sponge-
derived substance (genera Haliclona and Pellina) with potent
antitumor properties. Disclosed in 1986,
[214]
the structure of
manzamine A, and those of its subsequently reported rela-
tives,
[215]
attracted a great deal of attention from synthetic
chemists. The interest in the manzamines as synthetic targets
86 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 37. a) Strategic bond disconnections and retrosynthetic analysis of ecteinascidin 743 and b) total synthesis (Corey et al., 1996).
[186]
Me
N
N
NH
HO
MeO
AcO
Me
O
O H OH
H
H
H
Me
OMe
HO
S
O
O
O
O
OH
Me
NH
O
H
O
O
H
NAllO
O
H
OMe
TBSO OTBS
NH
2
HO
MeO
S FlO
OH
NHCO
2
All
Mannich bisannulation
Esterification
1: ecteinascidin 743
Curtius rearrangement
Spiro tetrahydroisoquinoline
formation
a)
2 3 4 5
Fl =
CO
2
All
Me
N
N
NH
HO
MeO
AcO
Me
O
O H OH
H
H
H
Me
OMe
HO
S
O
O
Me
N
N
AcO
Me
O
O H CN
H
H
H
Me
OMe
O
S
O
O
O
MOM
O
O
OAllyl
Me
N
O
H
O
H
OMe
TBSO OTBS
CN
HN CO2All
O
O
AllylO
Me
N
H
OMe
HO OH
CN
N
HO
H
CO
2
All
O
O
AllylO
Me
N
H
OMe
HO OH
CN
N
HO
H
H
Me
O
O
O
Me
N
H
OMe
MOMO Me
CN
N
H
H
OH
S FlO
NHCO
2
All
O
Me
N
N
AcO
Me
O
O H CN
H
H
H
Me
OMe
O
S
O
O
MOM
NHH
CO
2
All
Me
O
O
OH
Me
N
H
OMe
MOMO Me
CN
N
TBDPSO
H
H
H
NMe
O
H
O
N
O
O
O
a. Tf
2
NPh, Et
3
N, 4-DMAP
b. TBDPSCl, 4-DMAP
c. MOMBr, iPr
2
NEt
d. [PdCl
2
(Ph
3
P)
2
], nBu
3
SnH
e. formalin, NaBH
3
CN
f. Me
4
Sn, [PdCl
2
(Ph
3
P)
2
],LiCl
(55% overall)
(79%)
a. nBu
3
SnH, [PdCl
2
(Ph
3
P)
2
]
b. , DBU
(70%)
Tf
2
O, DMSO; iPr
2
NEt; tBuOH;
(Me
2
N)
2
C=NtBu
[deprotects thiol]; Ac
2
O
a. 5
b. CF
3
CO
2
H
c. AgNO
3
- H
2
O
a. 4 , AcOH, KCN
b. Cs
2
CO
3
, allylbromide
(53%)
b. KF?2H
2
O, MeOH
c. CH
3
SO
3
H
(55%)
[Mannich bisannulation]
a. (PhSeO)
2
O
b. TBAF
c. EDC?HCl, 4-DMAP,
(68%)
[position-selective
angular hydroxylation]
2
3
20
19
2122
23 24
25
26
[tandem quinodimethane formation,
deprotection and cyclization]
S
1: ecteinascidin 743
a. DIBAL-H
(high yield)
O
O
OBn
Me
O
OMe
O
OMeHN O
OBn
O
O
OBn
Me
O
OMe
O
OMe
O N
N
N
O
O
OBn
Me
O
OMe
O
OMeN
C
O
O
O
OH
Me
NH
O
H
O
O
O
OBn
Me
NCO
2
Bn
O
H
O
O
O
OMOM
O
O
OMOM
Me
O
O
OMOM
Me CHO
O
O
OBn
Me CHO
CO
2
All
OH
O
HO
OMe
OMe
CO
2
All
O
O
OMe
OMe
O
O
OBn
Me
O
OMe
O
OMe
O OH
O
O
OBn
Me
O
OMe
O
OMeHN O
OBn
H
[-N
2
]
(93%)
H
2
[asymmetric
hydrogenation]
[Rh(cod)-(R,R)-dipamp}] BF
4
BF
3
?Et
2
O, H
2
O
(87%)
[-N
2
]
BnOH
a. BF
3
?Et
2
O, 4? MS
b. H
2
, Pd/C
b)
a. nBuLi
b. DMF
(64%)
a. CH
3
SO
3
H
b. NaH,
BnBr
(86%)
6
BOPCl;
a. piperidine
AcOH, 9
b. [Pd(PPh
3
)
4
]
Et
3
N/HCO
2
H
(93%)
(97%, 96% ee)
(73%)
(PhO)
2
P(O)N
3
,
Et
3
N
[Curtius
rearrangement]
a. nBuLi,
TMEDA
b. MeI
7 8 9
10 12 1311
14
15
1716
18
3
REVIEWS
Natural Products Synthesis
BnO
Me
OTMS
MeMe
MeO
O
Me
O
Me
BnO
H
Me
O
Me
OH
Me
BnO
H
Me
O
Me
OH
Me
BnO
H
Me
I
MeO
BnO
S
S
TPSO
Me
HO
S
S
TPSO
Me
TBSO
O
OMe
OMe
O
TPS
Me
TBSO
OH
O
TMS
OMOM
O
Me
Ph2(O)P
N
S
I
O
Me
N
S
TPSO
O
O
TBSO
Me
O
N
S
OH
O
O
TBSO
Me
O
TBS
N
S
OO
O
O
O
HO
Me
OH
N
S
O
O
O
O
HO
Me
OH
O
N
S
O
O
O
TBSO
Me
TBSO
N
S
I
O
Me
N
S
OMe
OMe
O
TPS
Me
TBSO
O
Me
O
O
Me
Me
BnO
Me
H
O
Me
O
[hetero Diels-Alder
reaction]
(87%)
NIS, MeOH
a. TiCl
4
,
b. CSA
a. LiAlH
4
b. Et
2
Zn, CH
2
I
2
(85%)
a. nBu
3
SnH, AIBN
b. TPSCl, imid.
c. HS(CH
2
)
3
SH, TiCl
4
a. TBSOTf
b. DDQ
c. Swern [O]
(61% overall)
(59%)
(78%)
a. 9-BBN, 4; [PdCl
2
(dppf)],
Cs
2
CO
3
, Ph
3
As
b. pTsOH
(64%)
a. KHMDS
b. HF?py, py
c. TBSOTf
(47%)
a. Ph
3
P=CHOMe
b. pTsOH
c. Ph
3
P=CH
2
d. PhI(OCOCF
3
)
2
, MeOH
a. DHP. PPTS
b. TMS¨C ¨CLi
BF
3
?Et
2
O
c. MOMCl, iPr
2
NEt
d. PPTS, MeOH
e. Swern [O]
f. MeMgBr
g. TPAP, NMO
(34%)
a. nBuLi,
b. NIS, AgNO
3
c. Cy
2
BH, AcOH
d. PhSH, BF
3
?Et
2
O
e. Ac
2
O, py
7
a. Dess-Martin [O]
b. HF?py
c.
(41%)
1: epothilone A
Epoxidation
1: epothilone A
Aldol reaction
Suzuki coupling
Hetero Diels-Alder reaction
Emmons-type
homologation
2
435
2
4
5
6
(36%)
8
119
10
13 1214
3
15
[Suzuki coupling]
a)
b)
[Aldol macrocylization]
Scheme 38. a) Strategic bond disconnections and retrosynthetic analysis of
epothilone A and b) total synthesis (Danishefsky et al., 1996).
[190]
was heightened by a hypothesis put forward by Baldwin et al.
in 1992 for their biosynthesis.
[216]
By early 1999 two total
syntheses
[217, 218]
of manzamine A and evidence
[219]
supporting
the biosynthetic hypothesis had been reported.
Baldwin s intriguing hypothesis for the biosynthesis of the
manzamine alkaloids postulates four simple starting materials
and an intramolecular Diels ¨C Alder reaction as the key
process to assemble the polycyclic framework (see
Scheme 45). The first total synthesis of manzamine A ap-
peared from the Winkler group in 1998,
[217]
proceeded through
ircinal (2 in Scheme 44), itself a natural product, and involved
O
O
O
HO
Me
OH
O
N
S
O
O
O
HO
Me
OH
N
S
O
O
O
HO
Me
OTBS
N
S
OO
O
OH
O
Me
OTBS
OH
N
S
H
O
O
H
O O OTBS
Me
O OTBS
CO
2
H
EtO
2
C
N
S
N
S
O
OH
N
S
Cl O
PPh
3
O
OTBS
Me
HO Br
Me
TBSO I
Me
MgBr
Me
O
TBSO
O
O
Me
H
O
O OTBS
CO
2
H
HO
Me
O
O
O
HO
Me
O
TBS
N
S
O
Ru
Ph
PCy3
PCy3
Cl
Cl
O
O
O
HO
Me
O
TBS
N
S
O
O
O
HO
Me
OH
N
S
O
O
O
HO
Me
OH
N
S
O
OO
Me CF3
Me
O OTBS
CO2H
ZnCl
2
Olefin
metathesis/
cycloreleaseEpoxidation
a. Li
2
CuCl
4
,
b. O
3
; Me
2
S
Aldol reaction
Esterification
a. TBSCl, imid.
b. NaI, acetone
b)
(98%)
(85%)
a. (+)-Ipc
2
B(All)
b. TBSOTf
a. O
3
; Ph
3
P
b. NaClO
2
a)
(96%)
a. DIBAL-H
b. Ph
3
P=C(Me)CHO
(73%) (84%)
(88%)
(+)-Ipc
2
B(All)
a. 1,4-butanediol, NaH
b. Ph
3
P, I
2
, imid.
c. Ph
3
P
(>90%) I
NaHMDS; 10
a. HF?py
b. Swern [O]
(ca. 95%)
(ca. 90%)
DCC, 4-DMAP, 5
(>70%)
6
5
(ca. 80%)
[Aldol reaction]
[esterification]
[olefin metathesis
reaction]
TFA
CH
2
Cl
2
(two diastereoisomers)
4 products [2 from the aldol reaction and
2 from the olefin metathesis reaction, ratio 3:3:1:3]
(52%)
1: epothilone A
1: epothilone A 2
3
4
6
5
4
2
107 8
9
11 12
13 14
1715 16
LDA
18
193
chemistry employed to synthesize
combinatorial libraries
6
(91%)
(85%)
[5:1 mixture of
diastereoisomers]
Scheme 39. a) Strategic bond disconnections and retrosynthetic analysis of
epothilone A and b) total synthesis (Nicolaou et al., 1997).
[194, 197]
a photoinduced [2 2] cycloaddition reaction, a Mannich
closure, and an intramolecular N-alkylation to assemble the
polycyclic skeleton. In early 1999 the Baldwin group provid-
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 87
REVIEWS
K. C. Nicolaou et al.
Scheme 40. a) Strategic bond disconnections and retrosynthetic analysis of
eleutherobin and b) total synthesis (Nicolaou et al., 1997).
[199]
ed
[219]
evidence for their hypothesis through synthetic studies
culminating in the synthesis, albeit in low yield, of kerama-
phidin B (Scheme 45; see p. 93). The synthesis reported by
Martin et al. in 1999 (Scheme 46; see p. 94)
[218]
on the other
hand involved an intramolecular Diels ¨C Alder reaction and
two olefin metathesis ring closures to construct the pentacy-
clic framework of the target molecule. All three approaches
Me Me
Me
H
H
CHO
OH
Me
OTES
OTES
Me Me
Me
H
H
OH
Me
OH
O
OTIPS
Me
Me Me
O
OH
OTIPS
OH
Me
H
H
Me
Me Me
O
OAc
O
Me
H
H
OTIPS
HO OH
O
ClO
PPh
3
Me
Me Me
O
OAc
O
Me
H
H
OTIPS
O
Me
Me Me
O
O
Me
H
H
Me
Me Me
O
O
O
Me
H
H
O
OH
Me
Me Me
O
O
Me
H
H
OTIPS
O
Me
Me Me
O
OH
OH
Me
H
H
OTIPS
Me
Me Me
O
OAc
OTIPS
O
Me
H
H L
O
O
O L
Me
Me Me
O
O
OH
O
Me
H
H L
LG
LG
HO
Me
Me Me
O
O
O
O
Me
H
H
HO
H
2
N
HO
Me
Me Me
O
O
O
Me
H
H
O
X
LG
HO
Me
Me Me
O
O
O
Me
H
H
HN
(>80%)H
2
, [Rh(nbd)(dppb)]BF
4
a. TIPSOTf
b. LiHMDS
c. Dess-Martin [O]
d. Et
3
N?3 HF
a. 1,4-butanediol,
NaH
b. Ph
3
P, I
2
,
imid.
c. Ph
3
P
(65%)
4
I
NaHMDS
(>95%)
4 3
4
a. Ac
2
O, py
b. PPTS,
c. Dess-Martin [O]
(85%)
R'
Functional group
manipulations
R'
trans-Ketalization
R'''R'''
10
Cleavage
R''
+
Ester or carbonate
formation
R'
Linker
Resin
Loading
(>81%)
=
a. NaOMe
b.
c. TBAF
a.
b. PPTS,
R
1
R
1
R
3
R
2
(42-86%)
R
2
R
1
a. Dess-Martin [O]
b. NaClO
2
c. DEAD, Ph
3
P,
R
3
R
4
R
4
R
3
R
3
R
4
R
1
24: X = O, N
a. (PhO)
2
P(O)N
3
,
DEAD, Ph
3
P
b. Ph
3
P, H
2
O
c.
d. PPTS,
R
5
R
3
R
3
R
5
(46-70%)
(49-73%)
R
1
or
DCC, 4-DMAP,
d. CSA,
1 3
45
6
7
2
98
11
(>90%)
12
1314
1515
16
17
20
18
19
21
22
23
25
26
27
chemistry employed to synthesize
combinatorial libraries
a)
b)
Scheme 41. a) Strategic bond disconnections and retrosynthetic analysis of
a solid-phase sarcodictyin library and b) total synthesis (Nicolaou et al.,
1998).
[205]
88 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
are elegant in their conception and brilliant in their execution,
demonstrating once again the ability of organic synthesis to
swiftly respond to new challenges posed by novel structures
from nature.
Vancomycin (1999)
Vancomycin (1 in Scheme 47 and 48; see p. 95), a repre-
sentative of the glycopeptide class of antibiotics,
[220]
was
isolated in the 1950s and used for over four decades as a
weapon of last resort to combat bacterial disease. Isolated
[221]
from the actinomycete Amycolatopsis orientalis, vancomycin
finally yielded to structural elucidation in 1982.
[222]
Within a
few years, it became the subject of synthetic investigations,
primarily as a consequence of its novel molecular architec-
ture, important biological action and medical applications,
and intriguing mechanism of action. As a synthetic target,
vancomycin offered a unique opportunity to synthetic chem-
ists to develop new synthetic technologies and strategies.
Among the most intriguing structural features of the molecule
were its two 16-membered bisaryl ether macrocycles and its
12-membered bisaryl ring system, each of which is associated
with an atropisomerism problem. The attachment of the two
carbohydrate moieties onto the heptapeptide aglycon system
added to the challenge presented by this target molecule.
By 1998 two groups, that of D. A. Evans
[223]
and ours,
[224]
had
reported independent total syntheses of the vancomycin
aglycon and by early 1999 the first total synthesis
[225, 226]
of
vancomycin itself appeared in the literature followed by
another report of the aglycon synthesis by the Boger group.
[227]
Emanating from these laboratories, the total synthesis of
vancomycin is summarized in Scheme 48 (see p. 96). During
the vancomycin campaign, a number of new methods and
strategies were designed and developed, among which,
perhaps, the triazene-driven biaryl ether synthesis
[228]
is the
most prominent. The strategy employed modern asymmetric
reactions for the construction of the required amino acid
building blocks, which were then assembled into appropriate
peptides and cyclized to form the desired framework. While
the two biaryl ether macrocycles were formed by the triazene-
driven cyclization, the bisaryl ring framework was assembled
by a sequential Suzuki coupling and a macrolactamization
reaction. Finally, the sugar units were sequentially attached
onto an appropriately protected aglycon derivative, which
afforded a protected vancomycin system in a stereoselective
manner from which free vancomycin was obtained.
The Evans synthesis of vancomycin s aglycon, shown in
Scheme 47,
[223]
featured the stereocontrolled construction of
the amino acid building blocks and assembly to the heptapep-
tide backbone through a vanadium-mediated C
C bond
forming reaction to construct the 12-membered biaryl ring
system and two nucleophilic aromatic substitutions activated
by o-nitro groups to form the two bisaryl ether macrocycles.
The synthesis of vancomycin s aglycon
[227]
by Boger et al.
(Scheme 50; see p. 100) is distinguished by extensive studies
to determine the activation energy required to atropisomerize
each macrocycle, thereby allowing selective atropisomeriza-
tion of the AB ring system in the presence of the COD
framework. These total syntheses added yet another distin-
guished chapter to the annals of total synthesis and placed the
glycopeptide antibiotics on the list of conquests of synthetic
organic chemistry.
CP Molecules (1999)
CP-263,114 and CP-225,917 (1 and 2, respectively, in
Scheme 49; see p. 98), isolated from an unidentified fungus
by Pfizer scientists in 1997,
[229]
inhibit squalene synthase and
ras farnesyl transferase, and as such, represent important new
leads for cholesterol-lowering and anticancer drugs. Nature
molded within these structures an exotic display of delicate
and rare functionalities that beckoned to synthetic chemists
worldwide. The total synthesis of these compounds was finally
accomplished in 1999 in our laboratories after a relentless
campaign through a daunting synthetic labyrinth plagued with
manifold and unexpected obstacles.
[230]
This total synthesis is
retrosynthetically blueprinted in Scheme 49 a. A critical
disassembly maneuver called upon an intramolecular
Diels ¨C Alder reaction to simplify the bicyclic structure 6 of
the CP molecules to the open-chain precursor 7. Although this
retrosynthetic analysis serves as a conceptual overview of the
synthesis, it should be noted that it is actually the culmination
of several unsuccessful retrosyntheses by which the conver-
sion of ketone 6 into the CP molecules was planned.
Commencing with dimethyl malonate (8), the synthesis of
the CP molecules proceeded smoothly through several
intermediates and finally yielded the desired acyclic precursur
7 stereoselectively (Scheme 49 b). When compound 7 was
treated with Me
2
AlCl in dichloromethane at 20 8C,
complete conversion to 6 through a Lewis acid catalyzed
intramolecular Diels ¨C Alder reaction was observed within
two minutes. The formidable task of stereoselectively instal-
ling the remote stereocenter at C7 was addressed by utilizing
dithiane chemistry (6!15). The reason for such a high level
of diastereoselectivity (ca. 11:1) could possibly be a conse-
quence of a shielding effect of the CP skeleton. Indeed, the
surprisingly close proximity of this side chain to the rest of the
molecule was quite apparent throughout the synthesis. The
stage was now set for the installation of the fused maleic
anhydride moiety. The synthesis of this delicate moiety was in
itself a great challenge due to unique environment surround-
ing ketone 15. The development of novel chemistry to
construct the anhydride was a result of persistence in the
face of several failed strategies.
[231]
Thus, ketone 15 was
smoothly converted to the enol triflate followed by palladium-
catalyzed carboxymethylation and exchange of the dithiane
for a dimethoxy ketal leading to the unsaturated ester 16.
After reduction with DIBAL-H, a Sharpless hydroxyl-
directed epoxidation of the allylic alcohol led to epoxide 17
selectively (ca. 10:1). Introduction of this electrophilic species
allowed for the placement of an additional carbon atom with
the correct oxidation state for the ensuing cascade sequence.
This carbon atom, in the form of a cyanide, was added to
epoxide 17 using Et
2
AlCN and proceeded with complete
regio- and stereospecificity (see 17 b). It was after consider-
able experimentation that we discovered that it was possible
to convert diol 18 in one synthetic operation. Thus, selective
mesylation of diol 18, followed by treatment with base and
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 89
REVIEWS
K. C. Nicolaou et al.
90 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
O
O O
Me H
HH
Me
Me
TBDPSO
TrO
H
H
O
H
H
PPh
2
O
H
O
OMe
H
O
O
O
O
O
O
O
O
Me
H
H
H
H H H
OTBS
HHMe
H
H
H
Me
H
Me
H
H
TBDPSO
OH
EtS
TrO
H
TBDPSO
O
O
O
O
O
OO
O
O
TBDPSO
Me
H
H
H
H
H
H H H
OTBS
HHMe
H
H
H
Me
H
Me
H
H
MeO
O
O
O
O
O
O
OO
O
O
Me
H
H
H
H
H
H H H
OH
HHMe
H
H
H
Me
H
Me
H
H
O
O
O
OTBDPS
O
O O
Me H
HH
Me
Me
TBDPSO
PivO
H
H
O
H
H
H
O
O O
Me H
HH
Me
Me
TBDPSO
TrO
H
H
O
H
H
H
OH
H
O
TBSO
TBSO
O
O
O
Me
Me H
HH
Me
PivO
H
H
TBDPSO
H
H
O
O
O
O O
Me H
HH
Me
Me
TBDPSO
PivO
H
H
O
H
H
O
O
H
O
O O
Me H
HH
Me
Me
TBDPSO
PivO
H
H
O
H
H
OH
H
OH
O
O
O
Me
Me H
HH
Me
3
Sn
SnMe
3
Me
O
O
O
Me
Me H
HH
Me
BnO
OBn
O
O
O
Me
Me H
HH
Me
HO
H
H
TBDPSO
O
O
H
H
O
O
O
Me
Me H
HH
Me
PivO
H
H
TBDPSO
OAc
H
H
OH
OMe
OMe
O
O
O
Me
Me H
HH
O
O
Me
O
O
O
Me H
HH
O
O
Me
O
OBn
Me
H H
OTBS
H Me
CO
2
MeBnO
MeO
2
C
O
OBn
Me
H H
OTBS
H Me
CO
2
MeBnO
O
OH
HO OH
HO
OH
O
O
OO
O
O
O
O
O
Me
H
Me
H
H
H
Me
H
Me H H
OH
HHH
H
H
H
H
H
H
O
O
O
O
O
O
Me
H
Me
H
H
Me
H
H
HH
H
PPh
2
TPSO
O
O
OHC
EtS
O
O
O
H
Me H H
OTBS
HHH
EtS
O OMe
TrO
O
OTBDPS
O
HO
OH
OH
HO
OH
O
TBDPSO
H
OBn
TESO
O
TBDPSO
TBSO
H
OBn
O
HH
H
PPh3MeO2C OTBSO
H
OBn
O
HH
H
O
TBDPSO
OO
H
OBn
O
HH
H
O
H
O
H
Me
Me
HO
OO
H
OBn
O
HH
H
O
H
O
H
Me
Me
PPh3MeO2C
OO
H
OBn
O
HH
H
O
H
SEt
EtS
OO
H
OBn
O
HH
HH
TBDPSO
SEt
EtS
O
O
Ph H
O
H
O
OPh
OTBS
PPh3I
OO
H
OBn
O
HH
HH
SEt
TBDPSO
O
O
O
H
HPh
O
TBS
OO
H
OBn
O
HH
HH
Me
TBDPSO
O
O
O
H
HPh
TBDPSO
OO
H
OTBS
O
HH
HH
Me
TBDPSO
O
OHC
H
EtS
EtS
O
TBDPSO
B
B
C
E
H
c. AcOH-THF
G
F
J
a. AgClO
4
, NaHCO
3
b. mCPBA
c. BF
3
?Et
2
O, Et
3
SiH
d. Dess-Martin [O]
e. NaClO
2
f. CH
2
N
2
I
D
A
C
(48%)
G
(52%)
a. nBuLi, 3
b. KH, DMF
D
H I J
(49%)
E
C
[Eschenmoser's salt]
B
1: brevetoxin A
J
D
G I
b. Dess-Martin [O]
c. CH
2
=N(Me)
2
I
a. HF?py
B C D
(70%)
B
F
H
E
C D
E
B C
29
2
30
E
(78%)
c. MsCl
d. Ph
2
PLi; H
2
O
2
C DB
a. DIBAL-H
b. TrCl?4-DMAP
c. TPAP, NMO;
DIBAL-H
E
D
a. hexylborane;
H
2
O
2
, NaOH
b. TBDPSCl, imid.
c. H
2
, Pd/C
d. PPTS,
(65%)
(65%)
(91%)
(70%)
e. Ac
2
O, 4-DMAP
f. TFA
nBuLi; Cu-C¡ÔCnPr
TfOCH
2
CH
2
OBn
B CB D
c. LiOH
d. 2,4,6-Cl
3
C
6
H
2
COCl
C D
a. TPAP, NMO
b. Ph
3
P=(CH
2
)
3
CO
2
Me
B
23
21
B
[Yamaguchi lactonization]
DC D C
20
22
B C D
(69%)
19
(94%)
B
a. KHMDS, (PhO)
2
P(O)Cl
b. Me
3
SnSnMe
3
, [Pd(Ph
3
P)
4
]
18
a. H
2
, [RhCl(Ph
3
P)
3
]
b. H
2
, 10% Pd/C
DC
(70%)
C
17
c. 2,4,6-Cl
3
C
6
H
2
COCl
d. HF?py
e. [PhC(CF
3
)
2
O]
2
SPh
2
15: D-glucose
(68%)
C
a. Hg(OAc)
2
;
Li
2
[PdCl
4
], CuCl
2
,O
2
16
(73%)
J
(86%)
12 steps
(18%)
(74%)
c. H
2
, Raney Ni (W2)
d. LiAlH
4
e. TBDPSCl, imid.
a. TBAF
b. PPTS
c. O
3
; NaBH
4
d. PPTS,
Me
2
C(OMe)
2
e. TBAF
4: D-mannose
JI
a. TBAF; TPSCl, imid.
b. TBSOTf
(48%)
Dithioketal cyclization
(76%)
(88%)
(94%)
Lactonization
e. (+)-DET, Ti(iPrO)
4
tBuOOH
f. SO
3
?py
g. CH
2
=PPh
3
bis-Lactonization
(55%)
H
I J
D
Horner-Wittig coupling
Dithioketal cyclization
Lactonization
B
Epoxide opening
D
FE
G H
A
C
Epoxide opening
B C
E
G I
Conjugate addition
J
b)
a. SO
3
?py, DMSO
b.
1: brevetoxin A
H H JJ I
a. 9-BBN; H
2
O
2
b. SO
3
?py, DMSO
c.
d. DIBAL-H
a)
JI
I
(81%)
JI
2
G IH J
H
G
J
a. PPTS, MeOH
b. TBSCl, imid.
c. TPAP, NMO
d. EtSH, BF
3
?Et
2
O
e. SO
3
?py, DMSO
IH
nBuLi
a. Zn(OTf)
2
, EtSH
b. TBSCl
c. Ac
2
O
AlMe
3
a. TBAF
b. AgClO
4
, NaHCO
3
c. mCPBA
J I
[acting as
Lewis acid and
nucleophile]
H
E
C
C
D
28
a. TBSCl, imid.
b. TPAP, NMO
[reductive
cleavage of
endoperoxide]
27
B D
E
Al(Hg)
B
c. [{Ph
3
PCuH}
6
]
(65% overall)
a. (PhO)
2
P(O)Cl,
KHMDS
b. nBu
3
SnCH=CH
2
c. O
2
, hv
E
25
24
26
G JIH
[6-endo hydroxy
epoxide cyclization]
[hydroxy dithioketal
cyclization]
32
3
5
6
8
7
910
13
12
11
14
15 steps
(17%)
f. K
2
CO
3
, MeOH
g. TPAP, NMO
h. EtSH, Zn(OTf)
2
;
d. H
2
, Pd(OH)
2
/C
e. TBSOTf
PPTS
i. SO
3
?py, DMSO
b. NaHMDS, Tf
2
NPh
c. IZn(CH
2
)
2
CO
2
Me,
[Pd(PPh
3
)
4
]
a. LiOH
b. Li, NH
3
(l)
a. PivCl, 4-DMAP
c. CSA, MeOH
d. TrCl?4-DMAP
a. CH
2
=C(OMe)CH
3
, POCl
3
b. Al
2
O
3
EtS
Scheme 42. a) Strategic bond disconnections and retrosynthetic analysis of brevetoxin A, b) total synthesis (Nicolaou et al., 1998),
[212]
and c) key synthetic
methodologies developed in the course of the total synthesis (Nicolaou et al., 1998).
[212]
REVIEWS
Natural Products Synthesis
finally acidic workup afforded the maleic anhydride 5. The
course of this dizzying domino sequence undoubtedly
involves formation of the unprecedented carbocyclic imino
butenolide 21 (a proven intermediate and new chemical
entity isolated for the first time) whereupon facile tautome-
rization to the electron rich and easily oxidizable 2-amino-
furan 22 occurs.
Stepwise oxidation of the furan 22 followed by nitrogen
extrusion leads to anhydride 5. The remarkable efficiency
with which this reaction takes place (56 % overall yield,
seven transformations in one operation) is a testament to
the utility of tandem reactions in organic synthesis. After
some brief protecting group manipulations, the stage was set
for the aplication of another cascade reaction. It was found
that treatment of 23 with Dess-Martin-periodinane in
refluxing benzene led to the desired g-hydroxy lactonol in
63 % yield. This tandem reaction was based on the simple
ring ¨C chain tautomerization of hydroxy ketones and per-
mitted the crucial oxidation to take place.
[232]
The next key step involved the one-carbon elongation of
intermediate 4 by the classic Arndt ¨C Eistert reaction.
Because of the extreme steric hindrance of the carboxylic
acid derived from 4, a new method specifically tailored for
the preparation of hindered a-diazoketones was devel-
oped.
[233]
This new synthetic technology was based on the
expected extreme reactivity of the acyl mesylate species. In
the event, acyl mesylate 25 successfully activated the
hindered carboxylic acid for attack by diazomethane thus
leading to the requisite a-diazoketone for the ensuing Wolff
rearrangement. The final stage in the synthesis required
conversion of indole 27 into the CP molecules. Although the
conversion of 2 into 1 was known, the counterintuitive
conversion of the seemingly robust 1 into its hydrated
counterpart 2 appeared unlikely. We reasoned that LiOH
might be useful for effecting this conversion by virtue of its
unique solubility and reactivity. Not only did this LiOH-
mediated cascade reaction succeed in hydrolyzing the indole
amide of 27 to the corresponding carboxylic acid, it was also
able to induce ring opening of the stable pyran motif to
provide 2 directly. The conversion of 2 into 1 using acid
catalysis proceeded smoothly, thus completing the total
synthesis of the CP molecules.
In summary, the first total syntheses of these (racemic)
compounds was accompanied by a plethora of fundamental
discoveries, cascade reactions, and new synthetic technolo-
gies among which the following are, perhaps, most notable
(see Scheme 49 c, d): 1) the design and execution of a
cascade reaction involving no less than seven steps travers-
ing through previously unknown chemical entities to con-
struct the fused maleic anhydride moiety;
[231]
2) the enlist-
ment of another tandem sequence predicated on the ring ¨C
chain tautomerization of hydroxy ketones to sculpt the g-
hydroxy lactone moiety onto the bicyclic skeleton;
[232]
3) development of a mild and effective method for the
construction of extremely hindered diazoketones using acyl
mesylates (Scheme 49 d, top);
[233]
4) a new paradigm for the
two-step construction of strikingly complex natural-pro-
ductlike heterocycles from commercially available chem-
icals (Scheme 49 d, middle);
[234]
5) a new method for the
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 91
O
O
O
H
H
Ph
O
O
O
O
H
H
Ph
O
P(OPh)
2
O
O
O
O
H
H
Ph
O
O
O
H
H
Ph
O
O
O
H
H
Ph
O
O
O
H
H
Ph
SnMe
3
OEt
OEt
O
O
O
H
H
Ph
O
OTBS
O
O
Ph
O
OTBS
O
O
Ph
Me
3
Sn
O
O
O
O
H
H
H
H
H
H
H
H
O
O
Ph
O
H
H
O
O
Ph
O
O
H
H
O
O
Ph
O
H
H
O
O
Ph
H
OH
OH
O
HO
O
H
H
H
H
H
OH
H
O
O
Ph
EtS
EtS
O
S
O
H
H
O O
O
O
H
H
S
O
O
I
O
O
H
H
S
O
O
H
O
O
H
H
O
O
Li
N
O
R
N
CO
2
Me
CO
2
Ph
N
Boc
N
Boc
SnMe
3
N
Boc
SiMe
3
N
Boc
N
Boc
H
N
Boc
SiMe
3
N
Boc
e. Me
3
Si
P(OPh)
2
O
f. nBu
3
Sn
c. nBu
3
Sn
[Pd(PPh
3
)
4
], LiCl
nBu
3
Sn
b. nBu
3
SnCH=CH
2
,
[Pd(PPh
3
)
4
]
H
a. AgClO
4
b. Ph
3
SnH, AIBN
I
Pd
0
Synthesis of N-heterocycles via lactam-derived ketene aminal phosphates.
Asymmetric synthesis of cyclic amino acids
c)
Novel stereocontrolled synthesis of the nonacene ring system
of brevetoxin A. Conformational-reactivity effects in nine-membered rings
CuI, Pd
0
a. Me
3
SiCH
2
MgCl
Ni
0
g. Et
3
Al, Pd
0
b. CO, Pd
0
h. PhZnBr
Pd
0
G
Enol-phosphates and thioketal-mediated etherification for the
construction of the EFGH ring skeleton of brevetoxin A
E
(89%)
(81%)
(75%)
(84%)
Cyclic ketene acetal phosphates for the construction of medium and large cyclic ethers
hexamethylditin
[Pd(PPh
3
)
4
], LiCl
KHMDS
(PhO)
2
POCl
[Pd(PPh
3
)
4
], LiCl
F
d. Me
3
SnSnMe
3
Pd
0
tri-n-butyl(2-ethoxyvinyl)tin
[Pd(PPh
3
)
4
], LiCl
a. KHMDS,
(PhO)
2
P(O)Cl
(90%)
tri-n-butyl(1-ethoxyvinyl)tin
[Pd(PPh
3
)
4
], LiCl
Pd
0
b. H
2
,
Lindlar's
cat.
1,4-diiodobutane
THF, ?
a. O
2
, TPP
(96%)
MeOH
Scheme 42. (Continued)
REVIEWS
K. C. Nicolaou et al.
one-carbon homologation of hindered aldehydes
(Scheme 49 d, bottom);
[235]
and 6) the daring and counter-
intuitive conversion of the structurally robust CP molecule 1
into its hydrated CP derivative 2 passing through a multiply-
charged intermediate in yet another cascade sequence.
[230]
The
total synthesis of the CP molecules stands as an instructive
example of how total synthesis can act as a driving force for
the discovery and development of new concepts and methods
in chemistry.
Aspidophytine (1999)
For over 25 years aspidophytine (1 in Scheme 51; see p. 101)
has remained an unanswered challenge for organic synthesis.
Best known for its use as an anticockroach/insecticidal
powder¡ªat least since the Aztec era in parts of Mexico and
Central America
[236]
¡ªits complex structure was not elucidat-
ed until 1973 by the groups of M. P. Cava, P. Yates, and D. E.
Zacharias.
[237]
The first total (enantioselective) synthesis of
this molecule was finally completed in 1999 by E. J. Corey and
co-workers and featured a rapid assembly of the aspidophy-
tine core via a novel cascade sequence.
[238]
The hallmark of the
synthesis is the tandem sequence uniting dialdehyde 3 and
indole 2 in a one flask tandem operation. Also notable is the
conversion of acid 9 into lactone 11 by attack of the iminium
species 10. It is impressive that all four stereocenters (three
quatenary) of 1 are derived from one chiral center secured
early in the synthesis using the CBS reduction (see p. 58).
Aside from developing a breathtaking new domino sequence
to assemble the aspidophytine skeleton, this work raises the
92 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 43. a) Strategic bond disconnections and retrosynthetic analysis of resiniferatoxin and b) total synthesis (Wender et al., 1997).
[210]
REVIEWS
Natural Products Synthesis
N
Boc
H
N
H
N
N
N
N
H
OHH
H
O
H
NH
2
N
H
N
Boc
H
N
H
N
BocN
H
O
N
BocN
H
O
H
OH
HO
HO
N
BocN
H
H
O
HO
N
BocN
H
H
O
HO
H
N
BocN
H
H
HO
O
N
BocN
H
H
H
O
HO
N
BocN
H
H
H
TBSO
CO
2
Me
N
BocN
H
H
H
TBSO
CO
2
Me
N
BocN
H
H
H
TBSO
CO
2
Me
OH
N
N
CO
2
Me
OHH
H
H
N
N
CHO
OHH
H
H
N
N
HN
N
H
OHH
H
H
N
N
N
N
H
OHH
H
H
H
O
OH
Photoaddition
Pictet-Spengler cyclization
Mannich closure
(99%)
h¦Í
b)
1: manzamine A
[Michael addition]
a)
(20% overall)
+
DBU,
C
6
H
6
a. mCPBA
b. NaOMe
a. TBAF
b. pTsCl
c. TFA
d. iPr
2
NEt
e. Lindlar's cat.
py, AcOH
a. TBSCl
b. LHMDS,
MeOCOCN
c. NaBH
4
d. MsCl
e. DBU, C
6
H
6
a. DIBAL-H
b. Dess-Martin [O]
TFA, 4
[Pictet-Spengler]
DDQ
(76%)
(75%)
(58%)
(50%)
(69%)
(62%)
S
N
2 Displacement
2
3
4
2 3
5
6
7
8
9 10
11
121314
15 16
1: manzamine A
Scheme 44. a) Strategic bond disconnections and retrosynthetic analysis of
manzamine A and b) total synthesis (Winkler et al., 1998).
[217]
standards for the concise synthesis of extremely complex
alkaloids from simple starting materials.
Sanglifehrin A (1999)
Sanglifehrin A (Scheme 53; see p. 104) was originally iso-
lated by a team of Novartis scientists from an actinomycete
HN
N
N
N
H
OHH
HN
N
CHO
HH
N
N
N
N
Ph
3
P OH
O
N
CHO
OTHP
N
N
N
N
N
N
N
N
N
N
N
N
N
O
H
O
H
O
H
O
H
O
H
O
H
N
N
N
N
NH
N
CHO
b) a. pTsOH,
a)
b. KHMDS,
a. HCl
b. pTsCl
c. NaI
d. NaBH
4
a. mCPBA
b. Tf
2
O
[Diels-Alder]
MeOH/
pH 7.3
NH
3
NH
3
(50%)
(98%)
1: manzamin B
2 3
H
H
5
6
7
8
9
I
11
10
(0.2-0.3%)
(77%)
6
5 3
4: keramaphidin B
12
4: keramaphidin B
7
8
redox exchange
Scheme 45. a) Strategic bond disconnections and retrosynthetic analysis of
manzamine B and b) biomimetic total synthesis of keramaphidin B (Bald-
win et al., 1998).
[219]
strain found in a soil sample collected in Malawi.
[239]
This
molecule was found to display a very strong affinity for
cyclophillin A (20-fold higher than cyclosporin A) and sig-
nificant immunosuppressive activity (10-fold lower than
cyclosporin A). Its mode of action seems to differ from other
cyclophillin binders such as cyclosporin A and thus it raises a
high interest for the understanding of immunosuppression
mechanisms.
Sanglifehrin s chimeric structure is formed by a unique
[5.5]-spirolactam fragment, linked to a 22-membered macro-
lactone ring that contains two unusual amino acid residues
(piperazic acid and meta-tyrosine) as well as l-valine. Its
unprecedented molecular features as well as its novel bio-
logical properties made sanglifehrin A a prime target for total
synthesis. The first total synthesis of sanglifehrin A was
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 93
REVIEWS
K. C. Nicolaou et al.
O
N
N
N
N
H
OHH
H
H
NH
2
N
H
NBoc
N
CO
2
Me
O
H
H
NBoc
O
N
Br
CO
2
Me
OTBDPS
OTPS
NBoc
OTBDPS
O
CO
2
Me
Br
NH
OTBDPS
CO
2
Me
Br
NH
NBoc
OTBDPS
O
N
Boc
OH
CO
2
TBDPSO NBoc
O
N
Br
CO
2
Me
OTBDPS
OTBDPS
SnnBu3
OTBDPS
NBoc
N
CO
2
Me
H
OTBDPS
H
NBoc
N
CO
2
Me
O
H
H
Li
N
N
H
H
MeO OMe
O
O
Ru
Ph
PCy3
PCy3
Cl
Cl
N
N
HH
MeO OMe
O
Cl
O
N
N
HH
MeO OMe
OH
O
Ru
Ph
PCy3
PCy3
Cl
Cl
H
N
NH2
N
N
N
N
H
OHH
H
H
[Pd(Ph
3
P)
4
],
toluene, ?
TBDPSO
Tandem Stille/
Diels-Alder
reaction
+
+ Et
3
N
a. LHMDS, CO
2
b. NaBH
4
c. Na
2
CO
3
+
Wittig
(95%)
Pictet¡ªSpengler
cyclization
1: manzamine A
Ring-closing
olefin metathesis
b)
a)
(COCl)
2
;
[tandem Stille-
Diels-Alder]
a. CrO
3
b. HCl
c. Swern [O]
d. PPh
3
=CH
2
[allylic oxidation]
[double Wittig]
[stereocontrolled
alkyl lithium addition]
[olefin metathesis
reaction]
a. KOH, MeOH
b. Et
3
N,
[olefin metathesis
reaction]
a.
a. DIBAL-H
b. Dess-Martin [O]
c. HC(OMe)
3
,H
+
d.
b. HCl
c. DIBAL-H
d. Dess-Martin [O]
e. TFA,
f. DDQ
(79%)
(68%)
(30%)
(26%)
(67%)
(75%)
(ca. 5% overall)
2
3
4
5
6
6
7
5
4
8
29
10
11
1: manzamine A
Na
Organolithium
addition
Scheme 46. a) Strategic bond disconnections and retrosynthetic analysis of
manzamine A and b) total synthesis (Martin et al., 1999).
[218]
achieved in our laboratories in 1999.
[240]
As indicated in
Scheme 53, the two main domains of the molecule were
assembled by an intermolecular Stille coupling. The con-
struction of the sensitive iodomacrocycle fragment was
performed by an esterification, two peptide couplings, and
eventually a regioselective intramolecular Stille coupling. The
synthesis of the spirolactam moiety involved the use of
Paterson aldol reactions to establish the first five stereo-
centers, while the spirolactam fragment was formed by
intramolecular cyclization of a suitable 9-hydroxy-5-keto-
amide precursor. The developed chemistry demonstrated
once again the power of the Stille coupling reaction in the
synthesis of complex molecules and opened the way for the
construction of possible libraries for biological screening
purposes.
Everninomicin 13,384-1 (1999)
Everninomicin 13,384-1 (Ziracin; 1 in Scheme 52; see
p. 102),
[241]
a member of the orthosomicin class of antibiot-
ics
[242]
and currently in clinical trials, is a promising new
weapon against drug-resistant bacteria including methicillin-
resistant Staphylococci and vancomycin-resistant Streptococ-
ci and Enterococci.
[243]
Isolated from Micromonospora carbo-
nacea var africana (found in a soil sample collected from the
banks of the Nyiro River in Kenya), everninomicin 13,384-1
possesses a novel oligosaccharide structure containing two
sensitive orthoester moieties, a 1,1¡¯-disaccharide bridge, a
nitrosugar, several b-mannoside bonds, and terminates with
two highly substituted aromatic esters.
[244]
As a consequence of its unusual connectivity and polyfunc-
tional and sensitive nature, everninomicin 13,384-1 constitut-
ed a formidable challenge to organic synthesis. After several
generations of glycosylation and protecting group strategies
had been explored and new synthetic methodologies were
developed, the total synthesis of everninomicin 13,384-1 was
finally completed in our laboratories in 1999.
[245]
Highlights of
this synthesis include: 1) the tin acetal-based stereocontrolled
formation of the 1,1¡¯-disaccharide linkage;
[246]
2) the 1,2-
migration of selenophenyl groups leading to selective or-
thoester formation based upon a modification of Sinay¨¡¯s
method;
[247]
and 3) the stereocontrolled formation of eight
unique glycoside bonds using a variety of techniques including
sulfur-, selenium-, and ester-based neighboring group partic-
ipation.
Additional examples of natural products synthesized in the
twentieth century are given in Figures 5 ¨C 8 (see pp. 105 ¨C
108),
[350¨C458]
but even this listing does not do justice to the
science of those whose brilliant contributions are not men-
tioned here as a result of the limited space available and
unintentional oversight. For a more complete picture, the
reader should consult the primary literature.
4. What Have We Learned from a Century of
Organic and Natural Product Synthesis?
During the twentieth century, we have come, through the
electronic theory and understanding of the nature of the
chemical bond and mechanistic insights, to adopt the arrow to
designate bond making and bond breaking. During this
revolutionary period for organic synthesis, we have also come
to understand and use conformational analysis, and to use
pericyclic reactions, anions and cations, as well as carbenes
and radicals in controlled ways to form and break chemical
bonds. The Woodward and Hoffmann rules brought under-
standing and generalization to pericyclic reactions such as the
Diels ¨C Alder reaction, the photoinduced [2 2] cycloaddi-
tions, and the various 1,3-dipolar cycloaddition reactions.
We have discovered new continents of chemistry and an
amazing number of synthetic reactions based on heteroatoms
and organometallic reagents and catalysts. Among the former
are the chemistries of nitrogen, phosphorous, boron, sulfur,
and silicon. Organometallic chemistry came a long way from
the sodium and Grignard reagents to cuprates and titanium
94 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 95
H
N
N
H
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
OH
O
OH
H
N
NH
2
O
OBn
OBn
BnO
O
HO
HN
O
H
N
O
H
H
H
H
OAll
Cl
MeHN
O
O
H
N
O
N
H
Boc
N
O
Me
OH
NHDdm
O
HO
NO
2
F
OAll
HO OMs
NHBoc
H
N
NH
O
N
H
O
H
OMeMeO
OH
OMe
MeHN
O
NO
2
F
Cl
O
HO
NH
OMeMeO
MeHN
O N
H
O
OMe
OBn
NHTfa
OCl
F
NO
2
OH
NHBoc
OMeMeO
MeHN
O
OMeMeO
N
O
O
Bn
O
OMeMeO
N
O
O
Bn
O
N
3
F
O
HO
OH
N
3
NO
2
O N
O
Bn
Br
O
F
NO
2
O
NHTfa
NH
O
N
H
O
OMeMeO
OH
OMe
MeHN
O
NH
OMeMeO
MeHN
O N
H
O
OMe
OBn
NHTfa
OCl
F
NO
2
OH
OAllyl
HO OMs
NHBoc
Cl
F
NO
2
OH
H
N
NH
O
N
H
O
OMeMeO
OH
OMe
MeHN
O
NO
2
F
Cl
O
HO
OMs
H
N NHBoc
O
O
HO
NH
O
N
H
O
OAll
NO
2
Cl
OMeMeO
OTf
OMe
MeHN
O
OMs
H
N NHTfa
O
O
HO
NH
O
N
H
O
OPiv
Cl
OMeMeO
OMe
MeHN
O
OMs
H
N
NHTfa
O
OH
OH
HO
O
HO
HN
O
H
N
O
H
H
OPiv
Cl
MeHN
O
NH
2
O
TMSEO
NHDdm
O
HO
O
NMe
Boc
O
H
N
O
N
H
Boc
N
O
Me
OH
NHDdm
O
HO
NO
2
F
OAllyl
TBSO OMs
HO2C NHBoc
NH
OMeMeO
MeHN
O N
H
O
OMe
OBn
NHTfa
OCl
F
NO
2
OH
OMe
HO2C
OBn
NHBoc
O N
O
Bn
NCS
O
O N
O
Bn
O
HN
O
S
Cl
F
NO
2
Cl
NO2
F
O
HO
O
N
O
O
Cl
F
NO
2
Boc
OH
H
N
NH
2
O
OBn
OBn
BnO
O
HO
HN
O
H
N
O
H
H
OAll
Cl
MeHN
O
H
N
N
H
O
OBn
OBn
BnO
O
HO
NH
O
H
N
O
Cl
H
H
MeHN
O
H
N
O
OH
N
H
O
NMe
NHDdm
O
OH
OAll
O
Boc
NO
2
F
H
N
N
H
O
OBn
OBn
BnO
O
HO
NH
O
H
N
O
Cl
H
H
MeHN
O
H
N
O
OH
N
H
O
NMe
NHDdm
O
O
Cl
OAll
O
Boc
H
N
N
H
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
OH
O
20
(91%)
b. Li
2
CO
3
c. TFA
d. PivCl
e. TFA; then TFAA
(65%)
c. AllBr, Cs
2
CO
3
d. LDA
e. LiOH
11
(54%, 6 steps)
a. Boc
2
O; then
HCO
2
H, H
2
O
2
b. LiOOH
a. BnBr, Cs
2
CO
3
b. LiSEt
Sn(OTf)
2
15
8
+
15
S
N
Ar-driven
ring closure
(46%)
Addition of oxygen
functionality for oxidative
biaryl coupling
1: vancomycin aglycon
a. H
2
, Pd/C;
then Boc
2
O
b. LiOH
(78%, 80% de) c. MeNH2,
EDC, HOBt
Atropisomerization
Peptide bond formation
KHMDS;
then TsN
3
(50%)
a. nBu
2
BOTf, Et
3
N
+
d. EDC,HOBt
e. TFA; then
TFAA
a. EDC,
HOBt
Na
2
CO
3
;
then PhNTf
2
[ca. 5:1 ratio of
atropisomers]
(79%)
Oxidative biaryl coupling
a. NaHCO
3
b. 20, HOAt, HATU, collidine
c. HF?py
(55%)
(65%)
VOF
3
, BF
3
?Et
2
O,
AgBF
4
, TFA;
then NaHB(OAc)
3
[95:5 ratio of
atropisomers]
a. Zn, HOAc
b. NaNO
2
, H
3
PO
4
,Cu
2
O
c. [PdCl
2
(dppf)]?CH
2
Cl
2
,
Et
3
N, HCO
2
H
(53%)
a. HOBt, EDC
b. TBAF
(62%)
HOAt, EDC
a. EDC,
HOBt
b. Ph
3
P-H
2
O
(72%)
(86%)
a)
a. CsF [ca. 5:1 ratio of atropisomers]
b. Zn, AcOH
c. HBF
4
, tBuONO, CuCl, CuCl
2
b)
(P)-23
(68%)
S
N
Ar-driven ring closure
(M)-24
Peptide bond formation
[atropisomerization and
transoid to cisoid
isomerization]
a. AlBr
3
; then EtSH
b. MeOH, 55 °C
(54%)
5
3
c)
1: vancomycin aglycon
[>95:5 ratio of
atropisomers]
a. N
2
O
4
b. LiOOH
c. [Pd(PPh
3
)
4
]
,
morpholine
d. Pd/C, 1,4-cyclohexadiene
e. TFA
(24%)
2
3
54
6 7 8
9 10 11
1412
13
16
17
195
18
2122
25
3
26
27
b. TMGA [N
3
source]
c. LiOOH
TFA
Scheme 47. a) Strategic bond disconnections and retrosynthetic analysis of vancomycin aglycon, b) key methodology for unnatural amino acid synthesis, and
c) total synthesis (Evans et al., 1998).
[223]
REVIEWS
K. C. Nicolaou et al.
96 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
O
HO
HO
O
OH
O
H
2
N
HO
H
N
N
H
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
O
O
O
NHCbz
AcO
F
O
AcO
AcO
AllocO
OTBS
OC(NH)CCl
3
H
N
N
H
O
OMe
OMe
MeO
O
TBSO
NH
O
H
N
O
Cl
H H
N
BnO
N
N
O
H
N
O
OTBS
N
H
O
NMe
NHDdm
O
Boc
O
Cl
OMe
MeO
NHBoc
BnO
O
HO
OMe
N
3
OH
EtO
2
C
TBSO
NH
2
Cl
OH
EtO
2
C
TBSO
N
H
Cl
OMe
MeO
NH
2
OH
O
BnO
OMe
OH
EtO
2
C
TBSO
N
H
Cl
OMe
MeO
H
N
N
3
O
BnO
N
N
N
Br Br
O
NHBoc
OMe
HO
2
C
HO
N
H
OMe
OMe
MeO
H
N
NH
2
O
BnO
N
N
N
O
NHBoc
O
Cl
Br
H
N
NH
2
O
OMe
OMe
MeO
O
TBSO
NH
O
H
N
O
Cl
H
H
N
BnO
N
N
Br
MeO OMe
BnO
O
B(OH)
MeO OMe
H O
MeO OMe
BnO
OH
O
HO
NH
2
OH
NHBoc
OMe
O
MeO
I
O
MeO
NHBoc
OH
(EtO)2
P
O
OEt
O
OH
O
OBn
HO
EtO
2
C
NHCbz
OH
TBSO
EtO
2
C
NH
2
NH
2
O OMe
NH
2
Br Br
N
Br Br
N
N
N
Br Br
N
N
HO
TBSO
N
3
N
N
N
Br Br
HO
2
C NHBoc
BnO
O
EtO
OH
NH
2
BnO
CO
2
Et
BnO
O
EtO
OH
ONos
Cl
MeO OMe
BnO
O
B(OH)
NHBoc
OMe
O
MeO
I
NH2
O
MeO
NHDdm
O
HO
Cl
O
H
N
O
HO
O
N
O
NMe
DdmHN
O
Boc
TBS
H
HO
O
NMe
Boc
H
N
N
H
O
OMe
OMe
MeO
O
TBSO
NH
O
H
N
O
Cl
H
H
N
N
N
HO
Cl
O
H
N
O
OTBS
N
H
O
NMe
NHDdm
O
Boc
Br
BnO
H
N
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
OH
O
H
N
N
H
O
OMe
OMe
MeO
O
TBSO
NH
O
H
N
O
Cl
H
H
N
BnO
N
N
O
H
N
O
OTBS
N
H
O
NMe
NHDdm
O
Boc
O
R
2
R
1
?
, KOH
24
CuBr?SMe
2
, py, K
2
CO
3
[3:1 mixture of
(P,M,P):(M,M,P)]
(74%)
18 , EDC, HOAt
c.
(P,M,P)-4: R
1
=Cl, R
2
=H
(M,M,P)-4: R
1
=H, R
2
=Cl
c.
a. PPh
3
=CH
2
b. AD-¦Â (96% ee)
c. nBu
2
SnO;
then BnBr
(75%)
nBuLi,
B(OMe)
3
;
then HCl
(55%)
a. TMSCl, MeOH
b. Boc
2
O, K
2
CO
3
(84%)
a. MeI, K
2
CO
3
(93%)
a. Ph
3
P, H
2
O
b. Boc
2
O, Et
3
N
c. TBAF
d. TEMPO, NaOCl
(66%)
c. AA
(41%, 87% ee)
a. BnBr, K
2
CO
3
b.
a. TBSOTf
b. H
2
, Pd(OH)
2
/C
(76%)
c. SO
2
Cl
2
a. Br
2
, AcOH
b. LiAlH
4
b. I
2
, CF
3
CO
2
Ag
(93%) c. PPh3=CH2
a. NaNO
2
, HCl;
pyrrolidine, KOH
b. PCC
a. AD (95% ee)
b. TBSCl, imid.
(52%)
7
a. AD-¦Â (92% ee)
b. NosCl, Et
3
N
10
(61%)
a. [Pd(Ph
3
P)
4
],
Na
2
CO
3
b. (PhO)
2
P(O)N
3
,
DEAD, Ph
3
P (95%)
c. LiOH (99%)
(85%)
a. NaN
3
b. SnCl
2
(53%)
Triazene
(81%)
Triazene-driven ring closure
+
a. EDC, HOAt
b. TMSOTf
(56% plus 28%
(M)-atropisomer)
(P)-25
(78%)
Triazene-driven ring closure
c. TMSOTf
a. CuBr?SMe
2
,
py, K
2
CO
3
a. FDPP
b. TBSOTf
b. TBAF
c. Et
3
P-H
2
O
d. LiOH
(68%)
Glycosidation
(M,P)-28
Peptide bond formation
Macrolactamization
[1:1 mixture of
atropisomers]
(67%)
(70%)
Suzuki biaryl coupling
(86%)
c. DPPA, DEAD,
Ph
3
P
b)
(92%)
a. EDC,
HOBt
b. LiOH
[atropisomerization]
d. TBSOTf
e. H
2
, Pd(OH)
2
/C
EDC, HOAt
13
(46%)
a)
18
21
21
26: vancomycin aglycon
a. NaI, I
2
, TMSCl
b. MeMgBr, iPrMgBr; then
B(OMe)
3
; then H
2
O
2
24
EDC, HOAt
c. H
2
, Pd/C
d. MeI, Cs
2
CO
3
e. Dess-Martin [O]; KMnO
4
f. AlBr
3
(21-35%)
3 3
4
65
98
1211
14 15
16
17
2019
1: vancomycin
7
10
13
2627
29
30
22
23
f. SO
2
Cl
2
g. LiOH
(34%)
Scheme 48. a) Strategic bond disconnections and retrosynthetic analysis of vancomycin aglycon, b) key methodology for unnatural amino acid synthesis, and
c) total synthesis of vancomycin (1) (Nicolaou et al., 1999).
[224¨C226]
REVIEWS
Natural Products Synthesis
reagents. Of particular importance are the recent advances
made in catalysis using transition metals both for the
formation of carbon ¨C carbon bonds and for asymmetric
synthesis. The retrosynthetic analysis principles introduced
by Corey revolutionized strategy design in total synthesis,
while the many metal-catalyzed processes discovered during
the second half of the century facilitated the construction of
complex molecules in impressive ways. Most prominent
among these catalytic processes are the various palladium-
catalyzed reactions for carbon ¨C carbon bond formation
[248]
and the olefin metathesis reaction
[249]
made synthetically
useful by the Grubbs
[250]
(ruthenium) and Schrock
[251]
(mo-
lybdenum) catalysts. During this period, we have also
witnessed the introduction of enzymes
[252]
as important tools
for organic synthesis and of catalytic antibodies
[253]
as
promising and useful reagents for synthetic and mechanistic
studies, and the application of genetic engineering to total
synthesis.
[254]
In terms of stereochemical control, a journey through the
twentieth century reveals the dramatic progress from stereo-
chemically random reactions to stereocontrolled processes,
first carried out in a reliable manner on cyclic templates and
later on acyclic systems. Acyclic stereoselection, both via
internal chiral auxiliaries and external catalysts, brought us
not only to diastereoselective processes, but also to asym-
metric synthesis. Particularly impressive have been the
advances in asymmetric catalysis by which many building
blocks and final targets can nowadays be synthesized at will.
Classical optical resolution methods that characterized the
early total syntheses are being replaced by stereoselective
processes delivering only the desired enantiomer in high
enantiomeric excesses. Such processes include the Hajos ¨C
Wiechert cycloaldol/dehydration reaction catalyzed by opti-
cally active amino acids,
[255]
the Knowles asymmetric hydro-
genation process for the industrial production of l-DOPA
employing soluble rhodium catalysts carrying chiral phos-
phane ligands,
[256]
the Takasago process for the production of
l-menthol via an asymmetric catalytic amino ¨C enamine
isomerization employing a rhodium ¨C BINAP catalyst,
[257]
the
Noyori asymmetric catalytic hydrogenation of ketones ((S)-
or (R)-[RuBr
2
(binap)] catalyst),
[258]
the Katsuki ¨C Sharpless
asymmetric catalytic epoxidation ((l)-( )- or (d)-( )-diethyl
tartrate/Ti(OiPr)
4
catalyst),
[259]
the Sharpless dihydroxylation
reaction (OsO
4
catalyst),
[165]
the Corey oxazaborolidine-
catalyzed reduction of ketones,
[92]
and the Shibasaki car-
bon ¨C carbon bond forming reactions employing bimetallic
catalysts.
[260]
Cascade reactions in which several transformations are
carried out in one reaction vessel in tandem have assumed
increasing importance in total synthesis.
[261]
Such cascades can
be defined as one-pot sequences involving fleeting intermedi-
ates, each of which leads to the formation of the next until a
stable product is formed, or pathways marked with distinct
intermediates that can be isolated if so desired, but which are
allowed to proceed to the next stage until the desired product
is obtained. By expanding the definition of cascade reactions
one can include the various one-pot reactions in which a
number of reagents and/or components are added sequen-
tially to form a final product without isolation of intermediate
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 97
H
N
N
H
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
OH
O
H
N
N
H
O
OTBS
OTBS
TBSO
O
TBSO
NH
O
H
N
O
Cl
H
H
MeO
O
H
N
O
OTBS
N
H
O
NMe
NH
2
O
O
Cl
OH
O
Cbz
O
AcO
AcO
AllocO
TBSO
OC(NH)CCl
3
O
AcO
AcO
HO
OTBS
H
N
N
H
O
OTBS
OTBS
TBSO
O
TBSO
NH
O
H
N
O
Cl
H
H
MeO
O
H
N
O
OTBS
N
H
O
NMe
NH
2
O
O
Cl
O
O
Cbz
O
AcO
AcO
O
OTBS
O
CbzHN
AcO
H
N
N
H
O
OTBS
OTBS
TBSO
O
TBSO
NH
O
H
N
O
Cl
H
H
MeO
O
H
N
O
OTBS
N
H
O
NMe
NH
2
O
O
Cl
O
O
Cbz
O
NHCbz
AcO
F
O
HO
HO
O
OH
O
H
2
N
HO
H
N
N
H
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
O
O
c)
a. TBSOTf
b. CH
2
N
2
c. CbzCl
d. Al
2
O
3
?KF
(36%)
a. HF?py
b. K
2
CO
3
(65%)
26: vancomycin aglycon
c. Raney N:
d. LiOH
3
(70%)
a. BF
3
?Et
2
O
b. nBu
3
SnH, [Pd(PPh
3
)
4
]
BF
3
?Et
2
O (84%)
1: vancomycin
2
28
29
27
REVIEWS
K. C. Nicolaou et al.
98 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 49. a) Strategic bond disconnections and retrosynthetic analysis of the CP molecules (1 and 2) and b) total synthesis (Nicolaou et al., 1999).
[230]
c) New cascade reactions: the anhydride cascade, which features the first use of a highly unstable 2-aminofuran in the synthesis. The g-hydroxylactonal
cascade was developed as a mild method to construct the precursor to the fused g-hydroxylactone moiety, the g-hydroxylactonal. The pyran rupture cascade
traverses through a sequence of intermediates, including the tetraanion C. d) New synthetic technologies. (For further information see the text.)
REVIEWS
Natural Products Synthesis
compounds or work-ups. Examples of cascade reactions
include the Robinson synthesis of tropinone,
[16]
the biomi-
metic synthesis of steroids,
[262]
the endriandric acid synthe-
sis,
[112]
the Ugi three-component reaction,
[263]
the Vollhardt
synthesis of estrone,
[358h]
the synthesis of the CP molecules and
the many radical-based
[264]
and palladium-catalyzed
[265]
tan-
dem sequences for the formation of polycyclic carbon frame-
works.
5. The Impact of Total Synthesis
In tracing the evolution of organic synthesis and total
synthesis to its present state, it is instructive to also consider
its impact on other scientific disciplines and on society.
Simply stated, this impact has been enormous and it boils
down to profoundly shaping our world by providing the
myriad synthetic materials we have around us today. To be
sure, total synthesis has been aided by its own appeal and
advances, but also by developments in analytical and
purification techniques and spectroscopic methods.
5.1. Driving and Testing the State-of-the-Art in Organic
Synthesis
As the flagship of organic synthesis, total synthesis often
guides and demands new synthetic methods and strategies. It
also becomes the testing ground where new technologies and
strategic concepts are tested and judged for their applicabil-
ity, efficiency, and practicality. In a way, total synthesis
provides the tough and real challenges to new synthetic
methods, often before they are passed over to those who use
them extensively in their daily research and/or for their
manufacturing needs. Indeed, the total synthesis of complex
natural products is frequently given as the reason for the need
to develop a new synthetic method to achieve a goal
unattainable by existing methods. Furthermore, newly ap-
pearing synthetic methods become convincingly useful once
they have been successfully applied to total synthesis.
Examples here include the Diels ¨C Alder reaction,
[266]
the
Wittig reaction,
[267]
the hydroboration reaction,
[268]
the Corey
dithiane reaction,
[269]
the Sharpless asymmetric epoxidation
reaction,
[259]
the various palladium-catalyzed coupling reac-
tions,
[270]
the olefin metathesis reaction,
[271]
and last but not
least, the multitude of protecting groups available to the
synthetic chemists.
[272]
It is important to note that total synthesis not only drives
organic synthesis forward in terms of synthetic technologies
and strategies, but also frequently leads to fundamental
theories and concepts. Thus, it was within the realm of the
total synthesis of natural products that the theories of
conformational analysis
[273]
(Barton and Hassel), the Wood-
ward and Hoffmann rules,
[98]
and the Corey principles of
retrosynthetic analysis
[3, 4, 34]
crystallized.
Today our desire and ability to make contributions to
biology and medicine is driven to a large extent by total
synthesis, which can deliver not only scarce natural products
but also combinatorial libraries of related substances for
biological evaluation purposes.
Total synthesis not only dictates and demands the inven-
tion and development of new synthetic strategies, but it also
provides opportunities for the discovery of such methods and
techniques. Such discoveries are made either through rational
pursuit or simply by serendipity. Indeed, some of the most
dramatic and influential discoveries of our century are fruits
of serendipity. A remark made by Pasteur: ¡°Serendipity,
however, appears to be most generous to those positioned to
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 99
Scheme 49. (Continued)
REVIEWS
K. C. Nicolaou et al.
100 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
OMeOMe
H
N
N
H
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
OH
O
H
N
N
H
O
OMe
OMe
MeO
O
HO
NH
O
H
N
O
Cl
H
H
OMe
F
NO
2
O
H
N
O
OH
N
H
O
NMe
NC
Boc
OH
MEMO
H
N
N
H
O
OMe
OMe
MeO
O
HO
NH
O
H
N
O
Cl
H
H
MEMO
O
H
N
O
OH
N
H
O
NMe
NC
O
NO
2
OMe
Boc
H
N
NHBoc
O
OMe
OMe
MeO
O
HO
NH
O
H
N
O
Cl
H
H
OMe
F
NO
2
O
H
N
O
OH
N
H
O
NMe
NC
Boc
OH
MEMO
HO
O
B
O
Br
MeO
2
C
TBSO
N
H
OMe
MeO
H
N
NHCbz
O
MEMO
OMe
O
NHBoc
O
Cl
OH
MeO
2
C
TBSO
N
H
H
N
O
OMe
O
NHBoc
O
Cl
OH
NHCbz
H
OMEM
MeO
MeO
MeO
2
C
TBSO
N
H
H
N
O
OMe
O
NHBoc
O
Cl
OH
OMe
Br
B(OH)
2
OMeMeO
NHCbz
MEMO
H
N
NHBoc
O
OMe
OMe
MeO
O
HO
NH
O
H
N
O
Cl
H
H
OMe
F
NO
2
O
H
N
O
OH
N
H
O
NMe
NC
Boc
OH
MEMO
HO
H
N
N
H
O
OH
OH
HO
O
HO
NH
O
H
N
O
Cl
H
H
HO
O
H
N
O
OH
N
H
O
NHMe
NH
2
O
O
Cl
OH
O
OBnBnO
NHCbz
OBnBnO
HO
OMe OMe
NO
2
F
MeO
2
C NH
2
TBSO
N
N
OMe
MeO
ZrClCp2
O
NO
2
F
HO
2
C NHBoc
OHHO
OMe
OMe
Br
O
HO
NHBoc
OH
O
HO
NH
2
NO
2
F
MeO
2
C NH
2
TBSO
OMe
Br
O
HO
NHBoc
HO
2
C NHCbz
OBnBnO
OMe
MeO
2
C
TBSO
N
H
H
N
O
OMe
O
NHBoc
HO OH
OMe
Br
F
NO
2
MeO
2
C
TBSO
N
H
H
N
O
OMe
O
NHBoc
O OH
OMe
Br
NO
2
MeO
2
C
TBSO
N
H
H
N
O
OMe
O
NHBoc
O
R
OH
OMe
Br
(76%)
AD, BocCl
(45%)
Suzuki biaryl coupling
S
N
Ar driven ring
closure
+
a.
a. Boc
2
O
b. Br
2
-py?HBr
c. NaH, MeI
(65-75%, 6:1 ratio of atropisomers)
a. EDC,
HOBt
b. TBSOTf
(79%)
c)
CsF, DMSO
140 °C
K
2
CO
3
, CaCO
3
E
a
= 25.1 kcal mol
¨C1
3:1
(43%)
EDC,
HOBt
(91%)
(50-60%)
1:1.1
b)
a. H
2
. Pd/C; tBuONO,
HBF
4
, CuCl
2
/CuCl
b. CF
3
CONMeTBS
c.
Boc
2
O
a. nBu
4
NF-HOAc
b. LiOH
c. H
2
, Pd/C
d. EDC, HOBt
1: vancomycin aglycon
b. TBSOTf
(9-11%)
(64%, >99% ee)
(50%)
Macrolacta-
mization
1: vancomycin aglycon
a)
120 °C
E
a
= 30.4 kcal mol
¨C1
a. HCO
2
H
b. EDC, HOBt
d. Dess-Martin [O]
e. NaClO
2
f. TMSCHN
2
g. H
2
O
2
, K
2
CO
3
h. nBu
4
NF-HOAc
i. AlCl
3
, EtSH
[Pd
2
(dba)
3
], (o-tolyl)
3
P
Na
2
CO
3
, toluene
a. Dess-Martin [O]
b. NaClO
2
(88%)
S
N
Ar driven ring closure
Peptide bond formation
a. H
2
, Raney Ni
b. tBuONO
c. CuCl-CuCl
2
(87%)
R = NO
2
R = Cl
(58%)
2 3
4 5 6
7108
9
11 12
10
12
7
13
(M)-14
(M)-15
(P)-14
(M)-15 16
(M,P)-16 (M,M)-16
17
3
18
19
+
,
E
a
= 26.6 kcal mol
¨C1
Scheme 50. a) Strategic bond disconnections and retrosynthetic analysis of vancomycin aglycon, b) key methodology for unnatural amino acid synthesis, and
c) total synthesis (Boger et al., 1999).
[227]
REVIEWS
Natural Products Synthesis
detect and exploit the accidental,¡± is worthy of remembering.
Serendipity will, no doubt, continue to be part of our science.
5.2. Drug Discovery and Development
While it is wonderful that total synthesis has made such
great leaps from the beginning of the twentieth century, its
greatest impact has been on the drug discovery and develop-
ment process.
[274]
Indeed, the evolution of the drug discovery
and development process parallels closely that of total
synthesis. The two disciplines must be considered in unison,
for they are very synergistic and complementary. Academic
research focuses on organic and natural product synthesis,
which provides highly relevant basic knowledge and offers
superb education and training to young men and women
wishing to pursue the science of drug discovery and develop-
ment process.
The pharmaceutical industry applies the knowledge gained
to discovering and manufacturing new drugs for the benefit
of society. That medicinal and combinatorial chemists have
so many tools at their disposal today in their quests for huge
numbers of novel and diverse small molecules is primarily
the result of the contributions of total synthesis and of
organic synthesis as a whole. A reminder of the importance
of chemical synthesis as one of the two main arms of the drug
discovery process¡ªthe other being identification of appro-
priate biological targets¡ªwill help appreciate total synthesis
within a larger perspective. Just as advances in molecular
biology facilitate drug discovery today by allowing the
elucidation of the human genome and proteome, so does
progress in total synthesis, which enables the construction of
the molecules needed to bind and modulate the function of
disease-associated biological targets.
The challenging and rewarding features of total synthesis
invite competition, which, like in any other human endeavor,
is both inevitable and healthy. Fortunately, and unlike many
other sciences, the creative nature of organic and natural
product synthesis allows equal opportunity for brilliant
contributions to all practitioners, whether they are the first
to finish or the last. And there are many things to discover
and invent in this science; only our imagination is the limit.
6. Future Perspectives
The science and art of organic synthesis attracts many who
practice invention, discovery, and development of new
synthetic reactions and reagents for wider use. Such new
processes and engineered reactions are of paramount
importance to research chemists and manufacturers of
chemical products including pharmaceuticals. Other synthet-
ic chemists adopt total synthesis as their main endeavor, with
the aim of designing and executing elegant strategies toward
complex targets. In judging such accomplishments, one has to
give credit not only to the beauty and efficiency of the
strategies and tactics, but also to the value of the exercise in
providing access to the target molecule and its analogues for,
usually but not always, biological studies. Yet, there are
others who attempt to combine target-oriented synthesis with
the discovery and development of new synthetic technologies.
And finally, there are those who aim to incorporate biology
into their total synthesis programs as well as methodology
development, thus elevating natural products to opportunities
for creative science in total synthesis, synthetic methodology,
and chemical biology.
All sub-disciplines of organic natural product synthesis are
to be equally respected as important to the advancement of
knowledge and the benefit of humankind. Furthermore, one
can choose which of these dimensions he or she will adopt in
their research programs, for all three have their place in
science. Indeed, the beauty of total synthesis lies in the
challenge and opportunities that it provides to make creative
and useful contributions to many other disciplines. It is,
therefore, up to the practitioner to imagine new directions and
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 101
N
N
O
O
H
MeO
OMe
Me
N
Me
NH
2
OHC
CHO
O
O
Br
MeO
O
Br
O
TMS
Br
OAc
TMS
TMS MgBr
CeCl
3
,
THF
O
OiPr
TMS
OHC
CHO
O
O
N
Me
NH
2
N
Me
OMe
MeO
OMe
MeO
OMe
MeO
N
TMS
O
OiPr
N
Me
OMe
MeO
N
TMS
O
OiPr
H
N
N
H
MeO
OMe
Me
O
OiPr
H
N
N
H
MeO
OMe
Me
O
OiPr
H
H
+
N
N
H
MeO
OMe
Me
O
OiPr
H
BH
3
CN
¨C
N
N
H
MeO
OMe
Me
O
OH
H
NaOH
K
3
[Fe(CN)
6
], NaHCO
3
N
N
H
MeO
OMe
Me
O
OH
N
N
O
O
H
MeO
OMe
Me
N
N
O
O
H
MeO
OMe
Me
O
N
N
O
O
H
MeO
OMe
Me
b)
a)
Cationic
cascade
reaction
+
Oxidation
a. R-CBS reduction
b. Na(Hg), MeOH
c. Ac
2
O, Et
3
N, 4-DMAP
a. LDA, TBSCl,
-78
o
C, then ?
b. iPrOH, EDC
a. OsO
4
, NMO
b. NaIO
4
+
(82%)
(75%)
(57%)
(56%)
1: aspidophytine
2 3
4
5 6
73
2
CH
3
CN, then TFAA, 0°C;
NaBH
3
CN
a. OsO
4
b. Pb(OAc)
4
a. KHMDS,
PhNTf
2
b. [Pd(PPh
3
)
4
],
nBu
3
SnH
1: aspidophytine
(66%)
(81%)
(71%)
(47%)
:
9 8
10
11 12
Scheme 51. a) Strategic bond disconnections and retrosynthetic analysis of
aspidophytine and b) total synthesis (Corey et al., 1999).
[238]
REVIEWS
K. C. Nicolaou et al.
102 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 52. a) Strategic bond disconnections and retrosynthetic analysis of everninomicin 13,384-1 and b, c)important synthetic methods; b) orthoester
formation by 1,2-migration of the phenylselanyl group followed by glycosylation (I!II!III!IV), and ring closure after syn-elimination
(V!VI!VII!VIII); c) stereoselective construction of 1,1¡¯-disaccharides; d) synthesis of the building blocks and completion of the total synthesis of
everninomicin 13,384-1 (Nicolaou et al., 1999).
[245]
REVIEWS
Natural Products Synthesis
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 103
O
Me
OAc
MeO
HO
PMBO
O
O
Me
OAc
Me
O
O
OMe
OBn
OMe
O
O
OBn
O
HO
O
O
O
OO
O Me
BnO OBn
BF
3
?Et
2
O
O
Me
O
OR
O
OMe
OBn
OMe
O
O
OBn
O
O
O
O
OO
O
HO
PMBO
O
O
Me
OR
Me
BnO OBn
Me
MeO
O
Me
O
OBn
O
OMe
OBn
OMe
O
O
OBn
O
O
O
O
OO
O
HO
RO
O
O
Me
OBn
Me BnO OBn
Me
MeO
O
Me
O
OH
O
OMe
OH
OMe
O
O
OH
O
O
O
O
OO
O
HO
CAO
O
O
Me
OH
Me HO OH
Me
MeO
O
Me
O
OTBS
O
OMe
OTBS
OMe
O
O
OTBS
O
O
O
O
OO
O
HO
HO
O
O
Me
OTBS
Me TBSO OTBS
Me
MeO
NHCl
3
C
O
O
O
Me
O
Me
BnO
O
O
BnO
Cl
Cl
OMe
Me
O
OMe
NO
2
Me
Me
SePh
F
O
O
O
O
HO
Cl
Cl
OMe
Me
O
Me
OMe
NO
2
Me
Me
O
Me
HO
O
Me
O
OH
O
OMe
OH
OMe
O
O
OH
O
O
O
O
OO
O
O
O
O
O
O
Me
OH
Me HO OH
Me
MeO
O
Me
O
OTBS
O
OMe
OTBS
OMe
O
O
OTBS
O
O
O
O
OO
O
HO
HO
O
O
Me
OTBS
Me TBSO OTBS
Me
MeO
O
O
O
Me
O
Me
BnO
O
O
BnO
Cl
Cl
OMe
Me
O
OMe
NO
2
Me
Me
SePh
O
Me
O
OTBS
O
OMe
OTBS
OMe
O
O
OTBS
O
O
O
O
OO
O
HO
O
O
O
Me
OTBS
Me
TBSO OTBS
Me
MeO
O
O
O
O
BnO
Cl
Cl
OMe
Me
O
Me
OMe
NO
2
Me
Me
O
Me
BnO
O
Me
O
OTBS
O
OMe
OTBS
OMe
O
O
OTBS
O
O
O
O
OO
O
O
O
O
O
O
Me
OTBS
Me TBSO OTBS
Me
MeO
O
OMe
OBn
OMe
O
O
OBn
O
HO
O
O
O
OO
O Me
BnO OBn
O
OMe
OBn
OMe
O
O
OBn
O
TBSO
O
OPMB
O
OHHO
O
OMe
OBn
OMe
O
O
OBn
O
TBSO
O
OPMB
O
OBzHO
O
OMe
OBn
OMe
O
O
OBn
O
HO
O
OPMB
O
O
OMe
OBn
OMe
O
O
OBn
O
OH
TIPSO
O
OTBS
OPMB
PhSe
H
O
OMe
OBn
OMe
O
O
OBn
O
BzO
O
OPMB
O
OTBS
O
OMe
OBn
OMe
O
O
OBn
OH
OCA
TIPSO
O
OMe
OBn
OMe
O
O
OBn
OAll
OAll
PMBO
O O
OBz
OAll
AllO
CCl
3
NH
O
PMBO
O
OBn
O
MeO
Sn
nBu
nBu
OMe
OTBS
OH
OTIPS
MeO
O
O
OPMB
OTBS
O
SPh
Ph
O
O
Me
OTBS
MeO
HO
O
O
O
OTBS
OTIPS
O
Ph
O
Me
OTBS
MeO
HO
HO
O
O
OTBS
OTIPS
O
Me
O
Me
OTBS
MeO
HO
PMBO
O
O
Me
OTBS
OTIPS
Me
O
Me
OAc
MeO
HO
PMBO
O
O
Me
OAc
O
Me
HN
CCl
3
A
2
H
GF
5
A
A
2
BnBr, NaH
A
2
A
2
H
2
, 10% Pd/C, EtOAc
a. TBSOTf
b. K
2
CO
3
, MeOH
A
2
48: R = Ac
49: R = H
K
2
CO
3
, MeOH
50: R = PMB
51: R = H
52: R = CA
(CA)
2
O, Et
3
N
DDQ
4
53
3
a. NaIO
4
, MeOH
b. ?
A
1
A
A
2A
1
2
1: everninomicin 13,384-1
A
2
SnCl
2
, Et
2
O
a. H
2
, 10% Pd/C, NaHCO
3
b. nBu
4
NF, THF
A
2A
1
3
54
55
H
F
A
2
G
5
H
F G
a. CH
2
Br
2
, NaOH
b. DDQ
c. NaH, ArC(O)F
d. nBu
4
NF, THF
F
H
G
a. Dess-Martin [O]
b. Li(tBuO)
3
AlH
c. NaOH, MeOH
H
F G
a. TBSCl, NaH
b. OsO
4
, NMO
c. nBu
2
SnO; BzCl
F G
H
3
4
a. 34, SnCl
2
,
Et
2
O
b. K
2
CO
3
,
MeOH
H
F
G
a. NaIO
4
, MeOH
b. ?
c. nBu
4
NF
d. BzCl, E
3
N
a. nBu
4
NF, THF
b. Martin
sulfurane
c. K
2
CO
3
, MeOH
F G
3
4
a. DDQ
b. TIPSOTf
c.[RhCl(Ph
3
P)
3
]; OsO
4
d. nBu
2
SnO; CACl
F G
a. TMSOTf
b. MeI, NaH
c. NaOH, MeOH
d. BnBr, NaH
FE
B
A
1
A
E
A
2
C G
H
F
B
C
+
F G
28
GD
D
D E
ED
D E
D E
ED
+
23 26
a.Tf
2
O,
2,6-tBuPy
b. DDQ
H
D E F G
ED
a. TPAP, NMO
b. MeLi, Et
2
O
c. H
2
, 10% Pd/C
d. pTsCl, py
D
H
H
G
F
E F
F G
D
E
a. LiI, DMF
b. nBu
3
SnH
c. nBu
2
SnO;
PMBCl
D
D
H
E
B F G
A
H
C E
CB
E
a. nBu
4
NF
b. Ac
2
O
c. nBuNH
2
d. CCl
3
CN
(55%)
(69%)
(75%)
(73%)
(90%)
(54%)
(78%)
(66%)
(67%)
(74%)
(53%)
(69%)
(75%)
(65%)
(70%)
(55%)
(79%)
(75%)
(55%)
31
3938
40
41
42
43
44
45
46
47
4
H
G
D
F G
pTs
Scheme 52. (Continued)
REVIEWS
K. C. Nicolaou et al.
to constantly raise the bar to higher and higher expectations for
the art and science of organic and natural products synthesis.
Throughout its history the art and science of total synthesis
has demonstrated its nature as an aesthetically appealing
endeavor and as a scientifically important discipline. As a
science and an art, it has attracted some of the most creative
minds of the twentieth century and its impact on society is
paramount, if not fully appreciated by the general public. As
we close the chapter of the twentieth century and move into
the twenty-first century many may be wondering of the fate of
total synthesis. The best guides we have are history and the
present state-of-the-art. They both speak volumes of the vigor
104 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
Scheme 53. a) Strategic bond disconnections and retrosynthetic analysis of sanglifehrin A and b) total synthesis (Nicolaou et al., 1999).
[240]
REVIEWS
Natural Products Synthesis
of this art and science, and of its potential for further advances
and contributions. For one, nature has not yet finished
revealing its secrets to us, and many more novel, and presently
unimaginable, structures are destined to dazzle our eyes,
boggle our minds, and challenge our creativity. Furthermore,
the state of the art is comparatively only in its early stages of
development in light of nature s seemingly magical and
powerful biosynthetic schemes. To be sure, the competitive
nature of the pharmaceutical and biotechnology industries
and their drive to discover and produce new cures for disease
will demand new and sharper tools for organic synthesis.
Fueled by these and other industries, the discipline of total
synthesis will be there to attract talented individuals as
practitioners and to deliver the new tools needed for yet
higher efficiencies and selectivities.
Targeting more complex structures will demand more
effective reactions in terms of accomplishing bond construc-
tions and functional-group transformations. The overall
efficiency has to be pushed higher and so does selectivity.
Cascade reactions and other novel strategies will have to be
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 105
N
MeO
HO
N
H
H
Me
H
HH
O
Me
O
OH
O
OH
O
H
H
N
Me
H
HO
HO
N
NH
Me
H
HO
2
C
N
H
N
H
H
MeO
2
C
OH
H
MeO
O
NHAc
MeO
MeO
OMe
OH OH O O
OH
NH
2
NMe
2
H
OH
H
O
O
MeO
N
Me
OH
CO
2
HMe
HO
O
OC
OH
H
H
Me
H
MeMe
HO
MeMe
H
MeH
H
O
H
O
N
H
Me
H
Me
OMe
O
O OH
OH
OH
OH
O
N
H
N
N
OH
OAc
H
R
H
CO
2
Me
MeO
MeO
2
C
N OH
N
O
O
Me
X
O
OMe
O
NH
2
NH
N
HN
NH
H
N
HN
NH
O
O
H
2
N
H
OH
OH
N
O
OH
S
CO
2
H
NH
2
HH
Me
OH
O
O
H
HO
H
NH
O
Me
N
H
O
Me
O
Me
O
MeO
Cl
MeO
HO
Me
N
Me
O
Me
O
O
OAc
Me
CHO
O
HO
O
Me
NMe
2
O
O OH
Me
O
O
Me
H
HO
CH
2
OH
Me
Me
HO
H
HO
O
OH
HO HO
OHHO
OH
H
OH
HO
OH
MeO
H
HO
MeO
OMe
N
Me
OMe
H
MeO
O
HO
OMe
MeN
O
H
Me
O
H
Me
Me
H
O
Me
MeO
H
OMe
O
Me
Me
OH
Me
OH
H
H
OH
N
N
HO
H
Me
H
HH
HO
O
S
NHHN
CO
2
H
O
Me
Me
Me
H
H H
O
H
OMe
OH
O
Me
Me
Me
H
N
N
OH
OAc
H
Me
H
CO
2
Me
MeO
Me
[Woodward, 1944]
[Gates, 1970]
[Uskokovic, 1970]
[Taylor, 1972]
[Hanaoka, 1982]
quinine
[350]
[Woodward, 1951]
[Sarett, 1952]
[Kuwajima, 1986]
[Fukumoto, 1990]
morphine
[352]
[Woodward, 1954]
[Julia, 1969]
[Ramage, 1976]
[Oppolzer, 1981]
[Rebek, 1984]
[Ninomyia, 1985]
lysergic acid
[353]
[Echenmoser, 1961]
[van Tamelen, 1961]
[Nakamura, 1962]
[Scott, 1965]
[Woodward, 1965]
[Martel, 1965]
[Kaneko, 1968]
[Tobinaga, 1974]
[Kato, 1974]
[Evans, 1981]
[Boger, 1986]
[Magnus, 1987]
[Banwell, 1992]
[Cha, 1998]
colchicine
[355]
[Woodward, 1962]
[Muxfeldt, 1965]
[Barton, 1962]
[Kametani, 1969]
[Koga, 1977]
[van Tamelen, 1958]
[Szántay, 1965]
[Stork, 1972]
[Kametani, 1975]
[Brown, 1980]
[Wenkert, 1982]
[Ninomiya, 1983]
[Martin, 1987]
[Tanol, 1994]
yohimbine
[354]
6-demethyl-6
-deoxytetracycline
[356]
galanthamine
[357]
[Corey, 1970]
[Mander, 1980]
[Yamada, 1989]
gibberellic acid
[366]
[Stork, 1971]
lupeol
[360]
[Yamada, 1972]
[Inubushi, 1974]
[Kende, 1974]
[Roush, 1978]
[Martin, 1991]
[Williams, 1992]
[Uesaka, 1994]
[Sha, 1997]
dendrobine
[367]
[Wong, 1973]
[Kende, 1976]
[Swenton, 1978]
[Kelly, 1980]
[Kallmerten, 1980]
[Braun, 1980]
daunomycinone
[362]
cortisone
[351]
[Gates, 1952]
[Ginsburg, 1954]
[Morrison, 1967]
[Kametani, 1969]
[Schwartz, 1975]
[Rice, 1980]
[Evans, 1982]
[Fuchs, 1987]
[Parker, 1992]
[Overman, 1993]
[Mulzer, 1996]
[Potier, 1976]
R = Me: vinblastine
[375]
R = CHO: vincristine
[375]
[Kishi, 1977]
[Fukuyama, 1987]
X = OMe: mitomycin A
[369]
X = NH
2
: mitomycin C
[369]
saxitoxin
[370]
[Kishi, 1977]
[Jocobi, 1984]
[Christensen, 1978]
[Kametani, 1980]
[Shiozaki, 1980]
[Hanessian, 1982]
[Ikegami, 1982]
[Shinkai, 1982]
[Yoshikoshi, 1982]
[Koga, 1982]
[Grieco, 1984]
[Ley, 1985]
thienamycin
[371]
[Stork, 1978]
cytochalasin B
[372]
[Corey, 1978]
[Meyers, 1979]
[Isobe, 1984]
N-methylmaysenine
[373]
[Nicolaou, 1979]
[Tatsuta, 1980]
carbomycin B
[383]
[Trost, 1979]
[McMurry, 1979]
[Corey, 1980]
[Ireland, 1981]
[van Tamelen, 1983]
[Bettolo & Lupi, 1983]
[Tanis, 1985]
[Holton, 1987]
[Fukumoto, 1994]
[Iwata, 1995]
aphidicolin
[377]
[Deslongchamps, 1979]
ryanodol
[376]
[Wiesner, 1979]
delphinine
[378]
cepharamine
[359]
[Inubushi, 1969]
[Kametani, 1972]
[Wallace, 1979]
[Schultz, 1998]
quassin
[380]
[Grieco, 1980]
[Watt, 1990]
[Valenta, 1991]
[Shing, 1998]
illudol
[368]
[Matsumoto, 1971]
[Semmelhack, 1980]
[Vollhardt, 1991]
[Malacria, 1997]
[Hauser, 1981]
[Kimball, 1982]
[Reddy, 1983]
[Vogel, 1984]
[Rodrigo, 1984]
[Garland, 1988]
eburnamine
[382]
[Harley-Mason, 1968]
[Saxton, 1969]
[Schlessinger, 1976]
[Winterfeldt, 1979]
[Takano, 1985]
[Fuji, 1987]
[Shibasaki, 1985]
[Hart, 1985]
[Hiraoka, 1986]
[Buynak, 1986]
[Evans, 1986]
[Fleming, 1986]
[Georg, 1987]
[Hatanaka, 1987]
[Ohno, 1988]
[Jacobi, 1996]
[Torgov, 1963]
[Smith, 1963]
[Johnson, 1973]
[Cohen, 1975]
[Danishefsky, 1976]
[Kametani, 1977]
[Oppolzer, 1980]
[Vollhardt, 1980]
[Grieco, 1980]
estrone
[358]
[Quinkert, 1980]
[Bryson, 1980]
[Saegusa, 1981]
[Ziegler, 1982]
[Jung, 1984]
[Money, 1985]
[Posner, 1986]
[Rao, 1991]
[Oyasawara, 1992]
biotin
[Review
[364]
]
hirsutene
[374]
[Tatsuta, 1979]
[Hudlicky, 1980]
[D. R. Little, 1981]
[Mehta, 1981]
[Magnus, 1981]
[Wender, 1982]
[Ley, 1982]
[R.D. Little, 1983]
[Curran, 1983]
[Hua, 1985]
[Cossy, 1987]
[Lacroix, 1989]
[Sternbach, 1990]
[Greene, 1990]
[Rao, 1990]
[Paquette, 1990]
[Cohen, 1992]
[Fukumoto, 1993]
[Oppolzer, 1994]
fumagillol
[361]
[Corey, 1972]
[Kim, 1997]
[Sorensen, 1999]
[Taber, 1999]
[Büchi, 1975]
[Kutney, 1978]
[Ban, 1978]
[Danieli, 1984]
[Langlois, 1985]
[Rapoport, 1987]
[Kuehne, 1987]
vindoline
[363]
Figure 5. Selected natural product syntheses from the twentieth century.
REVIEWS
K. C. Nicolaou et al.
devised for delivering complex and diverse structures in single
operations in order to achieve such goals. New catalysts have
to be invented to bring about otherwise difficult or impossible
operations. There is little doubt that we can count on mother
nature to provide us with the targets and the opportunities to
invent and develop such methods in the future.
Solid-phase chemistry
[275]
is now gathering momentum in
natural product synthesis. Traditionally used for the synthesis
of peptides
[276]
and oligonucleotides,
[277]
this approach is now
being applied to construct small organic molecules in large
numbers, particularly for the purposes of drug discovery,
[278]
catalyst development,
[279]
and material science.
[280]
Again, new
techniques, strategies, and tactics are needed to elevate this
endeavor to a higher level of sophistication, applicability, and
scope. As we have mentioned above, total synthesis is taking a
leading role in spearheading developments in new technolo-
gies for solid-phase and combinatorial chemistry. With the
strong foundation provided by such advances, automation of
synthetic and combinatorial chemistry should also be possible
and forthcoming. Indeed, automation technologies are al-
ready entering the realm of chemical synthesis laborato-
ries.
[281]
Finally, a goal of paramount importance for the
ensuing century will undoubtedly involve the development of
synthetic strategies for the rapid construction of complex
natural products that rival or even surpass the efficiency of
nature.
In addition to natural products and their analogues,
synthetic chemists are also beginning to target complex and
exotic natural productlike structures for the purpose of
biological screening.
[282]
Such endeavors are clearly related
to total synthesis and are both inspired and facilitated by
advances in the latter field. Particularly enabling are those
contributions that include both new synthetic technologies
and novel molecular architectures. Examples of such endeav-
ors include those from the Schreiber group,
[283a]
Sharpless
group,
[283b]
and our own
[283c]
(Figure 9; see p. 108).
In closing, in surveying the art and science of total synthesis
of the twentieth century, one is left with awe at its accomplish-
106 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
O
O
Me
O
O
NH
O
Me
OH
Me
OH
Me
AcO
MeO
Me
Me
O
H
Me
O
O
Me
O
H
HO O
N N
H
N
O
NH
2
O NH
2
NH
2
Me
H
2
N
O
HN
N
H
O
H
N
O
NH
N
S
S
N
O
NH
SMe
2
+
N
H
N
H
H
Me
HO
H
HO
O
H
Me
Me
O
OH
OH
HO
O
O
OH
O
OH
OH
O
NH
2
O
Me
Me
OO
OH
H
O
O Me
H
H
Me
Me
R
O
O
MeO
HO
Me
O
Me
MeO
O
N
H
Br
O
N
H
N
NH
H
N
OH
Me
O
O
O
O
O
O
HO
OH
HO
OH HO
OH
OH
N
N
N
O
O
O
H
H
H
CN
Me
HO
MeO
Me
HN
Me
O
N
O
N
H
OMe
OH
N
O
NH
OMe
OH
N
O
H
2
N
O
H
Me
Me
OH
Me
O
Me
O
OH
N
H
HO
O
H
N
NH
O
O
O
H
HH
H
H
H
Et
Me
H
H
O
OHC
Me
Me
Me
Me
H
H
H
Me
HO
N
N
Me
O
H
H
Me
O
O
O
CONH
2
H
H
HO
HO
MeO
O
O
N
O
O
O
OH
Me
OMe
OMe
Me
Me
OH
O
Me
Me
N
O
O
Me
Me
NH
O
NH
2
HN
O OH
O
O
OH
HO
O
O
OMe
O
O
Me
OH
Me
Me
OH
H
H
O
H
O
Me
Me
O
O
H
H
O
O
O
O
O
O
O
O
O
O
O
Me
OH
O
Me Me
MeMe
Me
OH
Me
Me
B
N
O
O
MeO
Me
NHCOCOMe
N
H
H
O
O
Me
H
OMe
Me
Me
OH
H
R
[Kishi, 1980]
[Hanessian, 1982]
rifamycin S
[387]
[Sih, 1981]
[Hirama, 1982]
[Girotra, 1983]
[Grieco, 1983]
[Heathcock, 1985]
[Keck, 1986]
[Kozikowski, 1987]
[Clive, 1988]
[Danishefsky, 1989]
[Burke, 1991]
[Hagiwara, 1995]
compactin
[389]
[Ohno,1982]
[Hecht, 1982]
[Boger, 1994]
bleomycin A
2
[385]
[Hanessian, 1986]
[Ley, 1990]
[White, 1995]
[Danishefsky, 1987]
R = OH: avermectin B
1a
[394]
R = OMe: avermectin A
1a
[395]
[Inoue, 1986]
neosurugatoxin
[390]
[Evans, 1986]
[Fukuyama, 1987]
cyanocycline A
[386]
[Kelly, 1987]
[Boger, 1988]
CC-1065
[396]
pleuromutilin
[391]
[Gibbons, 1982]
[Boeckman, 1989]
histrionicotoxin
[402]
[Kishi, 1985]
[Stork, 1990]
[Holmes, 1999]
ikarugamycin
[397]
[Boeckman, 1989]
[Paquette, 1989]
ophiobolin C
[392]
[Kishi, 1989]
koumine
[398]
[Magnus, 1989]
echinosporin
[388]
[Smith, 1989]
FK506
[401]
[Merck, 1989]
[Schreiber,
1990]
[Danishefsky,
1990]
[Sih, 1990]
[Smith, 1994]
[Ireland, 1996]
daphnilactone A
[399]
[Heathcock, 1989]
huperzine
[400]
[Kozikowski, 1989]
Cl
-
[Kelly, 1986]
[Clive, 1992]
[Julia, 1993]
fredericamycin A
[393]
[Danishefsky, 1980]
[Ikegami, 1980]
[Tatsuta, 1980]
[Trost, 1981]
[Mehta, 1982]
[Matsumoto, 1982]
[Magnus, 1983]
[Koreeda, 1983]
[Wender, 1983]
[Schuda, 1984]
[Funk, 1985]
[Little, 1985]
[Demuth, 1986]
[Curran, 1988]
[Weinges, 1993]
[Kuwajima, 1997]
coriolin
[379]
[Danishefsky, 1980]
[Helquist, 1981]
[Burke, 1982]
[Kende, 1982]
[Schlessinger, 1983]
[Vandewalle, 1983]
[Yoshii, 1983]
[Smith, 1984]
quadrone
[365]
[Bach, 1994]
[Reddy, 1994]
[Boger, 1995]
[Kita, 1999]
[Corey, 1982]
[White, 1986]
[Nakata & Oishi, 1986]
[Matsumoto, 1987]
aplasmomycin
[384]
[Fukuyama, 1982]
[Kubo,1987]
R = H: saframycin B
[381]
R = CN: saframycin A
[381]
[Fukuyama, 1990]
[Myers,1998]
[Corey, 1999]
[Isoe, 1984]
[Iwata, 1985]
[Wender, 1985]
[Piers, 1985]
[Funk, 1986]
[Magnus, 1987]
[Liu, 1988]
[Little, 1990]
Figure 6. Selected natural product syntheses from the twentieth century.
REVIEWS
Natural Products Synthesis
ments and power. As a practitioner of the art, one is filled with
overwhelming pride to be part of such attractive and vigorous
endeavors and apprehensive in being responsible for convey-
ing its true meaning and value to society.
[284]
But, most
importantly, the surveyor must be overly excited and opti-
mistic about the future of the discipline and in transferring
this enthusiasm to the next generation of chemists. It would,
indeed, be of considerable interest to compare the
present state-of-the-art with that at the end of the twenty-
first century.
Abbreviations
AA asymmetric aminohydroxylation
Ac acetyl
acac acetylacetonyl
AD asymmetric dihydroxylation
AIBN 2,2¡¯-azobisisobutyronitrile
All allyl
Alloc allyloxycarbonyl
9-BBN 9-borabicyclo[3.3.1]nonane
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 107
O
OH
Ph
CON(Me)
2
OH
MeO
OMe
OMe
N
H
O
Me
Me OH
O
O
O
H
O
OH
H
Me
HO
OH
Me
H
O
O
H
O
MeMe
Me
O
Et
H
H
CO
2
Me
HO
OH
ON
N
OH
O
OH
OH
OH
HO
OH
OH
OH
2
N
NH
2
O
H
2
N
HO
OH
OH
H H
H
O O
O
O
OH
O
Me
Me
OMe
N
H
N
O
MeO
2
C
H
HH
Me
Me
Me
Me
OAc
Me
H
O
HO
O
O
O
O
O
O
O
HO
HO Me
Me
H
H H
H
Me
O
O
O
O
O
O
O
H
O
O H
Me
H
H
H
H
H
Me H
Me
O
O
H H
Me H
O
O
H
H
OH
O
HO
N
O
Me
Me
H
OH
MeO N
H
NMe
2
OH
OH O Me
N
O
O
O
Me
OH
OMe
Me
OHOH
MeMe
MeMe
CN
O
P
O
HO
HO
H
Me
HO
HO
Me
H N
O
OH
H
H
Me
H
Me
Me
HO
OBz
H
Me
H
O
Me
N
N
H
H
O
O
Me
Me
H
N
H
N
H
H
H
H
H
H
H
H
O
O
O
HN
OH
HO
HO
2
C
OH
N
H
O
OH
N
O
O
H
H
H H
H
O
O
O
Me
Me
OH
OH
H
Me
OCONH
2
Me
OH
MeMe
Me
HO
Me
OH
O
Me
OH
Me
O
O
O
O
H
H
H
H
O
OMe
OMe
OMe
Me
O
Me
Et
H
O
Me
NMe
2O
HO
S
O
O
H
H
HO
HO
H
HO
O
Me
OMe
OH
O
N
Me
H
OH
MeO
MeO
OH O
O
OMe
OMe
OCOPh
OCOPh
O
HO
O
O
O
CO
2
H
Me
H
Me
H
H
OH
O
H
H
H
Me
Me
Me
H
H
Me
HN
NHN
O
O
H
H
OOO
NH
2
N
H
2
N
N
N
H
O
O
O
NH
OMe
OMe
OMe
MeO
2
C
Me
O
O
O
O
HO
nPent
OH
O
N N
MeO
NHMe
Me H
H
N
O
O
AcO
Me
HO
H H
H H
Me
Me
Me
N
O NH
OH
OCONH
2
OHC
OH
H
H
H
Me
H
Me
O
R
N
OMe
O
Me
N
MeO
O
MeHO
OH
MeO
2
C
CO
2
Me
N
H
BrBr
O
O
N
N
H
rocaglamide
[409]
[Trost, 1990]
paspalinine
[403]
[Smith, 1990]
chaparrinone
[407]
[Grieco, 1990]
ambruticin
[408]
[Kende, 1990]
hikizimycin
[406]
[Schreiber, 1990]
isorobustin
[405]
[Barton, 1990]
isorauniticine
[410]
[Oppolzer, 1991]
kempene-2
[411]
[Dauben, 1991]
halichondrin B
[413]
[Kishi, 1992]
hemibrevetoxin B
[414]
[Nicolaou, 1992]
[Yamamoto, 1995]
[Nakata, 1996]
[Mori, 1997]
indolizomycin
[404]
[Danishefsky, 1990]
R = H: calyculin A (ent)
[415]
[Evans, 1992]
[Masamune, 1994]
member of the
clavularanes
[434]
[Heathcock, 1994]
petrosin
[421]
magellanine
[431]
[Overman, 1993]
[Overman, 1993]
[Ziegler, 1995]
scopadulcic acid B
[430]
[Williams, 1993]
papuamine
[420]
[Barrett, 1994]
[Weinreb, 1994]
[Nicolaou, 1994]
[Hu, 1994]
[Adams, 1994]
[Stadlwieser, 1996]
[Tanner, 1997]
[Naito, 1997]
balanol
[419]
stenine
[418]
[Hart, 1993]
[Wipf, 1995]
[Danishefsky, 1992]
myrocin C
[412]
discodermolide
[416]
[Schreiber, 1993]
[Smith, 1995]
[Myles, 1997]
[Marshall, 1998]
lepicidin A
[417]
[Evans, 1993]
breynolide
[422]
[Smith, 1991] [Tius, 1992]
thebainone A
[424]
calphostin A
[429]
[Coleman, 1994]
[Roush, 1994]
chlorothricolide
[423]
epoxydictimene
[437]
[Schreiber, 1994]
ptilomycalin
[445]
[Overman, 1995]
Cl
(CH
2
)
14
duocarmycin A
[427]
[Terashima, 1994]
[Boger, 1996]
syringolide 1
[439]
[Wood, 1995]
[Kuwahara, 1995]
[Murai, 1996]
[Sims, 1997]
[Yoda, 1997]
[Wong, 1998]
[Danishefsky, 1995]
[Wood, 1997]
staurosporine
[435]
7-deacetoxyalcyonin
acetate
[438]
[Overman, 1995]
FR-900482
[441]
[Fukuyama,1992]
[Danishefsky, 1995]
[Armstrong, 1998]
R = Me: calyculin C (ent)
[415]
[Wasserman and Boger, 1993]
isochrysohermidin
[426]
discorhabdin C
[425]
[Kita, 1992]
[Shioiri, 1996]
[Smith, 1998]
Figure 7. Selected natural product syntheses from the twentieth century.
REVIEWS
K. C. Nicolaou et al.
O
N
O
O
O
R
2
O
NH
H
O
H
N
H
R
1
R
3
O
N
X
2
R
4
R
2
R
5
X
1
R
1
R
3
2
X
N
R
1
X
1
R
5
R
4R
2
R
3
R
1
N
O
R
2
R
2
N
N
R
3
XR
5
N N
R
3
O
N
Ar
1
Ar
2
O R
2
O
NH
Ar
1
N
R
2
R
3
N
R
1
R
1 R
1
R
1
R
3
R
4
Schreiber (1998) Nicolaou (1999)
X
1
= O, S; X
2
= CR
2
, O, NR
7-8 steps 2 steps
Sharpless (1999)
4-6 steps 4 steps 4 steps
X = SO
2
, CO, CH
2
Figure 9. Novel, natural productlike, molecular architectures recently
synthesized for biological screening purposes (number of steps from
commercially available materials).
[283]
BINAP 2,2¡¯-bis(diphenylphosphanyl)-1,1¡¯-binaphthyl
Bn benzyl
Boc tert-butyloxycarbonyl
BOP benzotriazol-1-yloxy-tris(dimethylamino)phos-
phonium hexafluoride
Bz benzoyl
CA chloroacetyl
CAN cerium ammonium nitrate
Cbz benzyloxycarbonyl
Cod cyclooctadiene
Cp cyclopentadienyl
CSA 10-camphorsulfonic acid
Cy cyclohexyl
DABCO 1,4-diazabicyclo[2.2.2]octane
DAST (diethylamino)sulfur trifluoride
dba trans,trans-dibenzylideneacetone
DBN 1,5-diazabicyclo[5.4.0]non-5-ene
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DCB 3,4-dichlorobenzyl
DCC N,N¡¯-dicyclohexylcarbodiimide
Ddm 4,4¡¯-dimethoxydiphenylmethyl
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD diethyl azodicarboxylate
DEIPS diethylisopropylsilyl
DET diethyl trtrate
108 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
N
O
H
O
Me
O
H
O
H
Me H
N
O
O
N
HN
O
O
OH
OH
Br
Me
O
OMe
OH
H OH
OMe
O
N
Me
O
Me
Me
O
N
O
O
O
O
OH
HO
H
Me O
Me
Me
N
OH
HO
O
O
H
O
O
O
O
O
OH
MeO
Me
O OH
Me
OH
Me
O
N
S
O
O
Me
Me
O
O
Me
H
2
N
Me
Me
NMe
2
O
X
OH
OH
H
O
O
O
O
H
AcO
Me
OH
H
O
O
O
O
H
HO
OH H
H
Me
OAc
Me
OMe
HO
Me
OH
Me
H
Me
Me
H
H
Me
O
O
H
N
O
HO
O
O
NH
OH
O
Me
nBu
Me
N
OH
O
H
N
O
O
N
N
O
H
N
O
N
Me O
N
Me
O
O
O
N
N
O
N
H
O
N
MeO
N
O
Me
MeO
H
OH
H
OH
AcO
HO
H
N
H
O
N
HO OMe
H
HO
Me
Me
OAc
N
N
O
O
Me
Me
AcO
Me
OH
Me
Me
HO
O
O
H H
H
HO
Me
OH
H
H
H
HN
O
O
O O
O
Me
Me
CO
2
Me
H
Me
OH
H
H
HO
H
OH OH O
O
O
O
Me
AcO
O
Me
MeO
HO
H
OMe
O
OH
Me
OH
O
OO
O
Me
HO
Me
HO
O O
Me
HO
iPrO
2
C
Me
O
OO
O
O
OH
O
Me CH
2
OH
OH
O
Me
O
O
Me
Me
O
O
NC
Me
OH
OH
Me
Me
Me
Me
H
O
O
HO
HO
Me
O
Me
Me
HN
Me
N NMe
2
O
O O
O
O
O
MeO
OH
croomine
[433]
[Martin, 1996]
phorboxazole A
[449]
[Forsyth, 1998]
batrachotoxinin A
[439]
[Barrett, 1996]
[Falck, 1996]
FR-90848
[436]
[Kishi, 1998]
neocarzinostatin
chromophore
[447]
X = Cl: spongistatin 1
[453]
[Kishi, 1998]
X = H: spongistatin 2
[454]
[Evans, 1998]
[Romo, 1998]
pateamine
[444]
[Myers, 1998]
[Boger, 1999]
salsolene oxide
[432]
[Paquette, 1997]
manumycin B
[448]
[Taylor, 1999]
luzopeptin B
[452]
cephalostatin 7
[455]
[Fuchs,1999]
[Kishi,1998]
olivomycin A
[450]
[Roush, 1999]
pinnatoxin A (ent)
[458]
diepoxin ¦Ò
[457]
[Wipf, 1999]
lubiminol
[442]
[Crimmins, 1996]
rubifolide
[456]
[Marshall, 1997]
trichoviridin
[428]
[Baldwin, 1996]
[Corey, 1997]
[Robichaud, 1998]
[Danishefsky, 1998]
[Yamada, 1999]
dysidiolide
[451]
[Danishefsky, 1997]
[Overman, 1998]
hispidospermidin
[443]
preussomerin I
[446]
[Heathcock, 1999]
Figure 8. Selected natural product syntheses from the twentieth century.
REVIEWS
Natural Products Synthesis
DHP 3,4-dihydro-2H-pyran
DIAD diisopropylazodicarboxylate
DIBAL-H diisobutylaluminum hydride
DIC 5-(3,3-dimethyl-1-triazenyl)-1H-imidazole-4-
carboximide
DIPT diisopropyl tartrate
DMA N,N-dimethylacetamide
4-DMAP 4-dimethylaminopyridine
DMF N,N-dimethylformamide
DMP Dess-Martin-periodinane
DMPU N,N-dimethylpropyleneurea
DMSO dimethylsulfoxide
Dopa 3-(3,4-dihydroxyphenyl)alanine
DPPA diphenyl phosphoryl azide
dppb 1,4-bis(diphenylphosphinyl)butane
dppf 1,1¡¯-bis(diphenylphosphanyl)ferrocene
DTBMS di-tert-butylmethylsilyl
EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
FDPP pentafluorophenyl diphenylphosphinate
Fmoc 9-fluorenylmethoxycarbonyl
HATU O-(7-azabenzotriazol-1-yl)-N,N,N¡¯,N¡¯-tetramethyl-
uronium hexafluorophosphate
HBTU O-benzotriazol-1-yl-N,N,N¡¯,N¡¯-tetramethyluroni-
um hexafluorophosphate
HMDS bis(trimethylsilyl)amide
HMPA hexamethylphosphoramide
HOAt 1-hydroxy-7-azabenzotriazole
HOBt 1-hydroxybenzotriazole
IBX o-iodoxybenzoic acid
imid. imidazole
Ipc isopinocamphenyl
KSAE Katsuki ¨C Sharpless asymmetric epoxidation
LDA lithium diisopropylamide
lut. 2,6-lutidine
mCPBA 3-chloroperoxybenzoic acid
MOM methoxymethyl
Ms methanesulfonyl
MSTFA N-methyl-N-(trimethylsilyl) trifluoroacetamide
nbd norbaranadine (bicyclo[2.2.1]hepta-2,5-diene)
NBS N-bromosuccinimide
NIS N-iodosuccinimide
NMO 4-methylmorpholine-N-oxide
Nos 4-nitrobenzolsulfonyl
OTf trifluoromethanesulfonate
PCC pyridinium chlorochromate
PDC pyridinium dichromate
PG protecting group
Pht phthalimidyl
Piv pivaloyl
PMB p-methoxybenzyl
PPTS pyridinium 4-toluenesulfonate
pTs 4-toluenesulfonyl
py pyridine
Red-Al sodium bis(2-methoxyethoxy)aluminum hydride
SEM 2-(trimethylsilyl)ethoxymethyl
TBAF tetra-n-butylammonium fluoride
TBAI tetra-n-butylammonium iodide
TBDPS tert-butyldiphenylsilyl
TBS tert-butyldimethylsilyl
TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy
TEOC trimethylsilylethylcarbonyl
TES triethylsilyl
Tfa trifluoroacetyl
TFA trifluoroacetic acid
TFAA trifluoroacetic anhydride
THF tetrahydrofuran
THP tetrahydropyranyl
TIPS triisopropylsilyl
TMGA tetramethylguanidinium azide
TMS trimethylsilyl
TPAP tetra-n-propylammonium perruthenate
TPS triphenylsilyl
Tr trityl
It is with enormous pride and pleasure that we wish to thank
our collaborators whose names appear in the references and
whose contributions made the described work possible and
enjoyable. We gratefully acknowledge the National Institutes of
Health (USA), Merck & Co., DuPont, Schering Plough,
Pfizer, Hoffmann-La Roche, Glaxo Wellcome, Rhone-Poulenc
Rorer, Amgen, Novartis, Abbott Laboratories, Bristol Myers
Squibb, Boehringer Ingelheim, Astra-Zeneca, CaPCURE, the
George E. Hewitt Foundation, and the Skaggs Institute for
Chemical Biology for supporting our research programs.
Received: June 10, 1999 [A349]
[1] Nobel Lectures: Chemistry 1963 ¨C 1970, Elsevier, New York, 1972,
pp. 96 ¨C 123.
[2] Nobel Lectures: Chemistry 1981 ¨C 1990, World Scientific, New Jersey,
1992, pp. 677 ¨C 708.
[3] K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, VCH,
Weinheim, 1996.
[4] E. J. Corey, X.-M. Cheng, The Logic of Chemical Synthesis, Wiley,
New York, 1989.
[5] I. Fleming, Selected Organic Syntheses, Wiley, New York, 1973.
[6] K. C. Nicolaou, E. J. Sorensen, N. Winssinger, J. Chem. Educ. 1998,
75, 1225 ¨C 1258.
[7] R. Breslow, Chemistry: Today and Tomorrow, American Chemical
Society, Washington, D.C. 1996.
[8] F. W hler, Ann. Phys. Chem. 1828, 12, 253.
[9] H. Kolbe, Ann. Chem. Pharm. 1845, 54, 145.
[10] a) C. Graebe, C. Liebermann, Ber. Dtsch. Chem. Ges. 1869, 2, 332;
b) first commercial synthesis: C. Graebe, C. Liebermann, H. Caro,
Ber. Dtsch. Chem. Ges. 1870, 3, 359; W. H. Perkin, J. Chem. Soc. 1970,
133 ¨C 134.
[11] A. Baeyer, Ber. Dtsch. Chem. Ges. 1878, 11, 1296 ¨C 1297; first
commercial production: K. Heumann, Ber. Dtsch. Chem. Ges. 1890,
23, 3431.
[12] E. Fischer, Ber. Dtsch. Chem. Ges. 1890, 23, 799 ¨C 805.
[13] See brochure of Nobel Committees for Physics and Chemistry, The
Royal Swedish Academy of Sciences, List of Nobel Prize Laureates
1901 ¨C 1994, Almquist & Wiksell Tryckeri, Uppsala, Sweden, 1995.
[14] W. H. Perkin, J. Chem. Soc. 1904, 85, 654 ¨C 671.
[15] See S. F. Thomas in The Total Synthesis of Natural Products, Vol. 2
(Ed.: J. Apsimon), Wiley, New York, 1973, pp. 149 ¨C 154.
[16] R. Robinson, J. Chem. Soc. 1917, 111, 762 ¨C 768.
[17] R. Willst tter, Ber. Dtsch. Chem. Ges. 1901, 34, 129 ¨C 130; R.
Willst tter, Ber. Dtsch. Chem. Ges. 1901, 34, and 3163 ¨C 3165; R.
Willst tter, Ber. Dtsch. Chem. Ges. 1986, 29, 936 ¨C 947. For an account
in English, see H. L. Holmes in The Alkaloids, Vol. 1 (Eds.: R. H. F.
Manske, H. L. Holmes), Academic Press, New York, 1950, pp. 288 ¨C
292.
[18] H. Fischer, K. Zeile, Justus Liebigs Ann. Chem. 1929, 468, 98.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 109
REVIEWS
K. C. Nicolaou et al.
[19] S. A. Harris, K. Folkers, J. Am. Chem. Soc. 1939, 61, 1242 ¨C 1244; S. A.
Harris, K. Folkers, J. Am. Chem. Soc. 1939, 61, 1245 ¨C 1247.
[20] S. A. Harris, K. Folkers, J. Am. Chem. Soc. 1939, 61, 3307 ¨C 3310.
[21] W. E. Bachmann, W. Cole, A. L. Wilds, J. Am. Chem. Soc. 1939, 61,
974 ¨C 975.
[22] R. B. Woodward, W. E. Doering, J. Am. Chem. Soc. 1944, 66, 849 ¨C
850.
[23] R. B. Woodward, G. Singh, J. Am. Chem. Soc. 1950, 72, 1428.
[24] R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M.
McLamore, J. Am. Chem. Soc. 1952, 74, 4223 ¨C 4251.
[25] R. B. Woodward, A. A. Patchett, D. H. R. Barton, D. A. H. Ives,
R. B. Kelly, J. Am. Chem. Soc. 1954, 76, 2852 ¨C 2853.
[26] E. C. Kornfield, E. J. Fornefeld, G. B. Kline, M. H. Mann, R. G.
Jones, R. B. Woodward, J. Am. Chem. Soc. 1954, 76, 5256 ¨C 5257.
[27] a) R. B Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U.
Daeniker, K. Schenker, J. Am. Chem. Soc. 1954, 76, 4749 ¨C 4751;
b) R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U.
Daeniker, K. Schenker, Tetrahedron 1963, 19, 247 ¨C 288.
[28] R. B. Woodward, F. E. Bader, H. Bickel, A. J. Frey, R. W. Kierstead,
J. Am. Chem. Soc. 1956, 78, 2023 ¨C 2055; R. B. Woodward, F. E.
Bader, H. Bickel, A. J. Frey, R. W. Kierstead, J. Am. Chem. Soc. 1956,
78, 2657; R. B. Woodward, F. E. Bader, H. Bickel, A. J. Frey, R. W.
Kierstead, Tetrahedron 1958, 2, 1 ¨C 57.
[29] a) R. B. Woodward, Pure Appl. Chem. 1961, 2, 383 ¨C 404; b) R. B.
Woodward, W. A. Ayer, J. M. Beaton, F. Bickelhaupt, R. Bonnett, P.
Buchschacher, G. L. Closs, H. Dutler, J. Hannah, F. P. Hauck, S. Ito?,
A. Langermann, E. Le Goff, W. Leimgruber, W. Lwowski, J. Sauer,
Z. Valenta, H. Volz, J. Am. Chem. Soc. 1960, 82, 3800 ¨C 3802.
[30] a) R. B. Woodward, K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer,
R. Ramage, S. Rangeanathan, H. Vorbruggen, J. Am. Chem. Soc.
1966, 88, 852 ¨C 853; b) R. B. Woodward, Science 1966, 153, 487 ¨C 493.
[31] R. B. Woodward, J. Gosteli, I. Ernest, R. J. Friary, G. Nestler, H.
Raman, R. Sitrin, C. Suter, J. K. Whitesell, J. Am. Chem. Soc. 1973,
95, 6853 ¨C 6855.
[32] a) R. B. Woodward, Pure Appl. Chem. 1968, 17, 519 ¨C 547; b) R. B.
Woodward, Pure Appl. Chem. 1971, 25, 283 ¨C 304; c) R. B. Wood-
ward, Pure Appl. Chem. 1973, 33, 145 ¨C 177; d) A. Eschenmoser,
C. E. Wintner, Science 1977, 196, 1410 ¨C 1420; e) R. B. Woodward in
Vitamin B
12
, Proceed. 3rd European Symposium on Vitamin B
12
and
Intrinsic Factor (Eds.: B. Zagalak, W. Friedrich), de Gruyter, Berlin,
1979, p. 37; f) A. Eschenmoser, Pure Appl. Chem. 1963, 7, 297 ¨C 316;
g) A. Eschenmoser, Pure Appl. Chem. 1971, 15, 69 (Special Lectures
XXIII IUPAC Int. Congress, Boston); h) A. Eschenmoser, Natur-
wissenschaften 1974, 61, 513 ¨C 525.
[33] R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward,
B. W. Au-Yeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, J.
Am. Chem. Soc. 1981, 103, 3210 ¨C 3213; R. B. Woodward, B. W. Au-
Yeung, P. Balaram, L. J. Browne, D. E. Ward, P. J. Card, C. H. Chen,
J. Am. Chem. Soc. 1981, 103, 3213 ¨C 3215; R. B. Woodward, E.
Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, B. W. Au-Yeung, P.
Balaram, L. J. Browne, P. J. Card, C. H. Chen, J. Am. Chem. Soc.
1981, 103, 3215 ¨C 3217.
[34] E. J. Corey, M. Ohno, P. A. Vatakencherry, R. B. Mitra, J. Am. Chem.
Soc. 1961, 83, 1251 ¨C 1253. See also E. J. Corey, M. Ohno, R. B. Mita,
P. A. Vatakencherry, J. Org. Chem. 1963, 86, 478 ¨C 485.
[35] a) G. Stork, A. W. Burgstahler, J. Am. Chem. Soc. 1955, 77, 5068 ¨C
5077; b) A. Eschenmoser, L. Ruzicka, O. Jeger, D. Arigoni, Helv.
Chim. Acta 1955, 38, 1890 ¨C 1904; c) P. A. Stadler, A. Eschenmoser,
H. Schinz, G. Stork, Helv. Chim. Acta 1957, 40, 2191 ¨C 2198.
[36] a) W. S. Johnson, M. B. Gravestock, B. E. McCarry, J. Am. Chem.
Soc. 1971, 93, 4332 ¨C 4334; b) M. B. Gravestock, W. S. Johnson, B. E.
McCarry, R. J. Parry, B. E. Ratcliffe, J. Am. Chem. Soc. 1978, 100,
4274 ¨C 4282.
[37] a) G. Stork, F. West, H. Y. Lee, R. C. A. Isaacs, S. Manabe, J. Am.
Chem. Soc. 1996, 118, 10660 ¨C 10 661; b) G. Stork, P. J. Franklin, Aust.
J. Chem. 1992, 45, 275 ¨C 284; c) G. Stork, N. A. Saccomano, Tetrahe-
dron Lett. 1987, 28, 2087 ¨C 2090; d) G. Stork, G. Clark, T. Weller,
Tetrahedron Lett. 1984, 25, 5367 ¨C 5370; e) G. Stork, J. D. Winkler,
C. S. Shiner, J. Am. Chem. Soc. 1982, 104, 3767 ¨C 3768; f) G. Stork, G.
Clark, C. S. Shiner, J. Am. Chem. Soc. 1981, 103, 4948 ¨C 4949; g) G.
Stork, E. W. Logusch, J. Am. Chem. Soc. 1980, 102, 1219 ¨C 1220; h) G.
Stork, Inf. Chim. 1979, 192 ¨C 193, 137 ¨C 140; i) G. Stork, J. E.
McMurry, J. Am. Chem. Soc. 1967, 89, 5464 ¨C 5465; j) G. Stork, D.
Sherman, J. Am. Chem. Soc. 1982, 104, 3758 ¨C 3759.
[38] a) G. Stork, S. Raucher, J. Am. Chem. Soc. 1976, 98, 1583 ¨C 1584;
b) G. Stork, T. Takahashi, I. Kawamoto, T. Suzuki, J. Am. Chem. Soc.
1978, 100, 8272.
[39] a) G. Stork, J. J. La Clair, P. Spargo, R. P. Nargund, N. Totah, J. Am.
Chem. Soc. 1996, 118, 5304 ¨C 5305; b) G. Stork, Y. K. Yee, Can. J.
Chem. 1984, 62, 2627 ¨C 2628; c) G. Stork, A. A. Hagedorn III, J. Am.
Chem. Soc. 1978, 100, 3609 ¨C 3611.
[40] P. W. Hickmott, Tetrahedron 1982, 28, 1975 ¨C 2050; see also
ref. [73].
[41] a) G. Stork, J. D. Winkler, N. A. Saccomano, Tetrahedron Lett. 1983,
24, 465 ¨C 468; b) G. Stork, C. S. Shiner, J. D. Winkler, J. Am. Chem.
Soc. 1982, 104, 310 ¨C 312; c) G. Stork, A. R. Schoofs, J. Am. Chem.
Soc. 1979, 101, 5081 ¨C 5082; d) G. Stork, P. G. Williard, J. Am. Chem.
Soc. 1977, 99, 7067 ¨C 7068; e) G. Stork, A. Y. W. Leong, A. M. Touzin,
J. Org. Chem. 1976, 41, 3491 ¨C 3493; f) G. Stork, Pure Appl. Chem.
1975, 43, 553 ¨C 562; g) G. Stork, J. C. Depezay, J. D Angelo, Tetrahe-
dron Lett. 1975, 389 ¨C 392; h) G. Stork, J. D Angelo, J. Am. Chem.
Soc. 1974, 96, 7114 ¨C 7116; i) G. Stork, L. D. Cama, D. R. Coulson, J.
Am. Chem. Soc. 1974, 96, 5268 ¨C 5270; j) G. Stork, L. Maldonado, J.
Am. Chem. Soc. 1974, 96, 5272 ¨C 5274; k) G. Stork, M. E. Jung, J. Am.
Chem. Soc. 1974, 96, 3682 ¨C 3684; l) G. Stork, B. Ganem, J. Am.
Chem. Soc. 1973, 95, 6152 ¨C 6153; m) G. Stork, J. O. Gilbert; R. K.
Beckman, Jr., K. A. Parker, J. Am. Chem. Soc. 1973, 95, 2014 ¨C 2016;
n) G. Stork, L. Maldonado, J. Am. Chem. Soc. 1971, 93, 5286 ¨C 5287;
o) G. Stork, S. Danishefsky, M. Ohashi, J. Am. Chem. Soc. 1967, 89,
5459 ¨C 5460.
[42] a) G. Stork, R. Mah, Tetrahedron Lett. 1989, 30, 3609 ¨C 3612; b) G.
Stork, M. E. Reynolds, J. Am. Chem. Soc. 1988, 110, 6911 ¨C 6913;
c) G. Stork, Bull. Chem. Soc. Jpn. 1988, 61, 149 ¨C 154; d) G. Stork, R.
Mook, Jr., Tetrahedron Lett. 1986, 27, 4529 ¨C 4532; e) G. Stork, R.
Mook, Jr., J. Am. Chem. Soc. 1987, 109, 2829 ¨C 2831; f) G. Stork, N. H.
Baine, Tetrahedron Lett. 1985, 26, 5927 ¨C 5930; g) G. Stork, M. J.
Sofia, J. Am. Chem. Soc. 1986, 108, 6826 ¨C 6828; h) G. Stork, M.
Kahn, J. Am. Chem. Soc. 1985, 107, 500 ¨C 501; i) G. Stork, P. M. Sher,
J. Am. Chem. Soc. 1983, 105, 6765 ¨C 6766; j) G. Stork, R. Mook, Jr., J.
Am. Chem. Soc. 1983, 105, 3720 ¨C 3722; k) G. Stork, R. Mook, Jr., S. A.
Biller, S. D. Rychnovsky, J. Am. Chem. Soc. 1983, 105, 3741 ¨C 3742;
l) G. Stork, N. H. Baine, J. Am. Chem. Soc. 1982, 104, 2321 ¨C 2323.
[43] a) G. Stork, J. J. La Clair, J. Am. Chem. Soc. 1996, 118, 247 ¨C 248;
b) G. Stork, T. Y. Chan, J. Am. Chem. Soc. 1995, 117, 6595 ¨C 6596;
c) G. Stork, T. Y. Chan, G. A. Breault, J. Am. Chem. Soc. 1992, 114,
7578 ¨C 7579; d) G. Stork, G. Kim, J. Am. Chem. Soc. 1992, 114, 1087 ¨C
1088; e) G. Stork, H. S. Suh, G. Kim, J. Am. Chem. Soc. 1991, 113,
7054 ¨C 7056.
[44] A. Eschenmoser, C. E. Wintner, Science 1977, 196, 1410 ¨C 1420.
[45] A. Eschenmoser, Quart. Rev. Chem. Soc. 1970, 24, 366 ¨C 415.
[46] a) see ref. [32f ¨C h]; b) A. Eschenmoser, Angew. Chem. 1988, 100, 5 ¨C
40; Angew. Chem. Int. Ed. Engl. 1988, 27, 5 ¨C 40.
[47] a) A. Eschenmoser, Science 1999, 284, 2118 ¨C 2124; b) M. Beier, F.
Reck, T. Wagner, R. Krishnamurthy, A. Eschenmoser, Science 1999,
283, 699 ¨C 703.
[48] Reason and Imagination (Ed.: D. H. R. Barton), World Scientific,
New Jersey, 1996.
[49] a) D. H. R. Barton, J. M. Beaton, L. E. Geller, M. M. Pechet, J. Am.
Chem. Soc. 1960, 82, 2640 ¨C 2641; b) D. H. R. Barton, J. M. Beaton,
L. E. Geller, M. M. Pechet, J. Am. Chem. Soc. 1961, 83, 4076 ¨C 4083;
c) D. H. R. Barton, Pure Appl. Chem. 1968, 16, 1 ¨C 15; d) D. H. R.
Barton, Aldrichim. Acta 1990, 23, 3 ¨C 10.
[50] a) D. H. R. Barton, J. M. Beaton, J. Am. Chem. Soc. 1960, 82, 2641;
b) D. H. R. Barton, J. M. Beaton, J. Am. Chem. Soc. 1961, 83, 4083 ¨C
4089.
[51] a) D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans. 1
1975, 1574 ¨C 1585; b) D. H. R. Barton, W. B. Motherwell, Pure Appl.
Chem. 1981, 53, 15 ¨C 31; c) W. Hartwig, Tetrahedron 1983, 39, 2609 ¨C
2645; d) D. H. R. Barton, S. Z. Zard, Pure Appl. Chem. 1986, 58,
675 ¨C 684.
[52] A. A. Akhrem, Y. A. Titov, Total Steroid Synthesis, Plenum, New
York, 1970.
[53] a) P. J. Pelletier, J. B. Caventou, Ann. Chim. Phys. 1818, 8, 323; b) P. J.
Pelletier, J. B. Caventou, Ann. Chim. Phys. 1819, 10, 142.
110 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
[54] a) L. H. Briggs, H. T. Openshaw, R. Robinson, J. Chem. Soc. 1946,
903; b) R. Robinson, Experientia 1946, 2, 28; c) For a comprehensive
survey, see G. F. Smith, Alkaloids 1965, 591.
[55] a) C. Bokhoven, J. C. Schoone, J. M. Bijvoet, Proc. K. Ned. Akad.
Wet. 1948, 51, 990; b) C. Bokhoven, J. C. Schoone, J. M. Bijvoet, Proc.
K. Ned. Akad. Wet. 1949, 52, 120; c) C. Bokhoven, J. C. Schoone,
J. M. Bijvoet, Acta Crystallogr. 1951, 4, 275 ¨C 280; d) J. H. Robertson,
C. A. Beevers, Nature 1950, 165, 690 ¨C 691; e) J. H. Robertson, C. A.
Beevers, Acta Crystallogr. 1951, 4, 270 ¨C 275; f) A. F. Peerdeman,
Acta Crystallogr. 1956, 9, 824.
[56] R. Robinson, Prog. Org. Chem. 1952, 1, 2.
[57] R. B. Woodward, Nature 1948, 162, 155 ¨C 156.
[58] a) S. D. Knight, L. E. Overman, G. Pairaudeau, J. Am. Chem. Soc.
1993, 115, 9293 ¨C 9294; b) S. D. Knight, L. E. Overman, G. Pairau-
deau, J. Am. Chem. Soc. 1995, 117, 5776 ¨C 5788.
[59] a) P. Magnus, M. Giles, R. Bonnert, G. Johnson, L. McQuire, M.
Deluca, A. Merritt, C. S. Kim, N. Vicker, J. Am. Chem. Soc. 1993,
115, 8116 ¨C 8129; b) P. Magnus, M. Giles, R. Bonnert, C. S. Kim, L.
McQuire, A. Merritt, N. Vicker, J. Am. Chem. Soc. 1992, 114, 4403 ¨C
4405; c) M. E. Kuehne, F. Xu, J. Org. Chem. 1993, 58, 7490 ¨C 7497;
d) V. H. Rawal, S. Iwasa, M. T. Crimmins, Org. Chem. 1994, 7, 262 ¨C
265; e) D. Sole, J. Bonjoch, S. Garcia-Rubio, E. Peidro, J. Bosch,
Angew. Chem. 1999, 111, 408 ¨C 410; Angew. Chem. Int. Ed. 1999, 38,
395 ¨C 397.
[60] A. Fleming, Brit. J. Exp. Path. 1929, 10, 226.
[61] E. Chain, H. W. Florey, A. D. Gardner, N. G. Heatley, M. A.
Jennings, J. Orr-Ewing, A. G. Sanders, Lancet 1940, 239, 226.
[62] a) For a detailed account of the British ¨C American penicillin project,
see The Chemistry of Penicillin (Eds.: H. T. Clarke, J. R. Johnson, R.
Robinson), Princeton University Press, Princeton, NJ, 1949; b) For a
review, see: A. H. Cook, Quart. Rev. (London) 1948, 2, 203.
[63] During the course of the prodigious wartime effort to synthesize
penicillin, a Merck group succeeded in synthesizing minute quanti-
ties of penicillin G: a) K. Folkers in Perspectives in Organic
Chemistry (Ed.: A. Todd), Interscience, New York, 1956, p. 409;
b) V. duVigneaud, F. H. Carpenter, R. W. Holley, A. H. Livermore,
J. R. Rachele, Science 1946, 104, 431 ¨C 433; c) V. duVigneaud, J. L.
Wood, M. E. Wright in The Chemistry of Penicillin (Eds.: H. T.
Clarke, J. R. Johnson, R. Robinson), Princeton University Press,
Princeton, NJ, 1949, pp. 893 ¨C 894.
[64] D. Crowfoot, C. W. Bunn, B. W. Rogers-Low, A. Turner-Jones in The
Chemistry of Penicillin (Eds.: H. T. Clarke, J. R. Johnson, R.
Robinson), Princeton University Press, Princeton, NJ, 1949, p. 310.
[65] a) J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem. Soc. 1957, 79,
1262 ¨C 1263; b) J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem.
Soc. 1959, 81, 3089 ¨C 3094.
[66] J. C. Sheehan, The Enchanted Ring: The Untold Story of Penicillin,
The MIT Press, Cambridge, MA, 1982.
[67] J. M. M ller, E. Schlittler, H. J. Bein, Experientia 1952, 8, 338.
[68] A. Scriabine in Pharmacology of Antihypertensive Drugs (Ed.: A.
Scriabine), Raven, New York, 1980, p. 119.
[69] a) C. F. Huebner, H. B. MacPhillamy, E. Schlittler, A. F. St. Andre¡ä,
Experientia 1955, 11, 303; b) E. Wenkert, L. H. Liu, Experientia 1955,
11, 302 ¨C 303; c) C. F. Huebner, E. Wenkert, J. Am. Chem. Soc. 1955,
77, 4180; d) P. A. Diassi, F. L. Weisenborn, C. M. Dylion, O. Winter-
seiner, J. Am. Chem. Soc. 1955, 77, 4687 ¨C 4689; e) E. E. van Tamelen,
P. D. Hance, J. Am. Chem. Soc. 1955, 77, 4692 ¨C 4693.
[70] For other total syntheses of reserpine, see a) B. A. Pearlman, J. Am.
Chem. Soc. 1979, 101, 6398 ¨C 6404, 6404 ¨C 6408; b) P. A. Wender, J. M.
Schaus, A. W. White, J. Am. Chem. Soc. 1980, 102, 6157 ¨C 6159; P. A.
Wender, J. M. Schaus, A. W. White, Heterocycles 1987, 25, 263 ¨C 270;
c) S. F. Martin, H. R eger, S. A. Williamson, S. Grzejszczak, J. Am.
Chem. Soc. 1987, 109, 6124 ¨C 6134; d) G. Stork, Pure Appl. Chem.
1989, 61, 439 ¨C 442.
[71] K. Wiesner, Fortschr. Chem. Org. Naturst. 1962, 20, 271 ¨C 297.
[72] a) G. Stork, R. A. Kretchmer, R. H. Schlessinger, J. Am. Chem. Soc.
1968, 90, 1647 ¨C 1648; b) G. Stork, Pure Appl. Chem. 1968, 17, 383 ¨C
401.
[73] a) G. Stork, R. Terrell, J. Szmuszkoviez, J. Am. Chem. Soc. 1954, 76,
2029; b) G. Stork, H. Landesman, J. Am. Chem. Soc. 1956, 78, 5128 ¨C
5129; c) G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkoviez, R.
Terrell, J. Am. Chem. Soc. 1963, 85, 207 ¨C 222.
[74] a) W. A. Ayer, W. R. Bowman, T. C. Joseph, P. Smith, J. Am. Chem.
Soc. 1968, 90, 1648 ¨C 1650; b) S. Kim, Y. Bando, Z. Horii, Tetrahedron
Lett. 1978, 2293 ¨C 2294; c) C. H. Heathcock, E. F. Kleinman, E. S.
Binkley, J. Am. Chem. Soc. 1978, 100, 8036 ¨C 8037; d) C. H. Heath-
cock, E. F. Kleinman, E. S. Binkley, J. Am. Chem. Soc. 1982, 104,
1054 ¨C 1068; e) D. Schumann, H. J. Mueller, A. Naumann, Liebigs
Ann. Chem. 1982, 9, 1700 ¨C 1705; f) E. Wenkert, C. A. Broka, J.
Chem. Soc. Chem. Commun. 1984, 714 ¨C 717; g) G. A. Kraus, Y.-S.
Hon, Heterocycles 1987, 25, 377 ¨C 386; h) P. A. Grieco, Y. Dai, J. Am.
Chem. Soc. 1998, 120, 5128 ¨C 5129.
[75] a) G. G. F. Newton, E. P. Abraham, Nature 1955, 175, 548; b) G. G. F.
Newton, E. P. Abraham, Biochem. J. 1956, 62, 651 ¨C 658.
[76] a) E. P. Abraham, G. G. F. Newton, Biochem. J. 1961, 79, 377 ¨C 393;
b) D. C. Hodgkin, E. N. Maslen, Biochem. J. 1961, 79, 393 ¨C 402.
[77] For an informative discussion and a compilation of leading refer-
ences, see J. S. Bindra, R. Bindra, Prostaglandin Synthesis, Academic
Press, New York, 1977, p. 7.
[78] a) S. Bergstr m, J. Sj vall, Acta Chem. Scand. 1957, 11, 1086; b) S.
Bergstr m, J. Sj vall, Acta Chem. Scand. 1960, 14, 1693 ¨C 1700; c) S.
Bergstr m, J. Sj vall, Acta Chem. Scand. 1960, 14, 1701 ¨C 1705; d) S.
Bergstr m, R. Ryhase, B. Samuelsson, J. Sj vall, Acta Chem. Scand.
1962, 16, 501 ¨C 502; e) S. Bergstr m, R. Ryhase, B. Samuelsson, J.
Sj vall, J. Biol. Chem. 1963, 238, 3555 ¨C 3564.
[79] P. W. Collins, S. W. Djuric, Chem. Rev. 1993, 93, 1533 ¨C 1564.
[80] a) E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am.
Chem. Soc. 1969, 91, 5675 ¨C 5677; b) E. J. Corey, T. K. Schaaf, W.
Huber, U. Koelliker, N. M. Weinshenker, J. Am. Chem. Soc. 1970, 92,
397 ¨C 398; c) E. J. Corey, R. Noyori, T. K. Schaaf, J. Am. Chem. Soc.
1970, 92, 2586 ¨C 2587; d) E. J. Corey, Ann. N. Y. Acad. Sci. 1971, 180,
24 ¨C 37.
[81] a) J. S. Bindra, R. Bindra, Prostaglandin Synthesis, Academic Press,
New York, 1977; b) A. Mitra, The Synthesis of Prostaglandins, Wiley-
Interscience, New York, 1977.
[82] New Synthetic Routes to Prostaglandins and Thromboxanes (Eds.:
S. M. Roberts, F. Scheinmann), Academic Press, San Diego, 1982.
[83] a) M. P. L. Caton, Tetrahedron 1979, 35, 2705 ¨C 2742; b) K. C. Nic-
olaou, G. P. Gasic, W. E. Barnette, Angew. Chem. 1978, 90, 356 ¨C 379;
Angew. Chem. Int. Ed. Engl. 1978, 17, 293 ¨C 312; c) R. F. Newton,
S. M. Roberts, Tetrahedron 1980, 36, 2163 ¨C 2196; d) R. Noyori, M.
Suzuki, Angew. Chem. 1984, 96, 854 ¨C 882; Angew. Chem. Int. Ed.
Engl. 1984, 23, 847 ¨C 876.
[84] For the evolution of Corey s synthesis of prostaglandins, see
refs. [3, 4].
[85] E. J. Corey, D. H. Lee, J. Am. Chem. Soc. 1975, 97, 6908 ¨C 6909.
[86] A. I. Myers, J. Heterocycl. Chem. 1998, 35, 991 ¨C 1002.
[87] a) D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber, J. Am. Chem. Soc.
1981, 103, 3099 ¨C 3111; b) D. A. Evans, J. M. Takacs, L. R. McGee,
M. D. Ennis, D. J. Mathre, J. Bartroli, Pure Appl. Chem. 1981, 53,
1109 ¨C 1127; c) D. A. Evans, J. V. Nelson, T. R. Taber, Top. Stereo-
chem. 1982, 13, 1 ¨C 115; d) D. A. Evans, Aldrichim. Acta 1982, 15,
23 ¨C 32.
[88] W. Oppolzer, Pure Appl. Chem. 1990, 62, 1241 ¨C 1250.
[89] a) H. C. Brown, P. K. Jadhav, K. S. Bhat, J. Am. Chem. Soc. 1988, 110,
1535 ¨C 1538; b) P. K. Jadhav, K. S. Bhat, T. Perumal, H. C. Brown, J.
Org. Chem. 1986, 51, 432 ¨C 439.
[90] a) E. J. Corey, R. Imwinkelried, S. Pikul, Y. B. Xiang, J. Am. Chem.
Soc. 1989, 111, 5493 ¨C 5495; b) E. J. Corey, N. Imai, S. Pikul,
Tetrahedron Lett. 1991, 32, 7517 ¨C 7520.
[91] a) E. J. Corey, T. P. Loh, J. Am. Chem. Soc. 1991, 113, 8966 ¨C 8967;
b) E. J. Corey, T. P. Loh, T. D. Roper, M. D. Azimioara, M. C. Noe, J.
Am. Chem. Soc. 1992, 114, 8290 ¨C 8292.
[92] a) E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109,
5551 ¨C 5553; b) E. J. Corey, R. K. Bakshi, S. Shibata, C. P. Chen, V. K.
Singh, J. Am. Chem. Soc. 1987, 109, 7925 ¨C 7926; c) E. J. Corey, S.
Shibata, R. K. Bakshi, J. Org. Chem. 1988, 53, 2861 ¨C 2863; d) E. J.
Corey, R. K. Bakshi, Tetrahedron Lett. 1990, 31, 611 ¨C 614.
[93] a) W. S. Johnson, Acc. Chem. Res. 1968, 1, 1 ¨C 8; b) W. S. Johnson,
Angew. Chem. 1976, 88, 33 ¨C 41; Angew. Chem. Int. Ed. Engl. 1976,
15, 9 ¨C 16; c) W. S. Johnson, Bioorg. Chem. 1976, 5, 51 ¨C 98.
[94] a) R. B. Clayton, Quart. Rev. (London) 1968, 19, 168; b) R. B.
Woodward, K. Bloch, J. Am. Chem. Soc. 1953, 75, 2023 ¨C 2024;
c) E. E. van Tamelen, J. D. Willet, R. B. Clayton, K. E. Lord, J. Am.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 111
REVIEWS
K. C. Nicolaou et al.
Chem. Soc. 1966, 88, 4752 ¨C 4754; d) E. E. van Tamelen, J. Am. Chem.
Soc. 1982, 104, 6480 ¨C 6481; e) E. J. Corey, W. E. Russey, P. R.
Ortiz de Montellano, J. Am. Chem. Soc. 1966, 88, 4750 ¨C 4751;
f) E. J. Corey, S. C. Virgil, J. Am. Chem. Soc. 1991, 113, 4025 ¨C 4026;
g) E. J. Corey, S. C. Virgil, S. Sars, J. Am. Chem. Soc. 1991, 113, 8171 ¨C
8172; h) E. J. Corey, S. C. Virgil, D. R. Liu, S. Sarshar, J. Am. Chem.
Soc. 1992, 114, 1524 ¨C 1525.
[95] a) E. E. van Tamelen, Acc. Chem. Res. 1975, 8, 152 ¨C 158; b) E. E.
van Tamelen, G. M. Milne, M. I. Suffness, M. C. Rudler Chauvin,
R. J. Anderson, R. S. Achini, J. Am. Chem. Soc. 1970, 92, 7202 ¨C 7204;
c) E. E. van Tamelen, J. W. Murphy, J. Am. Chem. Soc. 1970, 92,
7206 ¨C 7207; d) E. E. van Tamelen, R. J. Anderson, J. Am. Chem. Soc.
1972, 94, 8225 ¨C 8228; e) E. E. van Tamelen, R. A. Holton, R. E.
Hopla, W. E. Konz, J. Am. Chem. Soc. 1972, 94, 8228 ¨C 8229; f) E. E.
van Tamelen, M. P. Seiler, W. Wierenga, J. Am. Chem. Soc. 1972, 94,
8229 ¨C 8231.
[96] T. Goto, Y. Kishi, S. Takahashi, Y. Hirata, Tetrahedron, 1965, 21,
2059, and references therein.
[97] Total synthesis: a) Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S.
Inoue, H. Kakoi, S. Sugiura, Tetrahedron Lett. 1970, 5127 ¨C 5128;
b) Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S. Inoue,
H. Kakoi, Tetrahedron Lett. 1970, 5129 ¨C 5132; c) Y. Kishi, M.
Aratani, T. Fukuyama, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino,
S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94, 9217 ¨C 9219;
d) Y. Kishi, T. Fukuyama, M. Aratani, F. Nakatsubo, T. Goto, S.
Inoue, H. Tatino, S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94,
9219 ¨C 9221.
[98] a) R. B. Woodward, Spec. Publ. Chem. Soc. 1967, 21, 217; b) R. B.
Woodward, R. Hoffmann, Angew. Chem. 1969, 81, 797 ¨C 869; Angew.
Chem. Int. Ed. Engl. 1969, 8, 781 ¨C 853; c) R. B. Woodward, R.
Hoffmann, The Conservation of Orbital Symmetry, Academic Press,
New York, 1970, p. 178.
[99] a) D. Crowfoot-Hodgkin, A. W. Johnson, A. R. Todd, Spec. Publ.
Chem. Soc. 1955, 3, 109; b) D. Crowfoot-Hodgkin, J. Kamper, M.
MacKay, J. Pickworth, K. C. Trueblood, J. G. White, Nature 1956,
178, 64 ¨C 66; c) D. Crowfoot-Hodgkin, J. Kamper, J. Lindsey, M.
MacKay, J. Pickworth, J. H. Robertson, C. B. Shoemaker, J. G. White,
R. J. Prosen, K. N. Trueblood, Proc. Roy. Soc. London Ser. A 1957,
242, 228; d) R. Bonnett, Chem. Rev. 1963, 63, 573 ¨C 605.
[100] W. Friedrich, G. Gross, K. Bernhauser, P. Zeller, Helv. Chim. Acta.
1960, 43, 704 ¨C 712.
[101] R. B. Woodward in Perspectives in Organic Chemistry (Ed.: A.
Todd), Interscience, New York, 1956, p. 160.
[102] a) E. J. Corey, E. J. Trybulski, L. S. Melvin, Jr., K. C. Nicolaou, J. A.
Secrist, R. Lett, P. W. Sheldrake, J. R. Falck, D. J. Brunelle, M. F.
Haslanger, S. Kim, S. Yoo, J. Am. Chem. Soc. 1978, 100, 4618 ¨C 4620;
b) E. J. Corey, S. Kim, S. Yoo, K. C. Nicolaou, L. S. Melvin, Jr., D. J.
Brunelle, J. R. Falck, E. J. Trybulski, R. Lett, P. W. Sheldrake, J. Am.
Chem. Soc. 1978, 100, 4620 ¨C 4622.
[103] E. J. Corey, K. C. Nicolaou, J. Am. Chem. Soc. 1974, 96, 5614 ¨C 5616.
[104] a) E. J. Corey, K. C. Nicolaou, L. S. Melvin, Jr., J. Am. Chem. Soc.
1975, 97, 653 ¨C 654; E. J. Corey, K. C. Nicolaou, L. S. Melvin, Jr., J.
Am. Chem. Soc. 1975, 97, 654 ¨C 655; b) K. C. Nicolaou, Tetrahedron
1977, 33, 683 ¨C 710; c) S. Masamune, G. S. Bates, J. W. Corcoran,
Angew. Chem. 1977, 89, 602 ¨C 624; Angew. Chem. Int. Ed. Engl. 1977,
16, 585 ¨C 607; d) I. Paterson, M. M. Mansuri, Tetrahedron 1985, 41,
3569 ¨C 3624.
[105] A. Agtarap, J. W. Chamberlin, M. Pinkerton, L. Steinrauf, J. Am.
Chem. Soc. 1967, 89, 5737 ¨C 5739.
[106] a) M. Dobler, Ionophores and Their Structures, Wiley, New York,
1981; b) J. W. Westley, Adv. Appl. Microbiol. 1977, 22, 177; c) B. C.
Pressman, Ann. Rev. Biochem. 1976, 45, 501; d) J. W. Westley, Ann.
Rep. Med. Chem. 1975, 10, 246.
[107] Polyether Antiobiotics: Naturally Occurring Acid Ionophores,
Vol. 1 ¨C 2 (Ed.: J. W. Westley), Marcel Dekker, New York, 1982.
[108] a) G. Schmid, T. Fukuyama, K. Akasaka, Y. Kishi, J. Am. Chem. Soc.
1979, 101, 259 ¨C 260; b) T. Fukuyama, C.-L. Wang, Y. Kishi, J. Am.
Chem. Soc. 1979, 101, 260 ¨C 262; c) T. Fukuyama, K. Akasaka, D. S.
Karanewsky, C.-L. Wang, G. Schmid, Y. Kishi, J. Am. Chem. Soc.
1979, 101, 262 ¨C 263.
[109] T. Nakata, G. Schmid, B. Vranesic, M. Okigawa, T. Smith-Palmer, Y.
Kishi, J. Am. Chem. Soc. 1978, 100, 2933 ¨C 2935.
[110] a) D. B. Collum, J. H. McDonald III, W. C. Still, J. Am. Chem. Soc.
1980, 102, 2117 ¨C 2118; b) D. B. Collum, J. H. McDonald III, W. C.
Still, J. Am. Chem. Soc. 1980, 102, 2118 ¨C 2120; c) D. B. Collum, J. H.
McDonald III, W. C. Still, J. Am. Chem. Soc. 1980, 102, 2120 ¨C 2121.
[111] a) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon,
B. M. Gatehouse, J. Chem. Soc. Chem. Commun. 1980, 162 ¨C 163;
b) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, J. Chem. Soc.
Chem. Commun. 1980, 902 ¨C 903; c) W. M. Bandaranayake, J. E.
Banfield, D. S. C. Black, G. D. Fallon, B. M. Gatehouse, Aust. J.
Chem. 1981, 34, 1655 ¨C 1667; d) W. M. Bandaranayake, J. E. Banfield,
D. S. C. Black, Aust. J. Chem. 1982, 35, 557 ¨C 565; e) W. M. Bandar-
anayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, B. M. Gate-
house, Aust. J. Chem. 1982, 35, 567 ¨C 579; f) J. E. Banfield, D. S. C.
Black, S. R. Johns, R. I. Willing, Aust. J. Chem. 1982, 35, 2247 ¨C 2256.
[112] a) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am.
Chem. Soc. 1982, 104, 5555 ¨C 5557; b) K. C. Nicolaou, N. A. Petasis, J.
Uenishi, R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5557 ¨C 5558;
c) K. C. Nicolaou, R. E. Zipkin, N. A. Petasis, J. Am. Chem. Soc.
1982, 104, 5558 ¨C 5560; d) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin,
J. Am. Chem. Soc. 1982, 104, 5560 ¨C 5562; e) K. C. Nicolaou, N. A.
Petasis in Strategies and Tactics in Organic Synthesis, Vol. 1 (Ed.: T.
Lindberg), Academic Press, San Diego, 1984, p. 155 ¨C 173.
[113] K. C. Nicolaou, Chem. Brit. 1985, 813 ¨C 817.
[114] R. S. Dewey, B. H. Arison, J. Hannah, D. H. Shih, G. Albers-
Schonberg, J. Antibiot. 1985, 38, 1691 ¨C 1698.
[115] a) R. E. Dolle, K. C. Nicolaou, J. Chem. Soc. Chem. Commun. 1985,
1016 ¨C 1018; b) R. E. Dolle, K. C. Nicolaou, J. Am. Chem. Soc. 1985,
107, 1691 ¨C 1694; c) R. E. Dolle, K. C. Nicolaou, J. Am. Chem. Soc.
1985, 107, 1695 ¨C 1698.
[116] K. C. Nicolaou, R. E. Dolle, D. P. Papahatjis, J. L. Randall, J. Am.
Chem. Soc. 1984, 106, 4189 ¨C 4192.
[117] K. C. Nicolaou, Chemtracts: Org. Chem. 1991, 4, 181 ¨C 198.
[118] a) K. Tachibana, P. J. Scheuer, Y. Tsukitani, H. Kikutsi, D. V. Engen,
J. Clardy, Y. Gopichand, F. Schmitz, J. Am. Chem. Soc. 1981, 103,
2469 ¨C 2471; b) M. Murata, M. Shimatani, H. Sugitani, Y. Oshima, T.
Yasumoto, Bull. Jpn. Soc. Sci. Fish. 1982, 48, 549. For biological
activity, see a) R. Boe, B. T. Gjertsen, O. K. Vintermyr, G. Houge, M.
Lanotte, S. O. Diskeland, Exp. Cell Res. 1991, 195, 237 ¨C 246; b) A.
Takai, G. Mieskes, Biochem. J. 1991, 275, 233 ¨C 239.
[119] a) M. Isobe, Y. Ichikawa, H. Masaki, T. Goto, Tetrahedron Lett. 1984,
25, 3607 ¨C 3610; b) Y. Ichikawa, M. Isobe, T. Goto, Tetrahedron Lett.
1984, 25, 5049 ¨C 5052; c) M. Isobe, Y. Ichikawa, T. Goto, Tetrahedron
Lett. 1985, 26, 5199 ¨C 5202; d) M. Isobe, Y. Ichikawa, D.-I. Bai, T.
Goto, Tetrahedron Lett. 1985, 26, 5203 ¨C 5206; e) M. Isobe, Y.
Ichikawa, T. Goto, Tetrahedron Lett. 1985, 26, 963 ¨C 966; f) M. Isobe,
Y. Ichidawa, D.-I. Bai, H. Masaki, T. Goto, Tetrahedron 1987, 43,
4767 ¨C 4776.
[120] a) C. J. Forsyth, S. F. Sabes, R. A. Urbanek, J. Am. Chem. Soc. 1997,
119, 8381 ¨C 8382; b) S. F. Sabes, R. A. Urbanek, C. J. Forsyth, J. Am.
Chem. Soc. 1998, 120, 2534 ¨C 2542.
[121] S. V. Ley, A. C. Humphries, H. Eick, R. Bownham, A. R. Ross, R. J.
Boyce, J. B. J. Pavey, J. Pietruszka, J. Chem. Soc. Perkin Trans. 1 1998,
3907 ¨C 3912.
[122] a) J. Vandeputte, J. L. Wachtel, E. T. Stiller, Antibiot. Annu. 1956,
587; b) W. Mechinski, C. P. Shaffner, P. Ganis, G. Avitabile,
Tetrahedron Lett. 1970, 3873 ¨C 3876; c) P. Ganis, G. Avitabile, W.
Mechinski, C. P. Shaffner, J. Am. Chem. Soc. 1971, 93, 4560 ¨C 4564.
[123] a) K. C. Nicolaou, R. A. Daines, J. Uenishi, W. S. Li, D. P. Papahatjis,
T. K. Chakraborty, J. Am. Chem. Soc. 1987, 109, 2205 ¨C 2208; b) K. C.
Nicolaou, R. A. Daines, T. K. Chakraborty, J. Am. Chem. Soc. 1987,
109, 2208 ¨C 2210; c) K. C. Nicolaou, T. K. Chakraborty, R. A. Daines,
N. S. Simpkins, J. Chem. Soc. Chem. Commun. 1986, 413 ¨C 416;
d) K. C. Nicolaou, R. A. Daines, T. K. Chakraborty, Y. Ogawa, J.
Am. Chem. Soc. 1987, 109, 2821 ¨C 2822; e) K. C. Nicolaou, R. A.
Daines, J. Uenishi, W. S. Li, D. P. Papahatjis, T. K. Chakraborty, J.
Am. Chem. Soc. 1988, 110, 4672 ¨C 4685; f) K. C. Nicolaou, R. A.
Daines, T. K. Chakraborty, Y. Ogawa, J. Am. Chem. Soc. 1988, 110,
4685 ¨C 4696; g) K. C. Nicolaou, R. A. Daines, Y. Ogawa, T. K.
Chakraborty, J. Am. Chem. Soc. 1988, 110, 4696 ¨C 4705.
[124] T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974 ¨C 5976.
[125] For a recent review, see K. C. Nicolaou, M. W. H rter, J. L. Gunzner,
A. Nadin, Liebigs Ann. 1997, 1283 ¨C 1301.
112 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
[126] R. M. Kennedy, A. Abiko, T. Takemasa, M. Okumoto, S. Masamune,
Tetrahedron Lett. 1998, 451 ¨C 454.
[127] a) S. Furukawa, Sci. Pap. Inst. Phys. Chem. Res. 1932, 19, 27; b) S.
Furukawa, Sci. Pap. Inst. Phys. Chem. Res. 1933, 21, 273; c) S.
Furukawa, Sci. Pap. Inst. Phys. Chem. Res. 1934, 24, 304; d) B. Max,
Trends Pharmacol. Sci. 1987, 8, 290; e) R. T. Major, Science 1967, 157,
1270 ¨C 1272; f) H. Lutz, J. Am. Forests 1931, 37, 475; g) H. J. Prideux-
Brune, R. Hort. Soc. 1947, 72, 446; h) J. N. Wilford in The New York
Times: Medical Science, 1988, March 1, L, p. C3.
[128] a) K. Nakanishi, Pure Appl. Chem. 1967, 14, 89 ¨C 113; See also b) N.
Sakabe, S. Takada, K. Okabe, J. Chem. Soc. Chem. Commun. 1967,
259 ¨C 261; c) K. Okabe, K. Yamada, S. Yamamura, S. Takada, J.
Chem. Soc. C 1967, 2201 ¨C 2206.
[129] a) E. J. Corey, M. C. Kang, M. C. Desai, A. K. Ghosh, I. N. Houpis, J.
Am. Chem. Soc. 1988, 110, 649 ¨C 651; see also b) M. C. Desai, A. K.
Ghosh, M. C. Kang, I. N. Houpis in Strategies and Tactics in Organic
Synthesis, Vol. 3 (Ed.: T. Lindenberg), Academic Press, New York,
1991, p. 89. See also ref. [3]. Another synthesis of gingkolide B
recently appeared: M. T. Crimmins, J. M. Pace, P. G. Nantermet,
A. S. Kim-Meade, J. B. Thomas, S. H. Watterson, A. S. Wagman, J.
Am. Chem. Soc. 1999, 121, 10249 ¨C 10250.
[130] For reviews of palytoxin, see a) R. E. Moore, Prog. Chem. Org. Nat.
Prod. 1985, 48, 81 ¨C 202; b) Y. Hirata, D. Uemura, Y. Ohizumi,
Handbook of Natural Toxins, Vol. 3 (Ed.: A. T. Tu), Marcel Dekker,
New York, 1988, p. 241.
[131] D. Uemura, K. Ueda, Y. Hirata, H. Naoki, T. Iwashita, Tetrahedron
Lett. 1981, 22, 2781 ¨C 2784.
[132] R. E. Moore, G. Bartolini, J. Am. Chem. Soc. 1981, 103, 2491 ¨C 2494.
[133] a) R. W. Armstrong, J.-M. Beau, S. H. Cheon, W. J. Christ, H.
Fujioka, W.-H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi,
M. J. Martinelli, W. W. McWhorter, Jr., M. Mizuno, M. Nakata, A. E.
Stutz, F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J.-i. Uenishi,
J. B. White, M. Yonaga, J. Am. Chem. Soc. 1989, 111, 7525 ¨C 7530;
b) R. W. Armstrong, J.-M. Beau, S. H. Cheon, W. J. Christ, H.
Fujioka, W.-H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi,
M. J. Martinelli, W. W. McWhorter, Jr., M. Mizuno, M. Nakata, A. E.
Stutz, F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J.-i. Uenishi,
J. B. White, M. Yonaga, J. Am. Chem. Soc. 1989, 111, 7530 ¨C 7533. See
also ref. [3].
[134] E. M. Suh, Y. Kishi, J. Am. Chem. Soc. 1994, 116, 11 205 ¨C 11206. See
also ref. [3].
[135] T. Kihara, H. Kusakabe, G. Nakamura, T. Sakurai, K. Isono, J.
Antibiot. 1981, 34, 1073 ¨C 1074.
[136] T. Sakurai, T. Kihara, K. Isono, Acta Crystallogr. Sect. C 1983, 39,
295 ¨C 297; T. Kihara, K. Isono, J. Antibiot. 1983, 36, 1236 ¨C 1241.
[137] D. A. Evans, S. W. Kaldor, T. K. Jones, J. Clardy, T. J. Stout, J. Am.
Chem. Soc. 1990, 112, 7001 ¨C 7031. See also ref. [3].
[138] a) G. Stork, S. D. Rychnovsky, J. Am. Chem. Soc. 1987, 109, 1564 ¨C
1565; G. Stork, S. D. Rychnovsky, J. Am. Chem. Soc. 1987, 109, 1565 ¨C
1566; b) G. Stork, S. D. Rychnovsky, Pure Appl. Chem. 1986, 58,
767 ¨C 772.
[139] a) M. D. Lee, T. S. Dunne, M. M. Siegel, C. C. Chang, G. O. Morton,
D. B. Borders, J. Am. Chem. Soc. 1987, 109, 3464 ¨C 3466; b) M. D. Lee,
T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Siegel, G. O.
Morton, G. O. McGahren, D. B. Borders, J. Am. Chem. Soc. 1987,
109, 3466 ¨C 3468; c) M. D. Lee, T. S. Dunne, C. C. Chang, M. M.
Siegel, G. O. Morton, G. A. Ellestad, W. J. McGahren, D. B. Borders,
J. Am. Chem. Soc. 1992, 114, 985 ¨C 997.
[140] Reviews: a) K. C. Nicolaou, W.-M. Dai, Angew. Chem. 1991, 103,
1453 ¨C 1481; Angew. Chem. Int. Ed. Engl. 1991, 30, 1387 ¨C 1416;
b) K. C. Nicolaou, A. L. Smith, E. W. Yue, Proc. Natl. Acad. Sci.
USA 1993, 90, 5881 ¨C 5888.
[141] a) R. G. Bergman, Acc. Chem. Res. 1973, 6, 25 ¨C 31; b) R. R. Jones,
R. G. Bergman, J. Am. Chem. Soc. 1972, 94, 660 ¨C 661; c) T. P.
Lockhart, P. B. Gomita, R. G. Bergman, J. Am. Chem. Soc. 1981, 103,
4091 ¨C 4096.
[142] a) K. C. Nicolaou, C. W. Hummel, E. N. Pitsinos, M. Nakada, A. L.
Smith, K. Shibayama, H. Saimoto, J. Am. Chem. Soc. 1992, 114,
10082 ¨C 10 084; b) R. D. Groneberg, T. Miyazaki, N. A. Stylianides,
T. J. Schulze, W. Stahl, E. P. Schreiner, T. Suzuki, Y. Iwabuchi, A. L.
Smith, K. C. Nicolaou, J. Am. Chem. Soc. 1993, 115, 7593 ¨C 7611;
c) A. L. Smith, E. N. Pitsinos, C.-K. Hwang, Y. Mizuno, H. Saimoto,
G. R. Scarlato, T. Suzuki, K. C. Nicolaou, J. Am. Chem. Soc. 1993,
115, 7612 ¨C 7624; d) K. C. Nicolaou, C. W. Hummel, M. Nakada, K.
Shibayama, E. N. Pitsinos, H. Saimoto, Y. Mizuno, K.-U. Baldenius,
A. L. Smith, J. Am. Chem. Soc. 1993, 115, 7625 ¨C 7635; e) K. C.
Nicolaou, Angew. Chem. 1993, 105, 1462 ¨C 1471; Angew. Chem. Int.
Ed. Engl. 1993, 32, 1377 ¨C 1385.
[143] S. A. Hitchcock, S. H. Boyer, M. Y. Chu-Moyer, S. H. Olson, S. J.
Danishefsky, Angew. Chem. 1994, 106, 928 ¨C 932; Angew. Chem. Int.
Ed. Engl. 1994, 33, 858 ¨C 862.
[144] a) C. Ve¡äzina, A. Kudelski, S. N. Sehgal, J. Antibiot. 1975, 28, 721 ¨C
726; b) S. N. Sehgal, H. Baker, C. Ve¡äzina, J. Antibiot. 1975, 28, 727 ¨C
732.
[145] a) D. C. N. Swindells, P. S. White, J. A. Findlay, Can. J. Chem. 1978,
56, 2491 ¨C 2492; b) J. A. Findlay, L. Radics, Can. J. Chem. 1980, 58,
579 ¨C 590.
[146] M. K. Rosen; S. L. Schreiber, Angew. Chem. 1992, 104, 413 ¨C 429;
Angew. Chem. Int. Ed. Engl. 1992, 31, 384 ¨C 400; b) S. L. Schreiber,
Science 1991, 251, 283 ¨C 287; c) S. L. Schreiber, J. Liu, M. W. Albers,
R. Karmacharya, E. Koh, P. K. Martin, M. K. Rosen, R. F. Standaert,
T. J. Wandless, Transplant. Proc. 1991, 23, 2839 ¨C 2844.
[147] a) K. C. Nicolaou, T. K. Chakraborty, A. D. Piscopio, N. Minowa, P.
Bertinato, J. Am. Chem. Soc. 1993, 115, 4419 ¨C 4420; b) A. D.
Piscopio, N. Minowa, T. K. Chakraborty, K. Koide, P. Bertinato,
K. C. Nicolaou, J. Chem. Soc. Chem. Commun. 1993, 617 ¨C 618;
c) K. C. Nicolaou, P. Bertinato, A. D. Piscopio, T. K. Chakraborty, N.
Minowa, J. Chem. Soc. Chem. Commun. 1993, 619 ¨C 622; d) K. C.
Nicolaou, A. D. Piscopio, P. Bertinato, T. K. Chakraborty, N.
Minowa, K. Koide, Chem. Eur. J. 1995, 1, 318 ¨C 323. See also ref. [3].
[148] D. Romo, S. D. Meyer, D. D. Johnson, S. L. Schreiber, J. Am. Chem.
Soc. 1993, 115, 7906 ¨C 7909.
[149] C. M. Hayward, D. Yohannes, S. J. Danishefsky, J. Am. Chem. Soc.
1993, 115, 9345 ¨C 9346.
[150] A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W.
Leahy, R. E. Maleczka, Jr., J. Org. Chem. 1995, 117, 5407 ¨C 5408.
[151] M. A. Duncton, G. Pattenden, J. Chem. Soc. Perkins Trans. 1, 1999,
1235 ¨C 1246.
[152] M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, A. T. McPhail, J.
Am. Chem. Soc. 1971, 93, 2325 ¨C 2327.
[153] K. C. Nicolaou, W.-M. Dai, R. K. Guy, Angew. Chem. 1994, 106, 38 ¨C
69; Angew. Chem. Int. Ed. Engl. 1994, 33, 15 ¨C 44; K. C. Nicolaou,
R. K. Guy, P. Potier, Sci. Am. 1996, 272(6), 84 ¨C 88.
[154] a) K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno, P. G. Nantermet, R. K.
Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan,
E. J. Sorensen, Nature 1994, 367, 630 ¨C 634; b) K. C. Nicolaou, P. G.
Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, E. J. Sorensen,
J. Am. Chem. Soc. 1995, 117, 624 ¨C 633; c) K. C. Nicolaou, J.-J. Liu, Z.
Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C.-K.
Hwang, M. Nakada, P. G. Nantermet, J. Am. Chem. Soc. 1995, 117,
634 ¨C 644; d) K. C. Nicolaou, Z. Yang, J.-J. Liu, P. G. Nantermet, C. F.
Claiborne, J. Renaud, R. K. Guy, K. Shibayama, J. Am. Chem. Soc.
1995, 117, 645 ¨C 652; e) K. C. Nicolaou, H. Ueno, J.-J. Liu, P. G.
Nantermet, Z. Yang, J. Renaud, K. Paulvannan, R. Chadha, J. Am.
Chem. Soc. 1995, 117, 653 ¨C 659; f) K. C. Nicolaou, R. K. Guy, Angew.
Chem. 1995, 107, 2047 ¨C 2059; Angew. Chem. Int. Ed. Engl. 1995, 34,
2079 ¨C 2090. See also ref. [3].
[155] a) R. A. Holton, C. Somoza, K. B. Kim, F. Liang, R. J. Biediger, P. D.
Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki,
C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile, J. H. Liu,
J. Am. Chem. Soc. 1994, 116, 1597 ¨C 1598; b) R. A. Holton, K. B. Kim,
C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C.
Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P.
Zhang, K. K. Murthi, L. N. Gentile, J. H. Liu, J. Am. Chem. Soc.
1994, 116, 1599 ¨C 1600.
[156] J. J. Masters, J. T. Link, L. B. Snyder, W. B. Young, S. J. Danishefsky,
Angew. Chem. 1995, 34, 1886 ¨C 1888; Angew. Chem. Int. Ed. Engl.
1995, 34, 1723 ¨C 1726.
[157] a) P. A. Wender, N. F. Badham, S. P. Conway, P. E. Floreancig, T. E.
Glass, J. B. Houze, N. E. Krauss, D. Lee, D. G. Marquess, P. L.
McGrane, W. Meng, M. G. Natchus, A. J. Shuker, J. C. Sutton, R. E.
Taylor, J. Am. Chem. Soc. 1997, 119, 2757 ¨C 2758; b) P. A. Wender,
N. F. Badham, S. P. Conway, P. E. Floreancig, T. E. Glass, C.
Graenicher, J. B. Houze, J. Jaenichen, D. Lee, D. G. Marquess, P. L.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 113
REVIEWS
K. C. Nicolaou et al.
McGrane, W. Meng, T. P. Mucciaro, M. Muehlebach, M. G. Natchus,
H. Paulsen, D. B. Rawlins, J. Satkofsky, A. J. Shuker, J. C. Sutton,
R. E. Taylor, K. Tomooka, J. Am. Chem. Soc. 1997, 119, 2755 ¨C 2756;
c) P. A. Wender, D. G. Marquess, L. P. McGrane, R. E. Taylor,
Chemtracts: Org. Chem. 1994, 7, 160 ¨C 171.
[158] I. Shiina, K. Saitoh, I. Frechard-Ortuno, T. Mukaiyama, Chem. Lett.
1998, 3 ¨C 4; T. Mukaiyama, I. Shiina, H. Iwadare, M. Saitoh, T.
Nishimura, N. Ohkawa, H. Sakoh, K. Nishimura, Y.-I. Tani, M.
Hasegawa, K. Yamada, K. Saitoh, Chem. Eur. J. 1999, 5, 121 ¨C 161.
[159] K. Morihira, R. Hara, S. Kawahara, T. Nishimori, N. Nakamura, H.
Kusama, I. Kuwajima, J. Am. Chem. Soc. 1998, 120, 12980 ¨C 12 981.
[160] J. D. Bergstr m, M. M. Kurtz, D. J. Rew, A. M. Amend, J. D. Karkas,
R. G. Bostedor, V. S. Bansal, C. Dufresne, F. L. VanMiddlesworth,
O. D. Hensens, J. M. Liesch, D. L. Zink, K. E. Wilson, J. Onishi, J. A.
Milligan, G. Bills, L. Kaplan, M. Nallin Omstead, R. G. Jenkins, L.
Huang, M. S. Meinz, L. Quinn, R. W. Burg, Y. L. Kong, S. Mochales,
M. Mojena, I. Martin, F. Pelaez, M. T. Diez, A. W. Alberts, Proc.
Natl. Acad. Sci. USA 1993, 90, 80 ¨C 84.
[161] a) M. J. Dawson, J. E. Farthing, P. S. Marshall, R. F. Middleton, M. J.
O Neill, A. Shuttleworth, C. Stylli, R. M. Tait, P. M. Taylor, H. G.
Wildman, A. D. Buss, D. Langley, M. V. Hayes, J. Antibiot. 1992, 45,
639 ¨C 648; b) P. J. Sidebottom, R. M. Highcock, S. J. Lane, P. A.
Procopiou, N. S. Watson, J. Antibiot. 1992, 45, 648 ¨C 658.
[162] A. Nadin, K. C. Nicolaou, Angew. Chem. 1996, 108, 1732 ¨C 1766;
Angew. Chem. Int. Ed. Engl. 1996, 35, 1623 ¨C 1656.
[163] A. Baxter, B. J. Fitzgerald, J. L. Hutson, A. D. McCarthy, J. M.
Motteram, B. C. Ross, M. Sapra, M. A. Snowden, N. S. Watson, R. J.
Williams, C. Wright, J. Biol. Chem. 1992, 267, 11705 ¨C 11708.
[164] a) K. C. Nicolaou, E. W. Yue, Y. Naniwa, F. DeRiccardis, A. Nadin,
J. E. Leresche, S. La Greca, Z. Yang, Angew. Chem. 1994, 106, 2306 ¨C
2309; Angew. Chem. Int. Ed. Engl. 1994, 33, 2184 ¨C 2187; b) K. C.
Nicolaou, A. Nadin, J. E. Leresche, S. La Greca, T. Tsuri, E. W. Yue,
Z. Yang, Angew. Chem. 1994, 106, 2309 ¨C 2312; Angew. Chem. Int.
Ed. Engl. 1994, 33, 2187 ¨C 2190; c) K. C. Nicolaou, A. Nadin, J. E.
Leresche, E. W. Yue, S. La Greca, Angew. Chem. 1994, 106, 2312 ¨C
2313; Angew. Chem. Int. Ed. Engl. 1994, 33, 2190 ¨C 2191; d) K. C.
Nicolaou, E. W. Yue, S. La Greca, A. Nadin, Z. Yang, J. E. Leresche,
T. Tsuri, Y. Naniwa, F. De Riccardis, Chem. Eur. J. 1995, 1, 467. See
also ref. [3].
[165] a) For excellent reviews of the Sharpless asymmetric dihydroxylation
(AD) reaction, see a) H. C. Kolb, M. S. VanNieuwenhze, K. B.
Sharpless, Chem. Rev. 1994, 94, 2483 ¨C 2547; b) D. J. Berrisford, C.
Bolm, K. B. Sharpless, Angew. Chem. 1995, 107, 1159 ¨C 1170, Angew.
Chem. Int. Ed. Engl. 1995, 34, 1059 ¨C 1070.
[166] a) E. M. Carreira, J. Du Bois, J. Am. Chem. Soc. 1994, 116, 10825 ¨C
10827; b) E. M. Carreira, J. Du Bois, J. Am. Chem. Soc. 1995, 117,
8106 ¨C 8125.
[167] D. A. Evans, J. C. Barrow, J. L. Leighton, A. J. Robichaud, M. J.
Sefkow, J. Am. Chem. Soc. 1994, 116, 12111 ¨C 12112.
[168] D. Stoermer, S. Caron, C. H. Heathcock, J. Org. Chem. 1996, 61,
9115 ¨C 9125; b) S. Caron, D. Stoermer, A. K. Mapp, C. H. Heathcock,
J. Org. Chem. 1996, 61, 9126 ¨C 9134.
[169] a) S. Carmely, Y. Kashman, Tetrahedron Lett. 1985, 26, 511 ¨C 514;
b) M. Kobayashi, J. Tanaka, T. Katori, M. Matsura, I. Kitagawa,
Tetrahedron Lett. 1989, 30, 2963 ¨C 2966; c) M. Kobayashi, J. Tanaka,
T. Katori, M. Matsuura, M. Yamashita, I. Kitagawa, Chem. Pharm.
Bull. 1990, 38, 2409 ¨C 2418; d) I. Kitagawa, M. Kobayashi, T. Katori,
M. Yamashita, M. Doi, T. Ishida, J. Tanaka, J. Am. Chem. Soc. 1990,
112, 3710 ¨C 3712; e) M. Doi, T. Ishida, M. Kobayashi, I. Kitagawa, J.
Org. Chem. 1991, 56, 3629 ¨C 3632.
[170] a) I. Paterson, J. G. Cumming, R. A. Ward, S. Lamboley, Tetrahedron
1995, 34, 9393 ¨C 9412; b) I. Paterson, J. S. Smith, R. A. Ward,
Tetrahedron 1995, 34, 9413 ¨C 9436; c) I. Paterson, R. A. Ward,
J. D. Smith, J. G. Cumming, K.-S. Yeung, Tetrahedron 1995, 34,
9437 ¨C 9466; d) I. Paterson, K.-S. Yeung, R. A. Ward, J. D.
Smith, J. G. Cummings, S. Lamboley, Tetrahedron 1995, 34, 9467 ¨C
9486.
[171] A. P. Patron, P. Richter, M. J. Tomaszewski, R. A. Miller, K. C.
Nicolaou, J. Chem. Soc. Chem. Commun. 1994, 1147 ¨C 1150; P. K.
Richter, M. J. Tomaszewski, R. Miller, A. P. Patron, K. C. Nicolaou,
J. Chem. Soc. Chem. Commun. 1994, 1151 ¨C 1152; K. C. Nicolaou, K.
Ajito, A. P. Patron, H. Khatuya, P. K. Richter, P. Bertinato, J. Am.
Chem. Soc. 1996, 118, 3059 ¨C 3060; K. C. Nicolaou, A. P. Patron, K.
Ajito, P. K. Richter, H. Khatuya, P. Bertinato, R. A. Miller, M. J.
Tomaszewski, Chem. Eur. J. 1996, 2, 847 ¨C 868.
[172] a) C. J. Cowden, I. Paterson, Org. React. 1997, 51, 1 ¨C 200; b) I.
Paterson, M. A. Lister, C. K. McClure, Tetrahedron Lett. 1986, 27,
4787 ¨C 4190; c) I. Paterson, A. N. Hulme, J. Org. Chem. 1995, 60,
3288 ¨C 3300; d) I. Paterson, J. M. Goodman, M. A. Lister, R. C.
Schumann, C. K. McClure, R. D. Norcross, Tetrahedron 1990, 46,
4663 ¨C 4684.
[173] J. Carretero, L. Ghosez, Tetrahedron Lett. 1988, 29, 2059 ¨C 2063.
[174] a) Y. Gao, K. B. Sharpless, J. Am. Chem. Soc. 1988, 110, 7538 ¨C 7539;
b) B. Kim, K. B. Sharpless, Tetrahedron Lett. 1989, 30, 655 ¨C 658; c) B.
Lohray, Y. Gao, K. B. Sharpless, Tetrahedron Lett. 1989, 30, 2623 ¨C
2626.
[175] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull.
Chem. Soc. Jpn. 1979, 52, 1989 ¨C 1993.
[176] a) International Symposium on Red Tides (Eds.: T. Okaichi, D. M.
Anderson, T. Nemoto), Elsevier, New York, 1989; b) ¡°Marine
Toxins: Origin, Structure and Molecular Pharmacology¡±: V. L.
Trainer, R. A. Edwards, A. M. Szmant, A. M. Stuart, T. J. Mende,
D. G. Baden, ACS Symp. Ser. 1990, 418; c) D. M. Anderson, A. W.
White, Oceanus 1992, 35, 55; d) D. M. Anderson, Sci. Am. 1994,
271(8), 62 ¨C 68, and references therein; e) V. L. Trainer, D. G. Baden,
W. A. Catterall, J. Biol. Chem. 1994, 269, 19904 ¨C 19909.
[177] Y.-Y. Lin, M. Risk, S. M. Ray, D. Van Engen, J. Clardy, J. Golik, J. C.
James, K. Nakanishi, J. Am. Chem. Soc. 1981, 103, 6773 ¨C 6775.
[178] a) K. C. Nicolaou, E. A. Theodorakis, F. P. J. T. Rutjes, J. Tiebes, M.
Sato, E. Untersteller, X.-Y. Xiao, J. Am. Chem. Soc. 1995, 117, 1171 ¨C
1172; b) K. C. Nicolaou, F. P. J. T. Rutjes, E. A. Theodorakis, J.
Tiebes, M. Sato, E. Untersteller, J. Am. Chem. Soc. 1995, 117, 1173 ¨C
1174; K. C. Nicolaou, C.-K. Hwang, M. E. Duggan, D. A. Nugiel, Y.
Abe, K. Bal Reddy, S. A. DeFrees, D. R. Reddy, R. A. Awartani,
S. R. Conley, F. P. J. T. Rutjes, E. A. Theodorakis, J. Am. Chem. Soc.
1995, 117, 10227 ¨C 10238; K. C. Nicolaou, E. A. Theodorakis,
F. P. J. T. Rutjes, M. Sato, J. Tiebes, X.-Y. Xiao, C.-K. Hwang, M. E.
Duggan, Z. Yang, E. A. Couladouros, F. Sato, J. Shin, H.-M. He, T.
Bleckman, J. Am. Chem. Soc. 1995, 117, 10 239 ¨C 10 251; K. C.
Nicolaou, F. P. J. T. Rutjes, E. A. Theodorakis, J. Tiebes, M. Sato, E.
Untersteller, J. Am. Chem. Soc. 1995, 117, 10252 ¨C 10 263.
[179] K. C. Nicolaou, Angew. Chem. 1996, 108, 644 ¨C 664; Angew. Chem.
Int. Ed. Engl. 1996, 35, 588 ¨C 607. See also ref. [3].
[180] M. Konishi, H. Ohkuma, T. Tsuno, T. Oki, G. D. Van Duyne, J.
Clardy, J. Am. Chem. Soc. 1990, 1127, 3715 ¨C 3716.
[181] H. Kamei, Y. Nishiyama, A. Takahashi, Y. Obi, T. Oki, J. Antibiot.
1991, 44, 1306 ¨C 1311.
[182] J. Taunton, J. L. Wood, S. L. Schreiber, J. Am. Chem. Soc. 1993, 115,
10378 ¨C 10 379.
[183] A. G. Myers, M. E. Fraley, M. J. Tom, S. B. Cohen, D. J. Madar,
Chem. Biol. 1995, 2, 33 ¨C 43.
[184] M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J.
Am. Chem. Soc. 1996, 118, 9509 ¨C 9525.
[185] a) K. L. Rinehart, T. G. Holt, N. L. Fregeau, P. A. Keifer, G. R.
Wilson, T. J. Perun, Jr., R. Sakai, A. G. Thompson, A. G. Stroh, L. S.
Shield, D. S. Seigler, L. H. Li, D. G. Martin, C. J. P. Grimmelikhuij-
zen, G. Gade, J. Nat. Prod. 1990, 53, 771 ¨C 792; b) K. L. Rinehart, R.
Sakai, T. G. Holt, N. L. Fregeau, T. J. Perun, Jr., D. S. Seigler, G. R.
Wilson, L. S. Shield, Pure Appl. Chem. 1990, 62, 1277 ¨C 1280; c) K. L.
Rinehart, T. G. Holt, N. L. Gregeau, J. G. Stroh, P. A. Keifer, F. Sun,
L. H. Li, D. G. Martin, J. Org. Chem. 1990, 55, 4512 ¨C 4515; d) A. E.
Wright, D. A. Forleo, G. P. Gunawardana, S. P. Gunasekera, F. E.
Koehn, O. J. McConnell, J. Org. Chem. 1990, 55, 4508 ¨C 4512; e) R.
Sakai, K. L. Rinehart, Y. Guan, H.-J. Wang, Proc. Natl. Acad. Sci.
USA 1992, 89, 11 456 ¨C 11 460.
[186] E. J. Corey, D. Y. Gin, R. S. Kania, J. Am. Chem. Soc. 1996, 118,
9202 ¨C 9203.
[187] E. J. Martinez, T. Owa, S. L. Schreiber, E. J. Corey, Proc. Natl. Acad.
Sci. USA 1999, 96, 3496 ¨C 3501.
[188] G. Hofle, N. Bedorf, H. Steinmetz, D. Schomberg, K. Gerth, H.
Reichenbach, Angew. Chem. 1996, 108, 1671 ¨C 1673; Angew. Chem.
Int. Ed. Engl. 1996, 35, 1567 ¨C 1569.
[189] Review: K. C. Nicolaou, F. Roschangar, D. Vourloumis, Angew. Chem.
1998, 110, 2120 ¨C 2153; Angew. Chem. Int. Ed. 1998, 37, 2014 ¨C 2045.
114 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
[190] A. Balog, D. Meng, T. Kamenecha, P. Bertinato, D.-S. Su, E. J.
Sorensen, S. J. Danishefsky, Angew. Chem. 1996, 108, 2976 ¨C 2978;
Angew. Chem. Int. Ed. Engl. 1996, 35, 2801 ¨C 2803.
[191] Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew.
Chem. 1997, 109, 170 ¨C 172; Angew. Chem. Int. Ed. Engl. 1997, 36,
166 ¨C 168.
[192] D. Schinzer, A. Limberg, A. Bauer, O. M. Bohm, M. Cordes, Angew.
Chem. 1997, 109, 543 ¨C 544; Angew. Chem. Int. Ed. Engl. 1997, 36,
523 ¨C 524.
[193] D.-S. Su, D. Meng, P. Bertinato, A. Balog, E. J. Sorensen, S. J.
Danishefsky, Y.-H. Zheng, T. C. Chou, L. He, S. B. Horwitz, Angew.
Chem. 1997, 109, 775 ¨C 777; Angew. Chem. Int. Ed. Engl. 1997, 36,
757 ¨C 759.
[194] K. C. Nicolaou, N. Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y.
He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, Nature
1997, 387, 268 ¨C 272.
[195] K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, Z. Yang, Angew.
Chem. 1996, 108, 2554 ¨C 2556; Angew. Chem. Int. Ed. Engl. 1996, 34,
2399 ¨C 2401.
[196] K. C. Nicolaou, X.-Y. Xiao, Z. Parandoosh, A. Senyei, M. P. Nova,
Angew. Chem. 1995, 107, 2476 ¨C 2479; Angew. Chem. Int. Ed. Engl.
1995, 33, 2289 ¨C 2291.
[197] K. C. Nicolaou, D. Vourloumis, T. Li, J. Pastor, N. Winssinger, Y. He,
S. Ninkovic, F. Sarabia, H. Vallberg, F. Roschangar, N. P. King,
M. R. V. Finlay, P. Giannakakou, P. Verdier-Pinard, E. Hamel,
Angew. Chem. 1997, 109, 2181 ¨C 2187; Angew. Chem. Int. Ed. Engl.
1997, 36, 2097 ¨C 2103.
[198] a) W.-H. Fenical, P. R. Jensen, T. Lindel, USA 5473 057, 1995 [Chem.
Abstr. 1996: 34898]; b) T. Lindel, P. R. Hensen, W.-H. Fenical, B. H.
Long, A. M. Casazza, J. Carboni, C. R. Fairchild, J. Am. Chem. Soc.
1997, 119, 8744 ¨C 8745.
[199] K. C. Nicolaou, F. van Delft, T. Ohshima, D. Vourloumis, J. Xu, S.
Hosokawa, J. A. Pfefferkorn, S. Kim, T. Li, Angew. Chem. 1997, 109,
2631 ¨C 2634; Angew. Chem. Int. Ed. Engl. 1997, 36, 2520 ¨C 2524; K. C.
Nicolaou, T. Ohshima, S. Hosokawa, F. van Delft, D. Vourloumis, J.
Xu, J. A. Pfefferkorn, S. Kim, J. Am. Chem. Soc. 1998, 120, 8674 ¨C
8680.
[200] X.-T. Chen, B. Zhou, S. K. Bhattacharya, C. E. Gutteridge, T. R. R.
Pettus, S. J. Danishefsky, Angew. Chem. 1998, 110, 835 ¨C 838; Angew.
Chem. Int. Ed. 1998, 37, 789 ¨C 892.
[201] M. D Ambrosio, A. Guerriero, F. Pietra, Helv. Chim. Acta 1987, 70,
2019 ¨C 2027; 1988, 71, 964 ¨C 976.
[202] M. Ciomei, C. Albanese, W. Pastori, M. Grandi, F. Pietra, M.
D Ambrosio, A. Guerriero, C. Battistini, Proc. Am. Assoc. Cancer
Res. 1997, 38, 5.
[203] For a review on sarcodictyins and eleutherobins, see K. C. Nicolaou,
J. A. Pfefferkorn, Chem. Pharm. Bull. 1999, 47, 1199 ¨C 1213.
[204] a) K. C. Nicolaou, J.-Y. Xu, S. Kim, T. Ohshima, S. Hosokawa, J. A.
Pfefferkorn, J. Am. Chem. Soc. 1997, 119, 11353 ¨C 11 354; b) K. C.
Nicolaou, J.-Y. Xu, S. Kim, J. A. Pfefferkorn, T. Ohshima, D.
Vourloumis, S. Hosokawa, J. Am. Chem. Soc. 1998, 120, 8661 ¨C 8662.
[205] a) K. C. Nicolaou, N. Winssinger, D. Vourloumis, T. Ohshima, S.
Kim, J. Pfefferkorn, J.-Y. Xu, T. Li, J. Am. Chem. Soc. 1998, 120,
10814 ¨C 10 826; b) K. C. Nicolaou, S. Kim, J. A. Pfefferkorn,
J.-Y. Xu, T. Ohshima, S. Hosokawa, D. Vourloumis, T. Li, Angew.
Chem. 1998, 110, 1483 ¨C 1486; Angew. Chem. Int. Ed. 1998, 37, 1418 ¨C
1421.
[206] M. Hergenhahn, W. Adolf, E. Hecker, Tetrahedron Lett. 1975, 19,
1595 ¨C 1598.
[207] R. J. Schmidt, F. Evans, J. Phytochem. 1976, 15, 1778 ¨C 1779.
[208] M. J. Caterina, M. A. Schumache, M. Tominaga, T. A. Rosen, J. D.
Levine, D. Julius, Nature 1997, 389, 816 ¨C 824. See also M. A. Rouhi,
Chem. Eng. News 1998, 76(4), 31 ¨C 34.
[209] P. A. Wender, K. D. Rice, M. E. Schnute, J. Am. Chem. Soc. 1997, 119,
7897 ¨C 7898; P. A. Wender, R. M. Keenan, H. Y. Lee, J. Am. Chem.
Soc. 1987, 109, 4390 ¨C 4392.
[210] P. A. Wender, C. D. Jesudason, H. Nakahira, N. Tamura, A. L. Tebbe,
Y. Ueno, J. Am. Chem. Soc. 1997, 119, 12 976 ¨C 12 977.
[211] Y. Shimizu, H.-N. Chou, H. Bando, G. VanDuyne, J. C. Clardy, J. Am.
Chem. Soc. 1986, 108, 514 ¨C 515; J. Pawlak, M. S. Tempesta, M. G.
Zagorski, M. S. Lee, K. Nakanishi, T. Iwashita, M. L. Gross, K. B.
Tomer, J. Am. Chem. Soc. 1987, 109, 1144 ¨C 1150.
[212] K. C. Nicolaou, Z. Yang, G.-Q. Shi, J. L. Gunzner, K. A. Agrios, P.
Gartner, Nature 1998, 392, 264 ¨C 269; K. C. Nicolaou, M. E. Bunnage,
D. G. McGarry, S. Shi, P. K. Somers, P. A. Wallace, X.-J. Chu, K. A.
Agrios, J. L. Gunzner, Z. Yang, Chem. Eur. J. 1999, 5, 599 ¨C 617; K. C.
Nicolaou, P. A. Wallace, S. Shi, M. A. Ouellette, M. E. Bunnage, J. L.
Gunzner, K. A. Agrios, G.-Q. Shi, P. Gartner, Z. Yang, Chem. Eur. J.
1999, 5, 618 ¨C 627; K. C. Nicolaou, G.-Q. Shi, J. L. Gunzner, P.
Gartner, P. A. Wallace, M. A. Ouellette, S. Shi, M. E. Bunnage, K. A.
Agrios, C. A. Veale, C.-K. Hwang, J. Hutchinson, C. V. C. Prasad,
W. W. Ogilvie, Z. Yang, Chem. Eur. J. 1999, 5, 628 ¨C 645; K. C.
Nicolaou, J. L. Gunzner, G.-Q. Shi, K. A. Agrios, P. Gartner, Z. Yang,
Chem. Eur. J. 1999, 5, 646 ¨C 658.
[213] K. C. Nicolaou, G.-Q. Shi, J. L. Gunzner, P. G rtner, Z. Yang, J. Am.
Chem. Soc. 1997, 119, 5467 ¨C 5468.
[214] R. Sakai, T. Higa, C. W. Jefford, G. Bernardinelli, J. Am. Chem. Soc.
1986, 108, 6404 ¨C 6405.
[215] Reviews: a) M. Tsuda, J. Kobayashi, Heterocycles 1997, 46, 765 ¨C 794;
b) N. Matzanke, R. Gregg, S. Weinreb, Org. Prep. Proc. Intl. 1998,
30, 1 ¨C 51; c) E. Magnier, Y. Langlois, Tetrahedron 1998, 54, 6201 ¨C
6258.
[216] J. E. Baldwin, R. C. Whitehead, Tetrahedron Lett. 1992, 33, 2059 ¨C
2062.
[217] J. D. Winkler, J. M. Axten, A. Ali, M. C. Hillier, J. Am. Chem. Soc.
1998, 120, 6425 ¨C 6426.
[218] S. F. Martin, J. M. Humphrey, A. Ali, M. C. Hillier, J. Am. Chem. Soc.
1999, 121, 866 ¨C 867.
[219] J. E. Baldwin, T. E. W. Claridge, A. J. Culshaw, F. A. Heupel, V. Lee,
D. R. Spring, D. C. Whitehead, R. J. Boughtflower, I. M. Mutton,
R. J. Upton, Angew. Chem. 1998, 110, 2806 ¨C 2808; Angew. Chem. Int.
Ed. 1998, 37, 2661 ¨C 2663.
[220] K. C. Nicolaou, C. N. C. Boddy, S. Br se, N. Winssinger, Angew.
Chem. 1999, 111, 2230 ¨C 2287; Angew. Chem. Int. Ed. 1999, 38, 2096 ¨C
2152.
[221] M. H. McMormich, W. M. Stark, G. E. Pittenger, J. M. McGuire,
Antibiot. Annu. 1955 ¨C 1956, 606 ¨C 611.
[222] C. M. Harris, T. M. Harris, J. Am. Chem. Soc. 1982, 104, 4293 ¨C 4295.
[223] D. A. Evans, M. R. Wood, B. W. Trotter, T. I. Richardson, J. C.
Barrow, J. K. Katz, Angew. Chem. 1998, 110, 2864 ¨C 2868; Angew.
Chem. Int. Ed. 1998, 37, 2700 ¨C 2704; D. A. Evans, C. J. Dinsmore,
P. S. Watson, M. R. Wood, T. I. Richardson, B. W. Trotter, J. L. Katz,
Angew. Chem. 1998, 110, 2868 ¨C 2872; Angew. Chem. Int. Ed. 1998, 37,
2704 ¨C 2708.
[224] K. C. Nicolaou, S. Natarajan, H. Li, N. F. Jain, R. Hughes, M. E.
Solomon, J. M. Ramanjulu, C. N. C. Boddy, M. Takayanagi, Angew.
Chem. 1998, 110, 2872 ¨C 2878; Angew. Chem. Int. Ed. 1998, 37, 2708 ¨C
2714; K. C. Nicolaou, N. F. Jain, S. Natarajan, R. Hughes, M. E.
Solomon, H. Li, J. M. Ramanjulu, M. Takayanagi, A. E. Koumbis, T.
Bando, Angew. Chem. 1998, 110, 2879 ¨C 2881; Angew. Chem. Int. Ed.
1998, 37, 2714 ¨C 2717; K. C. Nicolaou, M. Takayanagi, N. F. Jain, S.
Natarajan, A. E. Koumbis, T. Bando, J. M. Ramanjulu, Angew.
Chem. 1998, 110, 2881 ¨C 2883; Angew. Chem. Int. Ed. 1998, 37, 2717 ¨C
2719.
[225] K. C. Nicolaou, H. J. Mitchell, N. F. Jain, N. Winssinger, R. Hughes,
T. Bando, Angew. Chem. 1998, 111, 253 ¨C 255; Angew. Chem. Int. Ed.
1999, 38, 240 ¨C 244.
[226] K. C. Nicolaou, H. Li, C. N. C. Boddy, J. M. Ramanjulu, T. Y. Yue, S.
Natarajan, X.-J. Chu, S. Br se, R. R bsam, Chem. Eur. J. 1999, 5,
2584 ¨C 2601; K. C. Nicolaou, C. N. C. Boddy, H. Li, A. E. Koumbis, R.
Hughes, S. Natarajan, N. F. Jain, J. M. Ramanjulu, S. Br se, Chem.
Eur. J. 1999, 5, 2602 ¨C 2621; K. C. Nicolaou, A. E. Koumbis, M.
Takayanagi, S. Natarajan, N. F. Jain, T. Bando, H. Li, R. Hughes,
Chem. Eur. J. 1999, 5, 2622 ¨C 2647; K. C. Nicolaou, H. J. Mitchell,
N. F. Jain, R. Hughes, N. Winssinger, S. Natarajan, A. E. Koumbis,
Chem. Eur. J. 1999, 5, 2648 ¨C 2667.
[227] D. L. Boger, S. Miyazaki, S. H. Kim, J. H. Wu, O. Loiseleur, S. L.
Castle, J. Am. Chem. Soc. 1999, 121, 3226 ¨C 3227.
[228] K. C. Nicolaou, C. N. C. Boddy, S. Natarajan, T.-Y. Yue, H. Li,
S. Br se, J. M. Ramanjulu, J. Am. Chem. Soc. 1997, 119, 3421 ¨C
3422.
[229] T. T. Dabrah, T. Kaneko, W. Massefski, Jr., E. B. Whipple, J. Am.
Chem. Soc. 1997, 119, 1594 ¨C 1598; T. T. Dabrah, H. J. Harwood, Jr.,
L. H. Huang, N. D. Jankovich, T. Kaneko, J.-C. Li, S. Lindsey, P. M.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 115
REVIEWS
K. C. Nicolaou et al.
Moshier, T. A. Subashi, M. Therrien, P. C. Watts, J. Antibiot. 1997, 50,
1 ¨C 7.
[230] K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, H.-S. Choi, W. H. Yoon, Y.
He, K. C. Fong, Angew. Chem. 1999, 111, 1774 ¨C 1781; Angew. Chem.
Int. Ed. 1999, 38, 1669 ¨C 1675; K. C. Nicolaou, P. S. Baran, Y.-L.
Zhong, K. C. Fong, Y. He, W. H. Yoon, H.-S. Choi, Angew. Chem.
1999, 111, 1781 ¨C 1784; Angew. Chem. Int. Ed. 1999, 38, 1676 ¨C 1678.
[231] K. C. Nicolaou, P. S. Baran, R. Jautelat, Y. He, K. C. Fong, H.-S. Choi,
W. H. Yoon, Y.-L. Zhong, Angew. Chem. 1999, 111, 532 ¨C 535; Angew.
Chem. Int. Ed. 1999, 38, 549 ¨C 552.
[232] K. C. Nicolaou, Y. He, K. C. Fong, W. H. Yoon, H. S. Choi, Y. L.
Zhong, P. S. Baran, Org. Lett. 1999, 1, 63 ¨C 66.
[233] K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, H.-S. Choi, K. C. Fong, Y.
He, W. H. Yoon, Org. Lett. 1999, 1, 883 ¨C 886.
[234] a) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, Angew. Chem. in press;
b) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, Angew. Chem. in press.
[235] K. C. Nicolaou, 1999, unpublished results.
[236] a) E. F. Rogers, H. R. Snyder, R. F. Fischer, J. Am. Chem. Soc. 1952,
74, 1987 ¨C 1989; b) H. R. Snyder, R. F. Fischer, J. F. Walker, H. E. Els,
G. A. Nussberger, J. Am. Chem. Soc. 1954, 76, 2819 ¨C 2825, 4601 ¨C
4605; c) H. R. Snyder, H. F. Strohmayer, R. A. Mooney, J. Am.
Chem. Soc. 1958, 80, 3708 ¨C 3710.
[237] P. Yates, F. N. MacLachlan, I. D. Rae, M. Rosenberger, A. G. Szabo,
C. R. Willis, M. P. Cava, M. Behforouz, M. V. Lakshmikantham, W.
Zeigler, J. Am. Chem. Soc. 1973, 95, 7842 ¨C 7850.
[238] F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc. 1999, 121,
6771 ¨C 6772.
[239] a) J.-J. Sanglier, V. Quesniaux, T. Fehr, H. Hofmann, M. Mahnke, K.
Memmert, W. Schuler, G. Zenke, L. Gschwind, C. Mauer, W.
Schilling, J. Antibiot. 1999, 52, 466 ¨C 473; b) T. Fehr, J. Kallen, L.
Oberer, J.-J. Sanglier, W. Schilling, J. Antibiotics 1999, 52, 474 ¨C 479;
c) D. E. Zacharias, Acta Crystallogr. Sect. B 1970, 25, 1455 ¨C 1464.
[240] K. C. Nicolaou, J. Xu, F. Murphy, S. Barluenga, O. Baudoin, H. Wei,
D. L. F. Gray, T. Ohshima, Angew. Chem. 1999, 111, 2599 ¨C 2604;
Angew. Chem. Int. Ed. 1999, 38, 2447 ¨C 2451.
[241] a) A. K. Ganguly, B. Pramanik, T. C. Chan, O. Sarre, Y.-T. Liu, J.
Morton, V. M. Girijavallabhan, Heterocycles 1989, 28, 83 ¨C 88.
[242] D. E. Wright, Tetrahedron 1979, 35, 1207 ¨C 1237.
[243] a) J. A. Maertens, Curr. Opin. Anti-Infect. Invest. Drugs 1999, 1, 49 ¨C
56; b) J. A. Maertens, Idrugs 1999, 2, 446 ¨C 453.
[244] a) A. K. Ganguly, J. L. McCormick, T. M. Chan, A. K. Saksena, P. R.
Das, Tetrahedron Lett. 1997, 38, 7989 ¨C 7991; b) T. M. Chan, R. M.
Osterman, J. B. Morton, A. K. Ganguly, Magn. Res. Chem. 1997, 35,
529 ¨C 532.
[245] K. C. Nicolaou, H. J. Mitchell, H. Suzuki, R. M. Rodr guez, O.
Baudoin, K. C. Fylaktakidou, Angew. Chem. 1999, 111, 3523 ¨C 3528;
Angew. Chem. Int. Ed. 1999, 38, 3334 ¨C 3339; K. C. Nicolaou, R. M.
Rodr guez, K. C. Fylaktakidou, H. Suzuki, H. J. Mitchell, Angew.
Chem. 1999, 111, 3529 ¨C 3534; Angew. Chem. Int. Ed. 1999, 38,
3340 ¨C 3345; K. C. Nicolaou, H. J. Mitchell, R. M. Rodr guez, K. C.
Fylaktakidou, H. Suzuki, Angew. Chem. 1999, 111, 3535 ¨C 3540;
Angew. Chem. Int. Ed. 1999, 38, 3345 ¨C 3350.
[246] K. C. Nicolaou, F. L. van Delft, S. C. Conley, H. J. Mitchell, J. Jin, M.
Rodr guez, J. Am. Chem. Soc. 1997, 119, 9057 ¨C 9058.
[247] a) G. Jaurand, J.-M. Beau, P. Sinay¨, J. Chem. Soc. Chem. Commun.
1982, 701 ¨C 703; b) M. Trumtel, P. Tavecchia, A. Veyrie`res, P. Sinay¨,
Carbohydr. Res. 1990, 202, 257 ¨C 275.
[248] R. F. Heck, Palladium Reagents in Organic Synthesis, Academic
Press, London, 1985.
[249] S. K. Armstrong, J. Chem. Soc. Perkin Trans. 1 1998, 371 ¨C 388. See
also ref. [271]. For some early pioneering studies on this reaction, see
T. J. Katz, S. J. Lee, N. Acton, Tetrahedron Lett. 1976, 4247 ¨C 4250;
T. J. Katz, N. Acton, Tetrahedron Lett. 1976, 4251 ¨C 4254; T. J. Katz, J.
McGinnis, C. Altus, J. Am. Chem. Soc. 1976, 98, 606 ¨C 608; T. J. Katz,
Organomet. Chem. 1977, 16, 283 ¨C 317.
[250] a) S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. Am. Chem. Soc.
1992, 114, 3974 ¨C 3975; b) S. T. Nguen, R. H. Grubbs, J. W. Ziller, J.
Am. Chem. Soc. 1993, 115, 9858 ¨C 9859; c) W. A. Herrmann, W. C.
Schattenmann, O. Nuyken, S. C. Glander, Angew. Chem. 1996, 108,
1169 ¨C 1170; Angew Chem. Int. Ed. Engl. 1996, 36, 1087 ¨C 1088; d) P.
Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118,
100 ¨C 110.
[251] R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare,
M. O. Regan, J. Am. Chem. Soc. 1990, 112, 3875 ¨C 3886.
[252] C.-H. Wong, G. M. Whitesides, Enzymes in Synthetic Organic
Chemistry, Pergamon, Oxford, 1994.
[253] a) K. Ehud, R. A. Lerner, Isr. J. Chem. 1996, 36, 113 ¨C 16; b) P. G.
Schultz, R. A. Lerner, Science 1995, 269, 1835 ¨C 1842; c) P. G. Schultz,
R. A. Lerner, Acc. Chem. Res. 1993, 26, 391 ¨C 395.
[254] a) D. E. Kane, C. T. Walsh, C. Khosla, Science 1998, 282, 63 ¨C 68;
b) C. Khosla, Chem. Rev. 1997, 97, 2577 ¨C 2590; c) L. Katz, Chem. Rec.
1997, 97, 2557 ¨C 2575; d) P. F. Leadlay, Curr. Opin. Chem. Biol.
1997, 1, 162 ¨C 168; e) I. A. Scott, Tetrahedron 1994, 50, 13315 ¨C
13333; f) C. A. Roessner, I. A. Scott, Annu. Rev. Microbiol.
1996, 50, 467 ¨C 490; g) I. A. Scott, J. Nat. Prod. 1994, 57, 557 ¨C
573.
[255] a) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615 ¨C 1621;
b) U. Eder, G. Sauer, R. Wiechert, Angew. Chem. 1971, 83, 492 ¨C 493;
Angew. Chem. Int. Ed. Engl. 1971, 10, 496 ¨C 497; c) Z. G. Hajos, D. R.
Parrish, J. Org. Chem. 1973, 38, 3239 ¨C 3243; d) G. Sauer, U. Eder, G.
Haffer, G. Neef, R. Wiechert, Angew. Chem. 1975, 87, 413; Angew.
Chem. Int. Ed. Engl. 1975, 14, 417.
[256] a) W. S. Knowles, M. J. Sabacky, B. D. Vineyard, D. J. Weinkauff, J.
Am. Chem. Soc. 1975, 97, 2567 ¨C 2568; b) W. S. Knowles, Acc. Chem.
Res. 1983, 16, 106 ¨C 112; c) W. S. Knowles, J. Chem. Educ. 1986, 63,
222 ¨C 225.
[257] a) H. B. Kagan, Bull. Soc. Chim. Fr. 1988, 846 ¨C 853; b) J. W. Scott,
Top. Stereochem. 1989, 19, 209 ¨C 226; c) J. Crosby, Tetrahedron 1991,
47, 4789 ¨C 4846; d) S. Akutagawa in Organic Synthesis in Japan, Past,
Present, and Future (Ed.: R. Noyori), Tokyo Kagaku Dozin, Co.,
Tokyo, 1992, p. 75.
[258] R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New
York, 1994.
[259] For original publication, see ref. [124]. For excellent reviews of the
Sharpless asymmetric epoxidation reaction, see a) B. E. Rossiter in
Asymmetric Synthesis, Vol. 5 (Ed.: J. D. Morrison), Academic Press,
New York, 1985, pp. 193 ¨C 246; b) M. G. Finn, K. B. Sharpless in
Asymmetric Synthesis, Vol. 5 (Ed.: J. D. Morrison), Academic Press,
New York, 1985, pp. 247 ¨C 308; c) R. A. Johnson, K. B. Sharpless
in Comprehensive Organic Synthesis, Vol. 7 (Eds: B. M. Trost,
I. Fleming), Pergamon, New York, 1991, p. 389 ¨C 436; d) R. A.
Johnson, K. B. Sharpless in Catalytic Asymmetric Synthesis (Ed.: I.
Ojima), VCH, New York, 1993, p. 103; e) A. Pfenninger, Synthesis
1986, 89 ¨C 116; f) T. Katsuki, V. S. Martin, Org. React. 1996, 48, 1 ¨C
299.
[260] M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109,
1290 ¨C 1310; Angew. Chem. Int. Ed. Engl. 1997, 36, 1237 ¨C 1256.
[261] a) K. Neuschuetz, J. Velker, R. Neier, Synthesis 1998, 3, 227 ¨C 255;
b) H. Waldmann, Organic Synthesis Highlights II, VCH, Weinheim,
1995, pp. 193 ¨C 202; c) S. T. Dennison, D. C. Harrowven, J. Chem.
Educ. 1996, 73, 697 ¨C 701; d) L. F. Tietze, Chem. Ind. 1995, 12,
453 ¨C 457; e) P. J. Parsons, C. S. Penkett, A. J. Shell, Chem. Rev. 1996,
96, 195 ¨C 206; f) R. A. Bunce, Tetrahedron 1995, 51, 13 103 ¨C 13159;
g) L. F. Tietze, Chem. Rev. 1996, 96, 115 ¨C 136; h) J. D. Winkler,
Chem. Rev. 1996, 96, 167 ¨C 176; i) T. L. Ho, Tandem Organic
Reactions, Wiley, New York, 1992.
[262] See refs. [93, 94] and a) E. E. van Tamelen, Acc. Chem. Res. 1975, 8,
152 ¨C 158; b) E. E. van Tamelen, G. M. Milne, M. I. Suffness, M. C.
Rudler Chauvin, R. J. Anderson, R. S. Achini, J. Am. Chem. Soc.
1970, 92, 7202 ¨C 7204; c) E. E. van Tamelen, J. W. Murphy, J. Am.
Chem. Soc. 1970, 92, 7206 ¨C 7207; d) E. E. van Tamelen, R. J.
Anderson, J. Am. Chem. Soc. 1972, 94, 8225 ¨C 8228; e) E. E.
van Tamelen, R. A. Holton, R. E. Hopla, W. E. Konz, J. Am. Chem.
Soc. 1972, 94, 8228 ¨C 8229; f) E. E. van Tamelen, M. P. Seiler, W.
Wierenga, J. Am. Chem. Soc. 1972, 94, 8229 ¨C 8231; g) K. B. Sharp-
less, J. Am. Chem. Soc. 1970, 92, 6999 ¨C 7001; h) P. A. Bartlett in
Asymmetric Synthesis, Vol. 3 (Ed.: J. D. Morrison), Academic Press,
New York, 1984, p. 341; i) W. S. Johnson, D. M. Bailey, R. Owyang,
R. A. Bell, B. Jaques, J. K. Crandall, J. Am. Chem. Soc. 1964, 86,
1959 ¨C 1966; j) W. S. Johnson, J. K. Crandall, J. Org. Chem. 1965, 30,
1785 ¨C 1790.
[263] I. Ugi, Angew. Chem. 1982, 94, 826 ¨C 35; Angew. Chem. Int. Ed. Engl.
1982, 21, 810 ¨C 819.
[264] D. P. Curran, ACS Symp. Ser. 1998, 685, 62 ¨C 71.
116 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
[265] B. M. Trost, Angew. Chem. 1995, 107, 285 ¨C 307; Angew. Chem. Int.
Ed. Engl. 1995, 34, 259 ¨C 281; see also, A. de Meijerie, S. Br se, J.
Organomet. Chem. 1999, 576, 88 ¨C 100.
[266] a) O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98 ¨C 122;
b) Nobel Lectures: Chemistry 1942 ¨C 1962, Elsevier, New York, 1964,
pp. 259 ¨C 303; c) W. Oppolzer in Comprehensive Organic Synthesis,
Vol. 5 (Eds.: B. M. Trost, I. A. Fleming, L. A. Paquette), Pergamon,
New York, 1991, p. 315 ¨C 400.
[267] a) G. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44 ¨C
53; b) K. C. Nicolaou, M. W. H rter, J. L. Gunzner, A. Nadin, Liebigs
Ann. Chem. 1997, 1283 ¨C 1301; c) Nobel Lectures: Chemistry 1971 ¨C
1980, World Scientific, River Edge, NJ, 1993, pp. 368 ¨C 376.
[268] H. C. Brown, B. C. S. Rao, J. Am. Chem. Soc. 1956, 78, 5694 ¨C 5695;
b) H. C. Brown, Hydroboration, W. A. Benjamin, New York, 1962;
c) Nobel Lectures: Chemistry 1971 ¨C 1980, World Scientific, Teaneck,
NJ, 1993, pp. 333 ¨C 364.
[269] a) E. J.Corey, D. Seebach, J. Org. Chem. 1966, 31, 4097 ¨C 4099; b) D.
Seebach, E. J. Corey, J. Org. Chem. 1975, 40, 231 ¨C 237.
[270] Palladium Reagents and Catalysts (Ed.: J. Tsuji), Wiley, New York,
1996.
[271] a) R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res. 1995, 28,
446 ¨C 452; b) M. Schuster, S. Blechert, Angew. Chem. 1997, 109,
2124 ¨C 2145; Angew. Chem. Int. Ed. Engl. 1997, 36, 2037 ¨C 2056;
c) ¡°Alkene Metathesis in Organic Synthesis¡± in Topics in Organo-
metallic Chemistry, Vol. 1 (Ed.: A. F rstner), Springer, New York,
1998; See also R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413 ¨C
4450.
[272] T. W. Greene, P. G. M. Wuts, Protecting Groups in Organic Synthesis,
Wiley, New York, 1999.
[273] D. H. R. Barton, Experientia 1950, 6, 316 ¨C 320.
[274] R. A. Hirschmann, Angew. Chem. 1991, 103, 1305 ¨C 1330; Angew.
Chem. Int. Ed. Engl. 1991, 30, 1278 ¨C 1301.
[275] J. S. Fruechtel, G. Jung, Angew. Chem. 1996, 108, 19 ¨C 46; Angew.
Chem. Int. Ed. Engl. 1996, 35, 17 ¨C 42.
[276] B. Merrifield in Peptides (Ed.: B. Gutte), Academic Press, San Diego,
1995, pp. 93 ¨C 169.
[277] Combinatorial Chemistry (Eds.: S. R. Wilson, A. W. Czarnik), Wiley,
New York, 1997.
[278] a) Combinatorial Chemistry and Molecular Diversity Drug Discovery
(Eds.: E. M. Gordon, J. F. Kerwin, Jr.), Wiley, New York, 1998,
p. 516; b) R. E. Dolle, Mol. Diversity 1998, 3, 199 ¨C 233; b) R. E.
Dolle, K. H. Nelson, Jr., J. Comb. Chem. 1999, 1, 235 ¨C 282.
[279] a) K. D. Shimizu, M. L. Snapper, A. H. Hoveyda, Chem. Eur. J. 1998,
4, 1885 ¨C 1889; b) A. H. Hoveyda, Chem. Biol. 1998, 5, R187-R191;
c) M. B. Francis, T. F. Jamison, E. N. Jacobsen, Curr. Opin. Chem.
Biol. 1998, 2, 422 ¨C 428.
[280] P. G. Schultz, X.-D. Xiang, Curr. Opin. Solid State Mater. Sci. 1998, 3,
153 ¨C 158.
[281] IRORI (San Diego, CA) and Argonaut (San Francisco, CA) are two
examples of companies specializing in the design and manufacturing
of automated systems for chemical synthesis (K.C.N. is an advisor to
IRORI).
[282] W. Wells, Chem. Biol. 1999, 6, R209 ¨C R211.
[283] a) D. S. Tan, M. A. Foley, M. D. Shair, S. L. Schreiber, J. Am. Chem.
Soc. 1998, 120, 8565 ¨C 8566; b) K. B. Sharpless, personal communica-
tion; c) see ref. [234].
[284] Chemical Research¡ª2000 and Beyond: Challenges and Visions
(Ed.: P. Barkan), Oxford University Press, New York, 1998,
p. 218.
[285] a) H. H. Rennhard, C. R. Stephens, R. B. Woodward, J. Am. Chem.
1962, 84, 3222 ¨C 3224; b) R. B. Woodward, Pure Appl. Chem.
1963, 6, 561 ¨C 573; c) J. J. Krost, J. D. Johnston, K. Butler, E. J.
Bianco, L. H. Conover R. B. Woodward, J. Am. Chem. Soc. 1968, 90,
439 ¨C 457.
[286] R. B. Woodward, The Harvey Lectures, Vol. 31, Academic Press, New
York, 1965.
[287] a) M. A. Wuonola, R. B. Woodward, J. Am. Chem. Soc. 1973, 95,
284 ¨C 285; b) M. A. Wuonola, R. B. Woodward, J. Am. Chem. Soc.
1973, 95, 5098 ¨C 5099; c) M. A. Wuonola, R. B. Woodward, Tetrahe-
dron 1976, 32, 1085 ¨C 1095.
[288] a) W. J. Greenlee, R. B. Woodward, J. Am. Chem. Soc. 1976, 98,
6075 ¨C 6076; b) W. J. Greenlee, R. B. Woodward, Tetrahedron 1980,
36, 3361 ¨C 3366; c) W. J. Greenlee, R. B. Woodward, Tetrahedron
1980, 36, 3367 ¨C 3375.
[289] R. B. Woodward, T. R. Hoye, J. Am. Chem. Soc. 1977, 99, 8007 ¨C 8014.
[290] a) I. Ernest, J. Gosteli, C. W. Greengrass, W. Holick, H. R. Pfaendler,
R. B. Woodward, J. Am. Chem. Soc. 1978, 100, 8214 ¨C 8222; b) M.
Lang, K. Prasad, W. Holick, J. Gosteli, I. Ernest, R. B. Woodward, J.
Am. Chem. Soc. 1979, 101, 6296 ¨C 6301; c) I. Ernest, J. Gosteli, R. B.
Woodward, J. Am. Chem. Soc. 1979, 101, 6301 ¨C 6305; d) H. R.
Pfaendler, J. Gosteli, R. B. Woodward, J. Am. Chem. Soc. 1979, 101,
6306 ¨C 6310; e) H. R. Pfaendler, J. Gosteli, R. B. Woodward, J. Am.
Chem. Soc. 1980, 102, 2039 ¨C 2043; f) M. Lang, K. Prasad, J. Gosteli,
R. B. Woodward, Helv. Chim. Acta 1980, 63, 1093 ¨C 1097.
[291] a) E. J. Corey, A. G. Hortmann, W. R. Hertler, J. Am. Chem. Soc.
1958, 80, 2903 ¨C 2905; b) E. J. Corey, A. G. Hortmann, W. R. Hertler,
J. Am. Chem. Soc. 1959, 81, 5209 ¨C 5212.
[292] a) E. J. Corey, R. B. Mitra, H. Uda, J. Am. Chem. Soc. 1963, 85, 362 ¨C
366; b) E. J. Corey, R. B. Mitra, H. Uda, J. Am. Chem. Soc. 1964, 86,
485 ¨C 492.
[293] a) E. J. Corey, S. Nozoe, J. Am. Chem. Soc. 1963, 85, 3527 ¨C 3529;
b) E. J. Corey, S. Nozoe, J. Am. Chem. Soc. 1965, 87, 5728 ¨C 5733.
[294] a) E. J. Corey, A. G. Hortmann, J. Am. Chem. Soc. 1963, 85, 4033 ¨C
4034; b) E. J. Corey, A. G. Hortmann, J. Am. Chem. Soc. 1965, 87,
5736 ¨C 5741.
[295] a) E. J. Corey, S. Nozoe, J. Am. Chem. Soc. 1964, 86, 1652; b) E. J.
Corey, S. Nozoe, J. Am. Chem. Soc. 1965, 87, 5733 ¨C 5735.
[296] a) E. J. Corey, E. Hamanaka, J. Am. Chem. Soc. 1967, 89, 2758 ¨C 2759;
b) E. J. Corey, S. Daigneault, B. R. Dixon, Tetrahedron Lett. 1993, 34,
3675 ¨C 3678.
[297] a) E. J. Corey, J. A. Katzenellenbogen, N. W. Gilman, S. A. Roman,
B. W. Erickson, J. Am. Chem. Soc. 1968, 90, 5618 ¨C 5620; b) E. J.
Corey, H. Yamamoto, J. Am. Chem. Soc. 1970, 92, 6636 ¨C 6637, c) E. J.
Corey, H. Yamamoto, J. Am. Chem. Soc. 1970, 92, 6637 ¨C 6638.
[298] a) E. J. Corey, N. N. Girotra, C. T. Mathew, J. Am. Chem. Soc. 1969,
91, 1557 ¨C 1559; b) E. J. Corey, R. D. Balanson, Tetrahedron Lett.
1973, 34, 3153 ¨C 3156.
[299] E. J. Corey, K. Achiwa, J. A. Katzenellenbogen, J. Am. Chem. Soc.
1969, 91, 4318 ¨C 4320.
[300] a) E. J. Corey, D. E. Cane, L. Libit, J. Am. Chem. Soc. 1971, 93,
7016 ¨C 7021; b) E. J. Corey, M. C. Desai, Tetrahedron Lett. 1985, 26,
3535 ¨C 3538.
[301] D. S. Watt, E. J. Corey, Tetrahedron Lett. 1972, 4651 ¨C 4654.
[302] E. J. Corey, B. B. Snider, J. Am. Chem. Soc. 1972, 94, 2549 ¨C
2550.
[303] E. J. Corey, D. S. Watt, J. Am. Chem. Soc. 1973, 95, 2303 ¨C 2311.
[304] E. J. Corey, R. D. Balanson, J. Am. Chem. Soc. 1974, 96, 6516 ¨C 6517.
[305] a) E. J. Corey, J. F. Arnett, G. N. Widiger, J. Am. Chem. Soc. 1975, 97,
430 ¨C 431; b) E. J. Corey, M. Petrzilka, Y. Ueda, Tetrahedron Lett.
1975, 4343 ¨C 4346; c) E. J. Corey, M. Petrzilka, Y. Ueda, Helv. Chim.
Acta 1977, 60, 2294 ¨C 2302.
[306] E. J. Corey, D. N. Crouse, J. E. Anderson, J. Org. Chem. 1975, 40,
2140 ¨C 2141.
[307] E. J. Corey, K. C. Nicolaou, T. Toru, J. Am. Chem. Soc. 1975, 97,
2287 ¨C 2288.
[308] a) E. J. Corey, R. H. Wollenberg, Tetrahedron Lett. 1976, 4705 ¨C 4708;
b) E. J. Corey, P. Carpino, Tetrahedron Lett. 1990, 31, 7555 ¨C 7558.
[309] a) E. J. Corey, M. Shibasaki, J. Knolle, T. Sugahara, Tetrahedron Lett.
1977, 785 ¨C 788; b) E. J. Corey, M. Shibasaki, J. Knolle, Tetrahedron
Lett. 1977, 1625 ¨C 1626.
[310] E. J. Corey, S. Bhattacharyya, Tetrahedron Lett. 1977, 3919 ¨C 3922.
[311] E. J. Corey, G. E. Keck, I. Sze¡äkely, J. Am. Chem. Soc. 1977, 99, 2006 ¨C
2009.
[312] a) E. J. Corey, R. L. Danheiser, S. Chandrasekaran, G. E. Keck, B.
Gopalan, S. D. Larsen, P. Siret, J. L. Gras, J. Am. Chem. Soc. 1978,
100, 8034 ¨C 8036; b) E. J. Corey, J. Gorzynski Smith, J. Am. Chem.
Soc. 1979, 101, 1038 ¨C 1039.
[313] E. J. Corey, M. Behforouz, M. Ishiguro, J. Am. Chem. Soc. 1979, 101,
1608 ¨C 1609.
[314] E. J. Corey, H. L. Pearce, J. Am. Chem. Soc. 1979, 101, 5841 ¨C 5843.
[315] a) E. J. Corey, Y. Arai, C. Mioskowski, J. Am. Chem. Soc. 1979, 101,
6748 ¨C 6749; b) E. J. Corey, S.-I. Hashimoto A. E. Barton, J. Am.
Chem. Soc. 1981, 103, 721 ¨C 722; c) E. J. Corey, J. O. Albright, J. Org.
Chem. 1983, 48, 2114 ¨C 2115; d) E. J. Corey, W.-G. Su, M. M.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 117
REVIEWS
K. C. Nicolaou et al.
Mehrotra, Tetrahedron Lett. 1984, 25, 5123 ¨C 5126; e) E. J. Corey, J.
Am. Chem. Soc. 1979, 101, 6748 ¨C 6749.
[316] E. J. Corey, D. A. Clark, G. Goto, A. Marfat, C. Mioskowski, B.
Samuelsson, S. Hammarstroem, J. Am. Chem. Soc. 1980, 102, 1436 ¨C
1439.
[317] E. J. Corey, M. A. Tius, J. Das, J. Am. Chem. Soc. 1980, 102, 1742 ¨C
1744.
[318] E. J. Corey, L. O. Weigel, A. R. Chamberlin, H. Cho, D. H. Hua, J.
Am. Chem. Soc. 1980, 102, 6613 ¨C 6615.
[319] E. J. Corey, A. Tramontano, J. Am. Chem. Soc. 1981, 103, 5599 ¨C 5600.
[320] E. J. Corey, J. Das, J. Am. Chem. Soc. 1982, 104, 5551 ¨C 5553.
[321] a) E. J. Corey, D. H. Hua, B. C. Pan, S. P. Seitz, J. Am. Chem. Soc.
1982, 104, 6818 ¨C 6820; b) E. J. Corey, B. C. Pan, D. H. Hua, D. R.
Deardorff, J. Am. Chem. Soc. 1982, 104, 6816 ¨C 6818.
[322] E. J. Corey, A. Tramontano, J. Am. Chem. Soc. 1984, 106, 462 ¨C 465.
[323] E. J. Corey, D. Biswanath, J. Am. Chem. Soc. 1984, 106, 2735 ¨C 2736.
[324] E. J. Corey, M. M. Mehrotra, J. Am. Chem. Soc. 1984, 106, 3384 ¨C
3384.
[325] a) E. J. Corey, J. P. Dittami, J. Am. Chem. Soc. 1985, 107, 256 ¨C 257;
b) E. J. Corey, A. Guzman-Perez, M. C. Noe, J. Am. Chem. Soc. 1994,
116, 12 109 ¨C 12110.
[326] E. J. Corey, M. C. Desai, T. A. Engler, J. Am. Chem. Soc. 1985, 107,
4339 ¨C 4341.
[327] a) E. J. Corey, A. G. Myers, N. Takahashi, H. Yamane, H. Schraudolf,
J. Am. Chem. Soc. 1987, 107, 5574 ¨C 5575; b) E. J. Corey, A. G. Myers,
N. Takahashi, H. Yamane, H. Schraudolf, Tetrahedron Lett. 1986, 27,
5083 ¨C 5084; c) E. J. Corey, H. Kigoshi, Tetrahedron Lett. 1991, 32,
5025 ¨C 5028.
[328] a) E. J. Corey, M. M. Mehrotra, Tetrahedron Lett. 1986, 27, 5173 ¨C
5176; b) E. J. Corey, W. Su, M. B. Cleaver, Tetrahedron Lett. 1989, 30,
4181 ¨C 4184.
[329] E. J. Corey, P. A. Magriotis, J. Am. Chem. Soc. 1987, 109, 287 ¨C 289.
[330] E. J. Corey, G. Wess, Y. B. Xiang, A. K. Singh, J. Am. Chem. Soc.
1987, 109, 4717 ¨C 4721.
[331] a) A. K. Singh, R. K. Bakshi, E. J. Corey, J. Am. Chem. Soc. 1987,
109, 6187 ¨C 6189; b) E. J. Corey, A. Guzman-Perez, S. E. Lazerwith, J.
Am. Chem. Soc. 1997, 119, 11769 ¨C 11776.
[332] E. J. Corey, R. M. Burk, Tetrahedron Lett. 1987, 28, 6413 ¨C 6416.
[333] E. J. Corey, M. M. Mehrotra, Tetrahedron Lett. 1988, 29, 57 ¨C 60.
[334] E. J. Corey, D. C. Ha, Tetrahedron Lett. 1988, 29, 3171 ¨C 3174.
[335] a) E. J. Corey, P. da Silva Jardine, J. C. Rohloff, J. Am. Chem. Soc.
1988, 110, 3672 ¨C 3673; b) E. J. Corey, P. da Silva Jardine, T. Mohri,
Tetrahedron Lett. 1988, 29, 6409 ¨C 6412; c) E. J. Corey, P. da Silva -
Jardine, Tetrahedron Lett. 1989, 30, 7297 ¨C 7300.
[336] a) E. J. Corey, P. Carpino, J. Am. Chem. Soc. 1989, 111, 5472 ¨C 5474;
b) E. J. Corey, P. Carpino, Tetrahedron Lett. 1990, 31, 3857 ¨C 3858.
[337] E. J. Corey, I. N. Houpis, J. Am. Chem. Soc. 1990, 112, 8997 ¨C 8998.
[338] a) E. J. Corey, G. A. Reichard, J. Am. Chem. Soc. 1992, 114, 10677 ¨C
10678; b) E. J. Corey, S. Choi, Tetrahedron Lett. 1993, 34, 6969 ¨C
6972; c) E. J. Corey, W. Li, G. A. Reichard, J. Am. Chem. Soc.
1998, 120, 2330 ¨C 2336; e) E. J. Corey, W. Li, T. Nagamitsu, Angew.
Chem. 1998, 110, 1784 ¨C 1787; Angew. Chem. Int. Ed. 1998, 37, 1676 ¨C
1679.
[339] E. J. Corey, J. Lee, J. Am. Chem. Soc. 1993, 115, 8873 ¨C 8874.
[340] E. J. Corey, Y. J. Wu, J. Am. Chem. Soc. 1993, 115, 8871 ¨C 8872.
[341] E. J. Corey, A. Guzman-Perez, T.-P. Loh, J. Am. Chem. Soc. 1994,
116, 3611 ¨C 3612.
[342] a) T. G. Gant, M. C. Noe, E. J. Corey, Tetrahedron Lett. 1995, 36,
8745 ¨C 8748; b) E. J. Corey, L. I. Wu, J. Am. Chem. Soc. 1993, 115,
9327 ¨C 9328.
[343] E. J. Corey, B. E. Roberts, B. R. Dixon, R. Brian, J. Am. Chem. Soc.
1995, 117, 193 ¨C 196.
[344] E. J. Corey, M. A. Letavic, J. Am. Chem. Soc. 1995, 117, 9616 ¨C 9617.
[345] E. J. Corey, R. S. Kania, J. Am. Chem. Soc. 1996, 118, 1229 ¨C 1230.
[346] E. J. Corey, S. Lin, J. Am. Chem. Soc. 1996, 118, 8765 ¨C 8766.
[347] E. J. Corey, G. Luo, L. S. Lin, Angew. Chem. 1998, 110, 1147 ¨C 1149;
Angew. Chem. Int. Ed. 1998, 37, 1126 ¨C 1128.
[348] E. J. Corey, K. Lui, J. Am. Chem. Soc. 1997, 119, 9929 ¨C 9930.
[349] E. J. Martinez, E. J. Corey, Org. Lett. 1999, 1, in press.
[350] Quinine: a) R. B. Woodward, W. E. Doering, J. Am. Chem. Soc.
1944, 66, 849; R. B. Woodward, W. E. Doering, J. Am. Chem. Soc.
1945, 67, 860 ¨C 874; b) M. Gates, B. Sugavanam, S. L. Schreiber, J.
Am. Chem. Soc. 1970, 92, 205 ¨C 207; c) J. Gutzwiller, M. Uskokovic,
J. Am. Chem. Soc. 1970, 92, 204 ¨C 205; d) E. C. Taylor, S. F.
Martin, J. Am. Chem. Soc. 1972, 94, 6218 ¨C 6220; e) T. Imanishi, M.
Inoue, Y. Wada, M. Hanaoka, Chem. Pharm. Bull. 1982, 30, 1925 ¨C
1928.
[351] Cortisone: a) R. B. Woodward, F. Sondheimer, D. Taub, J. Am.
Chem. Soc. 1951, 73, 405 ¨C 407; b) L. H. Sarett, G. E. Arth, R. M.
Lukes, R. E. Beyler, G. I. Poos, W. F. Johns, J. M. Constantin, J. Am.
Chem. Soc. 1952, 74, 4974 ¨C 4976; c) Y. Horiguchi, E. Nakamura, I.
Kuwajima, J. Org. Chem. 1986, 51, 4323 ¨C 4325; d) H. Nemoto, N.
Matsuhashi, M. Imaizumi, M. Nagai, K. Fukumoto, J. Org. Chem.
1990, 55, 5625 ¨C 5631.
[352] Morphine: a) M. Gates, G. Tschudi, J. Am. Chem. Soc. 1952, 72,
1109 ¨C 1110; M. Gates, G. Tschudi, J. Am. Chem. Soc. 1956, 78, 1380 ¨C
1393; b) D. Elad, D. Ginsburg, J. Am. Chem. Soc. 1954, 76, 312 ¨C 313;
c) G. C. Morrison, R. O. Waite, J. Shavel, Jr., Tetrahedron Lett. 1967,
4055 ¨C 4056; d) T. Kametani, M. Ihara, K. Fukumoto, H. Yagi, J.
Chem. Soc. C 1969, 2030 ¨C 2033; e) M. A. Schwartz, I. S. Mami, J. Am.
Chem. Soc. 1975, 97, 1239 ¨C 1240; f) K. C. Rice, J. Org. Chem. 1980,
45, 3135 ¨C 3137; g) D. A. Evans, C. H. Mitch, Tetrahedron Lett. 1982,
23, 285 ¨C 288; h) J. E. Toth, P. L. Fuchs, J. Org. Chem. 1987, 52, 473 ¨C
475; i) K. A. Parker, D. Fokas, J. Am. Chem. Soc. 1992, 114, 9688 ¨C
9689; j) C. Y. Hong, N. Kado, L. E. Overman, J. Am. Chem. Soc.
1993, 115, 11 028 ¨C 11029; k) J. Mulzer, G. Duerner, D. Trauner,
Angew. Chem. 1996, 108, 3046 ¨C 3048; Angew. Chem. Int. Ed. Engl.
1996, 35, 2830 ¨C 2832.
[353] Lysergic acid: a) ref. [26]; b) M. Julia, F. Le Goffic, J. Igolen, M.
Baillarge, Tetrahedron Lett. 1969, 1569 ¨C 1571; c) V. W. Armstrong, S.
Coulton, R. Ramage, Tetrahedron Lett. 1976, 4311 ¨C 4314; d) W.
Oppolzer, E. Francotte, K. Baettig, Helv. Chim. Acta. 1981, 64, 478 ¨C
481; e) J. Rebek, Jr., D. F. Tai, Y. K. Shue, J. Am. Chem. Soc. 1984,
106, 1813 ¨C 1819; f) I. Ninomyia, C. Hashimoto, T. Kiguchi, T. Naito,
J. Chem. Soc. Perkin Trans. 1 1985, 941 ¨C 948.
[354] Yohimbine: a) E. E. van Tamelen, M. Shamma, A. W. Burgstahler, J.
Wolinsky, R. Tamm, P. E. Aldrich, J. Am. Chem. Soc. 1958, 80, 5006 ¨C
5007; b) L. Toke, K. Honty, C. Sza¡äntay, Chem. Ber. 1969, 102, 3248 ¨C
3259; c) G. Stork, R. N. Guthikonda, J. Am. Chem. Soc. 1972, 94,
5109 ¨C 5110; d) T. Kametani, M. Kajiwara, T. Takahashi, K. Fuku-
moto, Heterocyles 1975, 3, 179 ¨C 182; e) R. T. Brown, S. B. Pratt, J.
Chem. Soc. Chem. Commun. 1980, 165 ¨C 167; f) E. Wenkert, J. S.
Pyrek, S. Uesato, Y. D. Vankar, J. Am. Chem. Soc. 1982, 104, 2244 ¨C
2246; g) O. Miyata, Y. Hirata, T. Naito, I. Ninomiya, J. Chem. Soc.
Chem. Commun. 1983, 1231 ¨C 1232; h) S. F. Martin, H. Rueger, S. A.
Williamson, S. Grzejszczak, J. Am. Chem. Soc. 1987, 109, 6124 ¨C 6134;
i) J. Aube, S. Ghosh, M. Tanol, J. Am. Chem. Soc. 1994, 116, 9009 ¨C
9018.
[355] Colchicine: a) J. Schreiber, W. Leimgruber, M. Pesaro, P. Schudel, T.
Threlfall, A. Eschenmoser, Helv. Chim. Acta. 1961, 44, 540 ¨C 597;
b) E. E. van Tamelen, T. A. Spencer, D. S. Allen, R. L. Orvis,
Tetrahedron 1961, 14, 8 ¨C 34; c) T. Nakamura, Y. Murase, R. Hayashi,
Y. Endo, Chem. Pharm. Bull. 1962, 10, 281; d) A. I. Scott, F.
McCapra, R. L. Buchanan, A. C. Day, D. W. Young, Tetrahedron
1965, 21, 3605 ¨C 3631; e) R. B. Woodward, The Harvey Lectures Series
59, Academic Press, New York, 1965, p. 31; f) J. Martel, E. Toroman-
off, C. Huynh, J. Org. Chem. 1965, 30, 1752 ¨C 1759; g) S. Kaneko, M.
Matsui, Agr. Biol. Chem. 1968, 32, 995 ¨C 1001; h) E. Kotani, F.
Miyazaki, S. Tobinaga, J. Chem. Soc. Chem. Commun. 1974, 300 ¨C
301; i) M. Kato, F. Kido, M. D. Wu, A. Yoshikoshi, Bull. Chem. Soc.
Jpn. 1974, 47, 1516 ¨C 1521; j) D. A. Evans, S. P. Tanis, D. J. Hart, J. Am.
Chem. Soc. 1981, 103, 5813 ¨C 5821; k) D. L. Boger, C. E. Brotherton,
J. Am. Chem. Soc. 1986, 108, 6713 ¨C 6719; l) P. Magnus, L. M.
Principe, M. J. Slater, J. Org. Chem. 1987, 52, 1483 ¨C 1486; m) M. G.
Banwell, J. N. Lambert, M. F. Mackay, R. J. Greenwood, J. Chem.
Soc. Chem. Commun. 1992, 974 ¨C 975; n) J. C. Lee, S.-J. Jin, J. K. Cha,
J. Org. Chem. 1998, 63, 2804 ¨C 2805.
[356] 6-Demethyl-6-deoxytetracycline: a) ref. [285a,b]; b) H. Muxfeldt, W.
Rogalski, J. Am. Chem. Soc. 1965, 87, 933 ¨C 934. For a recent
construction of the tetracycline framework, see [39a].
[357] Galanthamine: a) D. H. R. Barton, G. W. Kirby, J. Chem. Soc. Chem.
Commun. 1962, 806 ¨C 807; b) T. Kametani, K. Yamaki, H. Yagi, K.
Fukumoto, J. Chem. Soc. D 1969, 425 ¨C 426; c) K. Shimizu, K.
Tomioka, S. Yamada, K. Koga, Heterocycles 1977, 8, 277 ¨C 282.
118 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
[358] Estrone: a) S. N. Ananchenko, I. V. Torgov, Tetrahedron Lett. 1963,
1553 ¨C 1558; b) G. H. Douglas, J. M. H. Graves, D. Hartley, G. A.
Hughes, B. J. McLoughlin, J. Siddall, H. Smith, J. Chem. Soc. Chem.
Commun. 1963, 5072 ¨C 5094; c) P. A. Bartlett, W. S. Johnson, J. Am.
Chem. Soc. 1973, 95, 7501 ¨C 7502; P. A. Bartlett, J. I. Brauman, W. S.
Johnson, R. A. Volkmann, J. Am. Chem. Soc. 1973, 95, 7502 ¨C 7503;
d) N. Cohen, B. L. Banner, W. F. Eichel, D. R. Parrish, G. Saucy, J.-M.
Cassal, W. Meier, A. Furst, J. Org. Chem. 1975, 40, 681 ¨C 685; e) S. J.
Danishefsky, P. Cain, J. Am. Chem. Soc. 1976, 98, 4975 ¨C 4983; f) T.
Kametani, H. Nemoto, H. Ishikawa, K. Shiroyama, K. Fukumoto, J.
Am. Chem. Soc. 1976, 98, 3378 ¨C 3379. See also T. Kametani, H.
Nemoto, H. Ishikawa, K. Shiroyama, H. Matsumoto, K. Fukumoto, J.
Am. Chem. Soc. 1977, 99, 3461 ¨C 3466; H. Nemoto, M. Nagai, M.
Moizumi, K. Kohzuki, K. Fukumoto, T. Kametani, Tetrahedron Lett.
1988, 29, 4959 ¨C 4962; g) W. Oppolzer, Helv. Chim. Acta 1980, 63,
1703; W. Oppolzer, Synthesis 1978, 793 ¨C 802; h) R. L. Funk, K. P. C.
Vollhardt, J. Am. Chem. Soc. 1977, 99, 5483 ¨C 5484; R. L. Funk,
K. P. C. Vollhardt, J. Am. Chem. Soc. 1979, 101, 215 ¨C 217; R. L. Funk,
K. P. C. Vollhardt, J. Am. Chem. Soc. 1980, 102, 5253 ¨C 5261; i) P. A.
Grieco, T. Takigawa, W. J. Schillinger, J. Org. Chem. 1980, 45, 2247 ¨C
2251; j) G. Quinkert, W. D. Weber, U. Schwartz, G. Duerner, Angew.
Chem. 1980, 92, 1060 ¨C 1062; Angew. Chem. Int. Ed. Engl. 1980, 19,
1027 ¨C 1029; G. Quinkert, U. Schwartz, H. Stark, W. D. Dietrich, H.
Baier, F. Adam, G. Duerner, Angew. Chem. 1980, 92, 1062 ¨C 1063;
Angew. Chem. Int. Ed. Engl. 1980, 19, 1029 ¨C 1030; k) T. A. Bryson,
C. J. Reichel, Tetrahedron Lett. 1980, 21, 2381 ¨C 2384; l) Y. Ito, M.
Nakatsuka, T. Saegusa, J. Am. Chem. Soc. 1981, 103, 476 ¨C 477;
m) F. E. Ziegler, T.-F. Wang, Tetrahedron Lett. 1981, 22, 1179 ¨C 1182;
n) M. E. Jung, K. M. Halweg, Tetrahedron Lett. 1984, 25, 2121 ¨C 2124;
o) J. H. Hutchinson, T. Money, Tetrahedron Lett. 1985, 26, 1819 ¨C
1822; p) G. H. Posner, C. Switzer, J. Am. Chem. Soc. 1986, 108,
1239 ¨C 1244; q) G. S. R. S. Rao, L. U. Devi, U. J. Sheriff, J. Chem. Soc.
Perkin Trans. 1 1991, 964 ¨C 965; r) S. Takano, M. Moriya, K.
Ogasawara, Tetrahedron Lett. 1992, 33, 1909 ¨C 1910.
[359] Cepharamine: a) Y. Inubushi, T. Ibuka, M. Kitano, Tetrahedron Lett.
1969, 1611 ¨C 14; b) T. Kametani, T. Kobari, K. Fukumoto, J. Chem.
Soc. Chem. Commun. 1972, 288 ¨C 289; c) M. Schwartz, R. Wallace,
Tetrahedron Lett. 1979, 3257 ¨C 3260; d) A. G. Schultz, A. Wang, J.
Am. Chem. Soc. 1998, 120, 8259 ¨C 8260.
[360] Lupeol: G. Stork, S. Uyeo, T. Wakamatsu, P. Grieco, J. Labovitz, J.
Am. Chem. Soc. 1971, 93, 4945 ¨C 4947.
[361] Fumagillol: a) E. J. Corey, B. B. Snider, J. Am. Chem. Soc. 1972, 94,
2549 ¨C 2550; b) D. Kim, S. K. Ahn, H. Bae, W. J. Choi, H. S. Kim,
Tetrahedron Lett. 1997, 38, 4437 ¨C 4440; c) D. Vosburg, S. Weiler, E. J.
Sorensen, Angew. Chem. 1999, 1024 ¨C 1027; Angew. Chem. Int. Ed.
1999, 38, 971 ¨C 974; d) D. F. Taber, T. E. Christos, A. L. Rheingold,
I. A. Guzei J. Am. Chem. Soc. 1999, 121, 5589 ¨C 5590.
[362] Daunomycinone: a) C. M. Wong, R. Schwenk, D. Propien, T.-L. Ho,
Can. J. Chem. 1973, 51, 466 ¨C 467; b) A. S. Kende, Y.-G. Tsay, J. E.
Mills, J. Am. Chem. Soc. 1976, 98, 1967 ¨C 1969; c) K. Krohn, K.
Tolkiehn, Chem. Ber. 1979, 112, 3453 ¨C 3471; c) J. S. Swenton, P. W.
Raynolds, J. Am. Chem. Soc. 1978, 100, 6188 ¨C 6195; d) T. R. Kelly, J.
Vaya, L. Ananthasubramania, J. Am. Chem. Soc. 1980, 102, 5983 ¨C
5984; e) K. A. Parker, J. Kallmerten, J. Am. Chem. Soc. 1980, 102,
5881 ¨C 5886; f) M. Braun, Tetrahedron Lett. 1980, 21, 3871 ¨C 3874; M.
Braun, Tetrahedron 1984, 40, 4585 ¨C 4591; g) F. M. Hauser, S.
Prasanna, J. Am. Chem. Soc. 1981, 103, 6378 ¨C 6386; h) D. S. Kimball,
K. S. Kim, D. K. Mohanty, E. Vanotti, F. Johnson, Tetrahedron Lett.
1982, 23, 3871 ¨C 3874; i) A. V. R. Rao, K. B. Reddy, A. R. Mehendale,
J. Chem. Soc. Chem. Commun. 1983, 564 ¨C 566; j) J. Tamariz, P.
Vogel, Tetrahedron 1984, 40, 4549 ¨C 4560; k) B. A. Keay, R. Rodrigo,
Tetrahedron 1984, 40, 4597 ¨C 4607; l) D. W. Hansen, Jr., R. Pappo,
R. B. Garland, J. Org. Chem. 1988, 53, 4244 ¨C 4253.
[363] Vindoline: a) M. Ando, G. B chi, T. Ohnuma, J. Am. Chem. Soc.
1975, 97, 6880 ¨C 6881; b) J. P. Kutney, U. Bunzli-Trepp, K. K. Chan,
J. P. De Souza, Y. Fujise, T. Honda, J. Katsube, F. K. Klein, A.
Leutwiler, S. Morehead, M. Rohr, B. R. Worth, J. Am. Chem. Soc.
1978, 100, 4220 ¨C 4224; c) Y. Ban, Y. Sekine, T. Oishi, Tetrahedron
Lett 1978, 151 ¨C 154; d) B. Danieli, G. Lesma, G. Palmisano, R. Riva,
J. Chem. Soc. Chem. Commun. 1984, 909 ¨C 911; e) R. Z. Andriamia-
lisoa, N. Langlois, Y. Langlois, J. Org. Chem. 1985, 50, 961 ¨C 967;
f) P. L. Feldman, H. Rapoport, J. Am. Chem. Soc. 1987, 109, 1603 ¨C
1604; g) M. E. Kuehne, D. E. Podhorez, T. Mulamba, W. G. Born-
mann, J. Org. Chem. 1987, 52, 347 ¨C 353.
[364] Biotin: For an authoritative review of the total syntheses of biotin
(over 40 syntheses have been reported), see P. J. De Clercq, Chem.
Rev. 1997, 97, 1755 ¨C 1792.
[365] Quadrone: a) S. J. Danishefsky, K. Vaughan, R. C. Gadwood, K.
Tsuzuki, J. Am. Chem. Soc. 1980, 102, 4262 ¨C 4263; b) W. K. Bornack,
S. S. Bhagwat, J. Ponton, P. Helquist, J. Am. Chem. Soc. 1981, 103,
4647 ¨C 4648; c) S. D. Burke, C. W. Murtiashaw, J. O. Saunders, M. S.
Dike, J. Am. Chem. Soc. 1982, 104, 872 ¨C 874; d) A. S. Kende, B.
Roth, P. J. Sanfilippo, T. J. Blacklock, J. Am. Chem. Soc. 1982, 114,
5808 ¨C 5810; e) R. H. Schlessinger, J. L. Wood, A. J. Poss, R. A.
Nugent, W. H. Parsons, J. Org. Chem. 1983, 48, 1146 ¨C 1147; f) J. M.
Dewanckele, F. Zutterman, M. Vandewalle, Tetrahedron 1983, 39,
3235 ¨C 3244; g) K. Takeda, Y. Shimono, E. Yoshii, J. Am. Chem. Soc.
1983, 105, 563 ¨C 568; h) A. B. Smith III, J. P. Konopelski, J. Org.
Chem. 1984, 49, 4094 ¨C 5; i) K. Kon, K. Ito, S. Isoe, Tetrahedron Lett.
1984, 25, 3739 ¨C 3742; j) C. Iwata, M. Yamashita, S. Aoki, K. Suzuki, I.
Takahashi, H. Arakawa, T. Imanishi, T. Tanaka, Chem. Pharm. Bull.
1985, 33, 436 ¨C 439; T. Imanishi, M. Matsui, M. Yamashita, C. Iwata, J.
Chem. Soc. Chem. Commun. 1987, 1802 ¨C 1804; k) P. A. Wender, D. J.
Wolanin, J. Org. Chem. 1985, 50, 4418 ¨C 4420; l) E. Piers,
N. Moss, Tetrahedron Lett. 1985, 26, 2735 ¨C 2738; m) R. L. Funk,
M. M. Abelman, J. Org. Chem. 1986, 51, 3247 ¨C 3248; n) P. Magnus,
L. M. Principe, M. J. Slater, J. Org. Chem. 1987, 52, 1483 ¨C 1486;
o) H. J. Liu, M. Llinas-Brunet, Can. J. Chem. 1988, 66, 528 ¨C 530;
p) C. G. Sowell, R. L. Wolin, R. D. Little, Tetrahedron Lett. 1990, 31,
485 ¨C 488.
[366] Gibberellic acid: a) E. J. Corey, R. L. Danheiser, S. Chandrasekaran,
P. Siret, G. E. Keck, J. L. Gras, J. Am. Chem. Soc. 1978, 100, 8031 ¨C
8034 and ref. [312a]; b) J. M. Hook, L. N. Mander, R. Ulrech, J. Am.
Chem. Soc. 1980, 102, 6628 ¨C 6629; c) H. Nagaoka, M. Shimano, Y.
Yamada, Tetrahedron Lett. 1989, 30, 971 ¨C 974.
[367] Dendrobine: a) K. Yamada, M. Suzuki, Y. Hayakawa, K. Aoki, H.
Nakamura, H. Nagase, Y. Hirata, J. Am. Chem. Soc. 1972, 94, 8278 ¨C
8280; b) Y. Inubushi, T. Kikuchi, T. Ibuka, K. Tanaka, I. Saji, K.
Tokane, J. Chem. Soc. Chem. Commun. 1972, 1252 ¨C 1253; c) A. S.
Kende, T. J. Bentley, R. A. Mader, D. Ridge, J. Am. Chem. Soc. 1974,
96, 4332 ¨C 4334; d) W. R. Roush, J. Am. Chem. Soc. 1978, 100, 3599 ¨C
3601; e) S. F. Martin, L. Wei, J. Org. Chem. 1991, 56, 642 ¨C 650;
f) C. H. Lee, M. Westling, T. Livinghouse, A. C. Williams, J. Am.
Chem. Soc. 1992, 114, 4089 ¨C 4095; g) N. Uesaka, F. Saitoh, M. Mori,
M. Shibasaki, K. Okamura, T. Date, J. Org. Chem. 1994, 59, 5633 ¨C
5642; h) C.-K. Sha, R.-T. Chiu, C.-F. Yang, N.-T. Yao, W.-H. Tseng,
F.-L. Liao, S.-L. Wang, J. Am. Chem. Soc. 1997, 119, 4130 ¨C
4135.
[368] Illudol: a) T. Matsumoto, K. Miyano, S. Kagawa, S. Yu, J. I. Ogawa,
A. Ichihara, Tetrahedron Lett. 1971, 3521 ¨C 3524; b) M. F. Semmel-
hack, S. Tomoda, K. M. Hurst, J. Am. Chem. Soc. 1980, 102, 7567 ¨C
7568; c) E. P. Johnson, K. P. C. Vollhardt, J. Am. Chem. Soc. 1990,
112, 381 ¨C 382; d) M. R. Elliott, A.-L. Dhimane, M. Malacria, J. Am.
Chem. Soc. 1997, 119, 3427 ¨C 3428.
[369] Mitomycins A and C: a) T. Fukuyama, F. Nakatsubo, A. J. Cocuzza,
Y. Kishi, Tetrahedron Lett. 1977, 18, 4295 ¨C 4298; b) T. Fukuyama, L.
Yang, J. Am. Chem. Soc. 1989, 111, 8303 ¨C 8304.
[370] Saxitoxin: a) H. Tanino, T. Nakata, T. Kaneko, Y. Kishi, J. Am. Chem.
Soc. 1977, 99, 2818 ¨C 2819; b) P. A. Jacobi, M. J. Martinelli, S. Polanc,
J. Am. Chem. Soc. 1984, 106, 5594 ¨C 5598.
[371] Thienamycin: a) D. B. R. Johnston, S. M. Schmitt, F. A. Bouffard,
B. G. Christensen, J. Am. Chem. Soc. 1978, 100, 313 ¨C 315; b) T.
Kametani, S.-P. Huang, S. Yokohama, Y. Suzuki, M. Ihara, J. Am.
Chem. Soc. 1980, 102, 2060 ¨C 2065; c) M. Shiozaki, T. Hiraoka,
Tetrahedron Lett. 1980, 21, 4473 ¨C 4476; d) S. Hanessian, D. Desilets,
G. Rancourt, R. Fortin, Can. J. Chem. 1982, 60, 2292 ¨C 2294; e) M.
Shibasaki, A. Nishida, S. Ikegami, Tetrahedron Lett. 1982, 23, 2875 ¨C
2878; f) I. Shinkai, T. Liu, R. A. Reamer, M. Sletzinger, Tetrahedron
Lett. 1982, 23, 4899 ¨C 4902; g) M. Miyashita, N. Chida, A. Yoshikoshi,
J. Chem. Soc. Chem. Commun. 1982, 1354 ¨C 1356; h) N. Ikota, O.
Yoshino, K. Koga, Chem. Pharm. Bull. 1982, 30, 1929 ¨C 1931; i) P. A.
Grieco, D. L. Flynn, R. E. Zelle, J. Am. Chem. Soc. 1984, 106, 6414 ¨C
6417; j) S. T. Hodgson, D. M. Hollinshead, S. V. Ley, Tetrahedron
1985, 41, 5871 ¨C 5878; k) T. Iimori, M. Shibasaki, Tetrahedron Lett.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 119
REVIEWS
K. C. Nicolaou et al.
1985, 26, 1523 ¨C 1526; l) D. J. Hart, D.-C. Ha, Tetrahedron Lett. 1985,
26, 5493 ¨C 5496; m) H. Maruyama, T. Hiraoka, J. Org. Chem. 1986, 51,
399 ¨C 402; n) J. D. Buynak, J. Mathew, M. N. Rao, J. Chem. Soc.
Chem. Commun. 1986, 941 ¨C 942; o) D. A. Evans, E. B. Sjogren,
Tetrahedron Lett. 1986, 27, 4961 ¨C 4964; p) I. Fleming, J. D. Kilburn, J.
Chem. Soc. Chem. Commun. 1986, 1198 ¨C 1199; q) G. I. Georg, J.
Kant, H. S. Gill, J. Am. Chem. Soc. 1987, 109, 1129 ¨C 1135; r) M.
Hatanaka, H. Nitta, Tetrahedron Lett. 1987, 28, 69 ¨C 72; s) H. Kaga, S.
Kobayashi, M. Ohno, Tetrahedron Lett. 1988, 29, 1057 ¨C 1060; t) P. A.
Jacobi, S. Murphree, F. Rupprecht, W. Zheng, J. Org. Chem. 1996, 61,
2413 ¨C 2427.
[372] Cytochalasin B: a) G. Stork, Y. Nakahara, Y. Nakahara, W. J.
Greenlee, J. Am. Chem. Soc. 1978, 100, 7775 ¨C 7777; b) for an elegant
synthesis of cytochalasin G, see H. Dyke, R. Sauter,
P. Steel, E. J. Thomas, J. Chem. Soc. Chem. Commun. 1986, 1447 ¨C
1449.
[373] N-Methylmaysenine: a) E. J. Corey, L. O. Weigel, D. Floyd, M. G.
Bock, J. Am. Chem. Soc. 1978, 100, 2916 ¨C 2918. See also E. J. Corey,
L. O. Weigel, A. R. Chamberlin, B. Lipshutz, J. Am. Chem. Soc. 1980,
104, 1439 ¨C 1441; b) A. I. Meyers, D. M. Roland, D. L. Comins, R.
Henning, M. P. Fleming, K. Shimizu, J. Am. Chem. Soc. 1979, 101,
4732 ¨C 4734; c) M. Kitamura, M. Isobe, Y. Ichikawa, T. Goto, J. Org.
Chem. 1984, 49, 3517 ¨C 3527.
[374] Hirsutene: a) K. Tatsuta, K. Akimoto, M. Kinoshita, J. Am. Chem.
Soc. 1979, 101, 6116 ¨C 6118; b) T. Hudlicky, T. M. Kutchan, S. R.
Wilson, D. T. Mao, J. Am. Chem. Soc. 1980, 102, 6351 ¨C 6353; c) D. R.
Little, G. W. Muller, J. Am. Chem. Soc. 1981, 103, 2744 ¨C 2749; d) G.
Mehta, A. V. Reddy, J. Chem. Soc. Chem. Commun. 1981, 756 ¨C 757;
e) P. Magnus, D. A. Quagliato, Organometallics 1982, 1, 1243 ¨C 1244;
P. Magnus, D. A. Quagliato, J. Org. Chem. 1985, 50, 1621 ¨C 1626;
f) P. A. Wender, J. J. Howbert, Tetrahedron Lett. 1982, 23, 3983 ¨C
3986; g) S. V. Ley, P. J. Murray, J. Chem. Soc. Chem. Commun.
1982, 1252 ¨C 1253; h) R. D. Little, R. G. Higby, K. D. Moeller, J. Org.
Chem. 1983, 48, 3139 ¨C 3140; i) D. P. Curran, D. M. Rakiewicz, J. Am.
Chem. Soc. 1983, 107, 1448 ¨C 1449; j) H. D. Hua, G. Sinai-Zingde, S.
Venkataraman, J. Am. Chem. Soc. 1985, 107, 4088 ¨C 4090; k) J. Cossy,
D. Belotti, J. P. Pete, Tetrahedron Lett. 1987, 28, 4547 ¨C 4550; l) G.
Mehta, A. N. Murthy, D. S. Reddy, A. V. Reddy, J. Am. Chem. Soc.
1986, 108, 3443 ¨C 3452; m) M. Franck-Neumann, M. Miesch, E.
Lacroix, Tetrahedron Lett. 1989, 30, 3529 ¨C 3532; n) D. D. Sternbach,
C. L. Ensinger, J. Org. Chem. 1990, 55, 2725 ¨C 2736; o) J. Castro, H.
Sorensen, A. Riera, C. Morin, A. Moyano, M. A. Pericas, A. E.
Greene, J. Am. Chem. Soc. 1990, 112, 9388 ¨C 9389; p) T. K. Sarkar,
S. K. Ghosh, P. S. V. S. Rao, V. R. Mamdapur, Tetrahedron Lett. 1990,
31, 3465 ¨C 3466; q) K. J. Moriarty, C. C. Shen, L. A. Paquette, Synlett
1990, 263 ¨C 264; r) K. Ramig, M. A. Kuzemko, K. McNamara, T.
Cohen, J. Org. Chem. 1992, 57, 1968 ¨C 1969; s) M. Toyota, Y.
Nishikawa, K. Motoki, N. Yoshida, K. Fukumoto, Tetrahedron Lett.
1993, 34, 6099 ¨C 6102; t) W. Oppolzer, C. Robyr, Tetrahedron 1994,
50, 415 ¨C 424.
[375] Vinblastine, Vincristine: N. Langlois, F. Gue¡äritte, Y. Langlois, P.
Potier, J. Am. Chem. Soc. 1976, 98, 7017 ¨C 7024; P. Mangeney, R. Z.
Andriamialisoa, N. Langlois, Y. Langlois, P. Potier, J. Am. Chem. Soc.
1979, 101, 2243 ¨C 2245.
[376] Ryanodol: A. Belanger, D. J. F. Berney, H.-J. Borschberg, R.
Brousseau, A. Doutheau, R. Durand, H. Katayama, R. Lapalme,
D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F.
Marazza, R. Martino, C. Moreau, L. Saint-Laurent, R. Saintonge,
P. Soucy, L. Ruest, P. Deslongchamps, Can. J. Chem. 1979, 57, 3348 ¨C
3354. See also P. Deslongchamps, A. Belanger, D. J. F. Berney, H. J.
Borschberg, R. Brousseau, A. Doutheau, R. Durand, H. Katayama,
R. Lapalme, D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P.
Maffrand, F. Marazza, R. Martino, C. Moreau, L. Ruest, L. Saint-
Laurent, R. Saintonge, P. Soucy, Can. J. Chem. 1990, 68, 115 ¨C 127; P.
Deslongchamps, A. Belanger, D. J. F. Berney, H. J. Borschberg, R.
Brousseau, A. Doutheau, R. Durand, H. Katayama, R. Lapalme,
D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F.
Marazza, R. Martino, C. Moreau, L. Ruest, L. Saint-Laurent, R.
Saintonge, P. Soucy, Can. J. Chem. 1990, 68, 127 ¨C 153; P. Deslong-
champs, A. Belanger, D. J. F. Berney, H. J. Borschberg, R. Brousseau,
A. Doutheau, R. Durand, H. Katayama, R. Lapalme, D. M. Leturc,
C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F. Marazza, R. Martino,
C. Moreau, L. Ruest, L. Saint-Laurent, R. Saintonge, P. Soucy, Can. J.
Chem. 1990, 68, 153 ¨C 186; P. Deslongchamps, A. Belanger, D. J. F.
Berney, H. J. Borschberg, R. Brousseau, A. Doutheau, R. Durand,
H. Katayama, R. Lapalme, D. M. Leturc, C.-C. Liao, F. N. MacLa-
chlan, J.-P. Maffrand, F. Marazza, R. Martino, C. Moreau, L. Ruest,
L. Saint-Laurent, R. Saintonge, P. Soucy, Can. J. Chem. 1990, 68,
186 ¨C 192.
[377] Aphidicolin: a) B. M. Trost, Y. Nishimura, K. Yamamoto, J. Am.
Chem. Soc. 1979, 101, 1328 ¨C 1330; b) J. E. McMurry, A. Andrus,
G. M. Ksander, J. H. Musser, M. A. Johnson, J. Am. Chem. Soc. 1979,
101, 1330 ¨C 1332; c) E. J. Corey, M. A. Tius, J. Das, J. Am. Chem. Soc.
1980, 102, 1742 ¨C 1744; d) R. E. Ireland, J. D. Godfrey, S. Thaisri-
vongs, J. Am. Chem. Soc. 1981, 103, 2446 ¨C 2448; e) E. E. van Tame-
len, S. R. Zawacky, R. K. Russell, J. G. Carlson, J. Am. Chem. Soc.
1983, 105, 142 ¨C 143; f) R. M. Bettolo, P. Tagliatesta, A. Lupi, D.
Bravetti, Helv. Chim. Acta. 1983, 66, 1922 ¨C 1928; g) S. P. Tanis, Y. H.
Chuang, D. B. Head, Tetrahedron Lett. 1985, 26, 6147 ¨C 6150; h) R. A.
Holton, R. M. Kennedy, H. B. Kim, M. E. Krafft, J. Am. Chem. Soc.
1987, 109, 1597 ¨C 1600; i) M. Toyota, Y. Nishikawa, K. Fukumoto,
Tetrahedron Lett. 1994, 35, 6495 ¨C 6498; See also M. Toyota, Y.
Nishikawa, K. Fukumoto, Tetrahedron Lett. 1995, 36, 5379 ¨C 5382;
j) T. Tanaka, O. Okuda, K. Murakami, H. Yoshino, H. Mikamiyama,
A. Kanda, S.-W. Kim, C. Iwata, Chem. Pharm. Bull. 1995, 43, 1407 ¨C
1411.
[378] Delphinine: K. Wiesner, Pure Appl. Chem. 1979, 51, 689 ¨C 703.
[379] Coriolin: a) S. J. Danishefsky, R. Zamboni, M. Kahn, S. J. Etheredge,
J. Am. Chem. Soc. 1980, 102, 2097 ¨C 2098; b) M. Shibasaki, K. Iseki, S.
Ikegami, Tetrahedron Lett. 1980, 21, 3587 ¨C 3590; c) K. Tatsuta, K.
Akimoto, M. Kinoshita, J. Antibiot. 1980, 33, 100 ¨C 2; d) B. M. Trost,
D. P. Curran, J. Am. Chem. Soc. 1981, 103, 7380 ¨C 7381; e) G. Mehta,
A. V. Reddy, A. N. Murthy, D. S. Reddy, J. Chem. Soc. Chem.
Commun. 1982, 540 ¨C 541; f) T. Ito, N. Tomiyoshi, K. Nakamura, S.
Azuma, M. Izawa, F. Maruyama, M. Yanagiya, H. Shirahama, T.
Matsumoto, Tetrahedron Lett. 1982, 23, 1721 ¨C 1724; g) C. Exon, P.
Magnus, J. Am. Chem. Soc. 1983, 105, 2477 ¨C 2478; h) M. Koreeda,
S. G. Mislankar, J. Am. Chem. Soc. 1983, 105, 7203 ¨C 7205; i) P. A.
Wender, J. J. Howbert, Tetrahedron Lett. 1983, 24, 5325 ¨C 5328; P. A.
Wender, C. R. D. Correia, J. Am. Chem. Soc. 1987, 109, 2523 ¨C 2525;
j) P. F. Schuda, M. R. Heimann, Tetrahedron 1984, 40, 2365 ¨C 2380;
k) R. L. Funk, G. L. Bolton, J. U. Daggett, M. M. Hansen, L. H. M.
Horcher, Tetrahedron 1985, 41, 3479 ¨C 3495; l) L. Van Hijfte, R. D.
Little, J. Org. Chem. 1985, 50, 3940 ¨C 3942; m) M. Demuth, P.
Ritterskamp, E. Weigt, K. Schaffner, J. Am. Chem. Soc. 1986, 108,
4149 ¨C 4154; n) T. L. Fevig, R. L. Elliott, D. P. Curran, J. Am. Chem.
Soc. 1988, 110, 5064 ¨C 5067; o) K. Weinges, R. Braun, U. Huber-Patz,
H. Irngartinger, Liebigs Ann. Chem. 1993, 1133 ¨C 1140; p) K. Domon,
K. Masuya, K. Tanino, I. Kuwajima, Tetrahedron Lett. 1997, 38, 465 ¨C
468.
[380] Quassin: a) P. A. Grieco, S. Ferrin? o, G. Vidari, J. Am. Chem. Soc.
1980, 102, 7587 ¨C 7588; b) M. Kim, K. Kawada, R. S. Gross, D. S.
Watt, J. Org. Chem. 1990, 55, 504 ¨C 511; c) H. Stojanac, Z. Valenta,
Can. J. Chem. 1991, 69, 853 ¨C 855; d) T. K. M. Shing, Q. Jiang, T. C. W.
Mak, J. Org. Chem. 1998, 63, 2056 ¨C 2057.
[381] Saframycin B: a) T. Fukuyama, R. A. Sachleben, J. Am. Chem. Soc.
1982, 104, 4957 ¨C 4958; b) A. Kubo, N. Saito, R. Yamauchi, S. Sakai,
Chem. Pharm. Bull. 1987, 35, 2158 ¨C 2161; c) See also the syntheses of
saframycin A: T. Fukuyama, L. Yang, K. L. Ajeck, R. A. Sachleben,
J. Am. Chem. Soc. 1990, 112, 3712 ¨C 3713; A. G. Myers, D. Kung,
Book of Abstracts, 216th National Meeting of the American Chemical
Society, Washington, D.C., 1998, ORGN0501; E. J. Martinez, E. J.
Corey, Org. Lett. 1999, 1, 75 ¨C 77.
[382] Eburnamine: a) L. Castedo, J. Harley-Mason, T.-J. Leeney, J. Chem.
Soc. Chem. Commun. 1968, 19, 1186; b) K. H. Gibson, J. E. Saxton, J.
Chem. Soc. D 1969, 799; c) J. L. Herrmann, G. R. Kieczykowski, S. E.
Normandin, R. H. Schlessinger, Tetrahedron Lett. 1976, 17, 801 ¨C 804;
d) E. Boelsing, F. Klatte, U. Rosentreter, E. Winterfeldt, Chem. Ber.
1979, 112, 1902 ¨C 1912; e) M. Node, H. Nagasawa; K. Fuji, J. Am.
Chem. Soc. 1987, 109, 7901 ¨C 7903.
[383] Carbomycin: a) K. C. Nicolaou, M. R. Pavia, S. P. Seitz, Tetrahedron
Lett. 1979, 20, 2327 ¨C 2330; K. C. Nicolaou, S. P. Seitz, M. R. Pavia,
N. A. Petasis, J. Org. Chem. 1979, 44, 4011 ¨C 4013; K. C. Nicolaou,
S. P. Seitz, M. R. Pavia, J. Am. Chem. Soc. 1981, 103, 1222 ¨C 1224;
120 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122
REVIEWS
Natural Products Synthesis
K. C. Nicolaou, M. R. Pavia, S. P. Seitz, J. Am. Chem. Soc. 1981, 103,
1224 ¨C 1226; b) K. Tatsuta, Y. Amemiya, S. Maniwa, M. Kinoshita,
Tetrahedron Lett. 1980, 21, 2837 ¨C 2840.
[384] Aplasmomycin: a) E. J. Corey, B. C. Pan, D. H. Hua, D. R. Dear-
dorff, J. Am. Chem. Soc. 1982, 104, 6816 ¨C 6818; E. J. Corey, D. H.
Hua, B. C. Pan, S. P. Seitz, J. Am. Chem. Soc. 1982, 104, 6818 ¨C 6820;
b) J. D. White, T. R. Vedananda, M. C. Kang, S. C. Choudhry, J. Am.
Chem. Soc. 1986, 108, 8105 ¨C 8107; c) T. Nakata, K. Saito, T. Oishi,
Tetrahedron Lett. 1986, 27, 6345 ¨C 6348; d) F. Matsuda, N. Tomiyosi,
M. Yanagiya, T. Matsumoto, Chem. Lett. 1987, 2097 ¨C 2100.
[385] Bleomycin: a) T. Takita, Y. Umezawa, S. Saito, H. Morishima, H.
Naganawa, H. Umezawa, T. Tsushiya, T. Miyake, S. Kageyama, S.
Umezawa, Y. Muraoka, M. Suzuki, M. Otsuka, M. Narita, S.
Kobayashi, M. Ohno, Tetrahedron Lett. 1982, 23, 521 ¨C 524, and
references therein; b) Y. Aoyagi, K. Katano, H. Suguna, J. Primeau,
L.-H. Chang, S. M. Hecht, J. Am. Chem. Soc. 1982, 104, 5537 ¨C 5538;
c) For a review of the chemistry and biology of bleomycin, see D. L.
Boger, H. Cai, Angew. Chem. 1999, 111, 470 ¨C 498; Angew. Chem. Int.
Ed. 1999, 38, 448 ¨C 476; D. L. Boger, S. L. Colletti, T. Honda, R. F.
Menezes, J. Am. Chem. Soc. 1994, 116, 5607 ¨C 5618; D. L. Boger, T.
Honda, Q. Dang, J. Am. Chem. Soc. 1994, 116, 5619 ¨C 5630. D. L.
Boger, T. Honda, R. F. Menezes, S. L. Colletti, J. Am. Chem. Soc.
1994, 116, 5631 ¨C 5646; D. L. Boger, T. Honda, J. Am. Chem. Soc.
1994, 116, 5647 ¨C 5656.
[386] Cyanocycline: a) D. A. Evans, C. R. Illig, J. C. Saddler, J. Am. Chem.
Soc. 1986, 108, 2478 ¨C 2479; b) T. Fukuyama, L. Li, A. A. Laird, R. K.
Frank, J. Am. Chem. Soc. 1987, 109, 15 873 ¨C 15879.
[387] Rifamycin: a) H. Nagaoka, W. Rutsch, G. Schmid, H. Lio, M. R.
Johnson, Y. Kishi, J. Am. Chem. Soc. 1980, 102, 7962 ¨C 7965; H. Lio,
H. Nagaoka, Y. Kishi, J. Am. Chem. Soc. 1980, 102, 7965 ¨C 7967; b) S.
Hanessian, J. R. Pougny, I. K. Boessenkool, J. Am. Chem. Soc. 1982,
104, 6164 ¨C 6166.
[388] Echinosporin: A. B. Smith III, G. A. Sulikowski, K. Fujimoto, J. Am.
Chem. Soc. 1989, 111, 8039 ¨C 8041.
[389] Compactin: a) N. Y. Wang, C. T. Hsu, C. J. Sih, J. Am. Chem. Soc.
1981, 103, 6538 ¨C 6539; b) M. Hirama, M. Uei, J. Am. Chem. Soc.
1982, 104, 4251 ¨C 4253; c) N. N. Girotra, N. L. Wendler, Tetrahedron
Lett. 1982, 23, 5501 ¨C 5504; d) P. A. Grieco, R. E. Zelle, R. Lis, J. Finn,
J. Am. Chem. Soc. 1983, 105, 1403 ¨C 1404; e) T. Rosen, C. H.
Heathcock, J. Am. Chem. Soc. 1985, 107, 3731 ¨C 3733; f) G. E. Keck,
D. F. Kachensky, J. Org. Chem. 1986, 51, 2487 ¨C 2493; g) A. P.
Kozikowski, C. S. Li, J. Org. Chem. 1987, 52, 3541 ¨C 3552; h) D. L. J.
Clive, K. S. K. Murthy, A. G. H. Wee, J. S. Prasad, G. V. J. Da Silva,
M. Majewski, P. C. Anderson, R. D. Haugen, L. D. Heerze, J. Am.
Chem. Soc. 1988, 110, 6914 ¨C 6916; i) S. J. Danishefsky, B. Simoneau,
J. Am. Chem. Soc. 1989, 111, 2599 ¨C 2604; j) S. D. Burke, D. N.
Deaton, Tetrahedron Lett. 1991, 32, 4651 ¨C 4; k) H. Hagiwara, T.
Nakano, M. Konno, H. Uda, J. Chem. Soc. Perkin Trans. 1 1995, 777 ¨C
783.
[390] Neosurugatoxin: S. Inoue, K. Okada, H. Tanino, H. Kakoi, Tetrahe-
dron Lett. 1986, 27, 5225 ¨C 5228.
[391] Pleuromutilin: a) E. G. Gibbons, J. Am. Chem. Soc. 1982, 104, 1767 ¨C
1769; b) R. K. Boeckman, Jr., D. M. Springer, T. R. Alessi, J. Am.
Chem. Soc. 1989, 111, 8284 ¨C 8286.
[392] Ophiobolin C: M. Rowley, M. Tsukamoto, Y. Kishi, J. Am. Chem.
Soc. 1989, 111, 2735 ¨C 2736.
[393] Fredericamycin: a) T. R. Kelly, S. H. Bell, N. Ohashi, R. J. Arm-
strong-Chong, J. Am. Chem. Soc. 1988, 110, 6471 ¨C 6480; b) D. L. J.
Clive, Y. Tao, A. Khodabocus, Y. J. Wu, A. G. Angoh, S. M. Bennett,
C. N. Boddy, L. Bordeleau, D. Kellner, G. Kleiner, D. S. Middelton,
C. J. Nichols, S. R. Richardson, P. G. Uernon, J. Chem. Soc. Chem.
Commun. 1992, 1489 ¨C 1490; c) L. Saint-Jalmes, C. Lila, J. Z. Xu, L.
Moreau, B. Pfeiffer, G. Eck, L. Pelsez, C. Rolando, M. Julia, Bull.
Soc. Chem. Fr. 1993, 130, 447 ¨C 449; d) J. A. Wendt, P. J. Gauvreau,
R. D. Bach, J. Am. Chem. Soc. 1994, 116, 9921 ¨C 9926; e) A. V. R.
Rao, A. K. Singh, B. V. Rao, K. M. Reddy, Heterocycles 1994, 37,
1893 ¨C 1912; f) D. L. Boger, O. Hueter, K. Mbiya, M. Zhang, J. Am.
Chem. Soc. 1995, 117, 11 839 ¨C 11849; g) Y. Kita, K. Higuchi, Y.
Yoshida, K. Lio, S. Kitagaki, S. Akai, H. Fujioka, Angew. Chem. 1999,
111, 683 ¨C 686; Angew. Chem. Int. Ed. 1999, 38, 683 ¨C 686.
[394] Avermectin B
1a
: a) J. D. White, G. L. Bolton, A. P. Dantanarayana,
C. M. J. Fox, R. N. Hiner, R. W. Jackson, K. Sakuma, U. S. Warrier, J.
Am. Chem. Soc. 1995, 117, 1908 ¨C 1939; b) M. J. Ford, J. G. Knight,
S. V. Ley, S. Vile, Synlett 1990, 331 ¨C 332; D. Diez-Martin, P. Grice,
H. C. Kolb, S. V. Ley, A. Madin, Synlett 1990, 326 ¨C 328; A.
Armstrong, S. V. Ley, A. Madin, S. Mukherjee, Synlett 1990, 328 ¨C
330; A. Armstrong, S. V. Ley, Synlett 1990, 323 ¨C 325; c) S. Hanessian,
A. Ugolini, D. Dube, P. J. Hodges, C. Andre, J. Am. Chem. Soc. 1986,
108, 2776 ¨C 2778; S. Hanessian, A. Ugolini, P. J. Hodges, P. Beaulieu,
D. Dube, C. Andre, Pure Appl. Chem. 1987, 59, 299 ¨C 316.
[395] Avermectin A
1a
: S. J. Danishefsky, D. M. Armistead, F. E. Wincott,
H. G. Selnick, R. Hungate, J. Am. Chem. Soc. 1987, 109, 8117 ¨C 8119;
S. J. Danishefsky, H. G. Selnick, D. M. Armistead, F. E. Wincott, J.
Am. Chem. Soc. 1987, 109, 8119 ¨C 8120.
[396] CC-1065: a) R. C. Kelly, I. Bebhard, N. Wicnienski, P. A. Aristoff,
P. O. Johnson, D. G. Martin, J. Am. Chem. Soc. 1987, 109, 6837 ¨C 6838;
b) D. L. Boger, R. S. Coleman, J. Am. Chem. Soc. 1988, 110, 1321 ¨C
1323.
[397] Ikarugamycin: a) R. K. Boeckman, Jr., C. H. Weidner, R. B. Perni,
J. J. Napier, J. Am. Chem. Soc. 1989, 111, 8036 ¨C 8037; b) L. A.
Paquette, D. Macdonald, L. G. Anderson, J. Wright, J. Am. Chem.
Soc. 1989, 111, 8037 ¨C 8039.
[398] Koumine: P. Magnus, B. Mugrage, M. De Luca, G. A. Cain, J. Am.
Chem. Soc. 1989, 111, 786 ¨C 789.
[399] Daphnilactone A: R. B. Ruggeri, K. F. McClure, C. H. Heathcock, J.
Am. Chem. Soc. 1989, 111, 1530 ¨C 1531.
[400] Huperzine: Y. Xia, A. P. Kozikowski, J. Am. Chem. Soc. 1989, 111,
4116 ¨C 4117.
[401] FK506: a) T. K. Jones, S. G. Mills, R. A. Reamer, D. Askin, R.
Desmond, R. P. Volante, I. Shinkai, J. Am. Chem. Soc. 1989, 111,
1157 ¨C 1159; b) M. Nakatsuka, J. A. Ragan, T. Sammakia, D. B.
Smith, D. E. Uehling, S. L. Schreiber, J. Am. Chem. Soc. 1990, 112,
5583 ¨C 5601; c) A. B. Jones, A. Villalobos, R. G. Linde, S. J. Dani-
shefsky, J. Org. Chem. 1990, 55, 2786 ¨C 2797; d) R. L. Sih, C. J. Sih,
Tetrahedron Lett. 1990, 31, 3287 ¨C 3290; e) A. B. Smith III, K. Chen,
D. J. Robinson, L. M. Laakso, K. J. Hale, Tetrahedron Lett. 1994, 35,
4271 ¨C 4274; f) R. E. Ireland, J. L. Gleason, L. D. Gegnas, T. K.
Highsmith, J. Org. Chem. 1996, 61, 6856 ¨C 6872.
[402] Histrionicotoxin: a) S. C. Carey, M. Aratani, Y. Kishi, Tetrahedron
Lett. 1985, 26, 5887 ¨C 5890; b) G. Stork, K. Zhao, J. Am. Chem. Soc.
1990, 112, 5875 ¨C 5876; c) G. M. Williams, S. D. Roughley, J. E.
Davies, A. B. Holmes, J. P. Adams, J. Am. Chem. Soc. 1999, 121,
4900 ¨C 4901.
[403] Paspalinine: A. B. Smith III, T. Sunazuka, T. L. Leenay, J. Kingery-
Wood, J. Am. Chem. Soc. 1990, 112, 8197 ¨C 8198.
[404] Indolizomycin: a) G. Kim, M. Y. Chu-Moyer, S. J. Danishefsky, J.
Am. Chem. Soc. 1990, 112, 2003 ¨C 2004; G. Kim, M. Y. Chu-Moyer,
S. J. Danishefsky, J. Am. Chem. Soc. 1993, 115, 30 ¨C 39.
[405] Isorobustin: D. H. R. Barton, D. M. X. Donnelly, J.-P. Finet, P. J.
Guiry, Tetrahedron Lett. 1990, 31, 7449 ¨C 7452.
[406] Hikizimycin: N. Ikemoto, S. L. Schreiber, J. Am. Chem. Soc. 1990,
112, 9657 ¨C 9658.
[407] Chaparrinone: R. S. Gross, P. A. Grieco, J. L. Collins, J. Am. Chem.
Soc. 1990, 112, 9436 ¨C 9437.
[408] Ambruticin: A. S. Kende, Y. Fujii, J. S. Mendoza, J. Am. Chem. Soc.
1990, 112, 9645 ¨C 9646.
[409] Rocaglamide: B. M. Trost, P. D. Greenspan, B. V. Yang, M. G.
Saulnier, J. Am. Chem. Soc. 1990, 112, 9022 ¨C 9024.
[410] Isorauniticine: W. Oppolzer, H. Bienayme¡ä, A. Genevois-Borella, J.
Am. Chem. Soc. 1991, 113, 9660 ¨C 9662.
[411] Kempene-2: W. G. Dauben, I. Farkas, D. P. Bridon, C.-P. Chuang,
K. E. Henegar, J. Am. Chem. Soc. 1991, 113, 5883 ¨C 5884.
[412] Myrocin C: M. Y. Chu-Moyer, S. J. Danishefsky, J. Am. Chem. Soc.
1992, 114, 8333 ¨C 8334.
[413] Halichondrin B: T. D. Aicher, K. R. Buszek, F. G. Fang, C. J. Forsyth,
S. H. Jung, Y. Kishi, M. C. Matelich, P. M. Scola, D. M. Spero, S. K.
Yoon, J. Am. Chem. Soc. 1992, 114, 3162 ¨C 3164.
[414] Hemibrevetoxin B: a) K. C. Nicolaou, K. R. Reddy, G. Skokotas, F.
Sato, X.-Y. Xiao, J. Am. Chem. Soc. 1992, 114, 7935 ¨C 7936; b) I.
Kadota, J.-Y. Park, N. Koumura, G. Pollaud, Y. Matsukawa, Y.
Yamamoto, Tetrahedron Lett. 1995, 36, 5777 ¨C 5780; c) M. Morimoto,
H. Matsukura, T. Nakata, Tetrahedron Lett. 1996, 37, 6365 ¨C 6358;
d) Y. Mori, K. Yaegashi, H. Furukawa, J. Am. Chem. Soc. 1997, 119,
4557 ¨C 4558.
Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122 121
REVIEWS
K. C. Nicolaou et al.
[415] Calyculin A: a) D. A. Evans, J. R. Gage, J. L. Leighton, J. Org. Chem.
1992, 57, 1964 ¨C 1965; D. A. Evans, J. R. Gage, J. L. Leighton, J. Am.
Chem. Soc. 1992, 114, 9434 ¨C 9453; b) N. Tanimoto, S. W. Gerritz, A.
Sawabe, T. Noda, S. A. Filla, S. Masamune, Angew. Chem. 1994, 106,
674 ¨C 676; Angew. Chem. Int. Ed. Engl. 1994, 33, 673 ¨C 675; c) F.
Yokokawa, Y. Hamada, T. Shioiri, Chem. Commun. 1996, 871 ¨C 872;
d) A. B. Smith III, G. K. Friestad, J.-W. J. Duan, J. Barbosa, K. G.
Hull, M. Iwashima, Y. Qiu, G. P. Spoors, E. Bertounesque, B. A.
Salvatore, J. Org. Chem. 1998, 63, 7596 ¨C 7597; calyculin C: e) A. K.
Ogawa, R. W. Armstrong, J. Am. Chem. Soc. 1998, 120, 12435 ¨C
12442.
[416] Discodermolide: a) J. B. Nerenberg, D. T. Hung, P. K. Somers, S. L.
Schreiber, J. Am. Chem. Soc. 1993, 115, 12 621 ¨C 12 622; b) A. B.
Smith III, Y. Qiu, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 1995,
117, 12 011 ¨C 12012; c) S. S. Harried, G. Yang, M. A. Strawn, D. C.
Myles, J. Org. Chem. 1997, 62, 6098 ¨C 6099; d) J. A. Marshall, B. A.
Johns, J. Org. Chem. 1998, 63, 7885 ¨C 7886.
[417] Lepicidin A: D. A. Evans, W. C. Black, J. Am. Chem. Soc. 1993, 115,
4497 ¨C 4513.
[418] Stenine: a) C.-Y. Chen, D. J. Hart, J. Org. Chem. 1993, 58, 3840 ¨C
3849; b) P. Wipf, Y. Kim, D. M. Goldstein, J. Am. Chem. Soc. 1995,
117, 11106 ¨C 11 112.
[419] Balanol: a) K. C. Nicolaou, M. E. Bunnage, K. Koide, J. Am. Chem.
Soc. 1994, 116, 8402 ¨C 8403; b) J. W. Lampe, P. F. Hughes, C. K.
Biggers, S. H. Smith, H. Hu, J. Org. Chem. 1994, 59, 5147 ¨C 5148;
c) C. P. Adams, S. M. Fairway, C. J. Hardy, D. E. Hibbs, M. B.
Hursthouse, A. D. Morley, B. W. Sharp, N. Vicker, I. Warner, J.
Chem. Soc. Perkin Trans. 1 1995, 2355 ¨C 2362; d) P. Barbier, J.
Stadlwieser, Chimia 1996, 50, 530 ¨C 532; e) D. Tanner, I. Tedenborg,
A. Almario, I. Paterson, I. Csoeregh, N. M. Kelly, P. G. Andersson, T.
Hoegberg, Tetrahedron 1997, 53, 4857 ¨C 4868; f) H. Miyabe, M.
Torieda, T. Kiguchi, T. Naito, Synlett 1997, 580 ¨C 682.
[420] Papuamine: a) A. G. M. Barrett. M. L. Boys, T. L. Boehm, J. Chem.
Soc. Chem. Comm. 1994, 1881 ¨C 1882; b) R. M. Borzilleri, S. M.
Weinreb, M. Parvez, J. Am. Chem. Soc. 1995, 117, 10 905 ¨C 10913.
[421] Petrosin: R. W. Scott, J. R. Epperson, C. H. Heathcock, J. Am. Chem.
Soc. 1994, 116, 8853 ¨C 8854.
[422] Breynolide: A. B. Smith III, J. R. Empfield, R. A. Rivero, H. A.
Vaccaro, J. Am. Chem. Soc. 1991, 113, 4037 ¨C 4038.
[423] Chlorothricolide: W. R. Roush, R. J. Sciotti, J. Am. Chem. Soc. 1994,
116, 6457 ¨C 6458. See also W. R. Roush, R. J. Sciotti, J. Am. Chem.
Soc. 1998, 120, 7411 ¨C 7419.
[424] Thebainone A: M. A. Tius, M. A. Kerr, J. Am. Chem. Soc. 1992, 114,
5959 ¨C 5966.
[425] Discorhabdin C: Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka, T.
Yakura, J. Am. Chem. Soc. 1992, 114, 2175 ¨C 2180.
[426] Isochrysohermidin: H. H. Wasserman, R. W. DeSimone, D. L. Bo-
ger, C. M. Baldino, J. Am. Chem. Soc. 1993, 115, 8457 ¨C 8458.
[427] Duocarmycin: a) Y. Fukuda, Y. Itoh, K. Nakatani, S. Terashima,
Tetrahedron 1994, 50, 2793 ¨C 2808; Y. Fukuda, K. Nakatani, S.
Terashima, Tetrahedron 1994, 50, 2809 ¨C 2820; b) D. L. Boger, J. A.
McKie, T. Nishi, T. Ogiku, J. Am. Chem. Soc. 1996, 118, 2301 ¨C 2302.
[428] Trichoviridin: J. E. Baldwin, R. M. Adlington, I. A. O Neil, A. T.
Russell, M. L. Smith, Chem. Commun. 1996, 41 ¨C 42.
[429] Calphostin A: R. S. Coleman, E. B. Grant, J. Am. Chem. Soc. 1994,
116, 8795 ¨C 8796.
[430] Scopadulcic acid: a) L. E. Overman, D. J. Ricca, V. D. Tran, J. Am.
Chem. Soc. 1993, 115, 2042 ¨C 2043; See also L. E. Overman, D. J.
Ricca, V. D. Tran, J. Am. Chem. Soc. 1997, 119, 12 031 ¨C 12040;
b) F. E. Ziegler, O. B. Wallace, J. Org. Chem. 1995, 60, 3626 ¨C 3636.
[431] Magellanine: G. C. Hirst, T. O. Johnson, Jr., L. E. Overman, J. Am.
Chem. Soc. 1993, 115, 2992 ¨C 2993.
[432] Salsolene oxide: L. A. Paquette, L.-Q. Sun, T. J. N. Watson, D.
Friedrich, B. T. Freeman, J. Am. Chem. Soc. 1997, 119, 2767 ¨C 2768.
[433] Croomine: S. F. Martin, K. J. Barr, J. Am. Chem. Soc. 1996, 118,
3299 ¨C 3300.
[434] The family of the clavularanes: D. R. Williams, P. J. Coleman, S. S.
Henry, J. Am. Chem. Soc. 1993, 115, 11654 ¨C 11 655.
[435] Staurosporine: a) J. T. Link, S. Raghavan, S. J. Danishefsky, J. Am.
Chem. Soc. 1995, 117, 552 ¨C 553; b) J. L. Wood, B. M. Stoltz, S. N.
Goodman, K. Onwueme, J. Am. Chem. Soc. 1997, 119, 9652 ¨C 9661.
[436] FR-90848: a) A. G. M. Barrett, K. Kasdorf, J. Am. Chem. Soc. 1996,
118, 11 030 ¨C 11 037; b) J. R. Falck, B. Mekonnen, J. Yu, J.-Y. Lai, J.
Am. Chem. Soc. 1996, 118, 6096 ¨C 6097.
[437] Epoxydictimene: T. F. Jamison, S. Shambayati, W. E. Crowe, S. L.
Schreiber, J. Am. Chem. Soc. 1994, 116, 5505 ¨C 5506; T. F. Jamison, S.
Shambayati, W. E. Crowe, S. L. Schreiber, J. Am. Chem. Soc. 1997,
119, 4353 ¨C 4363.
[438] 7-Deacetoxyalcyonin acetate: D. W. C. MacMillan, L. E. Overman, J.
Am. Chem. Soc. 1995, 117, 10391 ¨C 10392.
[439] Syringolide 1: a) J. L. Wood, S. Jeong, A. Salcedo, J. Jenkins, J. Org.
Chem. 1995, 60, 286 ¨C 287; b) S. Kuwahara, M. Moriguchi, K.
Miyagawa, M. Konno, O. Kodama, Tetrahedron 1995, 51, 8809 ¨C
8014; c) J. Ishihara, T. Sugimoto, A. Murai, Synlett 1996, 4, 335 ¨C
336; d) C.-M. Zeng, S. L. Midland, N. T. Keen, J. J. Sims, J. Org.
Chem. 1997, 62, 4780 ¨C 4784; e) H. Yoda, M. Kawauchi, K. Takabe,
K. Hosoyam, Heterocycles 1997, 45, 1895 ¨C 1898; f) P. Yu, Q.-G.
Wang, T. C. W. Mak, H. N. C. Wong, Tetrahedron 1998, 54, 1783 ¨C
1788.
[440] Batrachotoxinin: M. Kurosu, L. R. Marcin, T. J. Grinsteiner, Y. Kishi,
J. Am. Chem. Soc. 1998, 120, 6627 ¨C 8662.
[441] FR-900482: a) T. Fukuyama, L. Xu, S. Goto, J. Am. Chem. Soc. 1992,
114, 383 ¨C 385; b) J. M. Schkeryantz, S. J. Danishefsky, J. Am. Chem.
Soc. 1995, 117, 4722 ¨C 4723.
[442] Lubiminol: M. T. Crimmins, Z. Wang, L. A. McKerlie, Tetrahedron
Lett. 1996, 37, 8703 ¨C 8706; M. T. Crimmins, Z. Wang, L. A. McKerlie,
J. Am. Chem. Soc. 1998, 120, 1747 ¨C 1756.
[443] Hispidospermidin: a) A. J. Frontier, S. Raghavan, S. J. Danishefsky,
J. Am. Chem. Soc. 1997, 119, 6686 ¨C 6687; b) L. E. Overman, A. L.
Tomasi, J. Am. Chem. Soc. 1998, 120, 4039 ¨C 4040.
[444] Pateamine: R. M. Rzasa, H. A. Shea, D. Romo, J. Am. Chem. Soc.
1998, 120, 591 ¨C 592.
[445] Ptilomycalin: L. E. Overman, M. H. Rabinowitz, P. A. Renhowe, J.
Am. Chem. Soc. 1995, 117, 2657 ¨C 2658.
[446] Preussomerin I: S. Chi, C. H. Heathcock, Org. Lett. 1999, 1, 3 ¨C 6.
[447] Neocarzinostatin chromophore: A. G. Myers, J. Liang, M. Ham-
mond, P. M. Harrington, Y. Wu, E. Y. Kuo, J. Am. Chem. Soc. 1998,
120, 5319 ¨C 5320.
[448] Manumycin B: J. J. C. Grove¡ä, X. Wei, R. J. K. Taylor, Chem.
Commun. 1999, 421 ¨C 422.
[449] Phorboxazole A: C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J.
Am. Chem. Soc. 1998, 120, 5597 ¨C 5598.
[450] Olivomycin A: W. R. Roush, R. A. Hartz, D. J. Gustin, J. Am. Chem.
Soc. 1999, 121, 1990 ¨C 1991.
[451] Dysidiolide: a) E. J. Corey, B. E. Roberts, J. Am. Chem. Soc. 1997,
119, 12425 ¨C 12431; b) J. Boukouvalas, Y.-X. Cheng, J. Robichaud, J.
Org. Chem. 1998, 63, 228 ¨C 229; c) S. R. Magnuson, L. Sepp-
Lorenzino, N. Rosen, S. J. Danishefsky, J. Am. Chem. Soc. 1998,
120, 1615 ¨C 1616; d) Y. Kajiwara, H. Miyaoka, Y. Yamada, 41st Symp.
Chem. Nat. Prod. 1999, 25 ¨C 30.
[452] Luzopeptin B: D. L. Boger, M. W. Ledeboer, M. Kume, J. Am.
Chem. Soc. 1999, 121, 1098 ¨C 1099.
[453] Spongistatin 1: J. Guo, K. J. Duffy, K. L. Stevens, P. I. Dalko, R. M.
Roth, M. M. Hayward, Y. Kishi, Angew. Chem. 1998, 110, 198 ¨C 202;
Angew. Chem. Int. Ed. 1998, 37, 187 ¨C 192; M. M. Hayward, R. M.
Roth, K. J. Duffy, P. I. Dalko, K. L. Stevens, J. Guo, Angew. Chem.
1998, 110, 202 ¨C 206; Angew. Chem. Int. Ed. 1998, 37, 192 ¨C 196.
[454] Spongistatin 2: D. A. Evans, P. J. Coleman, L. C. Dias, Angew. Chem.
1997, 109, 2951 ¨C 2954; Angew. Chem. Int. Ed. Engl. 1997, 36, 2738 ¨C
2741; D. A. Evans, B. W. Trotter, B. Co¡ä te¡ä, P. J. Coleman, Angew.
Chem. 1997, 109, 2954 ¨C 2957; Angew. Chem. Int. Ed. Engl. 1997, 36,
2741 ¨C 2744; D. A. Evans, B. W. Trotter, B. Co¡ä te¡ä, P. J. Coleman, L. C.
Dias, A. N. Tyler, Angew. Chem. 1997, 109, 2957 ¨C 2961; Angew.
Chem. Int. Ed. Engl. 1997, 36, 2744 ¨C 2747.
[455] Cephalostatin 7: J. U. Jeong, C. Guo, P. L. Fuchs, J. Am. Chem. Soc.
1999, 121, 2071 ¨C 2084.
[456] Rubifolide: J. A. Marshall, C. A. Sehon, J. Org. Chem. 1997, 62,
4313 ¨C 4320.
[457] Diepoxin: P. Wipf, J.-K. Jung, J. Org. Chem. 1999, 64, 1092 ¨C 1093.
[458] Pinnatoxin: J. A. McCauley, K. Nagasawa, P. A. Lander, S. G.
Mischke, M. A. Semones, Y. Kishi, J. Am. Chem. Soc. 1998, 120,
7647 ¨C 7648.
122 Angew. Chem. Int. Ed. 2000, 39, 44 ¨C 122