16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 1 of 11
16.522, Space Propulsion
Prof. Manuel Martinez-Sanchez
Lecture 15: Thrust Calculation (Single Grid, Single Potential)
2
x
d1
E
dx 2
??
??
??
d
dd 2
0xxx
ch x 0 x
00
0
EFdE
= E dx = E dx =
Ad
ε
ρε
∫∫
43
a
x
=-V
d
??
φ
??
??
13
a
x
V 4x
E=
d3 d
??
??
??
x
0
E=0
a
x
d
V4
E=
3d
22
0a ax
0
VVF 16 8
==
A29 9dd
? ?ε
ε
? ?
? ?
Alternative:
33
22
aa axi i
00
ii
V2eV VFm m42 e 8
=jc= =
Ae e9 m m 9dd
εε
m
i
j from
Child-Langmuir
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 2 of 11
Bohm velocity: Why?
collisional “drag”
ii
iii ix in
dv dP
nmv + =enE -F
dx dx
ee
eee ex en
dv dP
nmv + =-enE -F
dx dx
small small
not near wall,
ei
n=n.
Add:
constant
()
ei
i
eii in
dP+Pdv
nmv + - F
dx dx
null and
ei
nv=const=
i
Γ
()
2
eii e in
i
d
nmv +P +P - F
dx
null
( )
ei ee i ee
P+P=nkT+T nkTnull
i
iii e in
i
d
mv+kT =-F
dx v
??Γ
Γ
??
??
min. at
e
i
i
kT
v=
m
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 3 of 11
The lines
i
e
i
kT
v
Γ
and
iii
mvΓ must
cross at
e
i
i
kT
v
m
= , where their
sum is minimum.
So, no solution at
e
iB
i
kT
v> =v
m
Ions accelerate to
iB
v=v in the quasineutral plasma. Beyond that,
eix
n<<n , E
becomes very strong, and ions just free-fall to wall (in the sheath) so, entering
sheath,
iB
v=v.
How big is the sheath?
In sheath, say
e
n0null
Child-Langmuir:
3
2
s
iii 0 2
i
V42 e
j=env=
9m
ε
δ
But also
sh
e
ie
i
kT
jen
m
null
sh
3
2
se
0e2
ii
VkT42 e
en
9m m
ε
δ
null
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 4 of 11
sh sh
3
3
2
2
2 0s 0 e s
2
eee
e
VkTV42 1 42
=
9n9 kTen
ekT
??εε
δ
??
??
null
sh
ee
-1
n=nexp
2
∞
??
??
??
1 3
2 4
0e s
-1 2
2
ee
kT eV42
kTen
9e
∞
??ε
δ
??
??
null
1.018 d
Debye
()
()
e -5
Debye 17
-3
e
TK
3×11600
d 69 69 =2.4×10 m=24 m
3×10nm
μ= ~
If wall not biased (insulator),
34i
se DD
e
m
eV kT ln 5 d 3d
m
??
~→δ~??
??
null
For sheath in front of extractor grid,
s
V 1000V~
D
78dδ null
e
kT
3V
e
~ 1.9 mmδ null
This approximately sizes the extractor holes.
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 5 of 11
If holes much bigger than ,δ If much smaller, ions lost
plasma would escape to grid
Space charge effects in the accel-decel gap
For
d
0x<< ,
2
i
2
00i 2
00
i
endjj
=- =- =-
vdx
2e
v-
m
φ
εε
φ
ε
2
0 0 2
0
i
1d j d
=- +c
2dx
2e
v-
m
φ
φφ??
??
ε
φ??
∫
Note: Slope here not necessarily zero.
Change integration variable :
2
0
i
2e
v= v -
m
φ
()
22i
0
m
=v-v
2e
φ
i
m
d=- vdv
e
φ
()
0
i
2
v
2ii
000
000v
m
- vdv
mm1d j j j 2e
e
=c- =c- v-v=c- v- v-
2dx v e e m
??
φφ??
??
??
εεε
??
??
∫
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 6 of 11
where
2 T
0
i
2eV
v=
m
()
2
T
iT
0i i
2e V -m2eV
1d 2j
=2c- -
2dx e m m
??
φ
φ??
??
??
ε
??
??
()
TiT
0i i
d
dx =
2e V -
2jm 2eV
2c - -
em m
φ
??
φ
??
ε
??
()
TN
=V -V
d
0
TiT
0i v
d
d= c,
2e V -
2jm 2eV
2c - -
em m
φ
φ
?
??
φ
??
ε
??
∫
then all profiles follows.
In the limit when the second gap becomes choked as well, (as in the case with no
decel grid, in which case
d
d is the downstream sheath thickness)
d
iT N
x=d 0i i
jm 2eV 2eVd
=0 c= -
dx e m m
??
φ??
??
?
??
ε
??
??
()
TN
=V -Vφ
Then
()
TN
V-V
d
0
TiN
0ii
d
d=
2e V -2jm 2eV
-
em m
φ
??
φ
??
ε
??
∫
Change again variable:
i
m
d=- vdv
e
φ
()
T
i
2e V -
=v
m
φ
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 7 of 11
N
i T
NT
i
2eV
i
m v
0i
d
v2eV
N
iN
m
0i
m
-vdv
m v dv
e
d= =
2je
v-v
2jm 2ev
v-
em
ε
??
??
ε
??
∫∫
N
2d v - v
()
T
T
N
N
v
v
0i 0i
dNNTNTTN
v
v
mm4
d = 2v v-v - 2 v-v dv = v -v 2v - v -v
2je 2je 3
??
εε
????
??
??
??
??
??
??
∫
()
T
N
v
3
2
N
v
4
v-v
3
T N
24
v+ v
33
()
0i
dTNTN
m2
d= v-v v+2v
3ej
ε
()
1
1
4
4
111 1
0
222 2
dTNTN
i
2×2 e
d= V -V V +2V
3jm
??ε
??
??
Now
3
2
T
0 2
i a
V42 e
j=
9md
ε , so
1
3
4
4
11
T
42
a01
2
i
V2e
d= ×2
3m
j
??
ε
??
??
define
N
T
V
R=
V
()()
1
12 12 12 122
TN T T
d
3
4
a
T
V-V V+2V
d
=
d
V
()()
1
112
d
22
a
d
=1-R 1+2R
d
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 8 of 11
Appendix B
ELECTRON DIFFUSION IN A MAGNETIC FIELD
1) No B
nullnull
Field
In electron momentum balance, main forces are pressure gradient and collisional
retardation (no inertia):
e
eee
P-nmv?ν
nullnull
null
(1)
Also
eee
P=nkT,
eee
PkTn.??null
Solve for flux:
e
e
ee
ee
kT
nv =- n
m
?
ν
nullnull
(2)
This is Fick’s law of diffusion
e
eee
nv =-D n?
nullnull
, with a diffusivity
e
e
ee
kT
D=
m ν
(3)
(
j
eje
e
=ncQν
∑
, collision frequency)
2) With ()
e
Bto P⊥?
nullnull
Add magnetic force:
ee
eeeee
P=-nmv -env×B?ν
nullnullnullnullnullnull
(4)
To solve for e
e
nv
nullnull
, form
()
ee
eee e
P ×B=-m n v ×B-en v ×B ×B?ν
nullnullnullnullnullnullnullnullnullnullnullnull
,
and use 0
() ()
2
eeev×B×B=Bv . B-Bv.
nullnullnullnullnullnullnullnullnullnullnullnullnullnull
Eliminate
()
ev×B
nullnullnullnull
between these two equations, simplify:
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 9 of 11
ee
ee22
ee ee
e
e 2
ee
kT ekT
-n+n×B
m m
nv =
eB
1+
m
??
ν ν
??
??
ν
??
nullnull
nullnull
(5)
NOTE: This leaves the E
null
field out. To include it, just replace
e
n? by
e
e
e
en
n+ E
kT
?
null
Define the nondimensional factor
c
ee e
eB
β
m
ω
≡≡
νν
(Hall parameter) (6)
where
c
e
eB
=
m
ω is the cyclotron frequency for electrons.
Then
()
e
eeee2
1
nv = -D n - ×D n
1+
?β?
β
nullnullnull
(7)
Of these two terms, the second is perpendicular to both, B
nullnull
and
e
n? , and is called
the “
e
P×B?
nullnull
drift”. The main interest is on the first term, which is along
e
-n? , as a
regular diffusion.
We see that this “cross-field diffusion” is governed by e
ee
nv =-D n
⊥
?
nullnull
, with
e
2
D
D=
1+
⊥
β
(8)
So, a high Hall parameter βcan greatly reduce diffusion, compared to that in the
absence of a magnetic field. High β means both, high B and/or low collision
frequency.
In an ion engine, with
e
T = 4eV = 46400 K, the e-n and e-i cross-section are roughly
-19 2
en
Q10 m,null
-18 2
ei
Q4×10 m,null
and
6e
e
e
kT8
c= 1.34×10 m/s.
mπ
null
If also
17 -3
e
n2.8×10 m,null
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 10 of 11
18 -3
n
n7.4×10 m,null
then
18 6 -19 5 -1
en 6-1
e
17 6 -18 6 -1
ei
= 7.4×10 ×1.34×10 ×10 = 9.9×10 s
=2.49×10 s
= 2.8×10 ×1.34×10 ×4×10 =1.50×10 s
?ν
?
ν
?
ν
?
?
At a point in the engine where B = 100 gauss = 0.01 Tesla,
-19 -2
9-1 c
c -30
e
1.6×10 ×10
= =1.76×10 s = = 706 >>1
0.91×10
ω
ω?β
ν
Under these conditions, (8) reduces to
e
2
D
D
⊥
β
null (9)
or
ee ee
22 2
ec c
kT kT
D
mm+
⊥
??νν
??
νω ω
??
= null (10)
This last form shows that collisions favor diffusion. In contrast, recall Equation (3),
(no magnetic field, or <<1β ), which shows that in that case, collisions impede
diffusion, Equation (10) also shows that D
⊥
scales as
2
1
B
:
ee eee
22 2 2
e
2
e
kT m kT
D =
m e B e B
m
⊥
νν
null
and so, increasing B should provide very strong confinement of electrons. With the
given numbers, we find
-23
52e
e -30 6
ee
kT 1.38×10 ×46400
D = = = 2.83×10 m /s
m 0.91×10 ×2.49×10ν
and
5
2
2
2.83×10
D= =0.57 m/s
706
⊥
A diffusing substance spreads (in 1-D) roughly as x2Dt~ . So, to spread by 1 cm,
electrons would require a time
16.522, Space Propulsion Lecture 15
Prof. Manuel Martinez-Sanchez Page 11 of 11
2-42
-5
-4 2
x10 m
t= =4.5×10 s
4D 4×0.57×10 m /s
~
It turns out, however, that electrons can diffuse faster than this in most cases. The
physical reasons are apparently related to the “equivalent collisionality” produced by
scattering of the electrons by small-scale plasma density fluctuations which are
almost always present. This is the same situation that has kept
tokamaks from delivering fusion power (only in that case it is the H
+
ions that “leak
through” the confining B
nullnull
field).
Bohm obtained an empirical expression (with some theoretical guidance) for this so-
called “anomalous diffusion”
e
Bohm
kT
D=
16eB
(11)
and experiments in ion engines and Hall thrusters appear to confirm the 1/B
dependence, but also seem to indicate a somewhat smaller diffusivity magnitude.
An often used expression is
()
e
anomalous B
B
kT
D = c 16 -100
ceB
~ (12)
It is of some interest to see what collision frequency would produce the same
diffusivity as these fluctuations:
e e e anomalous c
anomalous22
BB
kT m kT
=
ceB ceB
νω
≡ ? ν (13)
and so
B
c can be thought of as the “Anomalous Hall Parameter”. For modeling
purposes, one often adds together
collision anomalous
+ν ν in calculating diffusivity D
⊥
by
Equation (10).