Appendix C
Some Fourier transform pairs
Note:
G(k) =
integraldisplay
∞
?∞
g(x)e
?jkx
dx, g(x) =
1
2π
integraldisplay
∞
?∞
G(k)e
jkx
dk, g(x) ? G(k).
rect(x) ? 2 sinc k (C.1)
Lambda1(x) ? sinc
2
k
2
(C.2)
sgn(x) ?
2
jk
(C.3)
e
jk
0
x
? 2πδ(k ? k
0
) (C.4)
δ(x) ? 1 (C.5)
1 ? 2πδ(k) (C.6)
d
n
δ(x)
dx
n
? ( jk)
n
(C.7)
x
n
? 2π j
n
d
n
δ(k)
dk
n
(C.8)
U(x) ? πδ(k)+
1
jk
(C.9)
∞
summationdisplay
n=?∞
δ
parenleftbigg
t ? n
2π
k
0
parenrightbigg
? k
0
∞
summationdisplay
n=?∞
δ(k ? nk
0
) (C.10)
e
?ax
2
?
radicalbigg
π
a
e
?
k
2
4a
(C.11)
e
?ax
U(x) ?
1
a + jk
(C.12)
e
?a|x|
?
2a
a
2
+ k
2
(C.13)
e
?ax
cos bx U(x) ?
a + jk
(a + jk)
2
+ b
2
(C.14)
e
?ax
sin bx U(x) ?
b
(a + jk)
2
+ b
2
(C.15)
cos k
0
x ? π[δ(k + k
0
)+δ(k ? k
0
)] (C.16)
sin k
0
x ? jπ[δ(k + k
0
)?δ(k ? k
0
)] (C.17)
1
2
be
?
1
2
bx
bracketleftbigg
I
0
parenleftbigg
1
2
bx
parenrightbigg
+ I
1
parenleftbigg
1
2
bx
parenrightbiggbracketrightbigg
U(x) ?
radicalBigg
jk+ b
jk
? 1 (C.18)
g(x)? ae
?ax
integraldisplay
x
?∞
e
au
g(u) du ?
jk
jk+ a
G(k) (C.19)