Chapter 5
Field decompositions and the EM
potentials
5.1 Spatial symmetry decompositions
Spatial symmetry can often be exploited to solve electromagnetics problems. For
analyticsolutions,symmetrycanbeusedtoreducethenumberofboundaryconditions
thatmustbeapplied. Forcomputersolutionsthestoragerequirementscanbereduced.
Typical symmetries include rotation about a point or axis, and re?ection through a
plane,alonganaxis,orthroughapoint. Weshallconsiderthecommoncaseofre?ection
through a plane. Re?ections through the origin and through an axis will be treated in
theexercises.
Note that spatial symmetry decompositions may be applied even if the sources and
?elds possess no spatial symmetry. As long as the boundaries and material media are
symmetric,thesourcesand?eldsmaybedecomposedintoconstituentsthatindividually
mimicthesymmetryoftheenvironment.
5.1.1 Planar ?eld symmetry
Consideraregionofspaceconsistingoflinear,isotropic,time-invariantmediahaving
material parameters epsilon1(r), μ(r), and σ(r). The electromagnetic ?elds (E,H) within this
regionarerelatedtotheirimpressedsources(J
i
,J
i
m
)andtheirsecondarysources J
s
= σE
throughMaxwell’scurlequations:
?E
z
?y
?
?E
y
?z
=?μ
?H
x
?t
? J
i
mx
, (5.1)
?E
x
?z
?
?E
z
?x
=?μ
?H
y
?t
? J
i
my
, (5.2)
?E
y
?x
?
?E
x
?y
=?μ
?H
z
?t
? J
i
mz
, (5.3)
?H
z
?y
?
?H
y
?z
= epsilon1
?E
x
?t
+σ E
x
+ J
i
x
, (5.4)
?H
x
?z
?
?H
z
?x
= epsilon1
?E
y
?t
+σ E
y
+ J
i
y
, (5.5)
?H
y
?x
?
?H
x
?y
= epsilon1
?E
z
?t
+σ E
z
+ J
i
z
. (5.6)
Weassumethematerialconstantsaresymmetricaboutsomeplane,say z = 0. Then
epsilon1(x, y,?z) = epsilon1(x, y, z),
μ(x, y,?z) = μ(x, y, z),
σ(x, y,?z) = σ(x, y, z).
Thatis,withrespectto z thematerialconstantsareevenfunctions. Wefurtherassume
thattheboundariesandboundaryconditions,whichguaranteeuniquenessofsolution,are
alsosymmetricaboutthe z = 0 plane. Thenwede?netwocasesofre?ectionsymmetry.
Conditions for even symmetry. Weclaimthatifthesourcesobey
J
i
x
(x, y, z) = J
i
x
(x, y,?z), J
i
mx
(x, y, z) =?J
i
mx
(x, y,?z),
J
i
y
(x, y, z) = J
i
y
(x, y,?z), J
i
my
(x, y, z) =?J
i
my
(x, y,?z),
J
i
z
(x, y, z) =?J
i
z
(x, y,?z), J
i
mz
(x, y, z) = J
i
mz
(x, y,?z),
thenthe?eldsobey
E
x
(x, y, z) = E
x
(x, y,?z), H
x
(x, y, z) =?H
x
(x, y,?z),
E
y
(x, y, z) = E
y
(x, y,?z), H
y
(x, y, z) =?H
y
(x, y,?z),
E
z
(x, y, z) =?E
z
(x, y,?z), H
z
(x, y, z) = H
z
(x, y,?z).
Theelectric?eldsharesthesymmetryoftheelectricsource: componentsparalleltothe
z = 0 planeareevenin z,andthecomponentperpendicularisodd. Themagnetic?eld
sharesthesymmetryofthemagneticsource: componentsparalleltothe z = 0 planeare
oddin z,andthecomponentperpendiculariseven.
We can verify our claim by showing that the symmetric ?elds and sources obey
Maxwell’sequations. Atanarbitrarypoint z = a > 0 equation(5.1)requires
?E
z
?y
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
?
?E
y
?z
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
=?μ|
z=a
?H
x
?t
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
? J
i
mx
|
z=a
.
Bytheassumedsymmetryconditiononsourceandmaterialconstantweget
?E
z
?y
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
?
?E
y
?z
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
=?μ|
z=?a
?H
x
?t
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
+ J
i
mx
|
z=?a
.
Ifourclaimholdsregardingthe?eldbehavior,then
?E
z
?y
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=?a
=?
?E
z
?y
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
,
?E
y
?z
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=?a
=?
?E
y
?z
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
,
?H
x
?t
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=?a
=?
?H
x
?t
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=a
,
and we have
?
?E
z
?y
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=?a
+
?E
y
?z
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=?a
= μ|
z=?a
?H
x
?t
vextendsingle
vextendsingle
vextendsingle
vextendsingle
z=?a
+ J
i
mx
|
z=?a
.
SothiscomponentofFaraday’slawissatis?ed. Withsimilarreasoningwecanshowthat
thesymmetricsourcesand?eldssatisfy(5.2)–(5.6)aswell.
Conditions for odd symmetry. Wecanalsoshowthatifthesourcesobey
J
i
x
(x, y, z) =?J
i
x
(x, y,?z), J
i
mx
(x, y, z) = J
i
mx
(x, y,?z),
J
i
y
(x, y, z) =?J
i
y
(x, y,?z), J
i
my
(x, y, z) = J
i
my
(x, y,?z),
J
i
z
(x, y, z) = J
i
z
(x, y,?z), J
i
mz
(x, y, z) =?J
i
mz
(x, y,?z),
thenthe?eldsobey
E
x
(x, y, z) =?E
i
x
(x, y,?z), H
x
(x, y, z) = H
x
(x, y,?z),
E
y
(x, y, z) =?E
y
(x, y,?z), H
y
(x, y, z) = H
y
(x, y,?z),
E
z
(x, y, z) = E
z
(x, y,?z), H
z
(x, y, z) =?H
z
(x, y,?z).
Again the electric ?eld has the same symmetry as the electric source. However, in this
casecomponentsparalleltothe z = 0planeareoddin z andthecomponentperpendicular
iseven. Similarly,themagnetic?eldhasthesamesymmetryasthemagneticsource. Here
componentsparalleltothe z = 0 planeareevenin z andthecomponentperpendicular
isodd.
Fieldsymmetriesandtheconceptofsourceimages. Inthecaseofoddsymmetry
the electric ?eld parallel to the z = 0 plane is an odd function of z. If we assume that
the ?eld is also continuous across this plane, then the electric ?eld tangential to z = 0
mustvanish: theconditionrequiredatthesurfaceofaperfectelectricconductor(PEC).
Wemayregardtheproblemofsourcesaboveaperfectconductorinthe z = 0 planeas
equivalent totheproblemofsourcesoddaboutthisplane,aslongasthesourcesinboth
casesareidenticalfor z > 0. Werefertothesourceintheregion z < 0 asthe image of
thesourceintheregion z > 0. Thustheimagesource (J
I
,J
I
m
) obeys
J
I
x
(x, y,?z) =?J
i
x
(x, y, z), J
I
mx
(x, y,?z) = J
i
mx
(x, y, z),
J
I
y
(x, y,?z) =?J
i
y
(x, y, z), J
I
my
(x, y,?z) = J
i
my
(x, y, z),
J
I
z
(x, y,?z) = J
i
z
(x, y, z), J
I
mz
(x, y,?z) =?J
i
mz
(x, y, z).
That is, parallel components of electric current image in the opposite direction, and
the perpendicular component images in the same direction; parallel components of the
magneticcurrentimageinthesamedirection,whiletheperpendicularcomponentimages
intheoppositedirection.
In the case of even symmetry, the magnetic ?eld parallel to the z = 0 plane is odd,
and thus the magnetic ?eld tangential to the z = 0 plane must be zero. We therefore
haveanequivalencebetweentheproblemofasourceaboveaplaneofperfectmagnetic
conductor (PMC) and the problem of sources even about that plane. In this case we
identifyimagesourcesthatobey
J
I
x
(x, y,?z) = J
i
x
(x, y, z), J
I
mx
(x, y,?z) =?J
i
mx
(x, y, z),
J
I
y
(x, y,?z) = J
i
y
(x, y, z), J
I
my
(x, y,?z) =?J
i
my
(x, y, z),
J
I
z
(x, y,?z) =?J
i
z
(x, y, z), J
I
mz
(x, y,?z) = J
i
mz
(x, y, z).
Parallelcomponentsofelectriccurrentimageinthesamedirection,andtheperpendicular
component images in the opposite direction; parallel components of magnetic current
image in the opposite direction, and the perpendicular component images in the same
direction.
Inthecaseofoddsymmetry,wesometimessaythatan“electricwall”existsat z = 0.
The term “magnetic wall” can be used in the case of even symmetry. These terms are
particularlycommoninthedescriptionofwaveguide?elds.
Symmetric ?eld decomposition. Field symmetries may be applied to arbitrary
sourcedistributionsthroughasymmetrydecompositionofthesourcesand?elds. Con-
siderthegeneralimpressedsourcedistributions (J
i
,J
i
m
). Thesourceset
J
ie
x
(x, y, z) =
1
2
bracketleftbig
J
i
x
(x, y, z)+ J
i
x
(x, y,?z)
bracketrightbig
,
J
ie
y
(x, y, z) =
1
2
bracketleftbig
J
i
y
(x, y, z)+ J
i
y
(x, y,?z)
bracketrightbig
,
J
ie
z
(x, y, z) =
1
2
bracketleftbig
J
i
z
(x, y, z)? J
i
z
(x, y,?z)
bracketrightbig
,
J
ie
mx
(x, y, z) =
1
2
bracketleftbig
J
i
mx
(x, y, z)? J
i
mx
(x, y,?z)
bracketrightbig
,
J
ie
my
(x, y, z) =
1
2
bracketleftbig
J
i
my
(x, y, z)? J
i
my
(x, y,?z)
bracketrightbig
,
J
ie
mz
(x, y, z) =
1
2
bracketleftbig
J
i
mz
(x, y, z)+ J
i
mz
(x, y,?z)
bracketrightbig
,
isclearlyofevensymmetrictypewhilethesourceset
J
io
x
(x, y, z) =
1
2
bracketleftbig
J
i
x
(x, y, z)? J
i
x
(x, y,?z)
bracketrightbig
,
J
io
y
(x, y, z) =
1
2
bracketleftbig
J
i
y
(x, y, z)? J
i
y
(x, y,?z)
bracketrightbig
,
J
io
z
(x, y, z) =
1
2
bracketleftbig
J
i
z
(x, y, z)+ J
i
z
(x, y,?z)
bracketrightbig
,
J
io
mx
(x, y, z) =
1
2
bracketleftbig
J
i
mx
(x, y, z)+ J
i
mx
(x, y,?z)
bracketrightbig
,
J
io
my
(x, y, z) =
1
2
bracketleftbig
J
i
my
(x, y, z)+ J
i
my
(x, y,?z)
bracketrightbig
,
J
io
mz
(x, y, z) =
1
2
bracketleftbig
J
i
mz
(x, y, z)? J
i
mz
(x, y,?z)
bracketrightbig
,
isoftheoddsymmetrictype. Since J
i
= J
ie
+ J
io
and J
i
m
= J
ie
m
+ J
io
m
,wecandecompose
any source into constituents having, respectively, even and odd symmetry with respect
toaplane. Thesourcewithevensymmetryproducesaneven?eldset,whilethesource
with odd symmetry produces an odd ?eld set. The total ?eld is the sum of the ?elds
fromeach?eldset.
Planar symmetry for frequency-domain ?elds. The symmetry conditions intro-
ducedaboveforthetime-domain?eldsalsoholdforthefrequency-domain?elds. Because
boththeconductivityandpermittivitymustbeevenfunctions,wecombinetheire?ects
and require the complex permittivity to be even. Otherwise the ?eld symmetries and
sourcedecompositionsareidentical.
Exampleofsymmetrydecomposition: linesourcebetweenconductingplanes.
Considera z-directedelectriclinesource
?
I
0
locatedat y = h, x = 0 betweenconducting
planes at y =±d, d > h. The material between the plates has permeability ?μ(ω) and
complexpermittivity ?epsilon1
c
(ω). Wedecomposethesourceintooneofevensymmetrictype
with line sources
?
I
0
/2 located at y =±h, and one of odd symmetric type with a line
source
?
I
0
/2 locatedat y = h andalinesource ?
?
I
0
/2 locatedat y =?h. Wesolveeach
oftheseproblemsbyexploitingtheappropriatesymmetry,andsuperposetheresultsto
?ndthesolutiontotheoriginalproblem.
For the even-symmetric case, we begin by using (4.407) to represent the impressed
?eld:
?
E
i
z
(x, y,ω)=?
ω ?μ
?
I
0
(ω)
2
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
e
?jk
y
|y?h|
+ e
?jk
y
|y+h|
2k
y
e
?jk
x
x
dk
x
.
For y > h thisbecomes
?
E
i
z
(x, y,ω)=?
ω ?μ
?
I
0
(ω)
2
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
2 cos k
y
h
2k
y
e
?jk
y
y
e
?jk
x
x
dk
x
.
Thesecondary(scattered)?eldconsistsofwavespropagatinginboththe±y-directions:
?
E
s
z
(x, y,ω)=
1
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
bracketleftbig
A
+
(k
x
,ω)e
?jk
y
y
+ A
?
(k
x
,ω)e
jk
y
y
bracketrightbig
e
?jk
x
x
dk
x
. (5.7)
The impressed ?eld is even about y = 0. Since the total ?eld E
z
= E
i
z
+ E
s
z
must be
evenin y (E
z
isparalleltotheplane y = 0),thescattered?eldmustalsobeeven. Thus,
A
+
= A
?
andthetotal?eldisfor y > h
?
E
z
(x, y,ω)=
1
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
bracketleftbigg
2A
+
(k
x
,ω)cos k
y
y ?ω ?μ
?
I
0
(ω)
2
2 cos k
y
h
2k
y
e
?jk
y
y
bracketrightbigg
e
?jk
x
x
dk
x
.
Nowthe electric ?eld must obey the boundary condition
?
E
z
= 0 at y =±d. However,
since
?
E
z
is even the satisfaction of this condition at y = d automatically implies its
satisfactionat y =?d. Soweset
1
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
bracketleftbigg
2A
+
(k
x
,ω)cos k
y
d ?ω ?μ
?
I
0
(ω)
2
2 cos k
y
h
2k
y
e
?jk
y
d
bracketrightbigg
e
?jk
x
x
dk
x
= 0
andinvoketheFourierintegraltheoremtoget
A
+
(k
x
,ω)= ω ?μ
?
I
0
(ω)
2
cos k
y
h
2k
y
e
?jk
y
d
cos k
y
d
.
Thetotal?eldforthiscaseis
?
E
z
(x, y,ω)=?
ω ?μ
?
I
0
(ω)
2
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
bracketleftbigg
e
?jk
y
|y?h|
+ e
?jk
y
|y+h|
2k
y
?
?
2 cos k
y
h
2k
y
e
?jk
y
d
cos k
y
d
cos k
y
y
bracketrightbigg
e
?jk
x
x
dk
x
.
Fortheodd-symmetriccasetheimpressed?eldis
?
E
i
z
(x, y,ω)=?
ω ?μ
?
I
0
(ω)
2
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
e
?jk
y
|y?h|
? e
?jk
y
|y+h|
2k
y
e
?jk
x
x
dk
x
,
whichfor y > h is
?
E
i
z
(x, y,ω)=?
ω ?μ
?
I
0
(ω)
2
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
2 j sin k
y
h
2k
y
e
?jk
y
y
e
?jk
x
x
dk
x
.
The scattered ?eld has the form of (5.7) but must be odd. Thus A
+
=?A
?
and the
total?eldfor y > h is
?
E
z
(x, y,ω)=
1
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
bracketleftbigg
2 jA
+
(k
x
,ω)sin k
y
y ?ω ?μ
?
I
0
(ω)
2
2 j sin k
y
h
2k
y
e
?jk
y
y
bracketrightbigg
e
?jk
x
x
dk
x
.
Setting
?
E
z
= 0 at z = d andsolvingfor A
+
we?ndthatthetotal?eldforthiscaseis
?
E
z
(x, y,ω)=?
ω ?μ
?
I
0
(ω)
2
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
bracketleftbigg
e
?jk
y
|y?h|
? e
?jk
y
|y+h|
2k
y
?
?
2 j sin k
y
h
2k
y
e
?jk
y
d
sin k
y
d
sin k
y
y
bracketrightbigg
e
?jk
x
x
dk
x
.
Addingthe?eldsforthetwocaseswe?ndthat
?
E
z
(x, y,ω)=?
ω ?μ
?
I
0
(ω)
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
e
?jk
y
|y?h|
2k
y
e
?jk
x
x
dk
x
+
+
ω ?μ
?
I
0
(ω)
2π
∞+jDelta1
integraldisplay
?∞+jDelta1
bracketleftbigg
cos k
y
h cos k
y
y
cos k
y
d
+ j
sin k
y
h sin k
y
y
sin k
y
d
bracketrightbigg
e
?jk
y
d
2k
y
e
?jk
x
x
dk
x
,
(5.8)
whichisasuperpositionofimpressedandscattered?elds.
5.2 Solenoidal–lamellar decomposition
Wenowdiscussthedecompositionofageneralvector?eldintoa lamellar component
havingzerocurlandasolenoidal componenthavingzerodivergence. Thisisknownasa
Helmholtz decomposition.IfV isanyvector?eldthenwewishtowrite
V = V
s
+ V
l
, (5.9)
where V
s
and V
l
arethesolenoidalandlamellarcomponentsof V. Formulasexpressing
thesecomponentsintermsof V areobtainedasfollows. We?rstwrite V
s
intermsofa
“vectorpotential” A as
V
s
=?×A. (5.10)
Thisispossiblebyvirtueof(B.49). Similarly,wewriteV
l
intermsofa“scalarpotential”
φ as
V
l
=?φ. (5.11)
Toobtainaformulafor V
l
wetakethedivergenceof(5.9)anduse(5.11)toget
?·V =?·V
l
=?·?φ =?
2
φ.
Theresult,
?
2
φ =?·V,
may be regarded as Poisson’s equation for the unknown φ. This equation is solved in
Chapter3. By(3.61)wehave
φ(r) =?
integraldisplay
V
?
prime
· V(r
prime
)
4π R
dV
prime
,
where R =|r ? r
prime
|,andwehave
V
l
(r) =??
integraldisplay
V
?
prime
· V(r
prime
)
4π R
dV
prime
. (5.12)
Similarly,aformulafor V
s
canbeobtainedbytakingthecurlof(5.9)toget
?×V =?×V
s
.
Substituting(5.10)wehave
?×V =?×(?×A) =?(?·A)??
2
A.
We may choose any value we wish for ?·A, since this does not alter V
s
=?×A.
(Wediscusssuch“gaugetransformations”ingreaterdetaillaterinthischapter.) With
?·A = 0 weobtain
?? × V =?
2
A.
ThisisPoisson’sequationforeachrectangularcomponentof A;therefore
A(r) =
integraldisplay
V
?
prime
× V(r
prime
)
4π R
dV
prime
,
and we have
V
s
(r) =?×
integraldisplay
V
?
prime
× V(r
prime
)
4π R
dV
prime
.
SummingtheresultsweobtaintheHelmholtzdecomposition
V = V
l
+ V
s
=??
integraldisplay
V
?
prime
· V(r
prime
)
4π R
dV
prime
+?×
integraldisplay
V
?
prime
× V(r
prime
)
4π R
dV
prime
. (5.13)
Identi?cationoftheelectromagneticpotentials. Letuswritetheelectromagnetic
?eldsasageneralsuperpositionofsolenoidalandlamellarcomponents:
E =?×A
E
+?φ
E
, (5.14)
B =?×A
B
+?φ
B
. (5.15)
One possible form of the potentials A
E
, A
B
, φ
E
, and φ
B
appears in (5.13). However,
because E and B arerelatedbyMaxwell’sequations,thepotentialsshouldberelatedto
thesources. Wecandeterminetheexplicitrelationshipbysubstituting(5.14)and(5.15)
into Ampere’s and Faraday’s laws. It is most convenient to analyze the relationships
usingsuperpositionofthecasesforwhich J
m
= 0 and J = 0.
With J
m
= 0 Faraday’slawis
?×E =?
?B
?t
. (5.16)
Since ?×E is solenoidal, B must be solenoidal and thus ?φ
B
= 0. This implies
that φ
B
= 0, which is equivalent to the auxiliary Maxwell equation ?·B = 0.Now,
substitutionof(5.14)and(5.15)into(5.16)gives
?×[?×A
E
+?φ
E
] =?
?
?t
[?×A
B
].
Using ?×(?φ
E
) = 0 andcombiningthetermsweget
?×
bracketleftbigg
?×A
E
+
?A
B
?t
bracketrightbigg
= 0,
hence
?×A
E
=?
?A
B
?t
+?ξ.
Substitutioninto(5.14)gives
E =?
?A
B
?t
+ [?φ
E
+?ξ].
Combiningthetwogradientfunctionstogether,weseethatwecanwritebothE and B
intermsoftwopotentials:
E =?
?A
e
?t
??φ
e
, (5.17)
B =?×A
e
, (5.18)
wherethenegativesignonthegradienttermisintroducedbyconvention.
GaugetransformationsandtheCoulombgauge. Wepayapriceforthesimplicity
ofusingonlytwopotentialstorepresent E and B. While ?×A
e
isde?nitelysolenoidal,
A
e
itselfmaynotbe: becauseofthis(5.17)maynotbeadecompositionintosolenoidal
andlamellarcomponents. However, acorollaryoftheHelmholtztheoremstatesthata
vector?eldisuniquelyspeci?edonlywhenbothitscurlanddivergencearespeci?ed. Here
there is an ambiguity in the representation of E and B; we may remove this ambiguity
andde?ne A
e
uniquelybyrequiringthat
?·A
e
= 0. (5.19)
Then A
e
issolenoidalandthedecomposition(5.17)issolenoidal–lamellar. Thisrequire-
menton A
e
iscalledthe Coulomb gauge.
The ambiguity implied by the non-uniqueness of ?·A
e
can also be expressed by the
observationthatatransformationofthetype
A
e
→ A
e
+?Gamma1, (5.20)
φ
e
→ φ
e
?
?Gamma1
?t
, (5.21)
leavestheexpressions(5.17)and(5.18)unchanged. Thisiscalledagaugetransformation,
andthechoiceofacertain Gamma1 altersthespeci?cationof ?·A
e
. Thuswemaybeginwith
the Coulomb gauge as our baseline, and allowany alteration of A
e
according to (5.20)
aslongasweaugment?·A
e
by ?·?Gamma1 =?
2
Gamma1.
Once ?·A
e
is speci?ed, the relationship between the potentials and the current J
can be found by substitution of (5.17) and (5.18) into Ampere’s law. At this point
we assume media that are linear, homogeneous, isotropic, and described by the time-
invariantparameters μ, epsilon1,and σ. Writing J = J
i
+σE we have
1
μ
?×(?×A
e
) = J
i
?σ
?A
e
?t
?σ?φ
e
?epsilon1
?
2
A
e
?t
2
?epsilon1
?
?t
?φ
e
. (5.22)
Takingthedivergenceofbothsidesof(5.22)weget
0 =?·J
i
?σ
?
?t
?·A ?σ?·?φ
e
?epsilon1
?
2
?t
2
?·A
e
?epsilon1
?
?t
?·?φ
e
. (5.23)
Then,bysubstitutionfromthecontinuityequationanduseof(5.19)alongwith?·?φ
e
=
?
2
φ
e
weobtain
?
?t
parenleftbig
ρ
i
+epsilon1?
2
φ
e
parenrightbig
=?σ?
2
φ
e
.
Foralosslessmediumthisreducesto
?
2
φ
e
=?ρ
i
/epsilon1 (5.24)
and we have
φ
e
(r,t) =
integraldisplay
V
ρ
i
(r
prime
,t)
4πepsilon1R
dV
prime
. (5.25)
Wecanobtainanequationfor A
e
byexpandingtheleft-handsideof(5.22)toget
?(?·A
e
)??
2
A
e
= μJ
i
?σμ
?A
e
?t
?σμ?φ
e
?μepsilon1
?
2
A
e
?t
2
?μepsilon1
?
?t
?φ
e
, (5.26)
hence
?
2
A
e
?μepsilon1
?
2
A
e
?t
2
=?μJ
i
+σμ
?A
e
?t
+σμ?φ
e
+μepsilon1
?
?t
?φ
e
undertheCoulombgauge. Forlosslessmediathisbecomes
?
2
A
e
?μepsilon1
?
2
A
e
?t
2
=?μJ
i
+μepsilon1
?
?t
?φ
e
. (5.27)
Observethattheleft-handsideof(5.27)issolenoidal(sincetheLaplaciantermcame
from the curl-curl, and ?·A
e
= 0), while the right-hand side contains a general vector
?eld J
i
and a lamellar term. We might expect the ?φ
e
term to cancel the lamellar
portionof J
i
, andthisdoeshappen[91]. By(5.12)andthecontinuityequationwecan
writethelamellarcomponentofthecurrentas
J
i
l
(r,t) =??
integraldisplay
V
?
prime
· J
i
(r
prime
,t)
4π R
dV
prime
=
?
?t
?
integraldisplay
V
ρ
i
(r
prime
,t)
4π R
dV
prime
= epsilon1
?
?t
?φ
e
.
Thus(5.27)becomes
?
2
A
e
?μepsilon1
?
2
A
e
?t
2
=?μJ
i
s
. (5.28)
Thereforethevectorpotential A
e
,whichdescribesthesolenoidalportionofboth E and
B,isfoundfromjustthesolenoidalportionofthecurrent. Ontheotherhand,thescalar
potential,whichdescribesthelamellarportionof E,isfoundfrom ρ
i
whicharisesfrom
?·J
i
,thelamellarportionofthecurrent.
From the perspective of ?eld computation, we see that the introduction of potential
functions has reoriented the solution process from dealing with two coupled ?rst-order
partialdi?erentialequations(Maxwell’sequations),totwouncoupledsecond-orderequa-
tions(thepotentialequations(5.24)and(5.28)). Thedecouplingoftheequationsisoften
worththeaddedcomplexityofdealingwithpotentials,and,infact,isthesolutiontech-
nique of choice in such areas as radiation and guided waves. It is worth pausing for
a moment to examine the form of these equations. We see that the scalar potential
obeys Poisson’s equation with the solution (5.25), while the vector potential obeys the
wave equation. As a wave, the vector potential must propagate away from the source
with?nitevelocity. However, thesolutionforthescalarpotential(5.25)showsnosuch
behavior. In fact, any change to the charge distribution instantaneously permeates all
ofspace. ThisapparentviolationofEinstein’spostulateshowsthatwemustbecareful
wheninterpretingthephysicalmeaningofthepotentials. Oncethecomputations(5.17)
and(5.18)areundertaken,we?ndthatboth E and B behaveaswaves,andthuspropa-
gateat?nitevelocity. Mathematically,theconundrumcanberesolvedbyrealizingthat
individuallythesolenoidalandlamellarcomponentsofcurrentmustoccupyallofspace,
eveniftheirsum,theactualcurrent J
i
,islocalized[91].
The Lorentz gauge. Adi?erentchoiceofgaugeconditioncanallowboththevector
and scalar potentials to act as waves. In this case E may be written as a sum of two
terms: one purely solenoidal, and the other a superposition of lamellar and solenoidal
parts.
Letusexaminethee?ectofchoosingthe Lorentz gauge
?·A
e
=?μepsilon1
?φ
e
?t
?μσφ
e
. (5.29)
Substitutingthisexpressioninto(5.26)we?ndthatthegradienttermscancel,giving
?
2
A
e
?μσ
?A
e
?t
?μepsilon1
?
2
A
e
?t
2
=?μJ
i
. (5.30)
Forlosslessmedia
?
2
A
e
?μepsilon1
?
2
A
e
?t
2
=?μJ
i
, (5.31)
and(5.23)becomes
?
2
φ
e
?μepsilon1
?
2
φ
e
?t
2
=?
ρ
i
epsilon1
. (5.32)
For lossy media we have obtained a second-order di?erential equation for A
e
, but φ
e
must be found through the somewhat cumbersome relation (5.29). For lossless media
thecoupledMaxwellequationshavebeendecoupledintotwosecond-orderequations,one
involving A
e
and one involving φ
e
. Both (5.31) and (5.32) are wave equations, with J
i
asthesourcefor A
e
and ρ
i
asthesourcefor φ
e
. Thustheexpected?nite-velocitywave
natureoftheelectromagnetic?eldsisalsomanifestedineachofthepotentialfunctions.
Thedrawbackisthat,eventhoughwecanstilluse(5.17)and(5.18),theexpressionfor E
isnolongeradecompositionintosolenoidalandlamellarcomponents. Nevertheless,the
choiceoftheLorentzgaugeisverypopularinthestudyofradiatedandguidedwaves.
The Hertzian potentials. Withalittlemanipulationandtheintroductionofanew
notation,wecanmaintainthewavenatureofthepotentialfunctionsandstillprovidea
decompositionintopurelylamellarandsolenoidalcomponents. Inthisanalysisweshall
assumelosslessmediaonly.
WhenwechosetheLorentzgaugetoremovethearbitrarinessofthedivergenceofthe
vector potential, we established a relationship between A
e
and φ
e
. Thus we should be
abletowriteboththeelectricandmagnetic?eldsintermsofasinglepotentialfunction.
FromtheLorentzgaugewecanwriteφ
e
as
φ
e
(r,t) =?
1
μepsilon1
integraldisplay
t
?∞
?·A
e
(r,t)dt.
By(5.17)and(5.18)wecanthuswritetheEM?eldsas
E =
1
μepsilon1
?
integraldisplay
t
?∞
?·A
e
dt ?
?A
e
?t
, (5.33)
B =?×A
e
. (5.34)
The integro-di?erential representation of E in (5.33) is somewhat clumsy in appear-
ance. Wecanmakeiteasiertomanipulatebyde?ningthe Hertzian potential
Π
e
=
1
μepsilon1
integraldisplay
t
?∞
A
e
dt.
Indi?erentialform
A
e
= μepsilon1
?Π
e
dt
. (5.35)
Withthis,(5.33)and(5.34)become
E =?(?·Π
e
)?μepsilon1
?
2
?t
2
Π
e
, (5.36)
B = μepsilon1?×
?Π
e
?t
. (5.37)
AnequationforΠ
e
intermsofthesourcecurrentcanbefoundbysubstituting(5.35)
into(5.31):
μepsilon1
?
?t
parenleftbigg
?
2
Π
e
?μepsilon1
?
2
?t
2
Π
e
parenrightbigg
=?μJ
i
.
Letusde?ne
J
i
=
?P
i
?t
. (5.38)
Forgeneralimpressedcurrentsources(5.38)isjustaconvenientnotation. However,we
can conceive of an impressed polarization current that is independent of E and de?ned
through the relation D = epsilon1
0
E + P + P
i
. Then (5.38) has a physical interpretation as
describedin(2.119). Wenowhave
?
2
Π
e
?μepsilon1
?
2
?t
2
Π
e
=?
1
epsilon1
P
i
, (5.39)
whichisawaveequationforΠ
e
. ThustheHertzianpotentialhasthesamewavebehavior
asthevectorpotentialundertheLorentzgauge.
We can use (5.39) to perform one ?nal simpli?cation of the EM ?eld representation.
Bythevectoridentity ?(?·Π) =?×(?×Π)+?
2
Π weget
?(?·Π
e
) =?×(?×Π
e
)?
1
epsilon1
P
i
+μepsilon1
?
2
?t
2
Π
e
.
Substitutingthisinto(5.36)weobtain
E =?×(?×Π
e
)?
P
i
epsilon1
, (5.40)
B = μepsilon1?×
?Π
e
?t
. (5.41)
Letusexaminetheseclosely. Weknowthat B issolenoidalsinceitiswrittenasthecurl
ofanothervector(thisisalsoclearfromtheauxiliaryMaxwellequation?·B = 0). The
?rst term in the expression for E is also solenoidal. So the lamellar part of E must be
containedwithinthesourceterm P
i
. IfwewriteP
i
intermsofitslamellarandsolenoidal
componentsbyusing
J
i
s
=
?P
i
s
?t
, J
i
l
=
?P
i
l
?t
,
then(5.40)becomes
E =
bracketleftbigg
?×(?×Π
e
)?
P
i
s
epsilon1
bracketrightbigg
?
P
i
l
epsilon1
. (5.42)
Sowehaveagainsucceededindividing E intolamellarandsolenoidalcomponents.
Potential functions for magnetic current. Wecanproceedasabovetoderivethe
?eld–potential relationships when J
i
= 0 but J
i
m
negationslash= 0. We assume a homogeneous, loss-
less,isotropicmediumwithpermeabilityμandpermittivityepsilon1,andbeginwithFaraday’s
andAmpere’slaws
?×E =?J
i
m
?
?B
?t
, (5.43)
?×H =
?D
?t
. (5.44)
Wewrite H and D intermsoftwopotentialfunctions A
h
and φ
h
as
H =?
?A
h
?t
??φ
h
,
D =??×A
h
,
andthedi?erentialequationforthepotentialsisfoundbysubstitutioninto(5.43):
?×(?×A
h
) = epsilon1J
i
m
?μepsilon1
?
2
A
h
?t
2
?μepsilon1
?
?t
?φ
h
. (5.45)
Taking the divergence of this equation and substituting from the magnetic continuity
equationweobtain
μepsilon1
?
2
?t
2
?·A
h
+μepsilon1
?
?t
?
2
φ
h
=?epsilon1
?ρ
i
m
?t
.
UndertheLorentzgaugecondition
?·A
h
=?μepsilon1
?φ
h
?t
thisreducesto
?
2
φ
h
?μepsilon1
?
2
φ
h
?t
2
=?
ρ
i
m
μ
.
Expandingthecurl-curloperationin(5.45)wehave
?(?·A
h
)??
2
A
h
= epsilon1J
i
m
?μepsilon1
?
2
A
h
?t
2
?μepsilon1
?
?t
?φ
h
,
which,uponsubstitutionoftheLorentzgaugeconditiongives
?
2
A
h
?μepsilon1
?
2
A
h
?t
2
=?epsilon1J
i
m
. (5.46)
WecanalsoderiveaHertzianpotentialforthecaseofmagneticcurrent. Letting
A
h
= μepsilon1
?Π
h
?t
(5.47)
andemployingtheLorentzconditionwehave
D =?μepsilon1?×
?Π
h
?t
,
H =?(?·Π
h
)?μepsilon1
?
2
Π
h
?t
2
.
ThewaveequationforΠ
h
isfoundbysubstituting(5.47)into(5.46)togive
?
?t
bracketleftbigg
?
2
Π
h
?μepsilon1
?
2
Π
h
?t
2
bracketrightbigg
=?
1
μ
J
i
m
. (5.48)
De?ning M
i
through
J
i
m
= μ
?M
i
?t
,
wewritethewaveequationas
?
2
Π
h
?μepsilon1
?
2
Π
h
?t
2
=?M
i
.
We can think of M
i
as a convenient way of representing J
i
m
, or we can conceive of an
impressed magnetization current that is independent of H and de?ned through B =
μ
0
(H + M + M
i
). Withthehelpof(5.48)wecanalsowritethe?eldsas
H =?×(?×Π
h
)? M
i
,
D =?μepsilon1?×
?Π
h
?t
.
Summary of potential relations for lossless media. Whenbothelectricandmag-
neticsourcesarepresent,wemaysuperposethepotentialrepresentationsderivedabove.
Weassumeahomogeneous,losslessmediumwithtime-invariantparametersμandepsilon1.For
thescalar/vectorpotentialrepresentationwehave
E =?
?A
e
?t
??φ
e
?
1
epsilon1
?×A
h
, (5.49)
H =
1
μ
?×A
e
?
?A
h
?t
??φ
h
. (5.50)
Herethepotentialssatisfythewaveequations
parenleftbigg
?
2
?μepsilon1
?
2
?t
2
parenrightbiggbraceleftbigg
A
e
φ
e
bracerightbigg
=
braceleftbigg
?μJ
i
?
ρ
i
epsilon1
bracerightbigg
, (5.51)
parenleftbigg
?
2
?μepsilon1
?
2
?t
2
parenrightbiggbraceleftbigg
A
h
φ
h
bracerightbigg
=
braceleftBigg
?epsilon1J
i
m
?
ρ
i
m
μ
bracerightBigg
,
andarelinkedbytheLorentzconditions
?·A
e
=?μepsilon1
?φ
e
?t
,
?·A
h
=?μepsilon1
?φ
h
?t
.
WealsohavetheHertzpotentialrepresentation
E =?(?·Π
e
)?μepsilon1
?
2
Π
e
?t
2
?μ?×
?Π
h
?t
=?×(?×Π
e
)?
P
i
epsilon1
?μ?×
?Π
h
?t
, (5.52)
H = epsilon1?×
?Π
e
?t
+?(?·Π
h
)?μepsilon1
?
2
Π
h
?t
2
= epsilon1?×
?Π
e
?t
+?×(?×Π
h
)? M
i
. (5.53)
TheHertzpotentialssatisfythewaveequations
parenleftbigg
?
2
?μepsilon1
?
2
?t
2
parenrightbiggbraceleftbigg
Π
e
Π
h
bracerightbigg
=
braceleftbigg
?
1
epsilon1
P
i
?M
i
bracerightbigg
.
Potential functions for the frequency-domain ?elds. Inthefrequencydomainit
ismucheasiertohandlelossymedia. Consideralossy,isotropic,homogeneousmedium
describedbythefrequency-dependentparameters ?μ, ?epsilon1,and ?σ. Maxwell’scurlequations
are
?×
?
E =?
?
J
i
m
? jω ?μ
?
H, (5.54)
?×
?
H =
?
J
i
+ jω?epsilon1
c
?
E. (5.55)
Here we have separated the primary and secondary currents through
?
J =
?
J
i
+ ?σ
?
E, and
used the complex permittivity ?epsilon1
c
= ?epsilon1 + ?σ/jω. As with the time-domain equations we
introduce the potential functions using superposition. If
?
J
i
m
= 0 and
?
J
i
negationslash= 0 then we
mayintroducetheelectricpotentialsthroughtherelationships
?
E =??
?
φ
e
? jω
?
A
e
, (5.56)
?
H =
1
?μ
?×
?
A
e
. (5.57)
AssumingtheLorentzcondition
?·
?
A
e
=?jω ?μ?epsilon1
c
?
φ
e
,
we ?nd that upon substitution of (5.56)–(5.57) into (5.54)–(5.55) the potentials must
obeytheHelmholtzequation
parenleftbig
?
2
+ k
2
parenrightbig
braceleftbigg
?
φ
e
?
A
e
bracerightbigg
=
braceleftbigg
??ρ
i
/?epsilon1
c
??μ
?
J
i
bracerightbigg
.
If
?
J
i
m
negationslash= 0 and
?
J
i
= 0 thenwemayintroducethemagneticpotentialsthrough
?
E =?
1
?epsilon1
c
?×
?
A
h
, (5.58)
?
H =??
?
φ
h
? jω
?
A
h
. (5.59)
Assuming
?·
?
A
h
=?jω ?μ?epsilon1
c
?
φ
h
,
we ?nd that upon substitution of (5.58)–(5.59) into (5.54)–(5.55) the potentials must
obey
parenleftbig
?
2
+ k
2
parenrightbig
braceleftbigg
?
φ
h
?
A
h
bracerightbigg
=
braceleftbigg
??ρ
i
m
/ ?μ
??epsilon1
c
?
J
i
m
bracerightbigg
.
Whenbothelectricandmagneticsourcesarepresent,weusesuperposition:
?
E =??
?
φ
e
? jω
?
A
e
?
1
?epsilon1
c
?×
?
A
h
,
?
H =
1
?μ
?×
?
A
e
??
?
φ
h
? jω
?
A
h
.
UsingtheLorentzconditionswecanalsowritethe?eldsintermsofthevectorpotentials
alone:
?
E =?
jω
k
2
?(?·
?
A
e
)? jω
?
A
e
?
1
?epsilon1
c
?×
?
A
h
, (5.60)
?
H =
1
?μ
?×
?
A
e
?
jω
k
2
?(?·
?
A
h
)? jω
?
A
h
. (5.61)
Wecanalsode?neHertzianpotentialsforthefrequency-domain?elds. When
?
J
i
m
= 0
and
?
J
i
negationslash= 0 welet
?
A
e
= jω ?μ?epsilon1
c
?
Π
e
and?nd
?
E =?(?·
?
Π
e
)+ k
2
?
Π
e
=?×(?×
?
Π
e
)?
?
J
i
jω?epsilon1
c
(5.62)
and
?
H = jω?epsilon1
c
?×
?
Π
e
. (5.63)
Here
?
J
i
canrepresenteitheranimpressedelectriccurrentsourceoranimpressedpolar-
izationcurrentsource
?
J
i
= jω
?
P
i
. TheelectricHertzianpotentialobeys
(?
2
+ k
2
)
?
Π
e
=?
?
J
i
jω?epsilon1
c
. (5.64)
When
?
J
i
m
negationslash= 0 and
?
J
i
= 0 welet
?
A
h
= jω ?μ?epsilon1
c
?
Π
h
and?nd
?
E =?jω ?μ?×
?
Π
h
(5.65)
and
?
H =?(?·
?
Π
h
)+ k
2
?
Π
h
=?×(?×
?
Π
h
)?
?
J
i
m
jω ?μ
. (5.66)
Here
?
J
i
m
can represent either an impressed magnetic current source or an impressed
magnetizationcurrentsource
?
J
i
m
= jω ?μ
?
M
i
. ThemagneticHertzianpotentialobeys
(?
2
+ k
2
)
?
Π
h
=?
?
J
i
m
jω ?μ
. (5.67)
Whenbothelectricandmagneticsourcesarepresentwehavebysuperposition
?
E =?(?·
?
Π
e
)+ k
2
?
Π
e
? jω ?μ?×
?
Π
h
=?×(?×
?
Π
e
)?
?
J
i
jω?epsilon1
c
? jω ?μ?×
?
Π
h
and
?
H = jω?epsilon1
c
?×
?
Π
e
+?(?·
?
Π
h
)+ k
2
?
Π
h
= jω?epsilon1
c
?×
?
Π
e
+?×(?×
?
Π
h
)?
?
J
i
m
jω ?μ
.
5.2.1 Solution for potentials in an unbounded medium: the retarded
potentials
UndertheLorentzconditioneachofthepotentialfunctionsobeysthewaveequation.
This equation can be solved using the method of Green’s functions to determine the
potentials,andtheelectromagnetic?eldscanthereforebedetermined. Wenowexamine
thesolutionforanunboundedmedium. Solutionsforboundedregionsareconsideredin
§ 5.2.2.
Consideralinearoperator
L
thatoperatesonafunctionof r and t. Ifwewishtosolve
theequation
L
{ψ(r,t)}=S(r,t), (5.68)
we?rstsolve
L
{G(r,t|r
prime
,t
prime
)}=δ(r ? r
prime
)δ(t ? t
prime
)
anddeterminetheGreen’sfunction G fortheoperator
L
. Providedthat S resideswithin
V wehave
L
braceleftbiggintegraldisplay
V
integraldisplay
∞
?∞
S(r
prime
,t
prime
)G(r,t|r
prime
,t
prime
)dt
prime
dV
prime
bracerightbigg
=
integraldisplay
V
integraldisplay
∞
?∞
S(r
prime
,t
prime
)
L
{G(r,t|r
prime
,t
prime
)}dt
prime
dV
prime
=
integraldisplay
V
integraldisplay
∞
?∞
S(r
prime
,t
prime
)δ(r ? r
prime
)δ(t ? t
prime
)dt
prime
dV
prime
= S(r,t),
hence
ψ(r,t) =
integraldisplay
V
integraldisplay
∞
?∞
S(r
prime
,t
prime
)G(r,t|r
prime
,t
prime
)dt
prime
dV
prime
(5.69)
bycomparisonwith(5.68).
Wecanalsoapplythisideainthefrequencydomain. Thesolutionto
L
{
?
ψ(r,ω)}=
?
S(r,ω) (5.70)
is
?
ψ(r,ω)=
integraldisplay
V
?
S(r
prime
,ω)G(r|r
prime
;ω)dV
prime
wheretheGreen’sfunction G satis?es
L
{G(r|r
prime
;ω)}=δ(r ? r
prime
).
Equation(5.69)isthebasicsuperpositionintegralthatallowsusto?ndthepotentials
inanin?nite,unboundedmedium. Wenotethatifthemediumisboundedthenwemust
useGreen’stheoremtoincludethee?ectsofsourcesthatresideexternaltothebound-
aries. These are manifested in terms of the values of the potentials on the boundaries
in the same manner as with the static potentials in Chapter 3. In order to determine
whether (5.69) is the unique solution to the wave equation, we must also examine the
behavior of the ?elds on the boundary as the boundary recedes to in?nity. In the fre-
quency domain we ?nd that an additional “radiation condition” is required to ensure
uniqueness.
The retarded potentials in the time domain. Consider an unbounded, homoge-
neous,lossy,isotropicmediumdescribedbyparameters μ,epsilon1,σ. Inthetimedomainthe
vectorpotential A
e
satis?es(5.30). Thescalarcomponentsof A
e
mustobey
?
2
A
e,n
(r,t)?μσ
? A
e,n
(r,t)
?t
?μepsilon1
?
2
A
e,n
(r,t)
?t
2
=?μJ
i
n
(r,t), n = x, y, z.
Wemaywritethisintheform
parenleftbigg
?
2
?
2Omega1
v
2
?
?t
?
1
v
2
?
2
?t
2
parenrightbigg
ψ(r,t) =?S(r,t) (5.71)
where ψ = A
e,n
, v
2
= 1/μepsilon1, Omega1 = σ/2epsilon1,and S = μJ
i
n
. Thesolutionis
ψ(r,t) =
integraldisplay
V
integraldisplay
∞
?∞
S(r
prime
,t
prime
)G(r,t|r
prime
,t
prime
)dt
prime
dV
prime
(5.72)
where G satis?es
parenleftbigg
?
2
?
2Omega1
v
2
?
?t
?
1
v
2
?
2
?t
2
parenrightbigg
G(r,t|r
prime
,t
prime
) =?δ(r ? r
prime
)δ(t ? t
prime
). (5.73)
In § A.1we?ndthat
G(r,t|r
prime
,t
prime
) = e
?Omega1(t?t
prime
)
δ(t ? t
prime
? R/v)
4π R
+
+
Omega1
2
4πv
e
?Omega1(t?t
prime
)
I
1
parenleftBig
Omega1
radicalbig
(t ? t
prime
)
2
?(R/v)
2
parenrightBig
Omega1
radicalbig
(t ? t
prime
)
2
?(R/v)
2
, t ? t
prime
>
R
v
,
where R =|r ? r
prime
|. Forlosslessmediawhere σ = 0 thisbecomes
G(r,t|r
prime
,t
prime
) =
δ(t ? t
prime
? R/v)
4π R
andthus
ψ(r,t) =
integraldisplay
V
integraldisplay
∞
?∞
S(r
prime
,t
prime
)
δ(t ? t
prime
? R/v)
4π R
dt
prime
dV
prime
=
integraldisplay
V
S(r
prime
,t ? R/v)
4π R
dV
prime
. (5.74)
Forlosslessmedia,thescalarpotentialsandallrectangularcomponentsofthevector
potentials obey the same wave equation. Thus we have, for instance, the solutions to
(5.51):
A
e
(r,t) =
μ
4π
integraldisplay
V
J
i
(r
prime
,t ? R/v)
R
dV
prime
,
φ
e
(r,t) =
1
4πepsilon1
integraldisplay
V
ρ
i
(r
prime
,t ? R/v)
R
dV
prime
.
Thesearecalledtheretarded potentials sincetheirvaluesattime t aredeterminedbythe
valuesofthesourcesatanearlier(orretardation)time t ? R/v. Theretardationtimeis
determinedbythepropagationvelocity v ofthepotentialwaves.
The?eldsaredeterminedbythepotentials:
E(r,t) =??
1
4πepsilon1
integraldisplay
V
ρ
i
(r
prime
,t ? R/v)
R
dV
prime
?
?
?t
μ
4π
integraldisplay
V
J
i
(r
prime
,t ? R/v)
R
dV
prime
,
H(r,t) =?×
1
4π
integraldisplay
V
J
i
(r
prime
,t ? R/v)
R
dV
prime
.
Thederivativesmaybebroughtinsidetheintegrals,butsomecaremustbetakenwhen
theobservationpoint r lieswithinthesourceregion. Inthiscasetheintegralsmustbe
performedinaprincipalvaluesensebyexcludingasmallvolumearoundtheobservation
point. Wediscussthisinmoredetailbelowforthefrequency-domain?elds. Fordetails
regardingthisprocedureinthetimedomainthereadermayseeHansen[81].
The retarded potentials in the frequency domain. Consideranunbounded,ho-
mogeneous,isotropicmediumdescribedby ?μ(ω)and ?epsilon1
c
(ω).If
?
ψ(r,ω)representsascalar
potential or any rectangular component of a vector or Hertzian potential then it must
satisfy
(?
2
+ k
2
)
?
ψ(r,ω)=?
?
S(r,ω) (5.75)
where k = ω(?μ?epsilon1
c
)
1/2
. ThisHelmholtzequationhastheformof(5.70)andthus
?
ψ(r,ω)=
integraldisplay
V
?
S(r
prime
,ω)G(r|r
prime
;ω)dV
prime
where
(?
2
+ k
2
)G(r|r
prime
;ω) =?δ(r ? r
prime
). (5.76)
Thisisequation(A.46)anditssolution,asgivenby(A.49),is
G(r|r
prime
;ω) =
e
?jkR
4π R
. (5.77)
Hereweuse v
2
= 1/ ?μ?epsilon1 and Omega1 = ?σ/2epsilon1 in(A.47):
k =
1
v
radicalbig
ω
2
? j2ωOmega1 = ω
radicalBigg
?μ
parenleftbigg
?epsilon1 ? j
?σ
ω
parenrightbigg
= ω
radicalbig
?μ?epsilon1
c
.
Thesolutionto(5.75)istherefore
?
ψ(r,ω)=
integraldisplay
V
?
S(r
prime
,ω)
e
?jkR
4π R
dV
prime
. (5.78)
Whenthemediumislossless,thepotentialmustalsosatisfythe radiation condition
lim
r→∞
r
parenleftbigg
?
?r
+ jk
parenrightbigg
?
ψ(r) = 0 (5.79)
toguaranteeuniquenessofsolution. In § 5.2.2weshallshowhowthisrequirementarises
from the solution within a bounded region. For a uniqueness proof for the Helmholtz
equation,thereadermayconsultChew[33].
Wemayuse(5.78)to?ndthat
?
A
e
(r,ω)=
?μ
4π
integraldisplay
V
?
J
i
(r
prime
,ω)
e
?jkR
R
dV
prime
. (5.80)
Comparisonwith(5.74)showsthatinthefrequencydomain,timeretardationtakesthe
formofaphaseshift. Similarly,
?
φ(r,ω)=
1
4π ?epsilon1
c
integraldisplay
V
?ρ
i
(r
prime
,ω)
e
?jkR
R
dV
prime
. (5.81)
TheelectricandmagneticdyadicGreen’sfunctions. Thefrequency-domainelec-
tromagnetic ?elds may be found for electric sources from the electric vector potential
using(5.60)and(5.61):
?
E(r,ω)=?jω ?μ(ω)
integraldisplay
V
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)dV
prime
?
jω ?μ(ω)
k
2
??·
integraldisplay
V
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)dV
prime
,
?
H =?×
integraldisplay
V
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)dV
prime
. (5.82)
Aslongastheobservationpoint r doesnotliewithinthesourceregionwemaytakethe
derivativesinsidetheintegrals. Using
?·
bracketleftbig
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)
bracketrightbig
=
?
J
i
(r
prime
,ω)·?G(r|r
prime
;ω)+ G(r|r
prime
;ω)?·
?
J(r
prime
,ω)
=?G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)
we have
?
E(r,ω)=?jω ?μ(ω)
integraldisplay
V
braceleftbigg
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)+
1
k
2
?
bracketleftbig
?G(r|r
prime
;ω)· J
i
(r
prime
,ω)
bracketrightbig
bracerightbigg
dV
prime
.
Thiscanbewrittenmorecompactlyas
?
E(r,ω)=?jω ?μ(ω)
integraldisplay
V
ˉ
G
e
(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)dV
prime
where
ˉ
G
e
(r|r
prime
;ω) =
bracketleftbigg
ˉ
I +
??
k
2
bracketrightbigg
G(r|r
prime
;ω) (5.83)
iscalledthe electric dyadic Green’s function. Using
?×[
?
J
i
G] =?G ×
?
J
i
+ G?×
?
J
i
=?G ×
?
J
i
wehaveforthemagnetic?eld
?
H(r,ω)=
integraldisplay
V
?G(r|r
prime
;ω)×
?
J
i
(r
prime
,ω)dV
prime
.
Now,usingthedyadicidentity(B.15)wemayshowthat
?
J
i
×?G = (
?
J
i
×?G)·
ˉ
I = (?G ×
ˉ
I)· J
i
.
So
?
H(r,ω)=?
integraldisplay
V
ˉ
G
m
(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)dV
prime
where
ˉ
G
m
(r|r
prime
;ω) =?G(r|r
prime
;ω)×
ˉ
I (5.84)
iscalledthe magnetic dyadic Green’s function.
Proceedingsimilarlyformagneticsources(orusingduality)wehave
?
H(r) =?jω?epsilon1
c
integraldisplay
V
ˉ
G
e
(r|r
prime
;ω)·
?
J
i
m
(r
prime
,ω)dV
prime
,
?
E(r) =
integraldisplay
V
ˉ
G
m
(r|r
prime
;ω)·
?
J
i
m
(r
prime
,ω)dV
prime
.
When both electric and magnetic sources are present we simply use superposition and
addthe?elds.
When the observation point lies within the source region, we must be much more
carefulabouthowweformulatethedyadicGreen’sfunctions. In(5.82)weencounterthe
integral
integraldisplay
V
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)dV
prime
.
Figure5.1: Geometryofexcludedregionusedtocomputetheelectric?eldwithinasource
region.
If r lieswithinthesourceregionthen G issingularsince R → 0 when r → r
prime
. However,
the integral converges and the potentials exist within the source region. While we run
into trouble when we pass both derivatives in the operator ??· through the integral
and allowthem to operate on G, since di?erentiation of G increases the order of the
singularity,wemaysafelytakeonederivativeof G.
Even when we allow one derivative on G we must be careful in how we compute the
integral. We exclude the point r by surrounding it with a small volume element V
δ
as
showninFigure5.1andwrite
??·
integraldisplay
V
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)dV
prime
=
lim
V
δ
→0
integraldisplay
V?V
δ
?
bracketleftbig
?G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)
bracketrightbig
dV
prime
+ lim
V
δ
→0
?
integraldisplay
V
δ
?G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)dV
prime
.
The?rstintegralontheright-handsideiscalledtheprincipalvalueintegral andisusually
abbreviated
P.V.
integraldisplay
V
?
bracketleftbig
?G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)
bracketrightbig
dV
prime
.
It converges to a value dependent on the shape of the excluded region V
δ
,asdoesthe
secondintegral. However,thesumofthesetwointegralsproducesauniqueresult. Using
?G =??
prime
G, the identity ?
prime
· (
?
JG) =
?
J ·?
prime
G + G?
prime
·
?
J, and the divergence theorem,
wecanwrite
?
integraldisplay
V
δ
?
prime
G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)dV
prime
=
?
contintegraldisplay
S
δ
G(r|r
prime
;ω)
?
J
i
(r
prime
,ω)· ?n
prime
dS
prime
+
integraldisplay
V
δ
G(r|r
prime
;ω)?
prime
·
?
J
i
(r
prime
,ω)dV
prime
where S
δ
is the surface surrounding V
δ
. By the continuity equation the second integral
on the right-hand side is proportional to the scalar potential produced by the charge
within V
δ
,andthusvanishesas V
δ
→ 0. The?rsttermisproportionaltothe?eldat r
producedbysurfacechargeon S
δ
,whichresultsinavalueproportionalto J
i
.Thus
lim
V
δ
→0
?
integraldisplay
V
δ
?G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)dV
prime
=?lim
V
δ
→0
?
contintegraldisplay
S
δ
G(r|r
prime
;ω)
?
J
i
(r
prime
,ω)· ?n
prime
dS
prime
=?
ˉ
L ·
?
J
i
(r,ω), (5.85)
so
??·
integraldisplay
V
?
J
i
(r
prime
,ω)G(r|r
prime
;ω)dV
prime
= P.V.
integraldisplay
V
?
bracketleftbig
?G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)
bracketrightbig
dV
prime
?
ˉ
L ·
?
J
i
(r,ω).
Here
ˉ
L isusuallycalledthe depolarizing dyadic [113]. Itsvaluedependsontheshapeof
V
δ
,asconsideredbelow.
Wemaynowwrite
?
E(r,ω)=?jω ?μ(ω)P.V.
integraldisplay
V
ˉ
G
e
(r|r
prime
;ω)·
?
J(r
prime
,ω)dV
prime
?
1
jω?epsilon1
c
(ω)
ˉ
L ·
?
J
i
(r,ω). (5.86)
We may also incorporate both terms into a single dyadic Green’s function using the
notation
ˉ
G(r|r
prime
;ω) = P.V.
ˉ
G
e
(r|r
prime
;ω)?
1
k
2
ˉ
Lδ(r ? r
prime
).
Hencewhenwecompute
?
E(r,ω)=?jω ?μ(ω)
integraldisplay
V
ˉ
G(r|r
prime
;ω)·
?
J
i
(r
prime
,ω)dV
prime
=?jω ?μ(ω)
integraldisplay
V
bracketleftbigg
P.V.
ˉ
G
e
(r|r
prime
;ω)?
1
k
2
ˉ
Lδ(r ? r
prime
)
bracketrightbigg
·
?
J
i
(r
prime
,ω)dV
prime
we reproduce (5.86). That is, the symbol P.V. on G
e
indicates that a principal value
integralmustbeperformed.
Our ?nal task is to compute
ˉ
L from (5.85). When we remove the excluded region
from the principal value computation we leave behind a hole in the source region. The
contribution to the ?eld at r by the sources in the excluded region is found from the
scalarpotentialproducedbythesurfacedistribution ?n · J
i
. Thevalueofthis correction
term dependsontheshapeoftheexcludingvolume. However,thecorrectiontermalways
addstotheprincipalvalueintegraltogivethetrue?eldat r,regardlessoftheshapeof
thevolume. Sowemustalwaysmatchtheshapeoftheexcludedregionusedtocompute
the principal value integral with that used to compute the correction term so that the
true ?eld is obtained. Note that as V
δ
→ 0 the phase factor in the Green’s function
becomesinsigni?cant,andthevaluesofthecurrentonthesurfaceapproachthevalueat
r (assuming J
i
iscontinuousat r). Thuswemaywrite
lim
V
δ
→0
?
contintegraldisplay
S
δ
?
J
i
(r,ω)· ?n
prime
4π|r ? r
prime
|
dS
prime
=
ˉ
L ·
?
J
i
(r,ω).
Thishastheformofastatic?eldintegral. Forasphericalexcludedregionwemaycom-
putetheabovequantityquitesimplybyassumingthecurrenttobeuniformthroughout
V
δ
andbyaligningthecurrentwiththe z-axisandplacingthecenterofthesphereatthe
origin. Wethencomputetheintegralatapoint r withinthesphere,takethegradient,
andallow r → 0. Wethushaveforasphere
lim
V
δ
→0
?
contintegraldisplay
S
?
J
i
cosθ
prime
4π|r ? r
prime
|
dS
prime
=
ˉ
L · [?z
?
J
i
(r,ω)].
Thisintegralhasbeencomputedin § 3.2.7withtheresultgivenby(3.103). Usingthis
we?nd
lim
V
δ
→0
bracketleftbigg
?
parenleftbigg
1
3
?
J
i
z
parenrightbiggbracketrightbiggvextendsingle
vextendsingle
vextendsingle
vextendsingle
r=0
= ?z
?
J
i
3
=
ˉ
L · [?z
?
J
i
(r,ω)]
Figure5.2: GeometryofanelectricHertziandipole.
andthus
ˉ
L =
1
3
ˉ
I.
Weleaveitasanexercisetoshowthatforacubicalexcludingvolumethedepolarizing
dyadicisalso
ˉ
L =
ˉ
I/3. ValuesforothershapesmaybefoundinYaghjian[215].
The theory of dyadic Green’s functions is well developed and there exist techniques
fortheirconstructionunderavarietyofconditions. Foranexcellentoverviewthereader
mayseeTai[192].
Example of ?eld calculation using potentials: the Hertzian dipole. Consider
a short line current of length l lessmuch λ at position r
p
, oriented along a direction ?p in a
mediumwithconstitutiveparameters ?μ(ω), ?epsilon1
c
(ω),asshowninFigure5.2.Weassume
that the frequency-domain current
?
I(ω) is independent of position, and therefore this
Hertzian dipole mustbeterminatedbypointcharges
?
Q(ω) =±
?
I(ω)
jω
as required by the continuity equation. The electric vector potential produced by this
shortcurrentelementis
?
A
e
=
?μ
4π
integraldisplay
Gamma1
?
I ?p
e
?jkR
R
dl
prime
.
Atobservationpointsfarfromthedipole(comparedtoitslength)suchthat|r?r
p
|greatermuchl
wemayapproximate
e
?jkR
R
≈
e
?jk|r?r
p
|
|r ? r
p
|
.
Then
?
A
e
= ?p ?μ
?
IG(r|r
p
;ω)
integraldisplay
Gamma1
dl
prime
= ?p ?μ
?
IlG(r|r
p
;ω). (5.87)
Notethatweobtainthesameanswerifweletthecurrentdensityofthedipolebe
?
J = jω?pδ(r ? r
p
)
where ?p isthe dipole moment de?nedby
?p =
?
Ql ?p =
?
Il
jω
?p.
Thatis,weconsideraHertziandipoletobea“pointsource”ofelectromagneticradiation.
Withthisnotationwehave
?
A
e
= ?μ
integraldisplay
V
bracketleftbig
jω?pδ(r
prime
? r
p
)
bracketrightbig
G(r|r
prime
;ω)dV
prime
= jω ?μ?pG(r|r
p
;ω),
whichisidenticalto(5.87). Theelectromagnetic?eldsarethen
?
H(r,ω)= jω?×[?pG(r|r
p
;ω)], (5.88)
?
E(r,ω)=
1
?epsilon1
c
?×?×[?pG(r|r
p
;ω)]. (5.89)
Here we have obtained
?
E from
?
H outside the source region by applying Ampere’s law.
Bydualitywemayobtainthe?eldsproducedbyamagneticHertziandipoleofmoment
?p
m
=
?
I
m
l
jω
?p
locatedat r = r
p
as
?
E(r,ω)=?jω?×[?p
m
G(r|r
p
;ω)],
?
H(r,ω)=
1
?μ
?×?×[?p
m
G(r|r
p
;ω)].
Wecanlearnmuchaboutthe?eldsproducedbylocalizedsourcesbyconsideringthe
simplecaseofaHertziandipolealignedalongthe z-axisandcenteredattheorigin. Using
?p = ?z and r
p
= 0 in(5.88)we?ndthat
?
H(r,ω)= jω?×
bracketleftbigg
?z
?
I
jω
l
e
?jkr
4πr
bracketrightbigg
=
?
φ
1
4π
?
Il
bracketleftbigg
1
r
2
+ j
k
r
bracketrightbigg
sinθe
?jkr
. (5.90)
ByAmpere’slaw
?
E(r,ω)=
1
jω?epsilon1
c
?×
?
H(r,ω)
= ?r
η
4π
?
Il
bracketleftbigg
2
r
2
? j
2
kr
3
bracketrightbigg
cosθe
?jkr
+
?
θ
η
4π
?
Il
bracketleftbigg
j
k
r
+
1
r
2
? j
1
kr
3
bracketrightbigg
sinθe
?jkr
.
(5.91)
The ?elds involve various inverse powers of r, with the 1/r and 1/r
3
terms 90
?
out-of-
phasefromthe 1/r
2
term. Sometermsdominatethe?eldclosetothesource,whileothers
dominatefaraway. Thetermsthatdominatenearthesource
1
arecalledthe near-zone
or induction-zone ?elds:
?
H
NZ
(r,ω)=
?
φ
?
Il
4π
e
?jkr
r
2
sinθ,
?
E
NZ
(r,ω)=?jη
?
Il
4π
e
?jkr
kr
3
bracketleftBig
2?r cosθ +
?
θ sinθ
bracketrightBig
.
1
Notethatwestillrequire r greatermuch l.
We note that
?
H
NZ
and
?
E
NZ
are 90
?
out-of-phase. Also, the electric ?eld has the same
spatial dependence as the ?eld of a static electric dipole. The terms that dominate far
fromthesourcearecalledthe far-zone or radiation ?elds:
?
H
FZ
(r,ω)=
?
φ
jk
?
Il
4π
e
?jkr
r
sinθ, (5.92)
?
E
FZ
(r,ω)=
?
θη
jk
?
Il
4π
e
?jkr
r
sinθ. (5.93)
Thefar-zone?eldsarein-phaseandinfactformaTEMsphericalwavewith
?
H
FZ
=
?r ×
?
E
FZ
η
. (5.94)
Wespeakofthetime-averagepowerradiated byatime-harmonicsourceastheintegral
of the time-average power density over a very large sphere. Thus radiated power is the
powerdeliveredbythesourcestoin?nity. Ifthedipoleissituatedwithinalossymedium,
all of the time-average power delivered by the sources is dissipated by the medium. If
the medium is lossless then all the time-average power is delivered to in?nity. Let us
computethepowerradiatedbyatime-harmonicHertziandipoleimmersedinalossless
medium. Writing (5.90) and (5.91) in terms of phasors we have the complex Poynting
vector
S
c
(r) =
ˇ
E(r)×
ˇ
H
?
(r)
=
?
θη
parenleftBigg
|
ˇ
I|l
4π
parenrightBigg
2
j
2
kr
5
bracketleftbig
k
2
r
2
+ 1
bracketrightbig
cosθ sinθ + ?rη
parenleftBigg
|
ˇ
I|l
4π
parenrightBigg
2
k
2
r
2
bracketleftbigg
1 ? j
1
k
3
r
5
bracketrightbigg
sin
2
θ.
We notice that the θ-component of S
c
is purely imaginary and gives rise to no time-
average power ?ux. This component falls o? as 1/r
3
for large r and produces no net
?uxthroughaspherewithradius r →∞. Additionally,theangularvariation sinθ cosθ
integratestozerooverasphere. Incontrast,the r-componenthasarealpartthatvaries
as 1/r
2
andas sin
2
θ. Hencewe?ndthatthetotaltime-averagepowerpassingthrough
asphereexpandingtoin?nityisnonzero:
P
av
= lim
r→∞
integraldisplay
2π
0
integraldisplay
π
0
1
2
Re
?
?
?
?rη
parenleftBigg
|
ˇ
I|l
4π
parenrightBigg
2
k
2
r
2
sin
2
θ
?
?
?
· ?rr
2
sinθ dθ dφ
= η
π
3
|
ˇ
I|
2
parenleftbigg
l
λ
parenrightbigg
2
(5.95)
where λ = 2π/k isthewavelengthinthelosslessmedium. Thisisthepowerradiatedby
theHertziandipole. Thepowerisproportionalto |
ˇ
I|
2
asitisinacircuit, andthuswe
mayde?nea radiation resistance
R
r
=
2P
av
|
ˇ
I|
2
= η
2π
3
parenleftbigg
l
λ
parenrightbigg
2
thatrepresentstheresistanceofalumpedelementthatwouldabsorbthesamepoweras
radiatedbytheHertziandipolewhenpresentedwiththesamecurrent. Wealsonotethat
thepowerradiatedbyaHertziandipole(and,infact,byanysourceof?niteextent)may
Figure5.3: Geometryforsolutiontothefrequency-domainHelmholtzequation.
be calculated directly from its far-zone ?elds. In fact, from (5.94) we have the simple
formulaforthetime-averagepowerdensityinlosslessmedia
S
av
=
1
2
Re
braceleftbig
ˇ
E
FZ
×
ˇ
H
FZ?
bracerightbig
= ?r
1
2
|
ˇ
E
FZ
|
2
η
.
Thedipole?eldisthe?rstterminageneralexpansionoftheelectromagnetic?eldsin
termsofthemultipolemomentsofthesources. EitheraTaylorexpansionoraspherical-
harmonicexpansionmaybeused. ThereadermayseePapas[141]fordetails.
5.2.2 Solution for potential functions in a bounded medium
In the previous section we solved for the frequency-domain potential functions in an
unboundedregionofspace. Hereweshallextendthesolutiontoaboundedregionand
identifythephysicalmeaningoftheradiationcondition(5.79).
Consider a bounded region of space V containing a linear, homogeneous, isotropic
mediumcharacterizedby ?μ(ω)and ?epsilon1
c
(ω).AsshowninFigure5.3wedecomposethe
multiply-connectedboundaryintoaclosed“excludingsurface” S
0
andaclosed“encom-
passing surface” S
∞
that we shall allow to expand outward to in?nity. S
0
may consist
of more than one closed surface and is often used to exclude unknown sources from V.
WewishtosolvetheHelmholtzequation(5.75)for
?
ψ within V intermsofthesources
within V and the values of
?
ψ on S
0
. The actual sources of
?
ψ lie entirely with S
∞
but
mayliepartly,orentirely,within S
0
.
We solve the Helmholtz equation in much the same way that we solved Poisson’s
equation in § 3.2.4. We begin with Green’s second identity, written in terms of the
sourcepoint(primed)variablesandappliedtotheregion V:
integraldisplay
V
[ψ(r
prime
,ω)?
prime
2
G(r|r
prime
;ω)? G(r|r
prime
;ω)?
prime
2
ψ(r
prime
,ω)] dV
prime
=
contintegraldisplay
S
0
+S
∞
bracketleftbigg
ψ(r
prime
,ω)
?G(r|r
prime
;ω)
?n
prime
? G(r|r
prime
;ω)
?ψ(r
prime
,ω)
?n
prime
bracketrightbigg
dS
prime
.
We note that ?n points outward from V, and G is the Green’s function (5.77). By
inspection,thisGreen’sfunctionobeysthereciprocitycondition
G(r|r
prime
;ω) = G(r
prime
|r;ω)
andsatis?es
?
2
G(r|r
prime
;ω) =?
prime
2
G(r|r
prime
;ω).
Substituting ?
prime
2
?
ψ =?k
2
?
ψ ?
?
S from (5.75) and ?
prime
2
G =?k
2
G ? δ(r ? r
prime
) from (5.76)
weget
?
ψ(r,ω)=
integraldisplay
V
?
S(r
prime
,ω)G(r|r
prime
;ω)dV
prime
?
?
contintegraldisplay
S
0
+S
∞
bracketleftbigg
?
ψ(r
prime
,ω)
?G(r|r
prime
;ω)
?n
prime
? G(r|r
prime
;ω)
?
?
ψ(r
prime
,ω)
?n
prime
bracketrightbigg
dS
prime
.
Hence
?
ψ within V maybewrittenintermsofthesourceswithin V andthevaluesof
?
ψ
and its normal derivative over S
0
+ S
∞
. The surface contributions account for sources
excludedby S
0
.
Let us examine the integral over S
∞
more closely. If we let S
∞
recede to in?nity, we
expect no contribution to the potential at r from the ?elds on S
∞
. Choosing a sphere
centeredattheorigin,wenotethat ?n
prime
= ?r
prime
andthatas r
prime
→∞
G(r|r
prime
;ω) =
e
?jk|r?r
prime
|
4π|r ? r
prime
|
≈
e
?jkr
prime
4πr
prime
,
?G(r|r
prime
;ω)
?n
prime
= ?n
prime
·?
prime
G(r|r
prime
;ω) ≈
?
?r
prime
e
?jkr
prime
4πr
prime
=?(1 + jkr
prime
)
e
?jkr
prime
4πr
prime
.
Substitutingthese,we?ndthatas r
prime
→∞
contintegraldisplay
S
∞
bracketleftbigg
?
ψ
?G
?n
prime
? G
?
?
ψ
?n
prime
bracketrightbigg
dS
prime
≈
integraldisplay
2π
0
integraldisplay
π
0
bracketleftbigg
?
1 + jkr
prime
r
prime
2
?
ψ ?
1
r
prime
?
?
ψ
?r
prime
bracketrightbigg
e
?jkr
prime
4π
r
prime
2
sinθ
prime
dθ
prime
dφ
prime
≈?
integraldisplay
2π
0
integraldisplay
π
0
bracketleftbigg
?
ψ + r
prime
parenleftbigg
jk
?
ψ +
?
?
ψ
?r
prime
parenrightbiggbracketrightbigg
e
?jkr
4π
sinθ
prime
dθ
prime
dφ
prime
.
Sincethisgivesthecontributiontothe?eldin V fromthe?eldsonthesurfacereceding
to in?nity, we expect that this term should be zero. If the medium has loss, then the
exponentialtermdecaysanddrivesthecontributiontozero. Foralosslessmediumthe
contributioniszeroif
lim
r→∞
?
ψ(r,ω)= 0, (5.96)
lim
r→∞
r
bracketleftbigg
jk
?
ψ(r,ω)+
?
?
ψ(r,ω)
?r
bracketrightbigg
= 0. (5.97)
This is called the radiation condition for the Helmholtz equation. It is also called the
Sommerfeld radiation condition after the German physicist A. Sommerfeld. Note that
wehavenotderivedthiscondition: wehavemerelypostulatedit. Aswithallpostulates
itissubjecttoexperimentalveri?cation.
The radiation condition implies that for points far from the source the potentials
behaveassphericalwaves:
?
ψ(r,ω)~
e
?jkr
r
, r →∞.
Substitutingthisinto(5.96)and(5.97)we?ndthattheradiationconditionissatis?ed.
With S
∞
→∞we have
?
ψ(r,ω)=
integraldisplay
V
?
S(r
prime
,ω)G(r|r
prime
;ω)dV
prime
?
?
contintegraldisplay
S
0
bracketleftbigg
?
ψ(r
prime
,ω)
?G(r|r
prime
;ω)
?n
prime
? G(r|r
prime
;ω)
?
?
ψ(r
prime
,ω)
?n
prime
bracketrightbigg
dS
prime
,
which is the expression for the potential within an in?nite medium having source-
excludingregions. As S
0
→ 0 weobtaintheexpressionforthepotentialinanunbounded
medium:
?
ψ(r,ω)=
integraldisplay
V
?
S(r
prime
,ω)G(r|r
prime
;ω)dV
prime
,
asexpected.
Thetime-domainequation(5.71)mayalsobesolved(atleastforthelosslesscase)in
aboundedregionofspace. TheinterestedreadershouldseePauli[143]fordetails.
5.3 Transverse–longitudinal decomposition
We have seen that when only electric sources are present, the electromagnetic ?elds
in a homogeneous, isotropic region can be represented by a single vector potential Π
e
.
Similarly, when only magnetic sources are present, the ?elds can be represented by a
single vector potential Π
h
. Hence two vector potentials may be used to represent the
?eldifbothelectricandmagneticsourcesarepresent.
Wemayalsorepresenttheelectromagnetic?eldinahomogeneous,isotropicregionus-
ingtwoscalarfunctionsandthesources. Thisfollowsnaturallyfromanotherimportant
?elddecomposition: asplittingofeach?eldvectorinto(1)acomponentalongacertain
pre-chosenconstantdirection,and(2)acomponenttransversetothisdirection. Depend-
ingonthegeometryofthesources,itispossiblethatonlyoneofthesecomponentswill
bepresent. Aspecialcaseofthisdecomposition,the TE–TM ?eld decomposition,holds
forasource-freeregionandwillbediscussedinthenextsection.
5.3.1 Transverse–longitudinal decomposition in terms of ?elds
Consider a direction de?ned by a constant unit vector ?u. We de?ne the longitudinal
component of A as ?uA
u
where
A
u
= ?u · A,
andthe transverse component of A as
A
t
= A ? ?uA
u
.
Wemaythusdecomposeanyvectorintoasumoflongitudinalandtransverseparts. An
importantconsequenceofMaxwell’sequationsisthatthetransverse?eldsmaybewritten
entirelyintermsofthelongitudinal?eldsandthesources. Thisholdsinboththetime
andfrequencydomains;wederivethedecompositioninthefrequencydomainandleave
the derivation of the time-domain expressions as exercises. We begin by decomposing
the operators in Maxwell’s equations into longitudinal and transverse components. We
notethat
?
?u
≡ ?u ·?
andde?nea transverse del operator as
?
t
≡???u
?
?u
.
Using these basic de?nitions, the identities listed in Appendix B may be derived. We
shall ?nd it helpful to express the vector curl and Laplacian operations in terms of
theirlongitudinalandtransversecomponents. Using(B.93)and(B.96)we?ndthatthe
transversecomponentofthecurlisgivenby
(?×A)
t
=??u × ?u ×(?×A)
=??u × ?u ×(?
t
× A
t
)? ?u × ?u ×
parenleftbigg
?u ×
bracketleftbigg
?A
t
?u
??
t
A
u
bracketrightbiggparenrightbigg
. (5.98)
The?rsttermintherightmemberiszerobyproperty(B.91). Using(B.7)wecanreplace
thesecondtermby
??u
braceleftbigg
?u ·
parenleftbigg
?u ×
bracketleftbigg
?A
t
?u
??
t
A
u
bracketrightbiggparenrightbiggbracerightbigg
+(?u · ?u)
parenleftbigg
?u ×
bracketleftbigg
?A
t
?u
??
t
A
u
bracketrightbiggparenrightbigg
.
The?rstofthesetermsiszerosince
?u ·
parenleftbigg
?u ×
bracketleftbigg
?A
t
?u
??
t
A
u
bracketrightbiggparenrightbigg
=
bracketleftbigg
?A
t
?u
??
t
A
u
bracketrightbigg
·(?u × ?u) = 0,
hence
(?×A)
t
= ?u ×
bracketleftbigg
?A
t
?u
??
t
A
u
bracketrightbigg
. (5.99)
Thelongitudinalpartisthen,byproperty(B.80),merelythedi?erencebetweenthecurl
anditstransversepart,or
?u(?u ·?×A) =?
t
× A
t
. (5.100)
AsimilarsetofstepsgivesthetransversecomponentoftheLaplacianas
(?
2
A)
t
=
bracketleftbigg
?
t
(?
t
· A
t
)+
?
2
A
t
?u
2
??
t
×?
t
× A
t
bracketrightbigg
, (5.101)
andthelongitudinalpartas
?u
parenleftbig
?u ·?
2
A
parenrightbig
= ?u?
2
A
u
. (5.102)
Veri?cationisleftasanexercise.
Nowwe are ready to give a longitudinal–transverse decomposition of the ?elds in a
lossy, homogeneous, isotropic region in terms of the direction ?u. We write Maxwell’s
equationsas
?×
?
E =?jω ?μ
?
H
t
? jω ?μ?u
?
H
u
?
?
J
i
mt
? ?u
?
J
i
mu
, (5.103)
?×
?
H = jω?epsilon1
c
?
E
t
+ jω?epsilon1
c
?u
?
E
u
+
?
J
i
t
+ ?u
?
J
i
u
, (5.104)
where we have split the right-hand sides into longitudinal and transverse parts. Then,
using (5.99) and (5.100), we can equate the transverse and longitudinal parts of each
equationtoobtain
?
t
×
?
E
t
=?jω ?μ?u
?
H
u
? ?u
?
J
i
mu
, (5.105)
? ?u ×?
t
?
E
u
+ ?u ×
?
?
E
t
?u
=?jω ?μ
?
H
t
?
?
J
i
mt
, (5.106)
?
t
×
?
H
t
= jω?epsilon1
c
?u
?
E
u
+ ?u
?
J
i
u
, (5.107)
? ?u ×?
t
?
H
u
+ ?u ×
?
?
H
t
?u
= jω?epsilon1
c
?
E
t
+
?
J
i
t
. (5.108)
We shall isolate the transverse ?elds in terms of the longitudinal ?elds. Forming the
crossproductof ?u andthepartialderivativeof(5.108)withrespectto u, we have
??u × ?u ×?
t
?
?
H
u
?u
+ ?u × ?u ×
?
2
?
H
t
?u
2
= jω?epsilon1
c
?u ×
?
?
E
t
?u
+ ?u ×
?
?
J
i
t
?u
.
Using(B.7)and(B.80)we?ndthat
?
t
?
?
H
u
?u
?
?
2
?
H
t
?u
2
= jω?epsilon1
c
?u ×
?E
t
?u
+ ?u ×
?
?
J
i
t
?u
. (5.109)
Multiplying(5.106)by jω?epsilon1
c
we have
? jω?epsilon1
c
?u ×?
t
?
E
u
+ jω?epsilon1
c
?u ×
?
?
E
t
?u
= ω
2
?μ?epsilon1
c
?
H
t
? jω?epsilon1
c
?
J
i
mt
. (5.110)
Wenowadd(5.109)to(5.110)andeliminate
?
E
t
toget
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
H
t
=?
t
?
?
H
u
?u
? jω?epsilon1
c
?u ×?
t
?
E
u
+ jω?epsilon1
c
?
J
i
mt
? ?u ×
?
?
J
i
t
?u
. (5.111)
Thisone-dimensionalHelmholtzequationcanbesolvedto?ndthetransversemagnetic
?eld from the longitudinal components of
?
E and
?
H. Similar steps lead to a formula for
thetransversecomponentof
?
E:
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
E
t
=?
t
?
?
E
u
?u
+ jω ?μ?u ×?
t
?
H
u
+ ?u ×
?
?
J
i
mt
?u
+ jω ?μ
?
J
i
t
. (5.112)
We?ndthelongitudinalcomponentsfromthewaveequationfor
?
E and
?
H. Recallthat
the?eldssatisfy
(?
2
+ k
2
)
?
E =
1
?epsilon1
c
? ?ρ
i
+ jω ?μ
?
J
i
+?×
?
J
i
m
,
(?
2
+ k
2
)
?
H =
1
?μ
? ?ρ
i
m
+ jω?epsilon1
c
?
J
i
m
??×
?
J
i
.
Splittingthevectorsintolongitudinalandtransverseparts,andusing(5.100)and(5.102),
weequatethelongitudinalcomponentsofthewaveequationstoobtain
parenleftbig
?
2
+ k
2
parenrightbig
?
E
u
=
1
?epsilon1
c
? ?ρ
i
?u
+ jω ?μ
?
J
i
u
+?
t
×
?
J
i
mt
, (5.113)
parenleftbig
?
2
+ k
2
parenrightbig
?
H
u
=
1
?μ
? ?ρ
i
m
?u
+ jω?epsilon1
c
?
J
i
mu
??
t
×
?
J
i
t
. (5.114)
Wenotethatif
?
J
i
m
=
?
J
i
t
= 0,then
?
H
u
= 0andthe?eldsareTMtotheu-direction;these
?elds may be determined completely from
?
E
u
. Similarly, if
?
J
i
=
?
J
i
mt
= 0, then
?
E
u
= 0
andthe?eldsareTEtothe u-direction;these?eldsmaybedeterminedcompletelyfrom
?
H
u
. Thesepropertiesareusedin § 4.11.7,wherethe?eldsofelectricandmagneticline
sourcesalignedalongthe z-directionareassumedtobepurelyTM
z
orTE
z
,respectively.
5.4 TE–TM decomposition
5.4.1 TE–TM decomposition in terms of ?elds
Aparticularlyuseful?elddecompositionresultsifwespecializetoasource-freeregion.
With
?
J
i
=
?
J
i
m
= 0 in(5.111)–(5.112)weobtain
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
H
t
=?
t
?
?
H
u
?u
? jω?epsilon1
c
?u ×?
t
?
E
u
, (5.115)
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
E
t
=?
t
?
?
E
u
?u
+ jω ?μ?u ×?
t
?
H
u
. (5.116)
Settingthesourcestozeroin(5.113)and(5.114)weget
parenleftbig
?
2
+ k
2
parenrightbig
?
E
u
= 0,
parenleftbig
?
2
+ k
2
parenrightbig
?
H
u
= 0.
Hence the longitudinal ?eld components are solutions to the homogeneous Helmholtz
equation,andthetransversecomponentsarespeci?edsolelyintermsofthelongitudinal
components. Theelectromagnetic?eldiscompletelyspeci?edbythetwoscalar?elds
?
E
u
and
?
H
u
(and,ofcourse,appropriateboundaryvalues).
We can use superposition to simplify the task of solving (5.115)–(5.116). Since each
equationhastwoforcingtermsontheright-handside,wecansolvetheequationsusing
oneforcingtermatatime,andaddtheresults. Thatis,let
?
E
1
and
?
H
1
bethesolutionsto
(5.115)–(5.116)with
?
E
u
= 0,and
?
E
2
and
?
H
2
bethesolutionswith
?
H
u
= 0. Thisresults
inadecomposition
?
E =
?
E
1
+
?
E
2
, (5.117)
?
H =
?
H
1
+
?
H
2
, (5.118)
with
?
E
1
=
?
E
1t
,
?
H
1
=
?
H
1t
+
?
H
1u
?u,
?
H
2
=
?
H
2t
,
?
E
2
=
?
E
2t
+
?
E
2u
?u.
Because
?
E
1
has no u-component,
?
E
1
and
?
H
1
are termed transverse electric (or TE)to
the u-direction;
?
H
2
hasno u-component,and
?
E
2
and
?
H
2
aretermedtransverse magnetic
(or TM) to the u-direction.
2
We see that in a source-free region any electromagnetic
?eld can be decomposed into a set of two ?elds that are TE and TM, respectively, to
some ?xed u-direction. This is useful when solving boundary value (e.g., waveguide
and scattering) problems where information about external sources is easily speci?ed
using the values of the ?elds on the boundary of the source-free region. In that case
?
E
u
and
?
H
u
aredeterminedbysolvingthehomogeneouswaveequationinanappropriate
coordinatesystem,andtheother?eldcomponentsarefoundfrom(5.115)–(5.116). Often
the boundary conditions can be satis?ed by the TM ?elds or the TE ?elds alone. This
simpli?estheanalysisofmanytypesofEMsystems.
5.4.2 TE–TM decomposition in terms of Hertzian potentials
We are free to represent
?
E and
?
H in terms of scalar ?elds other than
?
E
u
and
?
H
u
.In
doing so, it is helpful to retain the wave nature of the solution so that a meaningful
physicalinterpretationisstillpossible; wethususeHertzianpotentialssincetheyobey
thewaveequation.
FortheTMcaselet
?
Π
h
= 0 and
?
Π
e
= ?u
?
Pi1
e
. Setting
?
J
i
= 0 in(5.64)wehave
(?
2
+ k
2
)
?
Π
e
= 0.
Since
?
Π
e
ispurelylongitudinal,wecanuse(B.99)toobtainthescalarHelmholtzequation
for
?
Pi1
e
:
(?
2
+ k
2
)
?
Pi1
e
= 0. (5.119)
Once
?
Pi1
e
hasbeenfoundbysolvingthiswaveequation,the?eldscanbefoundbyusing
(5.62)–(5.63)with
?
J
i
= 0:
?
E =?×(?×
?
Π
e
), (5.120)
?
H = jω?epsilon1
c
?×
?
Π
e
. (5.121)
Wecanevaluate
?
E bynotingthat
?
Π
e
ispurelylongitudinal. Useofproperty(B.98)gives
?×?×
?
Π
e
=?
t
?
?
Pi1
e
?u
? ?u?
2
t
?
Pi1
e
.
Then,byproperty(B.97),
?×?×
?
Π
e
=?
t
?
?
Pi1
e
?u
? ?u
bracketleftbigg
?
2
?
Pi1
e
?
?
2
?
Pi1
e
?u
2
bracketrightbigg
.
By(5.119)then,
?
E =?
t
?
?
Pi1
e
?u
+ ?u
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
Pi1
e
. (5.122)
The ?eld
?
H can be found by noting that
?
Π
e
is purely longitudinal. Use of property
(B.96)in(5.121)gives
?
H =?jω?epsilon1
c
?u ×?
t
?
Pi1
e
. (5.123)
2
Some authors prefer to use the terminology Emodein place of TM, and Hmodein place of TE,
indicatingthepresenceofa u-directedelectricormagnetic?eldcomponent.
Similarstepscanbeusedto?ndtheTErepresentation. Substitutionof
?
Π
e
= 0 and
?
Π
h
= ?u
?
Pi1
h
into(5.65)–(5.66)givesthe?elds
?
E = jω ?μ?u ×?
t
?
Pi1
h
, (5.124)
?
H =?
t
?
?
Pi1
h
?u
+ ?u
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
Pi1
h
, (5.125)
while
?
Pi1
h
mustsatisfy
(?
2
+ k
2
)
?
Pi1
h
= 0. (5.126)
Hertzian potential representation of TEM ?elds. Aninterestingsituationoccurs
when a ?eld is both TE and TM to a particular direction. Such a ?eld is said to be
transverse electromagnetic (or TEM)tothatdirection. Unfortunately,with
?
E
u
=
?
H
u
=
0 wecannotuse(5.115)or(5.116)to?ndthetransverse?eldcomponents. Itturnsout
thatasinglescalarpotentialfunctionissu?cienttorepresentthe?eld,andwemayuse
either
?
Pi1
e
or
?
Pi1
h
.
FortheTMcase,equations(5.122)and(5.123)showthatwecanrepresenttheelectro-
magnetic?eldscompletelywith
?
Pi1
e
. Unfortunately(5.122)hasalongitudinalcomponent,
and thus cannot describe a TEM ?eld. But if we require that
?
Pi1
e
obey the additional
equation
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
Pi1
e
= 0, (5.127)
then both E and H are transverse to u and thus describe a TEM ?eld. Since
?
Pi1
e
must
alsoobey
parenleftbig
?
2
+ k
2
parenrightbig
?
Pi1
e
= 0,
using(B.7)wecanwrite(5.127)as
?
2
t
?
Pi1
e
= 0.
Similarly, for the TE case we found that the EM ?elds were completely described in
(5.124) and (5.125) by
?
Pi1
h
. In this case
?
H has a longitudinal component. Thus, if we
require
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
Pi1
h
= 0, (5.128)
thenboth
?
E and
?
H arepurelytransverseto u andagaindescribeaTEM?eld. Equation
(5.128)isequivalentto
?
2
t
?
Pi1
h
= 0.
We can therefore describe a TEM ?eld using either
?
Pi1
e
or
?
Pi1
h
, since a TEM ?eld is
bothTEandTMtothelongitudinaldirection. Ifwechoose
?
Pi1
e
wecanuse(5.122)and
(5.123)toobtaintheexpressions
?
E =?
t
?
?
Pi1
e
?u
, (5.129)
?
H =?jω?epsilon1
c
?u ×?
t
?
Pi1
e
, (5.130)
where
?
Pi1
e
mustobey
?
2
t
?
Pi1
e
= 0,
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
Pi1
e
= 0. (5.131)
Ifwechoose
?
Pi1
h
wecanuse(5.124)and(5.125)toobtain
?
E = jω ?μ?u ×?
t
?
Pi1
h
, (5.132)
?
H =?
t
?
?
Pi1
h
?u
, (5.133)
where
?
Pi1
h
mustobey
?
2
t
?
Pi1
h
= 0,
parenleftbigg
?
2
?u
2
+ k
2
parenrightbigg
?
Pi1
h
= 0. (5.134)
5.4.3 Application: hollow-pipe waveguides
AclassicapplicationoftheTE–TMdecompositionistothecalculationofwaveguide
?elds. ConsiderahollowpipewithPECwalls,alignedalongthe z-axis. Theinsideis?lled
with a homogeneous, isotropic material of permeability ?μ(ω) and complex permittivity
?epsilon1
c
(ω),andtheguidecross-sectionalshapeisassumedtobeindependentof z. Weassume
thatacurrentsourceexistssomewherewithinthewaveguide,creatingwavesthateither
propagate or evanesce away from the source. If the source is con?ned to the region
?d < z < d then each of the regions z > d and z < ?d is source-free and we may
decomposethe?eldsthereintoTEandTMsets. Suchawaveguideisagoodcandidate
forTE–TManalysisbecausetheTEandTM?eldsindependentlysatisfytheboundary
conditionsatthewaveguidewalls. Thisisnotgenerallythecaseforcertainotherguided-
wavestructuressuchas?beropticcablesandmicrostriplines.
We may represent the ?elds either in terms of the longitudinal ?elds
?
E
z
and
?
H
z
,or
in terms of the Hertzian potentials. We choose the Hertzian potentials. For TM ?elds
wechoose
?
Π
e
= ?z
?
Pi1
e
,
?
Π
h
= 0; forTE?eldswechoose
?
Π
h
= ?z
?
Pi1
h
,
?
Π
e
= 0. Bothofthe
potentialsmustobeythesameHelmholtzequation:
parenleftbig
?
2
+ k
2
parenrightbig
?
Pi1
z
= 0, (5.135)
where
?
Pi1
z
represents either
?
Pi1
e
or
?
Pi1
h
. We seek a solution to this equation using the
separationofvariablestechnique,andassumetheproductsolution
?
Pi1
z
(r,ω)=
?
Z(z,ω)
?
ψ(ρ,ω),
where ρ is the transverse position vector (r = ?zz + ρ). Substituting the trial solution
into(5.135)andwriting
?
2
=?
2
t
+
?
2
?z
2
we?ndthat
1
?
ψ(ρ,ω)
?
2
t
?
ψ(ρ,ω)+ k
2
=?
1
Z(z,ω)
?
2
?z
2
Z(z,ω).
Becausetheleft-handsideofthisexpressionhaspositionaldependenceonlyon ρ while
theright-handsidehasdependenceonlyonz,wemusthavebothsidesequaltoaconstant,
say k
2
z
. Then
?
2
Z
?z
2
+ k
2
z
Z = 0,
whichisanordinarydi?erentialequationwiththesolutions
Z = e
?jk
z
z
.
Wealsohave
?
2
t
?
ψ(ρ,ω)+ k
2
c
?
ψ(ρ,ω)= 0, (5.136)
where k
c
= k
2
?k
2
z
iscalledthecuto? wavenumber. Thesolutiontothisequationdepends
onthegeometryofthewaveguidecross-sectionandwhetherthe?eldisTEorTM.
The ?elds may be computed from the Hertzian potentials using u = z in (5.122)–
(5.123) and (5.124)–(5.125). Because the ?elds all contain the common term e
?jk
z
z
,we
de?nethe?eldquantities ?e and
?
h through
?
E(r,ω)= ?e(ρ,ω)e
?jk
z
z
,
?
H(r,ω)=
?
h(ρ,ω)e
?jk
z
z
.
Then,substituting
?
Pi1
e
=
?
ψ
e
e
?jk
z
z
,wehaveforTM?elds
?e =?jk
z
?
t
?
ψ
e
+ ?zk
2
c
?
ψ
e
,
?
h =?jω?epsilon1
c
?z ×?
t
?
ψ
e
.
Becausewehaveasimplerelationshipbetweenthetransversepartsof
?
E and
?
H,wemay
alsowritethe?eldsas
?e
z
= k
2
c
?
ψ
e
, (5.137)
?e
t
=?jk
z
?
t
?
ψ
e
, (5.138)
?
h
t
=±Y
e
(?z × ?e
t
). (5.139)
Here
Y
e
=
ω?epsilon1
c
k
z
isthecomplex TM wave admittance. ForTE?eldswehavewith
?
Pi1
h
=
?
ψ
h
e
?jk
z
z
?e = jω ?μ?z ×?
t
?
ψ
h
,
?
h =?jk
z
?
t
?
ψ
h
+ ?zk
2
c
?
ψ
h
,
or
?
h
z
= k
2
c
?
ψ
h
, (5.140)
?
h
t
=?jk
z
?
t
?
ψ
h
, (5.141)
?e
t
=?Z
h
(?z ×
?
h
t
). (5.142)
Here
Z
h
=
ω ?μ
k
z
isthe TM wave impedance.
Modal solutions for the transverse ?eld dependence. Equation(5.136)describes
the transverse behavior of the waveguide ?elds. When coupled with an appropriate
boundarycondition,thishomogeneousequationhasanin?nitespectrumofdiscreteso-
lutions called eigenmodes or simply modes. Each mode has associated with it a real
eigenvalue k
c
thatisdependentonthecross-sectionalshapeofthewaveguide,butinde-
pendentoffrequencyandhomogeneousmaterialparameters. Wenumberthemodesso
that k
c
= k
cn
for the nth mode. The amplitude of each modal solution depends on the
excitationsourcewithinthewaveguide.
The appropriate boundary conditions can be found by employing the condition that
forbothTMandTE?eldsthetangentialcomponentof
?
E mustbezeroonthewaveguide
walls: ?n ×
?
E = 0, where ?n is the unit inward normal to the waveguide wall. For TM
?eldswehave
?
E
z
= 0 andthus
?
ψ
e
(ρ,ω)= 0, ρ ∈ Gamma1, (5.143)
whereGamma1isthecontourdescribingthewaveguideboundary. ForTE?eldswehave ?n×
?
E
t
=
0,or
?n ×(?z ×?
t
?
ψ
h
) = 0.
Using
?n ×(?z ×?
t
?
ψ
h
) = ?z(?n ·?
t
?
ψ
h
)?(?n · ?z)?
t
?
ψ
h
andnotingthat ?n · ?z = 0,wehavetheboundarycondition
?n ·?
t
?
ψ
h
(ρ,ω)=
?
?
ψ
h
(ρ,ω)
?n
= 0, ρ ∈ Gamma1. (5.144)
The wave nature of the waveguide ?elds. We have seen that all waveguide ?eld
components, for both TE and TM modes, vary as e
?jk
zn
z
. Here k
2
zn
= k
2
? k
2
cn
is the
propagation constant ofthe nthmode. Letting
k
z
= β ? jα
we thus have
?
E,
?
H ~ e
?jβz
e
?αz
.
For z > d wechoosetheminussignsothatwehaveawavepropagatingawayfromthe
source;for z < ?d wechoosetheplussign.
When the guide is ?lled with a good dielectric we may assume ?μ = μ is real and
independentoffrequencyanduse(4.254)toshowthat
k
z
= β ? jα =
radicalBig
bracketleftbig
ω
2
μepsilon1
prime
? k
2
c
bracketrightbig
? jω
2
μepsilon1
prime
tanδ
c
=
radicalbig
μepsilon1
prime
radicalBig
ω
2
?ω
2
c
radicalBigg
1 ? j
tanδ
c
1 ?(ω
c
/ω)
2
where δ
c
isthelosstangent(4.253)andwhere
ω
c
=
k
c
√
μepsilon1
prime
iscalledthe cuto? frequency. Underthecondition
tanδ
c
1 ?(ω
c
/ω)
2
lessmuch 1 (5.145)
wemayapproximatethesquarerootusingthe?rsttwotermsofthebinomialseriesto
showthat
β ? jα ≈
radicalbig
μepsilon1
prime
radicalBig
ω
2
?ω
2
c
bracketleftbigg
1 ? j
1
2
tanδ
c
1 ?(ω
c
/ω)
2
bracketrightbigg
. (5.146)
0.0 0.5 1.0 1.5 2.0 2.5
β/ω v or α/ω v
0.0
0.5
1.0
1.5
2.0
2.5
ω
/
ω
c
Light Line
β
α
c c
Figure5.4: Dispersion plot for a hollow-pipe waveguide. Light line computed using
v = 1/
√
μepsilon1.
Condition (5.145) requires that ω be su?ciently removed from ω
c
, either by having
ω>ω
c
or ω<ω
c
. When ω>ω
c
wesaythatthefrequencyisabove cuto? and?ndfrom
(5.146)that
β ≈ ω
radicalbig
μepsilon1
prime
radicalBig
1 ?ω
2
c
/ω
2
,α≈
ω
2
μepsilon1
prime
2β
tanδ
c
.
Here α lessmuch β and the wave propagates down the waveguide with relatively little loss.
When ω<ω
c
wesaythatthewaveguideiscut o? orthatthefrequencyis below cuto?
and?ndthat
α ≈ ω
radicalbig
μepsilon1
prime
radicalBig
ω
2
c
/ω
2
? 1,β≈
ω
2
μepsilon1
prime
2α
tanδ
c
.
Inthiscasethewavehasaverysmallphaseconstantandaverylargerateofattenuation.
Forfrequenciesnear ω
c
thereisanabruptbutcontinuoustransitionbetweenthesetwo
typesofwavebehavior.
When the waveguide is ?lled with a lossless material having permittivity epsilon1 and per-
meability μ, thetransitionacrossthecuto?frequencyisdiscontinuous. For ω>ω
c
we
have
β = ω
√
μepsilon1
radicalBig
1 ?ω
2
c
/ω
2
,α= 0,
andthewavepropagateswithoutloss. Forω<ω
c
we have
α = ω
√
μepsilon1
radicalBig
ω
2
c
/ω
2
? 1,β= 0,
andthewaveisevanescent.ThedispersiondiagramshowninFigure5.4clearlyshows
the abrupt cuto? phenomenon. We can compute the phase and group velocities of the
waveabovecuto?justaswedidforplanewaves:
v
p
=
ω
β
=
v
radicalbig
1 ?ω
2
c
/ω
2
,
0.0 0.5 1.0 1.5 2.0 2.5
ω/ω
0.0
0.5
1.0
1.5
2.0
2.5
v / v or v / v
v /v
v /v
c
p
g
g
p
Figure5.5: Phaseandgroupvelocityforahollow-pipewaveguide.
v
g
=
dω
dβ
= v
radicalBig
1 ?ω
2
c
/ω
2
, (5.147)
where v = 1/
√
μepsilon1. Notethat v
g
v
p
= v
2
. Weshowlaterthat v
g
isthevelocityofenergy
transport within a lossless guide. We also see that as ω →∞we have v
p
→ v and
v
g
→v.Moreinterestingly,asω→ω
c
we?ndthatv
p
→∞andv
g
→ 0.Thisisshown
graphicallyinFigure5.5.
We may also speak of the guided wavelength of a monochromatic wave propagating
withfrequency ˇω inawaveguide. Wede?nethiswavelengthas
λ
g
=
2π
β
=
λ
radicalbig
1 ?ω
2
c
/ˇω
2
=
λ
radicalbig
1 ?λ
2
/λ
2
c
.
Here
λ =
2π
ˇω
√
μepsilon1
,λ
c
=
2π
k
c
.
Orthogonality of waveguide modes. The modal ?elds in a closed-pipe waveguide
obey several orthogonality relations. Let (
ˇ
E
n
,
ˇ
H
n
) be the time-harmonic electric and
magnetic ?elds of one particular waveguide mode (TE or TM), and let (
ˇ
E
m
,
ˇ
H
m
) be
the ?elds of a di?erent mode (TE or TM). One very useful relation states that for a
waveguidecontaininglosslessmaterials
integraldisplay
CS
?z ·
parenleftbig
ˇe
n
×
ˇ
h
?
m
parenrightbig
dS = 0, m negationslash= n, (5.148)
where CSistheguidecross-section. Thisisusedtoestablishthatthetotalpowercarried
byawaveisthesumofthepowerscarriedbyindividualmodes(seebelow).
Otherimportantrelationshipsincludetheorthogonalityofthelongitudinal?elds,
integraldisplay
CS
ˇ
E
zm
ˇ
E
zn
dS = 0, m negationslash= n, (5.149)
integraldisplay
CS
ˇ
H
zm
ˇ
H
zn
dS = 0, m negationslash= n, (5.150)
andtheorthogonalityoftransverse?elds,
integraldisplay
CS
ˇ
E
tm
·
ˇ
E
tn
dS = 0, m negationslash= n,
integraldisplay
CS
ˇ
H
tm
·
ˇ
H
tn
dS = 0, m negationslash= n.
Thesemayalsobecombinedtogiveanorthogonalityrelationforthecomplete?elds:
integraldisplay
CS
ˇ
E
m
·
ˇ
E
n
dS = 0, m negationslash= n, (5.151)
integraldisplay
CS
ˇ
H
m
·
ˇ
H
n
dS = 0, m negationslash= n. (5.152)
ForproofsoftheserelationsthereadershouldseeCollin[39].
Power carried by time-harmonic waves in lossless waveguides. Thepowercar-
ried by a time-harmonic wave propagating down a waveguide is de?ned as the time-
averagePoynting?uxpassingthroughtheguidecross-section. Thuswemaywrite
P
av
=
1
2
integraldisplay
CS
Re
braceleftbig
ˇ
E ×
ˇ
H
?
bracerightbig
· ?z dS.
The ?eld within the guide is assumed to be a superposition of all possible waveguide
modes. Forwavestravelinginthe+z-directionthisimplies
ˇ
E =
summationdisplay
m
(ˇe
tm
+ ?zˇe
zm
)e
?jk
zm
z
,
ˇ
H =
summationdisplay
n
parenleftbig
ˇ
h
tn
+ ?z
ˇ
h
zn
parenrightbig
e
?jk
zn
z
.
Substitutingwehave
P
av
=
1
2
Re
braceleftBigg
integraldisplay
CS
bracketleftBigg
summationdisplay
m
(ˇe
tm
+ ?zˇe
zm
)e
?jk
zm
z
×
summationdisplay
n
parenleftbig
ˇ
h
?
tn
+ ?z
ˇ
h
?
zn
parenrightbig
e
jk
?
zn
z
bracketrightBigg
· ?z dS
bracerightBigg
=
1
2
Re
braceleftBigg
summationdisplay
m
summationdisplay
n
e
?j(k
zm
?k
?
zn
)z
integraldisplay
CS
?z ·
parenleftbig
ˇe
tm
×
ˇ
h
?
tn
parenrightbig
dS
bracerightBigg
.
By(5.148)wehave
P
av
=
1
2
Re
braceleftBigg
summationdisplay
n
e
?j(k
zn
?k
?
zn
)z
integraldisplay
CS
?z ·
parenleftbig
ˇe
tn
×
ˇ
h
?
tn
parenrightbig
dS
bracerightBigg
.
For modes propagating in a lossless guide k
zn
= β
zn
. For modes that are cut o? k
zn
=
?jα
zn
. However,we?ndbelowthattermsinthisseriesrepresentingmodesthatarecut
o?arezero. Thus
P
av
=
summationdisplay
n
1
2
Re
braceleftbiggintegraldisplay
CS
?z ·
parenleftbig
ˇe
tn
×
ˇ
h
?
tn
parenrightbig
dS
bracerightbigg
=
summationdisplay
n
P
n,av
.
Henceforwaveguides?lledwithlosslessmediathetotaltime-averagepower?owisgiven
bythesuperpositionoftheindividualmodalpowers.
Simple formulas for the individual modal powers in a lossless guide may be obtained
bysubstitutingtheexpressionsforthe?elds. ForTMmodesweuse(5.138)and(5.139)
toget
P
av
=
1
2
Re
braceleftbigg
|k
z
|
2
Y
?
e
e
?j(k
z
?k
?
z
)
integraldisplay
CS
?z ·
parenleftbig
?
t
ˇ
ψ
e
× [?z ×?
t
ˇ
ψ
?
e
]
parenrightbig
dS
bracerightbigg
=
1
2
|k
z
|
2
Re
braceleftbig
Y
?
e
bracerightbig
e
?j(k
z
?k
?
z
)
integraldisplay
CS
?
t
ˇ
ψ
e
·?
t
ˇ
ψ
?
e
dS.
Herewehaveused(B.7)and ?z·?
t
ˇ
ψ
e
= 0. Thisexpressioncanbesimpli?edbyusingthe
two-dimensionalversionofGreen’s?rstidentity(B.29):
integraldisplay
S
(?
t
a ·?
t
b + a?
2
t
b)dS =
contintegraldisplay
Gamma1
a
?b
?n
dl.
Using a =
ˇ
ψ
e
and b =
ˇ
ψ
?
e
andintegratingoverthewaveguidecross-sectionwehave
integraldisplay
CS
(?
t
ˇ
ψ
e
·?
t
ˇ
ψ
?
e
+
ˇ
ψ
e
?
2
ˇ
ψ
?
e
)dS =
contintegraldisplay
Gamma1
ˇ
ψ
e
?
ˇ
ψ
?
e
?n
dl.
Substituting ?
2
t
ˇ
ψ
?
e
=?k
2
c
ˇ
ψ
?
e
andrememberingthat
ˇ
ψ
e
= 0 on Gamma1 wereducethisto
integraldisplay
CS
?
t
ˇ
ψ
e
·?
t
ˇ
ψ
?
e
dS = k
2
c
integraldisplay
CS
ˇ
ψ
e
ˇ
ψ
?
e
dS. (5.153)
Thusthepoweris
P
av
=
1
2
Re
braceleftbig
Y
?
e
bracerightbig
|k
z
|
2
k
2
c
e
?j(k
z
?k
?
z
)z
integraldisplay
CS
ˇ
ψ
e
ˇ
ψ
?
e
dS.
Formodesabovecuto?wehave k
z
= β and Y
e
= ωepsilon1/k
z
= ωepsilon1/β. Thepowercarriedby
thesemodesisthus
P
av
=
1
2
ωepsilon1βk
2
c
integraldisplay
CS
ˇ
ψ
e
ˇ
ψ
?
e
dS. (5.154)
For modes belowcuto? we have k
z
=?jα and Y
e
= jωepsilon1/α.ThusRe{Y
?
e
}=0 and
P
av
= 0. For frequencies belowcuto? the ?elds are evanescent and do not carry power
inthemannerofpropagatingwaves.
ForTEmodeswemayproceedsimilarlyandshowthat
P
av
=
1
2
ωμβk
2
c
integraldisplay
CS
ˇ
ψ
h
ˇ
ψ
?
h
dS. (5.155)
Thedetailsareleftasanexercise.
Stored energy in a waveguide and the velocity of energy transport. Consider
asource-freesectionoflosslesswaveguideboundedonitstwoendsbythecross-sectional
surfaces CS
1
and CS
2
. Setting
ˇ
J
i
=
ˇ
J
c
= 0 in(4.156)wehave
1
2
contintegraldisplay
S
(
ˇ
E ×
ˇ
H
?
)· dS = 2 jω
integraldisplay
V
[〈w
e
〉?〈w
m
〉] dV,
where V istheregionoftheguidebetween CS
1
and CS
2
. Theright-handsiderepresents
thedi?erencebetweenthetotaltime-averagestoredelectricandmagneticenergies. Thus
2 jω [〈W
e
〉?〈W
m
〉] =
1
2
integraldisplay
CS
1
??z ·(
ˇ
E ×
ˇ
H
?
)dS+
1
2
integraldisplay
CS
2
?z ·(
ˇ
E ×
ˇ
H
?
)dS?
1
2
integraldisplay
S
cond
(
ˇ
E ×
ˇ
H
?
)· dS,
where S
cond
indicatestheconductingwallsoftheguideand ?n pointsintotheguide. For
apropagatingmodethe?rsttwotermsontheright-handsidecancelsincewithnoloss
ˇ
E×
ˇ
H
?
isthesameon CS
1
and CS
2
. Thethirdtermiszerosince(
ˇ
E×
ˇ
H
?
)·?n = (?n×
ˇ
E)·
ˇ
H
?
,
and ?n ×
ˇ
E = 0 onthewaveguidewalls. Thuswehave
〈W
e
〉=〈W
m
〉
foranysectionofalosslesswaveguide.
We may compute the time-average stored magnetic energy in a section of lossless
waveguideoflength l as
〈W
m
〉=
μ
4
integraldisplay
l
0
integraldisplay
CS
ˇ
H ·
ˇ
H
?
dSdz.
ForpropagatingTMmodeswecansubstitute(5.139)to?nd
〈W
m
〉/l =
μ
4
(βY
e
)
2
integraldisplay
CS
(?z ×?
t
ˇ
ψ
e
)·(?z ×?
t
ˇ
ψ
?
e
)dS.
Using
(?z ×?
t
ˇ
ψ
e
)·(?z ×?
t
ˇ
ψ
?
e
) = ?z ·
bracketleftbig
?
t
ˇ
ψ
?
e
×(?z ×?
t
ˇ
ψ
e
)
bracketrightbig
=?
t
ˇ
ψ
e
·?
t
ˇ
ψ
?
e
we have
〈W
m
〉/l =
μ
4
(βY
e
)
2
integraldisplay
CS
?
t
ˇ
ψ
e
·?
t
ˇ
ψ
?
e
dS.
Finally, using (5.153) we have the stored energy per unit length for a propagating TM
mode:
〈W
m
〉/l =〈W
e
〉/l =
μ
4
(ωepsilon1)
2
k
2
c
integraldisplay
CS
ˇ
ψ
e
ˇ
ψ
?
e
dS.
Similarlywemayshow thatforaTEmode
〈W
e
〉/l =〈W
m
〉/l =
epsilon1
4
(ωμ)
2
k
2
c
integraldisplay
CS
ˇ
ψ
h
ˇ
ψ
?
h
dS.
Thedetailsareleftasanexercise.
Aswithplanewavesin(4.261)wemaydescribethevelocityofenergytransportasthe
ratioofthePoynting?uxdensitytothetotalstoredenergydensity:
S
av
=〈w
T
〉v
e
.
ForTMmodesthisenergyvelocityis
v
e
=
1
2
ωepsilon1βk
2
c
ˇ
ψ
e
ˇ
ψ
?
e
2
μ
4
(ωepsilon1)
2
k
2
c
ˇ
ψ
e
ˇ
ψ
?
e
=
β
ωμepsilon1
= v
radicalBig
1 ?ω
2
c
/ω
2
,
whichisidenticaltothegroupvelocity(5.147). ThisisalsothecaseforTEmodes,for
which
v
e
=
1
2
ωμβk
2
c
ˇ
ψ
h
ˇ
ψ
?
h
2
epsilon1
4
(ωμ)
2
k
2
c
ˇ
ψ
h
ˇ
ψ
?
h
=
β
ωμepsilon1
= v
radicalBig
1 ?ω
2
c
/ω
2
.
Example: ?elds of a rectangular waveguide. Consider a rectangular waveguide
withacross-sectionoccupying 0 ≤ x ≤ a and 0 ≤ y ≤ b. Thematerialwithintheguide
isassumedtobealosslessdielectricofpermittivity epsilon1 andpermeability μ. Weseekthe
modal?eldswithintheguide.
BothTEandTM?eldsexistwithintheguide. Ineachcasewemustsolvethedi?er-
entialequation
?
2
t
?
ψ + k
2
c
?
ψ = 0.
A product solution in rectangular coordinates may be sought using the separation of
variablestechnique(§ A.4). We?ndthat
?
ψ(x, y,ω)= [A
x
sin k
x
x + B
x
cos k
x
x]
bracketleftbig
A
y
sin k
y
y + B
y
cos k
y
y
bracketrightbig
where k
2
x
+ k
2
y
= k
2
c
. Thissolutioniseasilyveri?edbysubstitution.
ForTMmodesthesolutionissubjecttotheboundarycondition(5.143):
?
ψ
e
(ρ,ω)= 0, ρ ∈ Gamma1.
Applyingthisat x = 0 and y = 0 we?nd B
x
= B
y
= 0. Applyingtheboundarycondition
at x = a wethen?nd sin k
x
a = 0 andthus
k
x
=
nπ
a
, n = 1,2,....
Notethat n = 0 correspondstothetrivialsolution
?
ψ
e
= 0. Similarly,fromthecondition
at y = b we?ndthat
k
y
=
mπ
b
, m = 1,2,....
Thus
?
ψ
e
(x, y,ω)= A
nm
sin
parenleftBig
nπx
a
parenrightBig
sin
parenleftBig
mπy
b
parenrightBig
.
From(5.137)–(5.139)we?ndthatthe?eldsare
?
E
z
= k
2
c
nm
A
nm
bracketleftBig
sin
nπx
a
sin
mπy
b
bracketrightBig
e
?jk
z
z
,
?
E
t
=?jk
z
A
nm
bracketleftBig
?x
nπ
a
cos
nπx
a
sin
mπy
b
+ ?y
mπ
b
sin
nπx
a
cos
mπy
b
bracketrightBig
e
?jk
z
z
,
?
H
t
= jk
z
Y
e
A
nm
bracketleftBig
?x
mπ
b
sin
nπx
a
cos
mπy
b
? ?y
nπ
a
cos
nπx
a
sin
mπy
b
bracketrightBig
e
?jk
z
z
.
Here
Y
e
=
1
η
radicalBig
1 ?ω
2
c
nm
/ω
2
with η = (μepsilon1)
1/2
.
Eachcombinationof m,n describesadi?erent?eldpatternandthusadi?erentmode,
designatedTM
nm
. Thecuto?wavenumberoftheTM
nm
modeis
k
c
nm
=
radicalbigg
parenleftBig
nπ
a
parenrightBig
2
+
parenleftBig
mπ
b
parenrightBig
2
, m,n = 1,2,3,...
andthecuto?frequencyis
ω
c
nm
= v
radicalbigg
parenleftBig
nπ
a
parenrightBig
2
+
parenleftBig
mπ
b
parenrightBig
2
, m,n = 1,2,3,...
where v = 1/(μepsilon1)
1/2
. Thus the TM
11
mode has the lowest cuto? frequency of any TM
mode. ThereisarangeoffrequenciesforwhichthisistheonlypropagatingTMmode.
ForTEmodesthesolutionissubjectto
?n ·?
t
?
ψ
h
(ρ,ω)=
?
?
ψ
h
(ρ,ω)
?n
= 0, ρ ∈ Gamma1.
At x = 0 we have
?
?
ψ
h
?x
= 0
leadingto A
x
= 0.Aty = 0 we have
?
?
ψ
h
?y
= 0
leadingto A
y
= 0.Atx = a werequire sin k
x
a = 0 andthus
k
x
=
nπ
a
, n = 0,1,2,....
Similarly,fromtheconditionat y = b we?nd
k
y
=
mπ
b
, m = 0,1,2,....
Thecase n = m = 0 isnotallowedsinceitproducesthetrivialsolution. Thus
?
ψ
h
(x, y,ω)= B
nm
cos
parenleftBig
nπx
a
parenrightBig
cos
parenleftBig
mπy
b
parenrightBig
, m,n = 0,1,2,..., m + n > 0.
From(5.140)–(5.142)we?ndthatthe?eldsare
?
H
z
= k
2
c
nm
B
nm
bracketleftBig
cos
nπx
a
cos
mπy
b
bracketrightBig
e
?jk
z
z
,
?
H
t
=±jk
z
B
nm
bracketleftBig
?x
nπ
a
sin
nπx
a
cos
mπy
b
+ ?y
mπ
b
cos
nπx
a
sin
mπy
b
bracketrightBig
e
?jk
z
z
,
?
E
t
= jk
z
Z
h
B
nm
bracketleftBig
?x
mπ
b
cos
nπx
a
sin
mπy
b
? ?y
nπ
a
sin
nπx
a
cos
mπy
b
bracketrightBig
e
?jk
z
z
.
Here
Z
h
=
η
radicalBig
1 ?ω
2
c
nm
/ω
2
.
InthiscasethemodesaredesignatedTE
nm
. Thecuto?wavenumberoftheTE
nm
mode
is
k
c
nm
=
radicalbigg
parenleftBig
nπ
a
parenrightBig
2
+
parenleftBig
mπ
b
parenrightBig
2
, m,n = 0,1,2,..., m + n > 0
andthecuto?frequencyis
ω
c
nm
= v
radicalbigg
parenleftBig
nπ
a
parenrightBig
2
+
parenleftBig
mπ
b
parenrightBig
2
, m,n = 0,1,2,..., m + n > 0
where v = 1/(μepsilon1)
1/2
. Modeshavingthesamecuto?frequencyaresaidtobedegenerate.
ThisisthecasewiththeTEandTMmodes. However,the?elddistributionsdi?erand
thus the modes are distinct. Note that we may also have degeneracy among the TE
or TM modes. For instance, if a = b then the cuto? frequency of the TE
nm
mode is
identicaltothatoftheTE
mn
mode. If a ≥ b thentheTE
10
modehasthelowestcuto?
frequency and is termed the dominant mode in a rectangular guide. There is a ?nite
bandoffrequenciesinwhichthisistheonlymodepropagating(althoughthebandwidth
issmallif a ≈ b.)
Calculation of the time-average power carried by propagating TE and TM modes is
leftasanexercise.
5.4.4 TE–TM decomposition in spherical coordinates
It is not necessary for the longitudinal direction to be constant to achieve a TE–TM
decomposition. Itispossible,forinstance,torepresenttheelectromagnetic?eldinterms
ofcomponentseitherTEorTMtotheradialdirectionofsphericalcoordinates. Thismay
beshownusingaprocedureidenticaltothatusedforthelongitudinal–transversedecom-
position in rectangular coordinates. We carry out the decomposition in the frequency
domainandleavethetime-domaindecompositionasanexercise.
TE–TM decomposition in terms of the radial ?elds. Considerasource-freere-
gionofspace?lledwithahomogeneous,isotropicmaterialdescribedbyparameters ?μ(ω)
and ?epsilon1
c
(ω). We substitute the spherical coordinate representation of the curl into Fara-
day’sandAmpere’slawswithsourceterms
?
J and
?
J
m
setequaltozero. Equatingvector
componentswehave,inparticular,
1
r
bracketleftbigg
1
sinθ
?
?
E
r
?φ
?
?
?r
(r
?
E
φ
)
bracketrightbigg
=?jω ?μ
?
H
θ
(5.156)
and
1
r
bracketleftbigg
?
?r
(r
?
H
θ
)?
?
?
H
r
?θ
bracketrightbigg
= jω?epsilon1
c
?
E
φ
. (5.157)
Weseektoisolatethetransversecomponentsofthe?eldsintermsoftheradialcompo-
nents. Multiplying(5.156)by jω?epsilon1
c
r weget
jω?epsilon1
c
1
sinθ
?
?
E
r
?φ
? jω?epsilon1
c
?(r
?
E
φ
)
?r
= k
2
r
?
H
θ
;
next,multiplying(5.157)by r andthendi?erentiatingwithrespectto r weget
?
2
?r
2
(r
?
H
θ
)?
?
2
?
H
r
?θ?r
= jω?epsilon1
c
?(r
?
E
φ
)
?r
.
Subtractingthesetwoequationsandrearranging,weobtain
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
(r
?
H
θ
) = jω?epsilon1
c
1
sinθ
?
?
E
r
?φ
+
?
2
?
H
r
?r?θ
.
This is a one-dimensional wave equation for the product of r with the transverse ?eld
component
?
H
θ
. Similarly
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
(r
?
H
φ
) =?jω?epsilon1
c
?
?
E
r
?θ
+
1
sinθ
?
2
?
H
r
?r?φ
,
and
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
(r
?
E
φ
) =
1
sinθ
?
2
?
E
r
?φ?r
+ jω ?μ
?
?
H
r
?θ
, (5.158)
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
(r
?
E
θ
) =
?
2
?
E
r
?θ?r
+ jω ?μ
1
sinθ
?
?
H
r
?φ
. (5.159)
Hence we can represent the electromagnetic ?eld in a source-free region in terms of
thetwoscalarquantities
?
E
r
and
?
H
r
. SuperpositionallowsustosolvetheTEcasewith
?
E
r
= 0 andtheTMcasewith
?
H
r
= 0,andcombinetheresultsforthegeneralexpansion
ofthe?eld.
TE–TM decomposition in terms of potential functions. If we allow the vector
potential(orHertzianpotential)tohaveonlyan r-component,thentheresulting?elds
areTEorTMtothe r-direction. Unfortunately,thisscalarcomponentdoesnotsatisfy
the Helmholtz equation. If we wish to use a potential component that satis?es the
Helmholtz equation then we must discard the Lorentz condition and choose a di?erent
relationshipbetweenthevectorandscalarpotentials.
1. TM ?elds. To generate ?elds TM to r we recall that the electromagnetic ?elds
maybewrittenintermsofelectricvectorandscalarpotentialsas
?
E =?jω
?
A
e
??φ
e
, (5.160)
?
B =?×
?
A
e
. (5.161)
Inasource-freeregionwehavebyAmpere’slaw
?
E =
1
jω ?μ?epsilon1
c
?×
?
B =
1
jω ?μ?epsilon1
c
?×(?×
?
A
e
).
Here
?
φ
e
and
?
A
e
mustsatisfyadi?erentialequationthatmaybederivedbyexamining
?×(?×
?
E) =?jω?×
?
B =?jω(jω ?μ?epsilon1
c
?
E) = k
2
?
E,
where k
2
= ω
2
?μ?epsilon1
c
. Substitutionfrom(5.160)gives
?×
parenleftbig
?×[?jω
?
A
e
??
?
φ
e
]
parenrightbig
= k
2
[?jω
?
A
e
??
?
φ
e
]
or
?×(?×
?
A
e
)? k
2
?
A
e
=
k
2
jω
?
?
φ
e
. (5.162)
Wearestillfreetospecify ?·
?
A
e
.
At this point let us examine the e?ect of choosing a vector potential with only an
r-component:
?
A
e
= ?r
?
A
e
. Since
?×(?r
?
A
e
) =
?
θ
r sinθ
?
?
A
e
?φ
?
?
φ
r
?
?
A
e
?θ
(5.163)
weseethat B =?×
?
A
e
hasno r-component. Since
?×(?×
?
A
e
) =?
?r
r sinθ
bracketleftbigg
1
r
?
?θ
parenleftbigg
sinθ
?
?
A
e
?θ
parenrightbigg
+
1
r sinθ
?
2
?
A
e
?φ
2
bracketrightbigg
+
?
θ
r
?
2
?
A
e
?r?θ
+
?
φ
r sinθ
?
2
?
A
e
?r?φ
we see that
?
E ~?×(?×
?
A
e
) has all three components. This choice of
?
A
e
produces a
?eldTMtothe r-direction. Weneedonlychoose ?·
?
A
e
sothattheresultingdi?erential
equationisconvenienttosolve. Substitutingtheaboveexpressionsinto(5.162)we?nd
that
?
?r
r sinθ
bracketleftbigg
1
r
?
?θ
parenleftbigg
sinθ
?
?
A
e
?θ
parenrightbigg
+
1
r sinθ
?
2
?
A
e
?φ
2
bracketrightbigg
+
?
θ
r
?
2
?
A
e
?r?θ
+
?
φ
r sinθ
?
2
?
A
e
?r?φ
? ?rk
2
?
A
e
=
?r
k
2
jω
?
?
φ
e
?r
+
?
θ
r
k
2
jω
?
?
φ
e
?θ
+
?
φ
r sinθ
k
2
jω
?
?
φ
e
?φ
. (5.164)
Since ?·
?
A
e
onlyinvolvesthederivativesof
?
A
e
withrespectto r,wemayspecify ?·
?
A
e
indirectlythrough
?
φ
e
=
jω
k
2
?
?
A
e
?r
.
Withthis(5.164)becomes
1
r sinθ
bracketleftbigg
1
r
?
?θ
parenleftbigg
sinθ
?
?
A
e
?θ
parenrightbigg
+
1
r sinθ
?
2
?
A
e
?φ
2
bracketrightbigg
+ k
2
?
A
e
+
?
2
?
A
e
?r
2
= 0.
Using
1
r
?
?r
bracketleftbigg
r
2
?
?r
parenleftbigg
?
A
e
r
parenrightbiggbracketrightbigg
=
?
2
?
A
e
?r
2
wecanwritethedi?erentialequationas
1
r
2
?
?r
bracketleftbigg
r
2
?(
?
A
e
/r)
?r
bracketrightbigg
+
1
r
2
sinθ
?
?θ
bracketleftbigg
sinθ
?(
?
A
e
/r)
?θ
bracketrightbigg
+
1
r
2
sin
2
θ
?
2
(
?
A
e
/r)
?φ
2
+ k
2
?
A
e
r
= 0.
The ?rst three terms of this expression are precisely the Laplacian of
?
A
e
/r.Thuswe
have
(?
2
+ k
2
)
parenleftbigg
?
A
e
r
parenrightbigg
= 0 (5.165)
andthequantity
?
A
e
/r satis?esthehomogeneousHelmholtzequation.
The TM ?elds generated by the vector potential
?
A
e
= ?r
?
A
e
may be found by using
(5.160)and(5.161). From(5.160)wehavetheelectric?eld
?
E =?jω
?
A
e
??
?
φ
e
=?jω?r
?
A
e
??
parenleftbigg
jω
k
2
?
?
A
e
?r
parenrightbigg
.
Expandingthegradientwehavethe?eldcomponents
?
E
r
=
1
jω ?μ?epsilon1
c
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
?
A
e
, (5.166)
?
E
θ
=
1
jω ?μ?epsilon1
c
1
r
?
2
?
A
e
?r?θ
, (5.167)
?
E
φ
=
1
jω ?μ?epsilon1
c
1
r sinθ
?
2
?
A
e
?r?φ
. (5.168)
Themagnetic?eldcomponentsarefoundusing(5.161)and(5.163):
?
H
θ
=
1
?μ
1
r sinθ
?
?
A
e
?φ
, (5.169)
?
H
φ
=?
1
?μ
1
r
?
?
A
e
?θ
. (5.170)
2. TE ?elds. Togenerate?eldsTEto r werecallthattheelectromagnetic?eldsin
asource-freeregionmaybewrittenintermsofmagneticvectorandscalarpotentialsas
?
H =?jω
?
A
h
??φ
h
, (5.171)
?
D =??×
?
A
h
. (5.172)
Inasource-freeregionwehavefromFaraday’slaw
?
H =
1
?jω ?μ?epsilon1
c
?×
?
D =
1
jω ?μ?epsilon1
c
?×(?×
?
A
h
).
Here
?
φ
h
and
?
A
h
mustsatisfyadi?erentialequationthatmaybederivedbyexamining
?×(?×
?
H) = jω?×
?
D = jω?epsilon1
c
(?jω ?μ
?
H) = k
2
?
H,
where k
2
= ω
2
?μ?epsilon1
c
. Substitutionfrom(5.171)gives
?×
parenleftbig
?×[?jω
?
A
h
??
?
φ
h
]
parenrightbig
= k
2
[?jω
?
A
h
??
?
φ
h
]
or
?×(?×
?
A
h
)? k
2
?
A
h
=
k
2
jω
?
?
φ
h
. (5.173)
Choosing
?
A
h
= ?r
?
A
h
and
?
φ
h
=
jω
k
2
?
?
A
h
?r
we?nd,aswiththeTM?elds,
(?
2
+ k
2
)
parenleftbigg
?
A
h
r
parenrightbigg
= 0. (5.174)
Thusthequantity
?
A
h
/r obeystheHelmholtzequation.
Wecan?ndtheTE?eldsusing(5.171)and(5.172). Substitutingwe?ndthat
?
H
r
=
1
jω ?μ?epsilon1
c
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
?
A
h
, (5.175)
?
H
θ
=
1
jω ?μ?epsilon1
c
1
r
?
2
?
A
h
?r?θ
, (5.176)
?
H
φ
=
1
jω ?μ?epsilon1
c
1
r sinθ
?
2
?
A
h
?r?φ
, (5.177)
?
E
θ
=?
1
?epsilon1
c
1
r sinθ
?
?
A
h
?φ
, (5.178)
?
E
φ
=
1
?epsilon1
c
1
r
?
?
A
h
?θ
. (5.179)
Example of spherical TE–TM decomposition: a plane wave. Consider a uni-
form plane wave propagating in the z-direction in a lossless, homogeneous material of
permittivity epsilon1 andpermeability μ,suchthatitselectromagnetic?eldis
?
E(r,ω)= ?x
?
E
0
(ω)e
?jkz
= ?x
?
E
0
(ω)e
?jkr cosθ
,
?
H(r,ω)= ?y
?
E
0
(ω)
η
e
?jkz
= ?x
?
E
0
(ω)
η
e
?jkr cosθ
.
Wewishtorepresentthis?eldintermsofthesuperpositionofa?eldTEto r anda?eld
TM to r. We ?rst ?nd the potential functions
?
A
e
= ?r
?
A
e
and
?
A
h
= ?r
?
A
h
that represent
the?eld. Thenwemayuse(5.166)–(5.170)and(5.175)–(5.179)to?ndtheTEandTM
representations.
From(5.166)weseethat
?
A
e
isrelatedto
?
E
r
,where
?
E
r
isgivenby
?
E
r
=
?
E
0
sinθ cosφe
?jkr cosθ
=
?
E
0
cosφ
jkr
?
?θ
bracketleftbig
e
?jkr cosθ
bracketrightbig
.
Wecanseparatether andθ dependencesoftheexponentialfunctionbyusingtheidentity
(E.101). Since j
n
(?z) = (?1)
n
j
n
(z) = j
?2n
j
n
(z) we have
e
?jkr cosθ
=
∞
summationdisplay
n=0
j
?n
(2n + 1)j
n
(kr)P
n
(cosθ).
Using
?P
n
(cosθ)
?θ
=
?P
0
n
(cosθ)
?θ
= P
1
n
(cosθ)
we thus have
?
E
r
=?
j
?
E
0
cosφ
kr
∞
summationdisplay
n=1
j
?n
(2n + 1)j
n
(kr)P
1
n
(cosθ).
Herewestartthesumatn = 1 since P
1
0
(x) = 0. Wecannowidentifythevectorpotential
as
?
A
e
r
=
?
E
0
k
ω
cosφ
∞
summationdisplay
n=1
j
?n
(2n + 1)
n(n + 1)
j
n
(kr)P
1
n
(cosθ) (5.180)
sincebydirectdi?erentiationwehave
?
E
r
=
1
jω ?μ?epsilon1
c
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
?
A
e
=
?
E
0
k
jω
2
?μ?epsilon1
c
cosφ
∞
summationdisplay
n=1
j
?n
(2n + 1)
n(n + 1)
P
1
n
(cosθ)
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
[rj
n
(kr)]
=?
j
?
E
0
cosφ
kr
∞
summationdisplay
n=1
j
?n
(2n + 1)j
n
(kr)P
1
n
(cosθ),
whichsatis?es(5.166). Herewehaveusedthede?ningequationofthesphericalBessel
functions(E.15)toshowthat
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
[rj
n
(kr)] = r
?
2
?r
2
j
n
(kr)+ 2
?
?r
j
n
(kr)+ k
2
rj
n
(kr)
= k
2
r
bracketleftbigg
?
2
?(kr)
2
+
2
kr
?
?(kr)
bracketrightbigg
j
n
(kr)+ k
2
rj
n
(kr)
=?k
2
r
bracketleftbigg
1 ?
n(n + 1)
(kr)
2
bracketrightbigg
j
n
(kr)+ k
2
rj
n
(kr) =
n(n + 1)
r
j
n
(kr).
Wenoteimmediatelythat
?
A
e
/r satis?estheHelmholtzequation(5.165)sinceithasthe
formoftheseparationofvariablessolution(D.113).
Wemay?ndthevectorpotential
?
A
h
= ?r
?
A
h
inthesamemanner. Notingthat
?
H
r
=
?
E
0
η
sinθ sinφe
?jkr cosθ
=
?
E
0
sinφ
ηjkr
?
?θ
bracketleftbig
e
?jkr cosθ
bracketrightbig
=
1
jω ?μ?epsilon1
c
parenleftbigg
?
2
?r
2
+ k
2
parenrightbigg
?
A
h
,
wehavethepotential
?
A
h
r
=
?
E
0
k
ηω
sinφ
∞
summationdisplay
n=1
j
?n
(2n + 1)
n(n + 1)
j
n
(kr)P
1
n
(cosθ). (5.181)
WemaynowcomputethetransversecomponentsoftheTM?eldusing(5.167)–(5.170).
Forconvenience,letusde?neanewfunction
?
J
n
by
?
J
n
(x) = xj
n
(x).
Thenwemaywrite
?
E
r
=?
j
?
E
0
cosφ
(kr)
2
∞
summationdisplay
n=1
j
?n
(2n + 1)
?
J
n
(kr)P
1
n
(cosθ), (5.182)
?
E
θ
=
j
?
E
0
kr
sinθ cosφ
∞
summationdisplay
n=1
a
n
?
J
prime
n
(kr)P
1
n
prime
(cosθ), (5.183)
?
E
φ
=
j
?
E
0
kr sinθ
sinφ
∞
summationdisplay
n=1
a
n
?
J
prime
n
(kr)P
1
n
(cosθ), (5.184)
?
H
θ
=?
?
E
0
krη sinθ
sinφ
∞
summationdisplay
n=1
a
n
?
J
n
(kr)P
1
n
(cosθ), (5.185)
?
H
φ
=
?
E
0
krη
sinθ cosφ
∞
summationdisplay
n=1
a
n
?
J
n
(kr)P
1
n
prime
(cosθ). (5.186)
Here
?
J
prime
n
(x) =
d
dx
?
J
n
(x) =
d
dx
[xj
n
(x)] = xj
prime
n
(x)+ j
n
(x)
and
a
n
=
j
?n
(2n + 1)
n(n + 1)
. (5.187)
Similarly,wehavetheTE?eldsfrom(5.176)–(5.179):
?
H
r
=?
j
?
E
0
sinφ
η(kr)
2
∞
summationdisplay
n=1
j
?n
(2n + 1)
?
J
n
(kr)P
1
n
(cosθ), (5.188)
?
H
θ
= j
?
E
0
ηkr
sinθ sinφ
∞
summationdisplay
n=1
a
n
?
J
prime
n
(kr)P
1
n
prime
(cosθ), (5.189)
?
H
φ
=?j
?
E
0
ηkr sinθ
cosφ
∞
summationdisplay
n=1
a
n
?
J
prime
n
(kr)P
1
n
(cosθ), (5.190)
?
E
θ
=?
?
E
0
kr sinθ
cosφ
∞
summationdisplay
n=1
a
n
?
J
n
(kr)P
1
n
(cosθ), (5.191)
?
E
φ
=?
?
E
0
kr
sinθ sinφ
∞
summationdisplay
n=1
a
n
?
J
n
(kr)P
1
n
prime
(cosθ). (5.192)
Thetotal?eldisthenthesumoftheTEandTMcomponents.
Example of spherical TE–TM decomposition: scattering by a conducting
sphere. ConsideraPECsphereofradius a centeredattheoriginandimbeddedina
homogeneous,isotropicmaterialhavingparameters ?μ and ?epsilon1
c
. Thesphereisilluminated
byaplanewaveincidentalongthe z-axiswiththe?elds
?
E(r,ω)= ?x
?
E
0
(ω)e
?jkz
= ?x
?
E
0
(ω)e
?jkr cosθ
,
?
H(r,ω)= ?y
?
E
0
(ω)
η
e
?jkz
= ?x
?
E
0
(ω)
η
e
?jkr cosθ
.
Wewishto?ndthe?eldscatteredbythesphere.
Theboundaryconditionthatdeterminesthescattered?eldisthatthetotal(incident
plusscattered)electric?eldtangentialtothespheremustbezero. Wesawintheprevious
example that the incident electric ?eld may be written as the sum of a ?eld TE to the
r-direction and a ?eld TM to the r-direction. Since the region external to the sphere
is source-free, we may also represent the scattered ?eld as a sum of TE and TM ?elds.
Thesemaybefoundfromthefunctions
?
A
s
e
and
?
A
s
h
,whichobeytheHelmholtzequations
(5.165)and(5.174). ThegeneralsolutiontotheHelmholtzequationmaybefoundusing
theseparationofvariablestechniqueinsphericalcoordinates,asshownin § A.4,andis
givenby
braceleftbigg
?
A
s
e
/r
?
A
s
h
/r
bracerightbigg
=
∞
summationdisplay
n=0
n
summationdisplay
m=?n
C
nm
Y
nm
(θ,φ)h
(2)
n
(kr).
Here Y
nm
isthesphericalharmonicandwehavechosenthesphericalHankelfunction h
(2)
n
as the radial dependence since it represents the expected outward-going wave behavior
of the scattered ?eld. Since the incident ?eld generated by the potentials (5.180) and
(5.181)exactlycancelsthe?eldgeneratedby
?
A
s
e
and
?
A
s
h
onthesurfaceofthesphere,by
orthogonalitythescatteredpotentialmusthave φ and θ dependenciesthatmatchthose
oftheincident?eld. Thus
?
A
s
e
r
=
?
E
0
k
ω
cosφ
∞
summationdisplay
n=1
b
n
h
(2)
n
(kr)P
1
n
(cosθ),
?
A
s
h
r
=
?
E
0
k
ηω
sinφ
∞
summationdisplay
n=1
c
n
h
(2)
n
(kr)P
1
n
(cosθ),
where b
n
and c
n
areconstantstobedeterminedbytheboundaryconditions. Bysuper-
positionthetotal?eldmaybecomputedfromthetotalpotentials,whicharethesumof
theincidentandscatteredpotentials. Thesearegivenby
?
A
t
e
r
=
?
E
0
k
ω
cosφ
∞
summationdisplay
n=1
bracketleftbig
a
n
j
n
(kr)+ b
n
h
(2)
n
(kr)
bracketrightbig
P
1
n
(cosθ),
?
A
t
h
r
=
?
E
0
k
ηω
sinφ
∞
summationdisplay
n=1
bracketleftbig
a
n
j
n
(kr)+ c
n
h
(2)
n
(kr)
bracketrightbig
P
1
n
(cosθ),
where a
n
isgivenby(5.187).
Thetotaltransverseelectric?eldisfoundbysuperposingtheTEandTMtransverse
?eldsfoundfromthetotalpotentials. Wehavealreadycomputedthetransverseincident
?elds and may easily generalize these results to the total potentials. By (5.183) and
(5.191)wehave
?
E
t
θ
(a) =
j
?
E
0
ka
sinθ cosφ
∞
summationdisplay
n=1
bracketleftbig
a
n
?
J
prime
n
(ka)+ b
n
?
H
(2)prime
n
(ka)
bracketrightbig
P
1
n
prime
(cosθ)?
?
?
E
0
ka sinθ
cosφ
∞
summationdisplay
n=1
bracketleftbig
a
n
?
J
n
(ka)+ c
n
?
H
(2)
n
(ka)
bracketrightbig
P
1
n
(cosθ)= 0,
where
?
H
(2)
n
(x) = xh
(2)
n
(x).
By(5.184)and(5.192)wehave
?
E
t
φ
(a) =
j
?
E
0
ka sinθ
sinφ
∞
summationdisplay
n=1
bracketleftbig
a
n
?
J
prime
n
(ka)+ b
n
?
H
(2)prime
n
(ka)
bracketrightbig
P
1
n
(cosθ)?
?
?
E
0
ka
sinθ sinφ
∞
summationdisplay
n=1
bracketleftbig
a
n
?
J
n
(ka)+ c
n
?
H
(2)
n
(ka)
bracketrightbig
P
1
n
prime
(cosθ)= 0.
Thesetwosetsofequationsaresatis?edbytheconditions
b
n
=?
?
J
prime
n
(ka)
?
H
(2)prime
n
(ka)
a
n
, c
n
=?
?
J
n
(ka)
?
H
(2)
n
(ka)
a
n
.
Wecannowwritethescatteredelectric?eldsas
?
E
s
r
=?j
?
E
0
cosφ
∞
summationdisplay
n=1
b
n
bracketleftbig
?
H
(2)primeprime
n
(kr)+
?
H
(2)
n
(kr)
bracketrightbig
P
1
n
(cosθ),
?
E
s
θ
=
?
E
0
kr
cosφ
∞
summationdisplay
n=1
bracketleftbigg
jb
n
sinθ
?
H
(2)prime
n
(kr)P
1
n
prime
(cosθ)? c
n
1
sinθ
?
H
(2)
n
(kr)P
1
n
(cosθ)
bracketrightbigg
,
?
E
s
φ
=
?
E
0
kr
sinφ
∞
summationdisplay
n=1
bracketleftbigg
jb
n
1
sinθ
?
H
(2)prime
n
(kr)P
1
n
(cosθ)? c
n
sinθ
?
H
(2)
n
(kr)P
1
n
prime
(cosθ)
bracketrightbigg
.
Letusapproximatethescattered?eldforobservationpointsfarfromthesphere. We
mayapproximatethesphericalHankelfunctionsusing(E.68)as
?
H
(2)
n
(z) = zh
(2)
n
(z) ≈ j
n+1
e
?jz
,
?
H
(2)prime
n
(z) ≈ j
n
e
?jz
,
?
H
(2)primeprime
n
(z) ≈?j
n+1
e
?jz
.
Substitutingthesewe?ndthat
?
E
r
→ 0 asexpectedforthefar-zone?eld,while
?
E
s
θ
≈
?
E
0
e
?jkr
kr
cosφ
∞
summationdisplay
n=1
j
n+1
bracketleftbigg
b
n
sinθ P
1
n
prime
(cosθ)? c
n
1
sinθ
P
1
n
(cosθ)
bracketrightbigg
,
?
E
s
φ
≈
?
E
0
e
?jkr
kr
sinφ
∞
summationdisplay
n=1
j
n+1
bracketleftbigg
b
n
1
sinθ
P
1
n
(cosθ)? c
n
sinθ P
1
n
prime
(cosθ)
bracketrightbigg
.
012345678910
ka
0.01
0.10
1.00
10.00
σ
/
π
a
2
Figure5.6: Monostaticradarcross-sectionofaconductingsphere.
From the far-zone ?elds we can compute the radar cross-section (RCS) or echo area
ofthesphere,whichisde?nedby
σ = lim
r→∞
parenleftbigg
4πr
2
|
?
E
s
|
2
|
?
E
i
|
2
parenrightbigg
. (5.193)
Carryingunitsofm
2
,thisquantitydescribestherelativeenergydensityofthescattered
?eldnormalizedbythedistancefromthescatteringobject.Figure5.6showstheRCSof
aconductingsphereinfreespaceforthemonostatic case: whentheobservationdirection
isalignedwiththedirectionoftheincidentwave(i.e., θ = π),alsocalledthebackscatter
direction. AtlowfrequenciestheRCSisproportionalto λ
?4
;thisistherangeofRayleigh
scattering,showingthathigher-frequencylightscattersmorestronglyfrommicroscopic
particlesintheatmosphere(explainingwhytheskyisblue)[19]. Athighfrequenciesthe
resultapproachesthatofgeometricaloptics,andtheRCSbecomestheinterceptionarea
of the sphere, πa
2
. This is the region of optical scattering. Between these two regions
liestheresonance region,ortheregionofMie scattering,namedforG.Miewhoin1908
published the ?rst rigorous solution for scattering by a sphere (followed soon after by
Debyein1909).
Severalinterestingphenomenaofspherescatteringarebestexaminedinthetimedo-
main. We may compute the temporal scattered ?eld by taking the inverse transform
ofthefrequency-domain?eld.Figure5.7shows E
θ
(t) computed in the backscatter
direction (θ = π) when the incident ?eld waveform E
0
(t) is a gaussian pulse and the
sphere is in free space. Two distinct features are seen in the scattered ?eld waveform.
The?rstisasharppulsealmostduplicatingtheincident?eldwaveform,butofopposite
polarity. This is the specular re?ection produced when the incident ?eld ?rst contacts
the sphere and begins to induce a current on the sphere surface. The second feature,
called the creeping wave, occurs at a time approximately (2 + π)a/c seconds after the
-0.5 0.0 0.5 1.0 1.5 2.0
t/(2πa/c)
-1.2
-0.8
-0.4
-0.0
0.4
0.8
1.2
Relativ
e amplitude
incident field
waveform
A: specular
reflection
B: creeping wave
A
B
Figure5.7: Time-domain?eldback-scatteredbyaconductingsphere.
specular re?ection. This represents the ?eld radiated back along the incident direction
by a wave of current excited by the incident ?eld at the tangent point, which travels
aroundthesphereatapproximatelythespeedoflightinfreespace. Althoughthiswave
continues to traverse the sphere, its amplitude is reduced so signi?cantly by radiation
dampingthatonlyasinglefeatureisseen.
5.5 Problems
5.1 Verifythatthe?eldsandsourcesobeyingevenplanarre?ectionsymmetryobeythe
component Maxwell’s equations (5.1)–(5.6). Repeat for ?elds and sources obeying odd
planarre?ectionsymmetry.
5.2 Wewishtoinvestigatere?ectionsymmetrythroughtheorigininahomogeneous
medium. Underwhatconditionsonmagnetic?eld,magneticcurrentdensity,andelectric
currentdensityareweguaranteedthat
E
x
(x, y, z) = E
x
(?x,?y,?z),
E
y
(x, y, z) = E
y
(?x,?y,?z),
E
z
(x, y, z) = E
z
(?x,?y,?z)?
5.3 We wish to investigate re?ection symmetry through an axis in a homogeneous
medium. Underwhatconditionsonmagnetic?eld,magneticcurrentdensity,andelectric
currentdensityareweguaranteedthat
E
x
(x, y, z) =?E
x
(?x,?y, z),
E
y
(x, y, z) =?E
y
(?x,?y, z),
E
z
(x, y, z) = E
z
(?x,?y, z)?
5.4 Consider an electric Hertzian dipole located on the z-axis at z = h. Showthat
ifthedipoleisparalleltotheplane z = 0,thenaddinganoppositely-directeddipoleof
the same strength at z =?h produces zero electric ?eld tangential to the plane. Also
showthat if the dipole is z-directed, then adding another z-directed dipole at z =?h
produces zero electric ?eld tangential to the z = 0 plane. Since the ?eld for z > 0 is
unalteredineachcaseifweplaceaPECinthe z = 0 plane,weestablishthattangential
componentsofelectriccurrentimageintheoppositedirectionwhileverticalcomponents
imageinthesamedirection.
5.5 Considera z-directedelectriclinesource
?
I
0
locatedat y = h, x = 0 betweencon-
ducting planes at y =±d, d > h. The material between the plates has permeability
?μ(ω) andcomplexpermittivity ?epsilon1
c
(ω). Writetheimpressedandscattered?eldsinterms
of Fourier transforms and apply the boundary conditions at z =±d to determine the
electric?eldbetweentheplates. Showthattheresultisidenticaltotheexpression(5.8)
obtained using symmetry decomposition, which required the boundary condition to be
appliedonlyonthetopplate.
5.6 Consider a z-directed electric line source
?
I
0
located at y = h, x = 0 in free space
aboveadielectricslaboccupying ?d < y < d, d < h. Theslabhaspermeability μ
0
and
permittivity epsilon1. Decomposethesourceintoevenandoddconstituentsandsolveforthe
electric?eldeverywhereusingtheFouriertransformapproach. Describehowyouwould
usetheevenandoddsolutionstosolvetheproblemofadielectricslablocatedontopof
aPECgroundplane.
5.7 Consideranunbounded,homogeneous,isotropicmediumdescribedbypermeabil-
ity ?μ(ω) andcomplexpermittivity ?epsilon1
c
(ω). Assumingtherearemagneticsourcespresent,
butnoelectricsources,showthatthe?eldsmaybewrittenas
?
H(r) =?jω?epsilon1
c
integraldisplay
V
ˉ
G
e
(r|r
prime
;ω)·
?
J
i
m
(r
prime
,ω)dV
prime
,
?
E(r) =
integraldisplay
V
ˉ
G
m
(r|r
prime
;ω)·
?
J
i
m
(r
prime
,ω)dV
prime
,
where
ˉ
G
e
isgivenby(5.83)and
ˉ
G
m
isgivenby(5.84).
5.8 Showthatforacubicalexcludingvolumethedepolarizingdyadicis
ˉ
L =
ˉ
I/3.
5.9 Compute the depolarizing dyadic for a cylindrical excluding volume with height
anddiameterboth 2a,andwiththelimittakenas a → 0. Showthat
ˉ
L = 0.293
ˉ
I.
5.10 Showthatthesphericalwavefunction
?
ψ(r,ω)=
e
?jkr
4πr
obeystheradiationconditions(5.96)and(5.97).
5.11 VerifythatthetransversecomponentoftheLaplacianof A is
(?
2
A)
t
=
bracketleftbigg
?
t
(?
t
· A
t
)+
?
2
A
t
?u
2
??
t
×?
t
× A
t
bracketrightbigg
.
VerifythatthelongitudinalcomponentoftheLaplacianof A is
?u
parenleftbig
?u ·?
2
A
parenrightbig
= ?u?
2
A
u
.
5.12 Verifytheidentities(B.82)–(B.93).
5.13 Verifytheidentities(B.94)–(B.98).
5.14 Derivetheformula(5.112)forthetransversecomponentoftheelectric?eld.
5.15 Thelongitudinal/transversedecompositioncanbeperformedbeginningwiththe
time-domainMaxwell’sequations. Showthatforahomogeneous,lossless,isotropicregion
described by permittivity epsilon1 and permeability μ the longitudinal ?elds obey the wave
equations
parenleftbigg
?
2
?u
2
?
1
v
2
?
2
?t
2
parenrightbigg
H
t
=?
t
?H
u
?u
?epsilon1?u ×?
t
?E
u
?t
+epsilon1
?J
mt
?t
? ?u ×
?J
t
?u
,
parenleftbigg
?
2
?u
2
?
1
v
2
?
2
?t
2
parenrightbigg
E
t
=?
t
?E
u
?u
+μ?u ×?
t
?H
u
?t
+ ?u ×
?J
mt
?u
+μ
?J
t
?t
.
Alsoshowthatthetransverse?eldsmaybefoundfromthelongitudinal?eldsbysolving
parenleftbigg
?
2
?
1
v
2
?
?t
2
parenrightbigg
E
u
=
1
epsilon1
?ρ
?u
+μ
? J
u
?t
+?
t
× J
mt
,
parenleftbigg
?
2
?
1
v
2
?
?t
2
parenrightbigg
H
u
=
1
μ
?ρ
m
?u
+epsilon1
? J
mu
?t
??
t
× J
t
.
Here v = 1/
√
μepsilon1.
5.16 Considerahomogeneous,lossless,isotropicregionofspacedescribedbypermittiv-
ity epsilon1 and permeability μ. Beginning with the source-free time-domain Maxwell equa-
tionsinrectangularcoordinates,choose z asthelongitudinaldirectionandshowthatthe
TE–TMdecompositionisgivenby
parenleftbigg
?
2
?z
2
?
1
v
2
?
2
?t
2
parenrightbigg
E
y
=
?
2
E
z
?z?y
+μ
?
2
H
z
?x?t
, (5.194)
parenleftbigg
?
2
?z
2
?
1
v
2
?
2
?t
2
parenrightbigg
E
x
=
?
2
E
z
?x?z
?μ
?
2
H
z
?y?t
, (5.195)
parenleftbigg
?
2
?z
2
?
1
v
2
?
2
?t
2
parenrightbigg
H
y
=?epsilon1
?
2
E
z
?x?t
+
?
2
H
z
?y?z
, (5.196)
parenleftbigg
?
2
?z
2
?
1
v
2
?
2
?t
2
parenrightbigg
H
x
= epsilon1
?
2
E
z
?y?t
+
?
2
H
z
?x?z
, (5.197)
with
parenleftbigg
?
2
?
1
v
2
?
2
?t
2
parenrightbigg
E
z
= 0, (5.198)
parenleftbigg
?
2
?
1
v
2
?
2
?t
2
parenrightbigg
H
z
= 0. (5.199)
Here v = 1/
√
μepsilon1.
5.17 ConsiderthecaseofTM?eldsinthetimedomain. Showthatforahomogeneous,
isotropic, lossless medium with permittivity epsilon1 and permeability μ the ?elds may be
derived from a single Hertzian potential Π
e
(r,t) = ?u
?
Pi1
e
(r,t) that satis?es the wave
equation
parenleftbigg
?
2
?
1
v
2
?
2
?t
2
parenrightbigg
Pi1
e
= 0
andthatthe?eldsare
E =?
t
?Pi1
e
?u
+ ?u
parenleftbigg
?
2
?u
2
?
1
v
2
?
2
?t
2
parenrightbigg
Pi1
e
, H =?epsilon1?u ×?
t
?Pi1
e
?t
.
5.18 ConsiderthecaseofTE?eldsinthetimedomain. Showthatforahomogeneous,
isotropic, lossless medium with permittivity epsilon1 and permeability μ the ?elds may be
derived from a single Hertzian potential Π
h
(r,t) = ?u
?
Pi1
h
(r,t) that satis?es the wave
equation
parenleftbigg
?
2
?
1
v
2
?
2
?t
2
parenrightbigg
Pi1
h
= 0
andthatthe?eldsare
E = μ?u ×?
t
?Pi1
h
?t
, H =?
t
?Pi1
h
?u
+ ?u
parenleftbigg
?
2
?u
2
?
1
v
2
?
2
?t
2
parenrightbigg
Pi1
h
.
5.19 Showthat in the time domain TEM ?elds may be written for a homogeneous,
isotropic,losslessmediumwithpermittivity epsilon1 andpermeability μ intermsofaHertzian
potentialΠ
e
= ?uPi1
e
thatsatis?es
?
2
t
Pi1
e
= 0
andthatthe?eldsare
E =?
t
?Pi1
e
?u
, H =?epsilon1?u ×?
t
?Pi1
e
?t
.
5.20 Showthat in the time domain TEM ?elds may be written for a homogeneous,
isotropic,losslessmediumwithpermittivity epsilon1 andpermeability μ intermsofaHertzian
potentialΠ
h
= ?uPi1
h
thatsatis?es
?
2
t
Pi1
h
= 0
andthatthe?eldsare
E = μ?u ×?
t
?Pi1
h
?t
, H =?
t
?Pi1
h
?u
.
5.21 ConsideraTEMplane-wave?eldoftheform
?
E = ?x
?
E
0
e
?jkz
,
?
H = ?y
?
E
0
η
e
?jkz
,
where k = ω
√
μepsilon1 and η =
√
μ/epsilon1. Showthat:
(a)
?
E maybeobtainedfrom
?
H usingtheequationsfora?eldthatisTE
y
;
(b)
?
H maybeobtainedfrom
?
E usingtheequationsfora?eldthatisTM
x
;
(c)
?
E and
?
H maybeobtainedfromthepotential
?
Π
h
= ?y(
?
E
0
/k
2
η)e
?jkz
;
(d)
?
E and
?
H maybeobtainedfromthepotential
?
Π
e
= ?x(
?
E
0
/k
2
)e
?jkz
;
(e)
?
E and
?
H maybeobtainedfromthepotential
?
Π
e
= ?z(j
?
E
0
x/k)e
?jkz
;
(f)
?
E and
?
H maybeobtainedfromthepotential
?
Π
h
= ?z(j
?
E
0
y/kη)e
?jkz
.
5.22 Prove the orthogonality relationships (5.149) and (5.150) for the longitudinal
?eldsinalosslesswaveguide. Hint: Substitute a =
ˇ
ψ
e
and b =
ˇ
ψ
h
intoGreen’ssecond
identity(B.30)andapplytheboundaryconditionsforTEandTMmodes.
5.23 Verifythewaveguideorthogonalityconditions(5.151)-(5.152)bysubstitutingthe
?eldexpressionsforarectangularwaveguide.
5.24 Showthatthetime-averagepowercarriedbyapropagatingTEmodeinalossless
waveguideisgivenby
P
av
=
1
2
ωμβk
2
c
integraldisplay
CS
ˇ
ψ
h
ˇ
ψ
?
h
dS.
5.25 Showthatthetime-averagestoredenergyperunitlengthforapropagatingTE
modeinalosslesswaveguideis
〈W
e
〉/l =〈W
m
〉/l =
epsilon1
4
(ωμ)
2
k
2
c
integraldisplay
CS
ˇ
ψ
h
ˇ
ψ
?
h
dS.
5.26 Considerawaveguideofcircularcross-sectionalignedonthez-axisand?lledwith
alosslessmaterialhavingpermittivity epsilon1 andpermeability μ. SolveforboththeTEand
TM?eldswithintheguide. Listthe?rsttenmodesinorderbycuto?frequency.
5.27 ConsiderapropagatingTMmodeinalosslessrectangularwaveguide. Showthat
thetime-averagepowercarriedbythepropagatingwaveis
P
av
nm
=
1
2
ωepsilon1β
nm
k
2
c
nm
|A
nm
|
2
ab
4
.
5.28 ConsiderapropagatingTEmodeinalosslessrectangularwaveguide. Showthat
thetime-averagepowercarriedbythepropagatingwaveis
P
av
nm
=
1
2
ωμβ
nm
k
2
c
nm
|B
nm
|
2
ab
4
.
5.29 Considerahomogeneous,losslessregionofspacecharacterizedbypermeabilityμ
andpermittivity epsilon1. Beginningwiththetime-domainMaxwellequations, showthatthe
θ and φ components of the electromagnetic ?elds can be written in terms of the radial
components. FromthisgivetheTE
r
–TM
r
?elddecomposition.
5.30 Considertheformulafortheradarcross-sectionofaPECsphere(5.193). Show
thatforthemonostaticcasetheRCSbecomes
σ =
λ
2
4π
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
∞
summationdisplay
n=1
(?1)
n
(2n + 1)
?
H
(2)prime
n
(ka)
?
H
(2)
n
(ka)
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
2
.
5.31 BeginningwiththemonostaticformulafortheRCSofaconductingspheregiven
inProblem5.30,usethesmall-argumentapproximationtothesphericalHankelfunctions
toshowthattheRCSisproportionalto λ
?4
when ka lessmuch 1.
5.32 BeginningwiththemonostaticformulafortheRCSofaconductingspheregiven
inProblem5.30,usethelarge-argumentapproximationtothesphericalHankelfunctions
toshowthattheRCSapproachestheinterceptionareaofthesphere, πa
2
,aska →∞.
5.33 Amaterialsphereofradius a haspermittivity epsilon1 andpermeability μ. Thesphere
iscenteredattheoriginandilluminatedbyaplanewavetravelinginthe z-directionwith
the?elds
?
E(r,ω)= ?x
?
E
0
(ω)e
?jkz
,
?
H(r,ω)= ?y
?
E
0
(ω)
η
e
?jkz
.
Findthe?eldsinternalandexternaltothesphere.