Electrical Engineering Textbook Series Richard C. Dorf, Series Editor University of California, Davis Forthcoming Titles Applied Vector Analysis Matiur Rahman and Issac Mulolani Optimal Control Systems Subbaram Naidu Continuous Signals and Systems with MATLAB Taan ElAli and Mohammad A. Karim Discrete Signals and Systems with MATLAB Taan ElAli Edward J. Rothwell Michigan State University East Lansing, Michigan Michael J. Cloud Lawrence Technological University Southfield, Michigan Boca Raton London New York Washington, D.C. CRC Press This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431, or visit our Web site at www.crcpress.com Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit our website at www.crcpress.com. ? 2001 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-1397-X Library of Congress Card Number 00-065158 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper Library of Congress Cataloging-in-Publication Data Rothwell, Edward J. Electromagnetics / Edward J. Rothwell, Michael J. Cloud. p. cm.—(Electrical engineering textbook series ; 2) Includes bibliographical references and index. ISBN 0-8493-1397-X (alk. paper) 1. Electromagnetic theory. I. Cloud, Michael J. II. Title. III. Series. QC670 .R693 2001 530.14 ′1—dc21 00-065158 CIP In memory of Catherine Rothwell Preface Thisbookisintendedasatextfora?rst-yeargraduatesequenceinengineeringelectro- magnetics.Ideallysuchasequenceprovidesatransitionperiodduringwhichastudent cansolidifyhisorherunderstandingoffundamentalconceptsbeforeproceedingtospe- cializedareasofresearch. Theassumedbackgroundofthereaderislimitedtostandardundergraduatetopics inphysicsandmathematics. Worthyofexplicitmentionarecomplexarithmetic,vec- toranalysis,ordinarydi?erentialequations,andcertaintopicsnormallycoveredina “signalsandsystems”course(e.g.,convolutionandtheFouriertransform).Furtheran- alyticaltools,suchascontourintegration,dyadicanalysis,andseparationofvariables, arecoveredinaself-containedmathematicalappendix. Theorganizationofthebookisinsixchapters. InChapter1wepresentessential backgroundonthe?eldconcept,aswellasinformationrelatedspeci?callytotheelectro- magnetic?eldanditssources.Chapter2isconcernedwithapresentationofMaxwell’s theoryofelectromagnetism.HereattentionisgiventoseveralusefulformsofMaxwell’s equations,thenatureofthefour?eldquantitiesandofthepostulateingeneral,some fundamentaltheorems,andthewavenatureofthetime-varying?eld.Theelectrostatic andmagnetostaticcasesaretreatedinChapter3.InChapter4wecovertherepresenta- tionofthe?eldinthefrequencydomains:bothtemporalandspatial.Herethebehavior ofcommonengineeringmaterialsisalsogivensomeattention. Theuseofpotential functionsisdiscussedinChapter5,alongwithother?elddecompositionsincludingthe solenoidal–lamellar,transverse–longitudinal,andTE–TMtypes. Finally,inChapter6 wepresentthepowerfulintegralsolutiontoMaxwell’sequationsbythemethodofStrat- tonandChu.Amainmathematicalappendixneartheendofthebookcontainsbriefbut su?cienttreatmentsofFourieranalysis,vectortransporttheorems,complex-planeinte- gration,dyadicanalysis,andboundaryvalueproblems. Severalsubsidiaryappendices provideusefultablesofidentities,transforms,andsoon. Wewouldliketoexpressourdeepgratitudetothosepersonswhocontributedtothe developmentofthebook.Thereciprocity-basedderivationoftheStratton–Chuformula wasprovidedbyProf.DennisNyquist, aswasthematerialonwave re?ectionfrom multiplelayers.ThegroundworkforourdiscussionoftheKronig–Kramersrelationswas providedbyMichaelHavrilla,andmaterialonthetime-domainre?ectioncoe?cientwas developedbyJungwookSuk. WeowethankstoProf.LeoKempel,Dr.DavidInfante, andDr.AhmetKizilayforcarefullyreadinglargeportionsofthemanuscriptduringits preparation,andtoChristopherColemanforhelpingtopreparethe?gures. Weare indebtedtoDr.JohnE.Rossforkindlypermittingustoemployoneofhiscomputer programsforscatteringfromasphereandanotherfornumericalFouriertransformation. Helpfulcommentsandsuggestionsonthe?gureswereprovidedbyBethLannon–Cloud. ThankstoDr.C.L.TondoofT&TTechworks,Inc.,forassistancewiththeLaTeX macrosthatwereresponsibleforthelayoutofthebook.Finally,wewouldliketothank thesta?membersofCRCPress—EvelynMeany,SaraSeltzer,ElenaMeyers,Helena Redshaw,JonathanPennell,JoetteLynch,andNoraKonopka—fortheirguidanceand support. Contents Preface 1Introductoryconcepts 1.1Notation,conventions,andsymbology 1.2The?eldconceptofelectromagnetics 1.2.1Historicalperspective 1.2.2Formalizationof?eldtheory 1.3Thesourcesoftheelectromagnetic?eld 1.3.1Macroscopicelectromagnetics 1.3.2Impressedvs.secondarysources 1.3.3Surfaceandlinesourcedensities 1.3.4Chargeconservation 1.3.5Magneticcharge 1.4Problems 2Maxwell’stheoryofelectromagnetism 2.1Thepostulate 2.1.1TheMaxwell–Minkowskiequations 2.1.2Connectiontomechanics 2.2Thewell-posednatureofthepostulate 2.2.1UniquenessofsolutionstoMaxwell’sequations 2.2.2Constitutiverelations 2.3Maxwell’sequationsinmovingframes 2.3.1FieldconversionsunderGalileantransformation 2.3.2FieldconversionsunderLorentztransformation 2.4TheMaxwell–Bo?equations 2.5Large-scaleformofMaxwell’sequations 2.5.1Surfacemovingwithconstantvelocity 2.5.2Moving,deformingsurfaces 2.5.3Large-scaleformoftheBo?equations 2.6Thenatureofthefour?eldquantities 2.7Maxwell’sequationswithmagneticsources 2.8Boundary(jump)conditions 2.8.1Boundaryconditionsacrossastationary,thinsourcelayer 2.8.2Boundaryconditionsacrossastationarylayerof?elddiscontinuity 2.8.3Boundaryconditionsatthesurfaceofaperfectconductor 2.8.4Boundaryconditionsacrossastationarylayerof?elddiscontinuityusing equivalentsources 2.8.5Boundaryconditionsacrossamovinglayerof?elddiscontinuity 2.9Fundamentaltheorems 2.9.1Linearity 2.9.2Duality 2.9.3Reciprocity 2.9.4Similitude 2.9.5Conservationtheorems 2.10Thewavenatureoftheelectromagnetic?eld 2.10.1Electromagneticwaves 2.10.2Waveequationforbianisotropicmaterials 2.10.3Waveequationinaconductingmedium 2.10.4Scalarwaveequationforaconductingmedium 2.10.5FieldsdeterminedbyMaxwell’sequationsvs.?eldsdeterminedbythe waveequation 2.10.6Transientuniformplanewavesinaconductingmedium 2.10.7Propagationofcylindricalwavesinalosslessmedium 2.10.8Propagationofsphericalwavesinalosslessmedium 2.10.9Nonradiatingsources 2.11Problems 3Thestaticelectromagnetic?eld 3.1Static?eldsandsteadycurrents 3.1.1Decouplingoftheelectricandmagnetic?elds 3.1.2Static?eldequilibriumandconductors 3.1.3Steadycurrent 3.2Electrostatics 3.2.1Theelectrostaticpotentialandwork 3.2.2Boundaryconditions 3.2.3Uniquenessoftheelectrostatic?eld 3.2.4Poisson’sandLaplace’sequations 3.2.5Forceandenergy 3.2.6Multipoleexpansion 3.2.7Fieldproducedbyapermanentlypolarizedbody 3.2.8Potentialofadipolelayer 3.2.9Behaviorofelectricchargedensitynearaconductingedge 3.2.10SolutiontoLaplace’sequationforbodiesimmersedinanimpressed?eld 3.3Magnetostatics 3.3.1Themagneticvectorpotential 3.3.2Multipoleexpansion 3.3.3Boundaryconditionsforthemagnetostatic?eld 3.3.4Uniquenessofthemagnetostatic?eld 3.3.5Integralsolutionforthevectorpotential 3.3.6Forceandenergy 3.3.7Magnetic?eldofapermanentlymagnetizedbody 3.3.8Bodiesimmersedinanimpressedmagnetic?eld:magnetostaticshielding 3.4Static?eldtheorems 3.4.1Meanvaluetheoremofelectrostatics 3.4.2Earnshaw’stheorem 3.4.3Thomson’stheorem 3.4.4Green’sreciprocationtheorem 3.5Problems 4Temporalandspatialfrequencydomainrepresentation 4.1Interpretationofthetemporaltransform 4.2Thefrequency-domainMaxwellequations 4.3Boundaryconditionsonthefrequency-domain?elds 4.4TheconstitutiveandKronig–Kramersrelations 4.4.1Thecomplexpermittivity 4.4.2Highandlowfrequencybehaviorofconstitutiveparameters 4.4.3TheKronig–Kramersrelations 4.5Dissipatedandstoredenergyinadispersivemedium 4.5.1Dissipationinadispersivematerial 4.5.2Energystoredinadispersivematerial 4.5.3Theenergytheorem 4.6Somesimplemodelsforconstitutiveparameters 4.6.1Complexpermittivityofanon-magnetizedplasma 4.6.2Complexdyadicpermittivityofamagnetizedplasma 4.6.3Simplemodelsofdielectrics 4.6.4Permittivityandconductivityofaconductor 4.6.5Permeabilitydyadicofaferrite 4.7Monochromatic?eldsandthephasordomain 4.7.1Thetime-harmonicEM?eldsandconstitutiverelations 4.7.2Thephasor?eldsandMaxwell’sequations 4.7.3Boundaryconditionsonthephasor?elds 4.8Poynting’stheoremfortime-harmonic?elds 4.8.1GeneralformofPoynting’stheorem 4.8.2Poynting’stheoremfornondispersivematerials 4.8.3Lossless,lossy,andactivemedia 4.9ThecomplexPoyntingtheorem 4.9.1Boundaryconditionforthetime-averagePoyntingvector 4.10Fundamentaltheoremsfortime-harmonic?elds 4.10.1Uniqueness 4.10.2Reciprocityrevisited 4.10.3Duality 4.11Thewavenatureofthetime-harmonicEM?eld 4.11.1Thefrequency-domainwaveequation 4.11.2Fieldrelationshipsandthewaveequationfortwo-dimensional?elds 4.11.3Planewavesinahomogeneous,isotropic,lossymaterial 4.11.4Monochromaticplanewavesinalossymedium 4.11.5Planewavesinlayeredmedia 4.11.6Plane-wavepropagationinananisotropicferritemedium 4.11.7Propagationofcylindricalwaves 4.11.8Propagationofsphericalwavesinaconductingmedium 4.11.9Nonradiatingsources 4.12Interpretationofthespatialtransform 4.13SpatialFourierdecomposition 4.13.1BoundaryvalueproblemsusingthespatialFourierrepresentation 4.14Periodic?eldsandFloquet’stheorem 4.14.1Floquet’stheorem 4.14.2Examplesofperiodicsystems 4.15Problems 5FielddecompositionsandtheEMpotentials 5.1Spatialsymmetrydecompositions 5.1.1Planar?eldsymmetry 5.2Solenoidal–lamellardecomposition 5.2.1Solutionforpotentialsinanunboundedmedium:theretardedpotentials 5.2.2Solutionforpotentialfunctionsinaboundedmedium 5.3Transverse–longitudinaldecomposition 5.3.1Transverse–longitudinaldecompositionintermsof?elds 5.4TE–TMdecomposition 5.4.1TE–TMdecompositionintermsof?elds 5.4.2TE–TMdecompositionintermsofHertzianpotentials 5.4.3Application:hollow-pipewaveguides 5.4.4TE–TMdecompositioninsphericalcoordinates 5.5Problems 6IntegralsolutionsofMaxwell’sequations 6.1VectorKircho?solution 6.1.1TheStratton–Chufor mu la 6.1.2TheSommerfeldradiationcondition 6.1.3Fieldsintheexcludedregion:theextinctiontheorem 6.2Fieldsinanunboundedmedium 6.2.1Thefar-zone?eldsproducedbysourcesinunboundedspace 6.3Fieldsinabounded,source-freeregion 6.3.1ThevectorHuygensprinciple 6.3.2TheFranzformula 6.3.3Love’sequivalenceprinciple 6.3.4TheSchelkuno?equivalenceprinciple 6.3.5Far-zone?eldsproducedbyequivalentsources 6.4Problems AMathematicalappendix A.1TheFouriertransform A.2Vectortransporttheorems A.3Dyadicanalysis A.4Boundaryvalueproblems BUsefulidentities CSomeFouriertransformpairs DCoordinatesystems EPropertiesofspecialfunctions E.1Besselfunctions E.2Legendrefunctions E.3Sphericalharmonics References