Numerical Methods for PDEs
Integral Equation Methods, Lecture 4
Formulating Boundary Integral Equations
Notes by Suvranu De and J. White
April 30, 2003
1 Outline
Slide 1
Laplace Problems
Exterior Radiation Condition
Green’s function
Ansatz or Indirect Approach
Single and Double Layer Potentials
First and Second Kind Equations
Greens Theorem Approach
First and Second Kind Equations
23-DLaplaceProblems
2.1 Di?erential Equation
Slide 2
Laplace’s equation in 3-D
?
2
u(vectorx)=
?
2
u(vectorx)
?x
2
+
?
2
u(vectorx)
?y
2
+
?
2
u(vectorx)
?z
2
=0
where
vectorx = x,y,z ∈ ?
and ? is bounded by Γ.
2.2 Boundary Conditions
Slide 3
Dirichlet Condition
u(vectorx)=u
Γ
(vectorx) vectorx ∈ Γ
OR
Neumann Condition
?u(vectorx)
?n
vectorx
=
?u
Γ
(vectorx)
?n
vectorx
vectorx ∈ Γ
PLUS
A Radiation Condition
2.2.1 Radiation Condition
Slide 4
The Radiation Condition
lim
bardblvectorxbardbl→∞
u(vectorx) → 0
not specific enough! Need
lim
bardblvectorxbardbl→∞
u(vectorx) → O(bardblvectorxbardbl
?1
)
1
OR
lim
bardblvectorxbardbl→∞
u(vectorx) → O(bardblvectorxbardbl
?2
)
2.3 Greens Function
Slide 5
Laplace’s Equation Greens Function
?
2
G(vectorx)=4πδ(vectorx)
δ(vectorx) ≡ impulse in 3-D
Defined by its behavior in an integral
integraldisplay
δ(vectorx
prime
)f(vectorx
prime
)d?
prime
= f(0)
Not too hard to show
G(vectorx)=
1
bardblvectorxbardbl
3 Ansatz (Indirect) Formulations
3.1 Single Layer Potential
Slide 6
Consider
u(vectorx)=
integraldisplay
Γ
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
u(vectorx) automatically satisfies ?
2
u =0on ?.
Must now enforce boundary conditions
3.1.1 Boundary Conditions
Slide 7
Dirichlet Problem
u
Γ
(vectorx)=
integraldisplay
Γ
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
vectorx ∈ Γ
Neumann Problem
?u
Γ
(vectorx)
?n
vectorx
=
?
?n
vectorx
integraldisplay
Γ
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
vectorx ∈ Γ
2
3.1.2 Care Evaluating Integrals
Slide 8
On a smooth surface:
lim
x→Γ
?
?n
vectorx
integraldisplay
Γ
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
=2πσ(vectorx
prime
)+
integraldisplay
Γ
?
?n
vectorx
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
3.1.3 Neumann Problem 2nd Kind!
Slide 9
?u
Γ
(vectorx)
?n
vectorx
=2πσ(vectorx
prime
)+
integraldisplay
Γ
?
?n
vectorx
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
3.1.4 Radiation Condition
Slide 10
lim
bardblvectorxbardbl→∞
u(vectorx)=
integraldisplay
Γ
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
→ O(bardblvectorxbardbl
?1
)
Unless
integraldisplay
Γ
σ(vectorx
prime
)dΓ
prime
=0
Then
lim
bardblvectorxbardbl→∞
u(vectorx) → O(bardblvectorxbardbl
?2
)
3.2 Double Layer Potential
Slide 11
Consider
u(vectorx)=
integraldisplay
Γ
?
?n
vectorx
prime
1
bardblvectorx?vectorx
prime
bardbl
μ(vectorx
prime
)dΓ
prime
u(vectorx) automatically satisfies ?
2
u =0on ?.
Must now enforce boundary conditions
3
3.2.1 Boundary Conditions
Slide 12
Dirichlet Problem
u
Γ
(vectorx)=
integraldisplay
Γ
?
?n
vectorx
prime
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
vectorx ∈ Γ
Neumann Problem
?u
Γ
(vectorx)
?n
vectorx
=
?
?n
vectorx
integraldisplay
Γ
?
?n
vectorx
prime
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
vectorx ∈ Γ
Neumann Problem generates Hypersingular Integral
3.2.2 Dirichlet Problem 2nd Kind!
Slide 13
?u
Γ
(vectorx)
?n
vectorx
=2πσ(vectorx
prime
)+
integraldisplay
Γ
?
?n
vectorx
prime
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
3.2.3 Radiation Condition
Slide 14
lim
bardblvectorxbardbl→∞
u(vectorx)=
integraldisplay
Γ
?
?n
vectorx
prime
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
→ O(bardblvectorxbardbl
?2
)
Add Extra Term to slow decay
u(vectorx)=
integraldisplay
Γ
?
?n
vectorx
prime
1
bardblvectorx?vectorx
prime
bardbl
σ(vectorx
prime
)dΓ
prime
+ αG(vectorx
?
) vectorx
?
owner ?
4 Green’s Theorem Approach
4.1 Green’s Second Identity
Slide 15
integraldisplay
?
bracketleftbig
u?
2
w?w?
2
u
bracketrightbig
d?=
integraldisplay
Γ
bracketleftbigg
w
?u
?n
?u
?w
?n
dΓ
bracketrightbigg
Now let w =
1
bardblvectorx?vectorx
prime
bardbl
2πu(vectorx)=
integraldisplay
Γ
bracketleftbigg
1
bardblvectorx?vectorx
prime
bardbl
?u
?n
?u
?
?n
vectorx
prime
1
bardblvectorx?vectorx
prime
bardbl
dΓ
bracketrightbigg
Easy to implement any boundary conditions!
4