SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
SMA-HPC ?2002 MIT
3-D Laplace’s
Equation
First Kind Issues
z
Spike Function=1 on a disk
22
0
1 xyRσ = +≤
2
00
0
1
2)
1
(
i
R
disk c
dS rd R
xx
d
r
x r
π
θ πσ =
′
?
′′
=
∫∫∫
0
2
()1
disk
dS Rx πσ
′′
=
∫
Singular Kernel
Case
Smooth Kernel
Case
Smooth kernel 0 faster as 0, more singularR→→
22
0
0 xyRσ = +>
The singular Kernel Saves
the day
SMA-HPC ?2002 MIT
Convergence Analysis
3-D Laplace’s
Equation
Quick review of FEM
Convergence for Laplace
2
ufin?= ?
Partial Differential Equation form
0uon=Γ
is the volume domain?
is the problem surfaceΓ
“Nearly” Equivalent weak form
Introduced an abstract notation for the equation u must satisfy
( )
1
for
(,) )
ll
(
a uvdx fvdx v H
auv lv
??
?? = ∈ ?
∫∫
1424314243
(,) ()auv lv=
( )
1
for all vH∈ ?
SMA-HPC ?2002 MIT
Convergence Analysis
3-D Laplace’s
Equation
Quick review of FEM
Convergence for Laplace
is a weighted sum of basis funct o ins
n
u?
The basis functions define a space
1
Introduce an approximate soluti n o
n
n
ii
i
u α?
=
=
∑
1
?
2
?
3
?
5
?
4
?
6
?
“Hat” basis functions Piecewise linear Space
Example
1
|for sme 's
n
nnii i
i
XvXvβ? β
=
??
=∈ =
??
??
∑
SMA-HPC ?2002 MIT
Convergence Analysis
3-D Laplace’s
Equation
Quick review of FEM
Convergence for Laplace
Using the norm properties, it is possible to show
Key Idea
(,) ()
n
ii
au lIf ??=
min
Pr
nn
nn
wX
uu uw
ojectionSolution
Error
E
Then
rror
∈
?= ?
1424314243
U is restricted to be 0 at 0 and1!!
{}
12
,,.for all .,
in
? ?? ?∈
()
1
0
defines a norm on(, ( ) ),au au uHuu? ≡
SMA-HPC ?2002 MIT
Convergence Analysis
3-D Laplace’s
Equation
Quick review of FEM
Convergence for Laplace
n
u
u
The question is only
How well can you fit u with a member of X
n
But you must measure the error in the ||| ||| norm
1
na
n
error
uu u u O
n
??
?≤?Π=
??
??
14243
For piecewise linear:
SMA-HPC ?2002 MIT
Convergence Analysis
3-D Laplace’s
Equation
() ()
1
Must exclude ' where 0xs xdS
xx
σσ
′ ′
=
′
?
∫
( )
for all vH∈ Γ
( )
The difficulty is defining with right propertiesH Γ
() ()
()
() ()
()
1
,
vx xdSdS vx xdS
xx
lvav
σ
σ
ΓΓ
′′
=Ψ
′
?
∫∫ ∫
1442443144442444443
“Weak” Form for the integral equation
.
( )
is a fractional Sobolev SpaceH Γ
We won’t say more about this
Applying FEM approach to
first kind integral equations
SMA-HPC ?2002 MIT
Convergence Analysis
3-D Laplace’s
Equation
Using the norm properties, it is possible to show
Use FEM key Idea
(,) ()
n
ii
alIf σ? ?=
min
Pr
nn
nn
wX
w
ojection
Solution
Error
E
Then
rror
σσ σ
∈
?= ?
1424314243
{}
12
,,.for all .,
in
? ?? ?∈
( )
defines a norm on (,) (,)aaHσσ σσ σΓ =
Applying FEM approach to
first kind integral equations
()
{
1
Basis Functions
n
n
ii
i
xσα?
=
=
∑
1
|for sme 's
n
nnii i
i
XvXvβ? β
=
? ?
=∈ =
? ?
??
∑
SMA-HPC ?2002 MIT
MEMS Performance Depends on Air Damping of
Complicated 3-D Structures
Bosch angular rate sensor
ADXL76 accelerometer
TI 3x3 mirror array
Resonator
Lucent micromirror
SMA-HPC ?2002 MIT
Velocity integral equation for Stokes flow
dsxxGxfxu
o
ij
s
i
o
j
)()(
8
1
)( ??=
∫
πμ
where
;
??
3
R
xx
R
G
jiij
ij
+=
δ
ioii
o
xxxxxR ?=?=
?
;
Drag In MEMS is Incompressible Stokes
SMA-HPC ?2002 MIT
Null Space of the Stokes Equation
?
?
?
=??
?+??=
0
0
2
u
uP
r
r
μ
1
() () ( )
8
oo
jiij
s
ux fxGxxds
πμ
=? ?
∫
r rrr
Constant pressure a singular mode, generates zero velocity.
If constant, 0;
()()0
ii i
o
ij i
s
PufPn
Gxxnxds
= ==?
?? =
∫
rr r
Differential Form of Stokes,
independent of absolute
pressure
Integral Form of Stokes,
constant pressure must not
change velocity
SMA-HPC ?2002 MIT
Null Space of the Singular BEM Operators
? Stokes Integral Operator has a null space
– The solution is not uniquely defined.
– A pressure boundary condition is needed.
? Null space must be removed
– so as to avoid numerical error.
? Two-step method:
1. Modify GMRES to calculate a null-space-free solution.
2. Use pressure condition to adjust solution
ε+Χ+= NFF
solutioncorrect
SMA-HPC ?2002 MIT
Krylov Subspace Iterative methods
Determine the Krylov Subspace
00
rbAx=?
Select Solution from the Krylov Subspace
{}
10 0 0 0
, , ,...,
kkk k
xxyyspan r Ar A r
+
=+ ∈
k
GMRES picks a residual-minimi ing yz.
Start with Ax b=
Linear System
{}
00 0
Krylov Subspace , ,...,
k
span r Ar A r≡
SMA-HPC ?2002 MIT
Modify Krylov-Subspace Method to Calculate
Null-Space-Free Solution
? The discretized Stokes equation
? The Krylov subspace is
? If then
Remove Null(G) from every Krylov subspace vector
{ }
234
,, , , ,spanUGUGUGUGUκ = LL
()F FNulG
⊥
=⊥()Null Gκ ⊥
GF U=
SMA-HPC ?2002 MIT
Computation finished in 10 minutes
FastStokes Simulation Result
Drag Force (nN) Q
Total Bottom Top Inter-
finger
End and
others
Couette Model 123.7 108.9 14.8 50.1
1-D Stokes 137.1 108.9 13.5 14.8 45.20
FastStokes 223.7 123.0
(55%)
26.8
(12%)
73.8
(33%)
27.7
Measurement 27
In-plane motion, 3-D steady incompressible Stokes, 16k panels
SMA-HPC ?2002 MIT
Micromirror Q-factor
Q Mode
Simulated Measured
Error
(%)
Mirror+Gimbal 2.36 2.31 2.16 Mirror
1
Mirror 3.14 3.45 8.99
Mirror+Gimbal 4.69 4.27 9.84Mirrror
2
Mirror 10.16 10.63 4.42
Mirror
Gimbal
Rotate
Summary
Reminder about 2
nd
Kind theory
Convergence Theory
Fredholm Alternative for 2
nd
Kind
Finite Dimensional Null Space
First Kind Convergence Theory, sort of
Connection to the FEM results
MEMS Drag Example