1
Solutions
1.
a. First determine the eigenvalues:
det ??
?
??
?-1 - ¦Ë 2
2 2 - ¦Ë = 0
(-1 - ¦Ë)(2 - ¦Ë) - 22 = 0
-2 + ¦Ë - 2¦Ë + ¦Ë2 - 4 = 0
¦Ë2 - ¦Ë - 6 = 0
(¦Ë - 3)(¦Ë + 2) = 0
¦Ë = 3 or ¦Ë = -2.
Next, determine the eigenvectors. First, the eigenvector associated with eigenvalue -2:
??
?
??
?-1 2
2 2 ??
?
??
?C11
C21 = -2 ??
?
??
?C11
C21
-C11 + 2C21 = -2C11
C11 = -2C21 (Note: The second row offers no new information, e.g. 2C11
+ 2C21 = -2C21)
C112 + C212 = 1 (from normalization)
(-2C21)2 + C212 = 1
4C212 + C212 = 1
5C212 = 1
C212 = 0.2
C21 = 0.2 , and therefore C11 = -2 0.2 .
2
For the eigenvector associated with eigenvalue 3:
??
?
??
?-1 2
2 2 ??
?
??
?C12
C22 = 3 ??
?
??
?C12
C22
-C12 + 2C22 = 3C12
-4C12 = -2C22
C12 = 0.5C22 (again the second row offers no new information)
C122 + C222 = 1 (from normalization)
(0.5C22)2 + C222 = 1
0.25C222 + C222 = 1
1.25C222 = 1
C222 = 0.8
C22 = 0.8 = 2 0.2 , and therefore C12 = 0.2 .
Therefore the eigenvector matrix becomes:
??
?
??
?-2 0.2 0.2
0.2 2 0.2
b. First determine the eigenvalues:
det
??
??
??
??-2 - ¦Ë 0 0 0 -1 - ¦Ë 2
0 2 2 - ¦Ë = 0
det [ ]-2 - ¦Ë det ??
?
??
?-1 - ¦Ë 2
2 2 - ¦Ë = 0
From 1a, the solutions then become -2, -2, and 3. Next, determine the eigenvectors. First
the eigenvector associated with eigenvalue 3 (the third root):
3
??
??
??
??-2 0 0 0 -1 2
0 2 2 ??
??
??
??C11C21
C31 = 3 ??
??
??
??C11C21
C31
-2 C13 = 3C13 (row one)
C13 = 0
-C23 + 2C33 = 3C23 (row two)
2C33 = 4C23
C33 = 2C23 (again the third row offers no new information)
C132 + C232 + C332 = 1 (from normalization)
0 + C232 + (2C23)2 = 1
5C232 = 1
C23 = 0.2 , and therefore C33 = 2 0.2 .
Next, find the pair of eigenvectors associated with the degenerate eigenvalue of -2. First,
root one eigenvector one:
-2C11 = -2C11 (no new information from row one)
-C21 + 2C31 = -2C21 (row two)
C21 = -2C31 (again the third row offers no new information)
C112 + C212 + C312 = 1 (from normalization)
C112 + (-2C31)2 + C312 = 1
C112 + 5C312 = 1
C11 =
1 - 5C312 (Note: There are now two equations with three unknowns.)
Second, root two eigenvector two:
4
-2C12 = -2C12 (no new information from row one)
-C22 + 2C32 = -2C22 (row two)
C22 = -2C32 (again the third row offers no new information)
C122 + C222 + C322 = 1 (from normalization)
C122 + (-2C32)2 + C322 = 1
C122 + 5C322 = 1
C12 = (1- 5C322)1/2 (Note: again, two equations in three unknowns)
C11C12 + C21C22 + C31C32 = 0 (from orthogonalization)
Now there are five equations with six unknowns.
Arbitrarily choose C11 = 0
(whenever there are degenerate eigenvalues, there are not unique eigenvectors because
the degenerate eigenvectors span a 2- or more- dimensional space, not two unique
directions. One always is then forced to choose one of the coefficients and then determine
all the rest; different choices lead to different final eigenvectors but to identical spaces
spanned by these eigenvectors).
C11 = 0 = 1 - 5C312
5C312 = 1
C31 = 0.2
C21 = -2 0.2
C11C12 + C21C22 + C31C32 = 0 (from orthogonalization)
0 + -2 0.2(-2C32) + 0.2 C32 = 0
5C32 = 0
5
C32 = 0, C22 = 0, and C12 = 1
Therefore the eigenvector matrix becomes:
??
??
??
??0 1 0-2 0.2 0 0.2
0.2 0 2 0.2
2.
a. K.E. = mv
2
2 = ??
?
??
?m
m
mv2
2 =
(mv)2
2m =
p2
2m
K.E. = 12m(px2 + py2 + pz2)
K.E. = 12m??
?
??
?
??
?
??
?h?
i
?
?x
2 +
??
?
??
?h?
i
?
?y
2 +
??
?
??
?h?
i
?
?z
2
K.E. = -h
?2
2m??
?
??
??2
?x2 +
?2
?y2 +
?2
?z2
b. p = mv = ipx + jpy + kpz
p = ??
?
??
?
i??
?
??
?h?
i
?
?x + j??
?
??
?h?
i
?
?y + k??
?
??
?h?
i
?
?z
where i, j, and k are unit vectors along the x, y, and z axes.
c. Ly = zpx - xpz
Ly = z ??
?
??
?h?
i
?
?x - x ??
?
??
?h?
i
?
?z
6
3.
First derive the general formulas for ??x , ??y , ??z in terms of r,¦È, and ¦Õ, and ??r , ??¦È ,
and ??¦Õ in terms of x,y, and z. The general relationships are as follows:
x = r Sin¦È Cos¦Õ r2 = x2 + y2 + z2
y = r Sin¦È Sin¦Õ sin¦È = x
2 + y2
x2 + y2 + z2
z = r Cos¦È cos¦È = z
x2 + y2 + z2
tan¦Õ = yx
First ??x , ??y , and ??z from the chain rule:
?
?x = ??
?
??
??r
?x y,z
?
?r + ??
?
??
??¦È
?x y,z
?
?¦È + ??
?
??
??¦Õ
?x y,z
?
?¦Õ ,
?
?y = ??
?
??
??r
?y x,z
?
?r + ??
?
??
??¦È
?y x,z
?
?¦È + ??
?
??
??¦Õ
?y x,z
?
?¦Õ ,
?
?z = ??
?
??
??r
?z x,y
?
?r + ??
?
??
??¦È
?z x,y
?
?¦È + ??
?
??
??¦Õ
?z x,y
?
?¦Õ .
Evaluation of the many "coefficients" gives the following:
??
?
??
??r
?x y,z = Sin¦È Cos¦Õ , ??
?
??
??¦È
?x y,z =
Cos¦È Cos¦Õ
r , ??
?
??
??¦Õ
?x y,z = -
Sin¦Õ
r Sin¦È ,
??
?
??
??r
?y x,z = Sin¦È Sin¦Õ , ??
?
??
??¦È
?y x,z =
Cos¦È Sin¦Õ
r , ??
?
??
??¦Õ
?y x,z =
Cos¦Õ
r Sin¦È ,
??
?
??
??r
?z x,y = Cos¦È , ??
?
??
??¦È
?z x,y = -
Sin¦È
r , and ??
?
??
??¦Õ
?z x,y = 0 .
7
Upon substitution of these "coefficients":
?
?x = Sin¦È Cos¦Õ
?
?r +
Cos¦È Cos¦Õ
r
?
?¦È -
Sin¦Õ
r Sin¦È
?
?¦Õ ,
?
?y = Sin¦È Sin¦Õ
?
?r +
Cos¦È Sin¦Õ
r
?
?¦È +
Cos¦Õ
r Sin¦È
?
?¦Õ , and
?
?z = Cos¦È
?
?r -
Sin¦È
r
?
?¦È + 0
?
?¦Õ .
Next ??r , ??¦È , and ??¦Õ from the chain rule:
?
?r = ??
?
??
??x
?r ¦È,¦Õ
?
?x + ??
?
??
??y
?r ¦È,¦Õ
?
?y + ??
?
??
??z
?r ¦È,¦Õ
?
?z ,
?
?¦È = ??
?
??
??x
?¦È r,¦Õ
?
?x + ??
?
??
??y
?¦È r,¦Õ
?
?y + ??
?
??
??z
?¦È r,¦Õ
?
?z , and
?
?¦Õ = ??
?
??
??x
?¦Õ r,¦È
?
?x + ??
?
??
??y
?¦Õ r,¦È
?
?y + ??
?
??
??z
?¦Õ r,¦È
?
?z .
Again evaluation of the the many "coefficients" results in:
??
?
??
??x
?r ¦È,¦Õ =
x
x2 + y2 + z2
, ??
?
??
??y
?r ¦È,¦Õ =
y
x2 + y2 + z2
,
??
?
??
??z
?r ¦È,¦Õ =
z
x2 + y2 + z2
, ??
?
??
??x
?¦È r,¦Õ =
x z
x2 + y2
, ??
?
??
??y
?¦È r,¦Õ =
y z
x2 + y2
,
??
?
??
??z
?¦È r,¦Õ = - x2 + y2 , ??
?
??
??x
?¦Õ r,¦È = -y , ??
?
??
??y
?¦Õ r,¦È = x , and ??
?
??
??z
?¦Õ r,¦È = 0
Upon substitution of these "coefficients":
?
?r =
x
x2 + y2 + z2
??x + y
x2 + y2 + z2
??y
+ z
x2 + y2 + z2
??z
8
?
?¦È =
x z
x2 + y2
??x + y z
x2 + y2
??y - x2 + y2 ??z
?
?¦Õ = -y
?
?x + x
?
?y + 0
?
?z .
Note, these many "coefficients" are the elements which make up the Jacobian matrix used
whenever one wishes to transform a function from one coordinate representation to
another. One very familiar result should be in transforming the volume element dxdydz
to r2Sin¦Èdrd¦Èd¦Õ. For example:
??f(x,y,z)dxdydz =
?
ÿ
ÿ
?
f(x(r,¦È,¦Õ),y(r,¦È,¦Õ),z(r,¦È,¦Õ))
?
?
?
?
?
?
?
???? ????x?r
¦È¦Õ ?
?? ????x?¦È
r¦Õ ?
?? ????x?¦Õ
r¦È
??
?
??
??y
?r ¦È¦Õ ??
?
??
??y
?¦È r¦Õ ??
?
??
??y
?¦Õ r¦È
??
?
??
??z
?r ¦È¦Õ ??
?
??
??z
?¦È r¦Õ ??
?
??
??z
?¦Õ r¦È
drd¦Èd¦Õ
a. Lx = h
?
i ???
??
??
??
?
y ??z - z ??y
Lx = h
?
i ??
?
??
?
rSin¦ÈSin¦Õ ??
?
??
?
Cos¦È ??r - Sin¦Èr ??¦È
-h
?
i ??
?
??
?
rCos¦È ??
?
??
?
Sin¦ÈSin¦Õ ??r + Cos¦ÈSin¦Õr ??¦È + Cos¦ÕrSin¦È ??¦Õ
Lx = - h
?
i ??
?
??
?
Sin¦Õ ??¦È + Cot¦ÈCos¦Õ ??¦Õ
b. Lz = h
?
i
?
?¦Õ = - ih?
?
?¦Õ
Lz = h
?
i ??
?
??
? -y ?
?x + x
?
?y
9
4.
B dB/dx d2B/dx2
i. 4x4 - 12x2 + 3 16x3 - 24x 48x2 - 24
ii. 5x4 20x3 60x2
iii. e3x + e-3x 3(e3x - e-3x) 9(e3x + e-3x)
iv. x2 - 4x + 2 2x - 4 2
v. 4x3 - 3x 12x2 - 3 24x
B(v.) is an eigenfunction of A(i.):
(1-x2) d
2
dx2 - x
d
dx B(v.) =
(1-x2) (24x) - x (12x2 - 3)
24x - 24x3 - 12x3 + 3x
-36x3 + 27x
-9(4x3 -3x) (eigenvalue is -9)
B(iii.) is an eigenfunction of A(ii.):
d2
dx2 B(iii.) =
9(e3x + e-3x) (eigenvalue is 9)
B(ii.) is an eigenfunction of A(iii.):
x ddx B(ii.) =
x (20x3)
10
20x4
4(5x4) (eigenvalue is 4)
B(i.) is an eigenfunction of A(vi.):
d2
dx2 - 2x
d
dx B(i) =
(48x2 - 24) - 2x (16x3 - 24x)
48x2 - 24 - 32x4 + 48x2
-32x4 + 96x2 - 24
-8(4x4 - 12x2 + 3) (eigenvalue is -8)
B(iv.) is an eigenfunction of A(v.):
x d
2
dx2 + (1-x)
d
dx B(iv.) =
x (2) + (1-x) (2x - 4)
2x + 2x - 4 - 2x2 + 4x
-2x2 + 8x - 4
-2(x2 - 4x +2) (eigenvalue is -2)
5.
11
z
x y
z x
y
12
x
y
x
z
y
z
6.
13
0 10 20 30 40
-0.05
0.00
0.05
0.10
0.15
0.20
0.25
Hydrogen 4s Radial Function
r (bohr)
R4s(r)
0 10 20 30 40
-0.02
0.00
0.02
0.04
0.06
Hydrogen 4p Radial Function
r (bohr)
R4p(r)
14
0 10 20 30 40
-0.02
-0.01
0.00
0.01
0.02
0.03
Hydrogen 4d Radial Function
r (bohr)
R4d(r)
0 10 20 30 40
0.00
0.01
0.02
Hydrogen 4f Radial Function
r (bohr)
R4f(r)
15
7.
0.0 0.1 0.2 0.3 0.4
0
20
40
60
80
100
120
Si 1s
r (bohr)
Radial Function R(r)
Z=14
16
0.0 0.2 0.4 0.6 0.8 1.0
-10
0
10
20
30
40
Si 2s
r (bohr)
Radial Function R(r)
Z=14
Z=12
0.0 0.5 1.0 1.5
0
2
4
6
8
Si 2p
r (bohr)
Radial Function R(r)
Z=12
Z=14
17
0 1 2 3
-3
0
3
6
9
12
15
Si 3s
r (bohr)
Radial Function R(r)
Z=14
Z=4
0 1 2 3 4 5
-2
-1
0
1
2
3
4
5
Si 3p
r (bohr)
Radial Function R(r)
Z=14
Z=4
8.
18
i. In ammonia, the only "core" orbital is the N 1s and this becomes an a1 orbital in C3v
symmetry. The N 2s orbitals and 3 H 1s orbitals become 2 a1 and an e set of orbitals.
The remaining N 2p orbitals also become 1 a1 and a set of e orbitals. The total valence
orbitals in C3v symmetry are 3a1 and 2e orbitals.
ii. In water, the only core orbital is the O 1s and this becomes an a1 orbital in C2v
symmetry. Placing the molecule in the yz plane allows us to further analyze the
remaining valence orbitals as: O 2pz = a1, O 2py as b2, and O 2px as b1. The (H 1s + H
1s) combination is an a1 whereas the (H 1s - H 1s) combination is a b2.
iii. Placing the oxygens of H2O2 in the yz plane (z bisecting the oxygens) and the (cis)
hydrogens distorted slightly in +x and -x directions allows us to analyze the orbitals as
follows. The core O 1s + O 1s combination is an a orbital whereas the O 1s - O 1s
combination is a b orbital. The valence orbitals are: O 2s + O 2s = a, O 2s - O 2s = b, O
2px + O 2px = b, O 2px - O 2px = a, O 2py + O 2py = a, O 2py - O 2py = b, O 2pz + O 2pz
= b, O 2pz - O 2pz = a, H 1s + H 1s = a, and finally the H 1s - H 1s = b.
iv. For the next two problems we will use the convention of choosing the z axis as
principal axis for the D¡Þh, D2h, and C2v point groups and the xy plane as the horizontal
reflection plane in Cs symmetry.
D¡Þh D2h C2v Cs
N 1s ¦Òg ag a1 a'
N 2s ¦Òg ag a1 a'
N 2px pixu b3u b1 a'
19
N 2py piyu b2u b2 a'
N 2pz ¦Òu b1u a1 a''
9.
a. ¦·n(x) = ??
?
??
?2
L
1
2 Sinnpix
L
Pn(x)dx = | |¦·n 2(x) dx
The probability that the particle lies in the interval 0 ¡Ü x ¡Ü L4 is given by:
Pn = ??
0
L
4
Pn(x)dx = ??
?
??
?2
L ?ÿ
?
0
L
4
Sin2??
?
??
?npix
L dx
This integral can be integrated to give :
Pn = ??? ???Lnpi ??
?
??
?2
L ?ÿ
?
0
npi
4
Sin2??
?
??
?npix
L d??
?
??
?npix
L
Pn = ??? ???Lnpi ??
?
??
?2
L ??0
npi
4
Sin2¦Èd¦È
Pn = 2npi??
??
??
??
- 14Sin2¦È + ¦È2 ??
??npi4
0
= 2npi??
?
??
?
- 14Sin2npi4 + npi(2)(4)
20
= 14 - 12pin Sin??
?
??
?npi
2
b. If n is even, Sin??
?
??
?npi
2 = 0 and Pn =
1
4 .
If n is odd and n = 1,5,9,13, ... Sin??
?
??
?npi
2 = 1
and Pn = 14 - 12pin
If n is odd and n = 3,7,11,15, ... Sin??
?
??
?npi
2 = -1
and Pn = 14 + 12pin
The higher Pn is when n = 3. Then Pn = 14 + 12pi3
Pn = 14 + 16pi = 0.303
c. ¦·(t) = e
-iHt
h? [ ]a¦·n + b¦·m = a¦·ne
-iEnt
h? + b¦·me
-iEmt
h?
H¦· = a¦·nEne
-iEnt
h? + b¦·mEme
iEmt
h?
< >¦·|H|¦· = |a|2En + |b|2Em + a*be
i(En-Em)t
h? < >¦·n|H|¦·m
+ b*ae
-i(Em-En)t
h? < >¦·m|H|¦·n
Since < >¦·n|H|¦·m and < >¦·m|H|¦·n are zero,
< >¦·|H|¦· = |a|2En + |b|2Em (note the time independence)
21
d. The fraction of systems observed in ¦·n is |a|2. The possible energies measured
are En and Em. The probabilities of measuring each of these energies is |a|2 and |b|2.
e. Once the system is observed in ¦·n, it stays in ¦·n.
f. P(En) = ?? ??< >¦·n|¦· 2 = |cn|2
cn = ?ÿ
?
0
L
2
LSin??
?
??
?npix
L
30
L5 x(L-x)dx
= 60L6?ÿ
?
0
L
x(L-x)Sin??
?
??
?npix
L dx
= 60L6??
??
??
??
L?ÿ
?
0
L
xSin??
?
??
?npix
L dx - ?ÿ
?
0
L
x2Sin??
?
??
?npix
L dx
These integrals can be evaluated to give:
cn = 60L6??
?
??
?
L??
?
??
?L2
n2pi2Sin??
?
??
?npix
L -
Lx
npiCos??
?
??
?npix
L ??
?L
0
- 60L6???
?
??
??
??
?
??
?2xL2
n2pi2Sin??
?
??
?npix
L - ??
?
??
?n2pi2x2
L2 - 2
L3
n3pi3Cos??
?
??
?npix
L ??
?L
0
cn = 60L6 { L3n2pi2( )Sin(npi) - Sin(0)
- L
2
npi( )LCos(npi) - 0Cos0 )
- (2L2n2pi2( )LSin(npi) - 0Sin(0)
22
- ( )n2pi2 - 2 L
3
n3pi3 Cos(npi)
+ ??
?
??
?n2pi2(0)
L2 - 2
L3
n3pi3 Cos(0))}
cn = L-3 60 {- L
3
npi Cos(npi) + ( )n2pi2 - 2
L3
n3pi3 Cos(npi)
+ 2L
3
n3pi3 }
cn = 60??? ???- 1npi(-1)n + ( )n2pi2 - 2 1n3pi3(-1)n + 2n3pi3
cn = 60??? ?????? ???-1npi + 1npi - 2n3pi3 (-1)n + 2n3pi3
cn = 2 60n3pi3 )( )-(-1)n + 1
|cn|2 = 4(60)n6pi6 )( )-(-1)n + 1 2
If n is even then cn = 0
If n is odd then cn = (4)(60)(4)n6pi6 = 960n6pi6
The probability of making a measurement of the energy and obtaining one of the
eigenvalues, given by:
En = n
2pi2h?2
2mL2 is:
P(En) = 0 if n is even
P(En) = 960n6pi6 if n is odd
23
g. < >¦·|H|¦· = ?ÿ
ÿ?
0
L
??
?
??
?30
L5
1
2x(L-x)
??
?
??
?-h?2
2m
d2
dx2 ??
?
??
?30
L5
1
2x(L-x)dx
= ??? ???30L5 ??
?
??
?-h?2
2m ?ÿ
?
0
L
x(L-x)??
?
??
?
d
2
dx2 ( )xL-x2 dx
= ??
?
??
?-15h?2
mL5 ??0
L
x(L-x)(-2)dx
= ??
?
??
?30h?2
mL5 ?
?
0
L
xL-x2dx
= ??
?
??
?30h?2
mL5 ??
?
??
?
Lx
2
2 -
x3
3 ??
?L
0
= ??
?
??
?30h?2
mL5 ??
?
??
?L3
2 -
L3
3
= ??
?
??
?30h?2
mL2 ??
?
??
?1
2-
1
3
= 30h
?2
6mL2 =
5h?2
mL2
10.
< >¦·|H|¦· = ¡Æ
ij
Ci*e
iEit
h? < >¦·i|H|¦·j e
-iEjt
h? Cj
24
Since < >¦·i|H|¦·j = Ej¦Äij
< >¦·|H|¦· = ¡Æ
j
Cj*CjEje
i(Ej-Ej)t
h?
< >¦·|H|¦· = ¡Æ
j
Cj*CjEj (not time dependent)
For other properties:
< >¦·|A|¦· = ¡Æ
ij
Ci*e
iEit
h? < >¦·i|A|¦·j e
-iEjt
h? Cj
but, < >¦·i|A|¦·j does not necessarily = aj¦Äij because the ¦·j are not eigenfunctions of A
unless [A,H] = 0.
< >¦·|A|¦· = ¡Æ
ij
Ci*Cje
i(Ei-Ej)t
h? < >¦·i|A|¦·j
Therefore, in general, other properties are time dependent.
11.
a. The lowest energy level for a particle in a 3-dimensional box is when n1 = 1, n2 = 1,
and n3 = 1. The total energy (with L1 = L2 = L3) will be:
Etotal = h
2
8mL2( )n12 + n22 + n32 =
3h2
8mL2
25
Note that n = 0 is not possible. The next lowest energy level is when one of the three
quantum numbers equals 2 and the other two equal 1:
n1 = 1, n2 = 1, n3 = 2
n1 = 1, n2 = 2, n3 = 1
n1 = 2, n2 = 1, n3 = 1.
Each of these three states have the same energy:
Etotal = h
2
8mL2( )n12 + n22 + n32 =
6h2
8mL2
Note that these three states are only degenerate if L1 = L2 = L3.
b. ?¡ü ? ?? ?? distortion????¡ú ?? ??
?¡ü ?
?¡ü?¡ý ?¡ü?¡ý
L1 = L2 = L3 L3 ¡Ù L1 = L2
For L1 = L2 = L3, V = L1L2L3 = L13,
Etotal(L1) = 2¦Å1 + ¦Å2
= 2h
2
8m??
?
??
?12
L12 +
12
L22 +
12
L32 +
1h2
8m??
?
??
?12
L12 +
12
L22 +
22
L32
= 2h
2
8m??
?
??
?3
L12 +
1h2
8m??
?
??
?6
L12 =
h2
8m??
?
??
?12
L12
For L3 ¡Ù L1 = L2, V = L1L2L3 = L12L3, L3 = V/L12
Etotal(L1) = 2¦Å1 + ¦Å2
26
= 2h
2
8m??
?
??
?12
L12 +
12
L22 +
12
L32 +
1h2
8m??
?
??
?12
L12 +
12
L22 +
22
L32
= 2h
2
8m??
?
??
?2
L12 +
1
L32 +
1h2
8m??
?
??
?2
L12 +
4
L32
= 2h
2
8m??
?
??
?2
L12 +
1
L32 +
1
L12 +
2
L32
= 2h
2
8m??
?
??
?3
L12 +
3
L32 =
h2
8m??
?
??
?6
L12 +
6
L32
In comparing the total energy at constant volume of the undistorted box (L1 = L2 = L3)
versus the distorted box (L3 ¡Ù L1 = L2) it can be seen that:
h2
8m??
?
??
?6
L12 +
6
L32 ¡Ü
h2
8m??
?
??
?12
L12 as long as L3 ¡Ý L1.
c. In order to minimize the total energy expression, take the derivative of the
energy with respect to L1 and set it equal to zero. ?Etotal?L1 = 0
?
?L1 ??
?
??
?h2
8m??
?
??
?6
L12 +
6
L32 = 0
But since V = L1L2L3 = L12L3, then L3 = V/L12. This substitution gives:
?
?L1 ??
?
??
?h2
8m??
?
??
?6
L12 +
6L14
V2 = 0
??
?
??
?h2
8m??
?
??
?(-2)6
L13 +
(4)6L13
V2 = 0
??
?
??
?
- 12L13 + 24L1
3
V2 = 0
27
??
?
??
?24L13
V2 = ??
?
??
?12
L13
24L16 = 12V2
L16 = 12 V2 = 12( )L12L3 2 = 12 L14L32
L12 = 12 L32
L3 = 2 L1
d. Calculate energy upon distortion:
cube: V = L13, L1 = L2 = L3 = (V)
1
3
distorted: V = L12L3 = L12 2 L1 = 2 L13
L3 = 2??? ???V2
1
3 ¡Ù L
1 = L2 = ??
?
??
?V
2
1
3
?E = Etotal(L1 = L2 = L3) - Etotal(L3 ¡Ù L1 = L2)
= h
2
8m??
?
??
?12
L12 -
h2
8m??
?
??
?6
L12 +
6
L32
= h
2
8m??
?
??
?12
V2/3 -
6(2)1/3
V2/3 +
6(2)1/3
2V2/3
= h
2
8m??
?
??
?12 - 9(2)1/3
V2/3
Since V = 8?3, V2/3 = 4?2 = 4 x 10-16 cm2 , and h
2
8m = 6.01 x 10-27 erg cm2:
?E = 6.01 x 10-27 erg cm2??
?
??
?12 - 9(2)1/3
4 x 10-16 cm2
28
?E = 6.01 x 10-27 erg cm2??? ???0.664 x 10-16 cm2
?E = 0.99 x 10-11 erg
?E = 0.99 x 10-11 erg ??? ???1 eV1.6 x 10-12 erg
?E = 6.19 eV
12.
a. H = -h
?2
2m ??
?
??
??2
?x2 +
?2
?y2 (Cartesian coordinates)
Finding ??x and ??y from the chain rule gives:
?
?x = ??
?
??
??r
?x y
?
?r + ??
?
??
??¦Õ
?x y
?
?¦Õ ,
?
?y = ??
?
??
??r
?y x
?
?r + ??
?
??
??¦Õ
?y x
?
?¦Õ ,
Evaluation of the "coefficients" gives the following:
??
?
??
??r
?x y = Cos¦Õ , ??
?
??
??¦Õ
?x y = -
Sin¦Õ
r ,
??
?
??
??r
?y x = Sin¦Õ , and ??
?
??
??¦Õ
?y x =
Cos¦Õ
r ,
Upon substitution of these "coefficients":
?
?x = Cos¦Õ
?
?r -
Sin¦Õ
r
?
?¦Õ = -
Sin¦Õ
r
?
?¦Õ ; at fixed r.
?
?y = Sin¦Õ
?
?r +
Cos¦Õ
r
?
?¦Õ =
Cos¦Õ
r
?
?¦Õ ; at fixed r.
29
?2
?x2 = ??
?
??
?
- Sin¦Õr ??¦Õ ??
?
??
?
- Sin¦Õr ??¦Õ
= Sin
2¦Õ
r2
?2
?¦Õ2 +
Sin¦ÕCos¦Õ
r2
?
?¦Õ ; at fixed r.
?2
?y2 = ??
?
??
?Cos¦Õ
r
?
?¦Õ ??
?
??
?Cos¦Õ
r
?
?¦Õ
= Cos
2¦Õ
r2
?2
?¦Õ2 -
Cos¦ÕSin¦Õ
r2
?
?¦Õ ; at fixed r.
?2
?x2 +
?2
?y2 =
Sin2¦Õ
r2
?2
?¦Õ2 +
Sin¦ÕCos¦Õ
r2
?
?¦Õ +
Cos2¦Õ
r2
?2
?¦Õ2 -
Cos¦ÕSin¦Õ
r2
?
?¦Õ
= 1r2 ?
2
?¦Õ2 ; at fixed r.
So, H = -h
?2
2mr2
?2
?¦Õ2 (cylindrical coordinates, fixed r)
= -h
?2
2I
?2
?¦Õ2
The Schr?dinger equation for a particle on a ring then becomes:
H¦· = E¦·
-h?2
2I
?2¦µ
?¦Õ2 = E¦µ
?2¦µ
?¦Õ2 = ??
?
??
?-2IE
h?2 ¦µ
The general solution to this equation is the now familiar expression:
¦µ(¦Õ) = C1e-im¦Õ + C2eim¦Õ , where m = ??? ???2IEh?2
1
2
30
Application of the cyclic boundary condition, ¦µ(¦Õ) = ¦µ(¦Õ+2pi), results in the quantization
of the energy expression: E = m
2h?2
2I where m = 0, ±1, ±2, ±3, ... It can be seen that the
±m values correspond to angular momentum of the same magnitude but opposite
directions. Normalization of the wavefunction (over the region 0 to 2pi) corresponding to
+ or - m will result in a value of ??? ???12pi
1
2 for the normalization constant.
¡à ¦µ(¦Õ) = ??? ???12pi
1
2 eim¦Õ
?? ??
(±4)2h?2
2I
?? ??
(±3)2h?2
2I
?? ??
(±2)2h?2
2I
?¡ü?¡ý ?¡ü?¡ý (±1)
2h?2
2I
?¡ü?¡ý (0)
2h?2
2I
b. h
?2
2m = 6.06 x 10-28 erg cm2
h?2
2mr2 =
6.06 x 10-28 erg cm2
(1.4 x 10-8 cm)2
= 3.09 x 10-12 erg
?E = (22 - 12) 3.09 x 10-12 erg = 9.27 x 10-12 erg
31
but ?E = h¦Í = hc/¦Ë So ¦Ë = hc/?E
¦Ë = (6.63 x 10
-27 erg sec)(3.00 x 1010 cm sec-1)
9.27 x 10-12 erg
= 2.14 x 10-5 cm = 2.14 x 103 ?
Sources of error in this calculation include:
i. The attractive force of the carbon nuclei is not included in the Hamiltonian.
ii. The repulsive force of the other pi-electrons is not included in the Hamiltonian.
iii. Benzene is not a ring.
iv. Electrons move in three dimensions not one.
13.
¦·(¦Õ,0) = 43pi Cos2¦Õ.
This wavefunction needs to be expanded in terms of the eigenfunctions of the angular
momentum operator, ??
?
??
?
-ih? ??¦Õ . This is most easily accomplished by an exponential
expansion of the Cos function.
¦·(¦Õ,0) = 43pi??
?
??
?ei¦Õ + e-i¦Õ
2 ??
?
??
?ei¦Õ + e-i¦Õ
2
= ??
?
??
?1
4
4
3pi( )e2i¦Õ + e-2i¦Õ + 2e(0)i¦Õ
32
The wavefunction is now written in terms of the eigenfunctions of the angular
momentum operator, ??
?
??
?
-ih? ??¦Õ , but they need to include their normalization constant, 12pi
.
¦·(¦Õ,0) = ??
?
??
?1
4
4
3pi 2pi ??
?
??
?1
2pi e
2i¦Õ + 1
2pi e
-2i¦Õ + 2 1
2pi e
(0)i¦Õ
= ??
?
??
?1
6 ??
?
??
?1
2pi e
2i¦Õ + 1
2pi e
-2i¦Õ + 2 1
2pi e
(0)i¦Õ
Once the wavefunction is written in this form (in terms of the normalized eigenfunctions
of the angular momentum operator having mh? as eigenvalues) the probabilities for
observing angular momentums of 0h? , 2h? , and -2h? can be easily identified as the squares
of the coefficients of the corresponding eigenfunctions.
P2h? = ??
?
??
?1
6
2 = 1
6
P-2h? = ??
?
??
?1
6
2 = 1
6
P0h? = ??
?
??
?
2 16 2 = 46
14.
a. 12 mv2 = 100 eV ??
?
??
?1.602 x 10-12 erg
1 eV
v2 = ??
?
??
?(2)1.602 x 10-10 erg
9.109 x 10-28g
33
v = 0.593 x 109 cm/sec
The length of the N2 molecule is 2? = 2 x 10-8 cm.
v = dt
t = dv = 2 x 10
-8 cm
0.593 x 109 cm/sec = 3.37 x 10-17 sec
b. The normalized ground state harmonic oscillator can be written as:
¦·0 = ??
?
??
?¦Á
pi
1/4e-¦Áx2/2, where ¦Á =
??
?
??
?k¦Ì
h?2
1
2 and x = r - r
e
Calculating constants;
¦ÁN2 = ??
?
??
?(2.294 x 106 g sec-2)(1.1624 x 10-23 g)
(1.0546 x 10-27 erg sec)2
1
2
= 0.48966 x 1019 cm-2 = 489.66 ?-2
For N2: ¦·0(r) = 3.53333?-
1
2 e-(244.83?-2)(r-1.09769?)2
¦ÁN2+ = ??
?
??
?(2.009 x 106 g sec-2)(1.1624 x 10-23 g)
(1.0546 x 10-27 erg sec)2
1
2
= 0.45823 x 1019 cm-2 = 458.23 ?-2
For N2+: ¦·0(r) = 3.47522?-
1
2 e-(229.113?-2)(r-1.11642?)2
c. P(v=0) = ?? ??< >¦·v=0(N2+)?¦·v=0(N2) 2
Let P(v=0) = I2 where I = integral:
I= ?
ÿ?
-¡Þ
+¡Þ
(3.47522?-
1
2e-(229.113?-2)(r-1.11642?)2) .
34
(3.53333?-
1
2 e-(244.830?-2)(r-1.09769?)2)dr
Let C1 = 3.47522?-
1
2 , C
2 = 3.53333?
-12 ,
A1 = 229.113?-2, A2 = 244.830?-2,
r1 = 1.11642?, r2 = 1.09769?,
I = C1C2 ?
?
-¡Þ
+¡Þ
e-A1(r-r1)2e-A2(r-r2)2 dr .
Focusing on the exponential:
-A1(r-r1)2-A2(r-r2)2 = -A1(r2 - 2r1r + r12) - A2(r2 - 2r2r + r22)
= -(A1 + A2)r2 + (2A1r1 + 2A2r2)r - A1r12 - A2r22
Let A = A1 + A2,
B = 2A1r1 + 2A2r2,
C = C1C2, and
D = A1r12 + A2r22 .
I = C ?
?
-¡Þ
+¡Þ
e-Ar2 + Br - D dr
= C ?
?
-¡Þ
+¡Þ
e-A(r-r0)2 + D' dr
where -A(r-r0)2 + D' = -Ar2 + Br - D
-A(r2 - 2rr0 + r02) + D' = -Ar2 + Br - D
such that, 2Ar0 = B
35
-Ar02 + D' = -D
and, r0 = B2A
D' = Ar02 - D = A B
2
4A2 - D =
B2
4A - D .
I = C ?
?
-¡Þ
+¡Þ
e-A(r-r0)2 + D' dr
= CeD' ?
?
-¡Þ
+¡Þ
e-Ay2 dy
= CeD' piA
Now back substituting all of these constants:
I = C1C2 piA1 + A2 exp??
?
??
?(2A1r1 + 2A2r2)2
4(A1 + A2) - A1r12 - A2r22
I = (3.47522)(3.53333) pi(229.113) + (244.830)
. exp??? ???(2(229.113)(1.11642) + 2(244.830)(1.09769))24((229.113) + (244.830))
. exp( ) - (229.113)(1.11642)2 - (244.830)(1.09769)2
I = 0.959
P(v=0) = I2 = 0.92, so there is a 92% probability.
15.
36
a. E¦Í = ??
?
??
?h?2k
¦Ì
1
2??? ???¦Í + 1
2
?E = E¦Í+1 - E¦Í
= ??
?
??
?h?2k
¦Ì
1
2
??
??
?
??
??
?
¦Í +1 + 12 - ¦Í - 12 = ??
?
??
?h?2k
¦Ì
= ??
?
??
?(1.0546 x 10-27 erg sec)2(1.87 x 106 g sec-2)
6.857 g / 6.02 x 1023
1
2
= 4.27 x 10-13 erg
?E = hc¦Ë
¦Ë = hc?E = (6.626 x 10
-27 erg sec)(3.00 x 1010 cm sec-1)
4.27 x 10-13 erg
= 4.66 x 10-4 cm
1
¦Ë = 2150 cm-1
b. ¦·0 = ??
?
??
?¦Á
pi
1/4e-¦Áx2/2
< >x = < >¦·v=0?x?¦·v=0
= ??
-¡Þ
+¡Þ
¦·0*x¦·0dx
= ?ÿ
?
-¡Þ
+¡Þ
??
?
??
?¦Á
pi
1/2xe-¦Áx2dx
= ?ÿ
?
-¡Þ
+¡Þ
??
?
??
?¦Á
-¦Á2pi
1/2e-¦Áx2d(-¦Áx2)
37
= ??
?
??
?-1
¦Ápi
1/2e-¦Áx2 ?+¡Þ
?¡Þ = 0
< >x2 = < >¦·v=0?x2?¦·v=0
= ??
-¡Þ
+¡Þ
¦·0*x2¦·0dx
= ?ÿ
?
-¡Þ
+¡Þ
??
?
??
?¦Á
pi
1/2x2e-¦Áx2dx
= 2??
?
??
?¦Á
pi
1/2 ??
0
+¡Þ
x2e-¦Áx2dx
= 2??
?
??
?¦Á
pi
1/2
??
?
??
?1
21+1¦Á ??
?
??
?pi
¦Á
1/2
= ??? ???12¦Á
?x = (<x2> - <x>2)1/2.= ??? ???12¦Á
= ??
?
??
?h?
2 k¦Ì
1
2
= ??
?
??
?(1.0546 x 10-27 erg sec)2
4(1.87 x 106 g sec-2)(6.857 g / 6.02 x 1023)
1
4
= 3.38 x 10-10 cm = 0.0338?
c. ?x = ??
?
??
?h?
2 k¦Ì
1
2
The smaller k and ¦Ì become, the larger the uncertainty in the internuclear distance
becomes. Helium has a small ¦Ì and small attractive force between atoms. This results in
38
a very large ?x. This implies that it is extremely difficult for He atoms to "vibrate" with
small displacement as a solid, even as absolute zero is approached.
16.
a. W = ??
-¡Þ
¡Þ
¦Õ*H¦Õdx
W = ??
?
??
?2b
pi
1
2 ?ÿ?
-¡Þ
¡Þ
e-bx
2
??
?
??
?
- h
?2
2m
d2
dx2 + a|x| e
-bx2dx
d2
dx2 e
-bx2 = d
dx?
?? ???-2bx e-bx2
= ( )-2bx ??
?
??
?
-2bx e-bx
2
+ ??
?
??
?
e-bx
2
( )-2b
= ??
?
??
?
4b2x2 e-bx
2
+ ??
?
??
?
-2b e-bx
2
Making this substitution results in the following three integrals:
W = ??
?
??
?2b
pi
1
2 ??? ???- h?2
2m ?
ÿ?
-¡Þ
¡Þ
e-bx
2
4b2x2 e-bx
2
dx +
??
?
??
?2b
pi
1
2 ??? ???- h?2
2m ?
ÿ?
-¡Þ
¡Þ
e-bx
2
-2b e-bx
2
dx +
39
??
?
??
?2b
pi
1
2 ?ÿ
?
-¡Þ
¡Þ
e-bx
2
a|x|e-bx
2
dx
= ??
?
??
?2b
pi
1
2 ??? ???-2b2h?2
m ?
ÿ?
-¡Þ
¡Þ
x2e-2bx
2
dx + ??
?
??
?2b
pi
1
2 ??? ???bh?2
m ?
ÿ?
-¡Þ
¡Þ
e-2bx
2
dx +
??
?
??
?2b
pi
1
2 a ?ÿ
?
-¡Þ
¡Þ
|x|e-2bx
2
dx
= ??
?
??
?2b
pi
1
2 ??? ???-2b2h?2
m 2 ??
?
??
?1
222b
pi
2b + ??
?
??
?2b
pi
1
2 ??? ???bh?2
m 2 ??
?
??
?1
2
pi
2b +
??
?
??
?2b
pi
1
2 a ??? ???0!
2b
= ??
?
??
?
-bh
?2
m ??
?
??
?1
2 + ??
?
??
?bh?2
m + ??
?
??
?2b
pi
1
2??? ???a
2b
W = ??
?
??
?bh?2
2m + a ??
?
??
?1
2bpi
1
2
b. Optimize b by evaluating dWdb = 0
dW
db =
d
db??
??
??
??
??
?
??
?bh?2
2m + a ??
?
??
?1
2bpi
1
2
= ??
?
??
?h?2
2m -
a
2 ??
?
??
?1
2pi
1
2 b-
3
2
So, a2 ??? ???12pi
1
2 b-
3
2 = ??? ???h?2
2m or, b
-32 =
??
?
??
?h?2
2m
2
a ??
?
??
?1
2pi
-12 =
??
?
??
?h?2
ma 2pi ,
40
and, b = ??? ???ma2pi h?2
2
3 . Substituting this value of b into the expression for W gives:
W = ??
?
??
?h?2
2m ??
?
??
?ma
2pi h?2
2
3 + a ??? ???1
2pi
1
2
??
?
??
?ma
2pi h?2
-13
= ??
?
??
?h?2
2m ??
?
??
?ma
2pi h?2
2
3 + a ??? ???1
2pi
1
2
??
?
??
?ma
2pi h?2
-13
= 2-
4
3 pi-
1
3h?
2
3 a
2
3 m-
1
3 + 2-
1
3 pi-
1
3h?
2
3 a
2
3 m-
1
3
= ??
?
??
?
2-
4
3pi-
1
3 + 2-
1
3pi-
1
3 h?
2
3 a
2
3 m-
1
3 = 3
2 ( )2pi
-13h?23 a23 m-13
= 0.812889106h?
2
3 a
2
3 m-1/3 which is in error by only 0.5284% !!!!!
17.
a. H = - h
?2
2m
d2
dx2 +
1
2 kx2
¦Õ = 1516 a-
5
2 (a2 - x2) for -a < x < a
¦Õ = 0 for |x| ¡Ý a
??
-¡Þ
+¡Þ
¦Õ*H¦Õdx
41
= ?ÿ
ÿ?
-a
+a
15
16 a
-52 (a2 - x2)
??
?
??
?
- h
?2
2m
d2
dx2 +
1
2kx2
15
16 a
-52 (a2 - x2) dx
= ?? ??1516 a-5 ?ÿ
?
-a
+a
(a2 - x2)??
?
??
?
- h
?2
2m
d2
dx2 +
1
2kx2 (a2 - x2) dx
= ?? ??1516 a-5 ?ÿ
?
-a
+a
(a2 - x2)??
?
??
?
- h
?2
2m
d2
dx2(a2 - x2) dx
+ ?? ??1516 a-5 ?ÿ
?
-a
+a
(a2 - x2)12kx2(a2 - x2) dx
= ?? ??1516 a-5 ?ÿ
?
-a
+a
(a2 - x2)??
?
??
?
- h
?2
2m (-2) dx
+ ?? ??1532 a-5 ??
-a
+a
(kx2)(a4 -2a2x2 + x4) dx
= ??
?
??
?15h?2
16m a-5 ??-a
+a
(a2 - x2) dx + ?? ??1532 a-5 ??
-a
+a
a4kx2 -2a2kx4 + kx6 dx
= ??
?
??
?15h?2
16m a-5??
?
??
?
a2x??
? a
-a -
1
3 x3??
? a
-a
+ ?? ??1532 a-5??
?
??
?a4k
3 x3??
? a
-a -
2a2k
5 x5??
? a
-a +
k
7 x7??
? a
-a
= ??
?
??
?15h?2
16m a-5??
?
??
?
2a3 - 23 a3 + ?? ??1532 a-5??
?
??
?2a7k
3 -
4a7k
5 +
2k
7 a7
42
= ?? ??1516 a-5??
?
??
?4h?2
3m a3 +
a7k
3 -
2a7k
5 +
k
7 a7
= ?? ??1516 a-5??
?
??
?4h?2
3m a3 + ??
?
??
?k
3 -
2k
5 +
k
7 a7
= ?? ??1516 a-5??
?
??
?4h?2
3m a3 + ??
?
??
?35k
105 -
42k
105 +
15k
105 a7
= ?? ??1516 a-5??
?
??
?4h?2
3m a3 + ??
?
??
?8k
105 a7 =
5h?2
4ma2 +
ka2
14
b. Substituting a = b??
?
??
?h?2
km
1
4 into the above expression for E we obtain:
E = 5h
?2
4b2m??
?
??
?km
h?2
1
2 + kb2
14 ??
?
??
?h?2
km
1
2
= h? k
1
2 m-
1
2 ??? ???5
4 b-2 +
1
14 b2
c. E = 5h
?2
4ma2 +
ka2
14
dE
da = -
10h?2
4ma3 +
2ka
14 = -
5h?2
2ma3 +
ka
7 = 0
5h?2
2ma3 =
ka
7 and 35h? 2 = 2mka4
So, a4 = 35h
?2
2mk , or a = ??
?
??
?35h?2
2mk
1
4
Therefore ¦Õbest = 1516 ??
?
??
?35h?2
2mk
-58
??
?
??
?
??
?
??
?35h?2
2mk
1
2 - x2 ,
43
and Ebest = 5h
?2
4m??
?
??
?2mk
35h?2
1
2 + k
14??
?
??
?35h?2
2mk
1
2 = h? k
1
2 m-
1
2 ??? ???5
14
1
2 .
d. Ebest - EtrueEtrue =
h? k
1
2 m-
1
2 ??
?
??
?
?? ??514
1
2 - 0.5
h? k
1
2 m-
1
2 0.5
=
?? ??514
1
2 - 0.5
0.5 =
0.0976
0.5 = 0.1952 = 19.52%
18.
a. H0 ¦×(0)lm = L
2
2mer02 ¦×
(0)
lm =
L2
2mer02 Yl,m(¦È,¦Õ)
= 12mer02 h? 2 l(l+1) Yl,m(¦È,¦Õ)
E(0)lm = h
?2
2mer02 l(l+1)
b. V = -e¦Åz = -e¦År0Cos¦È
E(1)00 = < >Y00|V|Y00 = < >Y00|-e¦År0Cos¦È|Y00
= -e¦År0< >Y00|Cos¦È|Y00
Using the given identity this becomes:
E(1)00 = -e¦År0< >Y00|Y10 (0+0+1)(0-0+1)(2(0)+1)(2(0)+3) +
-e¦År0< >Y00|Y-10 (0+0)(0-0)(2(0)+1)(2(0)-1)
44
The spherical harmonics are orthonormal, thus < >Y00|Y10 = < >Y00|Y-10 = 0, and
E(1)00 = 0.
E(2)00 = ¡Æ
lm¡Ù00
?? ??< >Ylm|V|Y00 2
E(0)00 - E(0)lm
< >Ylm|V|Y00 = -e¦År0< >Ylm|Cos¦È|Y00
Using the given identity this becomes:
< >Ylm|V|Y00 = -e¦År0< >Ylm|Y10 (0+0+1)(0-0+1)(2(0)+1)(2(0)+3) +
-e¦År0< >Ylm|Y-10 (0+0)(0-0)(2(0)+1)(2(0)-1)
< >Ylm|V|Y00 = -e¦År03 < >Ylm|Y10
This indicates that the only term contributing to the sum in the expression for E(2)00 is
when l=1, and m=), otherwise < >Ylm|V|Y00 vanishes (from orthonormality). In
quantum chemistry when using orthonormal functions it is typical to write the term
< >Ylm|Y10 as a delta function, for example ¦Älm,10 , which only has values of 1 or 0; ¦Äij
= 1 when i = j and 0 when i ¡Ù j. This delta function when inserted into the sum then
eliminates the sum by "picking out" the non-zero component. For example,
< >Ylm|V|Y00 = -e¦År03 ¦Älm,10 , so
E(2)00 = ¡Æ
lm¡Ù00
e
2¦Å2r02
3
¦Älm'102
E(0)00 - E(0)lm
= e
2¦Å2r02
3
1
E(0)00 - E(0)10
45
E(0)00 = h
?2
2mer02 0(0+1) = 0 and E
(0)
10 =
h?2
2mer02 1(1+1) =
h?2
mer02
Inserting these energy expressions above yields:
E(2)00 = -e
2¦Å2r02
3
mer02
h?2 = -
mee2¦Å2r04
3h?2
c. E 00 = E(0)00 + E(1)00 + E(2)00 + ...
= 0 + 0 - mee
2¦Å2r04
3h?2
= -mee
2¦Å2r04
3h?2
¦Á = -?
2E
?2¦Å =
?2
?2¦Å ??
?
??
?mee2¦Å2r04
3h?2
= 2mee
2r04
3h?2
d. ¦Á = 2(9.1095x10
-28g)(4.80324x10-10g
1
2cm
3
2s-1)2r
04
3(1.05459x10-27 g cm2 s-1)2
¦Á = r04 12598x106cm-1 = r04 1.2598?-1
¦ÁH = 0.0987 ?3
¦ÁCs = 57.57 ?3
19.
46
1pig1pig
3¦Òu
3¦Òg
1piu1piu
2¦Òu
2¦Òg
1¦Òu
1¦Òg
2pz 2py 2px2px 2py 2pz
2s 2s
1s1s
N2 NN
The above diagram indicates how the SALC-AOs are formed from the 1s,2s, and 2p N
atomic orbitals. It can be seen that there are 3¦Òg, 3¦Òu, 1piux, 1piuy, 1pigx, and 1pigy SALC-
AOs. The Hamiltonian matrices (Fock matrices) are given. Each of these can be
diagonalized to give the following MO energies:
3¦Òg; -15.52, -1.45, and -0.54 (hartrees)
3¦Òu; -15.52, -0.72, and 1.13
1piux; -0.58
1piuy; -0.58
1pigx; 0.28
1pigy; 0.28
47
It can be seen that the 3¦Òg orbitals are bonding, the 3¦Òu orbitals are antibonding, the 1piux
and 1piuy orbitals are bonding, and the 1pigx and 1pigy orbitals are antibonding.
20.
Using these approximate energies we can draw the following MO diagram:
H
C
H
z
y
x
2b2
4a1
1b1
3a1
1b2
2a1
1a1
H2C
1b2
1a1
3a11b21b1
2a1
1a1
2py
1¦Òu
1¦Òg
2pz2px
2s
1s
This MO diagram is not an orbital correlation diagram but can be used to help generate
48
one. The energy levels on each side (C and H2) can be "superimposed" to generate the
reactant side of the orbital correlation diagram and the center CH2 levels can be used to
form the product side. Ignoring the core levels this generates the following orbital
correlation diagram.
Orbital-correlation diagram for the reaction C + H2 -----> CH2 (bent)
a1(bonding)
b2(antibonding)
a1(antibonding)
b1(2ppi)
a1(non-bonding)
b2(bonding)
CH2 (bent)C + H2
¦Òg(a1)
2s(a1)
¦Òu(b2)
2px(b1) 2py(b2) 2pz(a1)
21.
49
z
y
x
P
F
F
F
F
F
9
68
7
5
4
3
2
1
a. The two F p orbitals (top and bottom) generate the following reducible
representation:
D3h E 2C3 3C2 ¦Òh 2S3 3¦Òv
¦£p 2 2 0 0 0 2
This reducible representation reduces to 1A1' and 1A2'' irreducible representations.
Projectors may be used to find the symmetry-adapted AOs for these irreducible
representations.
¦Õa1' = 12(f1 - f2)
¦Õa2'' = 12(f1 + f2)
b. The three trigonal F p orbitals generate the following reducible representation:
D3h E 2C3 3C2 ¦Òh 2S3 3¦Òv
¦£p 3 0 1 3 0 1
This reducible representation reduces to 1A1' and 1E' irreducible representations.
50
Projectors may be used to find the symmetry-adapted -AOs for these irreducible
representations (but they are exactly analogous to the previous few problems):
¦Õa1' = 13(f3 + f4 + f5)
¦Õe' = (1/6)-1/2 (2 f3 ¨C f4 ¨Cf5)
¦Õe' = 12(f4 - f5) .
c. The 3 P sp2 orbitals generate
the following reducible representation:
D3h E 2C3 3C2 ¦Òh 2S3 3¦Òv
¦£sp2 3 0 1 3 0 1
This reducible representation reduces to 1A1' and 1E' irreducible representations. Again,
projectors may be used to find the symmetry-adapted -AOs for these irreducible
representations:
¦Õa1' = 13(f6 + f7 + f8)
¦Õe' = 16(2f6 - f7 - f8)
¦Õe' = 12(f7 - f8) .
The leftover P pz orbital generate the following irreducible representation:
D3h E 2C3 3C2 ¦Òh 2S3 3¦Òv
¦£pz 1 1 -1 -1 -1 1
This irreducible representation is A2''
51
¦Õa2'' = f9.
Drawing an energy level diagram using these SALC-AOs would result in the following:
| |
| || |
| |
| |
a'1
e'*
e'
a''2
a''2*
a'1*
a'1
22.
a. For non-degenerate point groups, one can simply multiply the representations (since
only one representation will be obtained):
a1 ? b1 = b1
Constructing a "box" in this case is unnecessary since it would only contain a single row.
Two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets (S=1,
MS=1; S=1, MS=0; S=1, MS=-1). The states will be: 3B1(MS=1), 3B1(MS=0), 3B1(MS=-
1), and 1B1(MS=0).
b. Remember that when coupling non-equivalent linear molecule angular momenta, one
simple adds the individual Lz values and vector couples the electron spin. So, in this case
52
(1piu12piu1), we have ML values of 1+1, 1-1, -1+1, and -1-1 (2, 0, 0, and -2). The term
symbol ? is used to denote the spatially doubly degenerate level (ML=±2) and there are
two distinct spatially non-degenerate levels denoted by the term symbol ¦² (ML=0)
Again, two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets
(S=1, MS=1;S=1, MS=0;S=1, MS=-1). The states generated are then:
1? (ML=2); one state (MS=0),
1? (ML=-2); one state (MS=0),
3? (ML=2); three states (MS=1,0, and -1),
3? (ML=-2); three states (MS=1,0, and -1),
1¦² (ML=0); one state (MS=0),
1¦² (ML=0); one state (MS=0),
3¦² (ML=0); three states (MS=1,0, and -1), and
3¦² (ML=0); three states (MS=1,0, and -1).
c. Constructing the "box" for two equivalent pi electrons one obtains:
ML
MS
2 1 0
1 |pi1¦Ápi-1¦Á|
0 |pi1¦Ápi1¦Â| |pi1¦Ápi-1¦Â|,
|pi-1¦Ápi1¦Â|
From this "box" one obtains six states:
53
1? (ML=2); one state (MS=0),
1? (ML=-2); one state (MS=0),
1¦² (ML=0); one state (MS=0),
3¦² (ML=0); three states (MS=1,0, and -1).
d. It is not necessary to construct a "box" when coupling non-equivalent angular
momenta since vector coupling results in a range from the sum of the two individual
angular momenta to the absolute value of their difference. In this case, 3d14d1, L=4, 3, 2,
1, 0, and S=1,0. The term symbols are: 3G, 1G, 3F, 1F, 3D, 1D, 3P, 1P, 3S, and 1S. The L
and S angular momenta can be vector coupled to produce further splitting into levels:
J = L + S ... |L - S|.
Denoting J as a term symbol subscript one can identify all the levels and subsequent (2J +
1) states:
3G5 (11 states),
3G4 (9 states),
3G3 (7 states),
1G4 (9 states),
3F4 (9 states),
3F3 (7 states),
3F2 (5 states),
1F3 (7 states),
3D3 (7 states),
54
3D2 (5 states),
3D1 (3 states),
1D2 (5 states),
3P2 (5 states),
3P1 (3 states),
3P0 (1 state),
1P1 (3 states),
3S1 (3 states), and
1S0 (1 state).
e. Construction of a "box" for the two equivalent d electrons generates (note the
"box" has been turned side ways for convenience):
MS
ML
1 0
4 |d2¦Ád2¦Â|
3 |d2¦Ád1¦Á| |d2¦Ád1¦Â|, |d2¦Âd1¦Á|
2 |d2¦Ád0¦Á| |d2¦Ád0¦Â|, |d2¦Âd0¦Á|,
|d1¦Ád1¦Â|
1 |d1¦Ád0¦Á|, |d2¦Ád-1¦Á| |d1¦Ád0¦Â|, |d1¦Âd0¦Á|,
|d2¦Ád-1¦Â|, |d2¦Âd-1¦Á|
55
0 |d2¦Ád-2¦Á|, |d1¦Ád-1¦Á| |d2¦Ád-2¦Â|, |d2¦Âd-2¦Á|,
|d1¦Ád-1¦Â|, |d1¦Âd-1¦Á|,
|d0¦Ád0¦Â|
The term symbols are: 1G, 3F, 1D, 3P, and 1S. The L and S angular momenta can be
vector coupled to produce further splitting into levels:
1G4 (9 states),
3F4 (9 states),
3F3 (7 states),
3F2 (5 states),
1D2 (5 states),
3P2 (5 states),
3P1 (3 states),
3P0 (1 state), and
1S0 (1 state).
23.
a. Once the spatial symmetry has been determined by multiplication of the irreducible
representations, the spin coupling gives the result:
1
2( )|3a1¦Á1b1¦Â| - |3a1¦Â1b1¦Á|
b. There are three states here :
56
1.) |3a1¦Á1b1¦Á|,
2.) 12( )|3a1¦Á1b1¦Â| + |3a1¦Â1b1¦Á| , and
3.) |3a1¦Â1b1¦Â|
c. |3a1¦Á3a1¦Â|
24.
a. All the Slater determinants have in common the |1s¦Á1s¦Â2s¦Á2s¦Â| "core" and hence this
component will not be written out explicitly for each case.
3P(ML=1,MS=1) = |p1¦Áp0¦Á|
= | 12(px + ipy) ¦Á(pz)¦Á|
= 12( )|px¦Ápz¦Á| + i|py¦Ápz¦Á|
3P(ML=0,MS=1) = |p1¦Áp-1¦Á|
= | 12(px + ipy) ¦Á 12(px - ipy) ¦Á|
= 12( )|px¦Ápx¦Á| - i|px¦Ápy¦Á| + i|py¦Ápx¦Á| + |py¦Ápy¦Á|
= 12( )0 - i|px¦Ápy¦Á| - i|px¦Ápy¦Á| + 0
= 12( )-2i|px¦Ápy¦Á|
= -i|px¦Ápy¦Á|
57
3P(ML=-1,MS=1) = |p-1¦Áp0¦Á|
= | 12(px - ipy) ¦Á(pz)¦Á|
= 12( )|px¦Ápz¦Á| - i|py¦Ápz¦Á|
As you can see, the symmetries of each of these states cannot be labeled with a single
irreducible representation of the C2v point group. For example, |px¦Ápz¦Á| is xz (B1) and
|py¦Ápz¦Á| is yz (B2) and hence the 3P(ML=1,MS=1) state is a combination of B1 and B2
symmetries. But, the three 3P(ML,MS=1) functions are degenerate for the C atom and
any combination of these three functions would also be degenerate. Therefore, we can
choose new combinations that can be labeled with "pure" C2v point group labels.
3P(xz,MS=1) = |px¦Ápz¦Á|
= 12( )3P(ML=1,MS=1) + 3P(ML=-1,MS=1) = 3B1
3P(yx,MS=1) = |py¦Ápx¦Á|
= 1i( )3P(ML=0,MS=1) = 3A2
3P(yz,MS=1) = |py¦Ápz¦Á|
= 1i 2( )3P(ML=1,MS=1) - 3P(ML=-1,MS=1) = 3B2
Now, we can do likewise for the five degenerate 1D states:
1D(ML=2,MS=0) = |p1¦Áp1¦Â|
= | 12(px + ipy) ¦Á 12(px + ipy) ¦Â|
58
= 12( )|px¦Ápx¦Â| + i|px¦Ápy¦Â| + i|py¦Ápx¦Â| - |py¦Ápy¦Â|
1D(ML=-2,MS=0) = |p-1¦Áp-1¦Â|
= | 12(px - ipy) ¦Á 12(px - ipy) ¦Â|
= 12( )|px¦Ápx¦Â| - i|px¦Ápy¦Â| - i|py¦Ápx¦Â| - |py¦Ápy¦Â|
1D(ML=1,MS=0) = 1
2( )|p0¦Áp1¦Â| - |p0¦Âp1¦Á|
= 12??? ???|(pz)¦Á 12(px + ipy)¦Â| - |(pz)¦Â 12(px + ipy)¦Á|
= 12( )|pz¦Ápx¦Â| + i|pz¦Ápy¦Â| - |pz¦Âpx¦Á| - i|pz¦Âpy¦Á|
1D(ML=-1,MS=0) = 1
2( )|p0¦Áp-1¦Â| - |p0¦Âp-1¦Á|
= 12??? ???|(pz)¦Á 12(px - ipy)¦Â| - |(pz)¦Â 12(px - ipy)¦Á|
= 12( )|pz¦Ápx¦Â| - i|pz¦Ápy¦Â| - |pz¦Âpx¦Á| + i|pz¦Âpy¦Á|
1D(ML=0,MS=0) = 1
6( )2|p0¦Áp0¦Â| + |p1¦Áp-1¦Â| + |p-1¦Áp1¦Â|
= 16(2|pz¦Ápz¦Â| + | 12(px + ipy)¦Á 12(px - ipy)¦Â|
+ | 12(px - ipy) ¦Á 12(px + ipy) ¦Â|)
= 16(2|pz¦Ápz¦Â|
59
+ 12( )|px¦Ápx¦Â| - i|px¦Ápy¦Â| + i|py¦Ápx¦Â| + |py¦Ápy¦Â|
+ 12( )|px¦Ápx¦Â| + i|px¦Ápy¦Â| - i|py¦Ápx¦Â| + |py¦Ápy¦Â| )
= 16( )2|pz¦Ápz¦Â| + |px¦Ápx¦Â| + |py¦Ápy¦Â| )
Analogous to the three 3P states, we can also choose combinations of the five degenerate
1D states which can be labeled with "pure" C2v point group labels:
1D(xx-yy,MS=0) = |px¦Ápx¦Â| - |py¦Ápy¦Â|
= ( )1D(ML=2,MS=0) + 1D(ML=-2,MS=0) = 1A1
1D(yx,MS=0) = |px¦Ápy¦Â| + |py¦Ápx¦Â|
= 1i( )1D(ML=2,MS=0) - 1D(ML=-2,MS=0) = 1A2
1D(zx,MS=0) = |pz¦Ápx¦Â| - |pz¦Âpx¦Á|
= ( )1D(ML=1,MS=0) + 1D(ML=-1,MS=0) = 1B1
1D(zy,MS=0) = |pz¦Ápy¦Â| - |pz¦Âpy¦Á|
= 1i( )1D(ML=1,MS=0) - 1D(ML=-1,MS=0) = 1B2
1D(2zz+xx+yy,MS=0) = 1
6( )2|pz¦Ápz¦Â| + |px¦Ápx¦Â| + |py¦Ápy¦Â| )
= 1D(ML=0,MS=0) = 1A1
The only state left is the 1S:
1S(ML=0,MS=0) = 1
3( )|p0¦Áp0¦Â| - |p1¦Áp-1¦Â| - |p-1¦Áp1¦Â|
60
= 13(|pz¦Ápz¦Â| - | 12(px + ipy)¦Á 12(px - ipy)¦Â|
- | 12(px - ipy) ¦Á 12(px + ipy) ¦Â|)
= 13(|pz¦Ápz¦Â|
- 12( )|px¦Ápx¦Â| - i|px¦Ápy¦Â| + i|py¦Ápx¦Â| + |py¦Ápy¦Â|
- 12( )|px¦Ápx¦Â| + i|px¦Ápy¦Â| - i|py¦Ápx¦Â| + |py¦Ápy¦Â| )
= 13( )|pz¦Ápz¦Â| - |px¦Ápx¦Â| - |py¦Ápy¦Â| )
Each of the components of this state are A1 and hence this state has
A1 symmetry.
b. Forming symmetry-adapted AOs from the C and H atomic orbitals would
generate the following:
61
H
H
C
H
H
C
H
H
C
H
H
C
H
H
C
H
H
C
H1s + H1s = ¦Òg = a1 H1s - H1s = ¦Òu = b2
C2s = a1 C2p = a1 C2p = b2 C2p = b1
z xy
The bonding, nonbonding, and antibonding orbitals of CH2 can be illustrated in the
following manner:
H
H
C
H
H
C
H
H
C
H
H
C
H
H
C
H
H
C
¦Ò = a1 ¦Ò = b2 n = a1 ppi = b1
¦Ò* = a1 ¦Ò* = b2
c.
62
Orbital-correlation diagram for the reaction C + H2 -----> CH2 (bent)
a1(bonding)
b2(antibonding)
a1(antibonding)
b1(2ppi)
a1(non-bonding)
b2(bonding)
CH2 (bent)C + H2
¦Òg(a1)
2s(a1)
¦Òu(b2)
2px(b1) 2py(b2) 2pz(a1)
d. - e. It is necessary to determine how the wavefunctions found in part a.
correlate with states of the CH2 molecule:
3P(xz,MS=1); 3B1 = ¦Òg2s2pxpz ??¡ú ¦Ò2n2ppi¦Ò*
3P(yx,MS=1); 3A2 = ¦Òg2s2pxpy ??¡ú ¦Ò2n2ppi¦Ò
3P(yz,MS=1); 3B2 = ¦Òg2s2pypz ??¡ú ¦Ò2n2¦Ò¦Ò*
1D(xx-yy,MS=0); 1A1 ??¡ú ¦Ò2n2ppi2 - ¦Ò2n2¦Ò2
1D(yx,MS=0); 1A2 ??¡ú ¦Ò2n2¦Òppi
1D(zx,MS=0); 1B1 ??¡ú ¦Ò2n2¦Ò*ppi
1D(zy,MS=0); 1B2 ??¡ú ¦Ò2n2¦Ò*¦Ò
1D(2zz+xx+yy,MS=0); 1A1 ??¡ú 2¦Ò2n2¦Ò*2 + ¦Ò2n2ppi2 + ¦Ò2n2¦Ò2
Note, the C + H2 state to which the lowest 1A1 (¦Ò2n2¦Ò2) CH2 state decomposes would be
¦Òg2s2py2. This state (¦Òg2s2py2) cannot be obtained by a simple combination of the 1D
states. In order to obtain pure ¦Òg2s2py2 it is necessary to combine 1S with 1D. For
example,
63
¦Òg2s2py2 = 16( )6 1D(0,0) - 2 3 1S(0,0) - 12( )1D(2,0) + 1D(-2,0) .
This indicates that a configuration correlation diagram must be drawn with a barrier near
the 1D asymptote to represent the fact that 1A1 CH2 correlates with a mixture of 1D and
1S carbon plus hydrogen. The C + H2 state to which the lowest 3B1 (¦Ò2n¦Ò2ppi) CH2 state
decomposes would be ¦Òg2spy2px.
64
(3B13B23A2)
(1B21A11A11A21B1)
C(1D) + H2
29.2 Kcal/mole
1A1(¦Ò2¦Ò2n2)
3B1(¦Ò2¦Ò2nppi)
3A2(¦Ò2¦Òn2ppi)
3B2(¦Ò2¦Òn2¦Ò?)
3B1(¦Ò2n2¦Ò?ppi)
3B1
C(3P) + H2
¦Òg2spy2px
3B1 3B1
3B2
3A2
1A1
78.8 Kcal/mole
97.0 Kcal/mole
f. If you follow the 3B1 component of the C(3P) + H2 (since it leads to the
ground-state products) to 3B1 CH2 you must go over an approximately 20 Kcal/mole
barrier. Of course this path produces 3B1 CH2 product. Distortions away from C2v
symmetry, for example to Cs symmetry, would make the a1 and b2 orbitals identical in
65
symmetry (a'). The b1 orbitals would maintain their different symmetry going to a''
symmetry. Thus 3B1 and 3A2 (both 3A'' in Cs symmetry and odd under reflection
through the molecular plane) can mix. The system could thus follow the 3A2 component
of the C(3P) + H2 surface to the place (marked with a circle on the CCD) where it crosses
the 3B1 surface upon which it then moves and continues to products. As a result, the
barrier would be lowered.
You can estimate when the barrier occurs (late or early) using thermodynamic
information for the reaction (i.e. slopes and asymptotic energies). For example, an early
barrier would be obtained for a reaction with the characteristics:
Progress of Reaction
Energy
and a late barrier would be obtained for a reaction with the characteristics:
66
Progress of Reaction
Energy
This relation between reaction endothermicity or exothermicity and the character of the
transition state is known as the Hammond postulate. Note that the C(3P1) + H2 --> CH2
reaction of interest here has an early barrier.
g. The reaction C(1D) + H2 ---> CH2 (1A1) should have no symmetry barrier (this
can be recognized by following the 1A1 (C(1D) + H2) reactants down to the 1A1 (CH2)
products).
25.
This problem in many respects is analogous to problem 24.
The 3B1 surface certainly requires a two configuration CI wavefunction; the ¦Ò2¦Ò2npx
(pi2py2spx) and the ¦Ò2n2px¦Ò* (pi2s2pxpz). The 1A1 surface could use the ¦Ò2¦Ò2n2
(pi2s2py2) only but once again there is no combination of 1D determinants which gives
purely this configuration (pi2s2py2). Thus mixing of both 1D and 1S determinants are
67
necessary to yield the required pi2s2py2 configuration. Hence even the 1A1 surface would
require a multiconfigurational wavefunction for adequate description.
C:
H
H
H
C
C
H
x
z
y+ C
n
¦Ò?CC
¦ÒCC
¦Ò?CC
¦ÒCC
2px(b1) 2py(b2) 2pz(a1)
pi*(b2)
2s(a1)
pi(a1)
C2H2 + C C3H2
b2(bonding)
a1(non-bonding)
b1(2ppi)
a1(antibonding)
b2(antibonding)
a1(bonding)
Orbital-correlation diagram for the reaction C2H2 + C -----> C3H2
Configuration correlation diagram for the reaction C2H2 + C ---> C3H2.
68
Ea 3B1
?E 3B1
Ea > ?E (for 3B1)
Ea = ?E (for 1A1)
pi2s2pypz3B2
pi2s2pxpy3A2
pi2s2pxpz3B1
pi2s2py2 1A1
C(1D) + C2H2
1A1(¦Ò2¦Ò2n2)
3B1(¦Ò2¦Ò2nppi)
3A2(¦Ò2¦Òn2ppi)
3B2(¦Ò2¦Òn2¦Ò?)
3B1(¦Ò2n2¦Ò?ppi)3B
1
C(3P) + C2H2
pi2spy2px
26.
a. CCl4 is tetrahedral and therefore is a spherical top. CHCl3 has C3v symmetry and
therefore is a symmetric top. CH2Cl2 has C2v symmetry and therefore is an asymmetric
top.
b. CCl4 has such high symmetry that it will not exhibit pure rotational spectra
because it has no permanent dipole moment. CHCl3 and CH2Cl2 will both exhibit pure
rotation spectra.
69
27.
NH3 is a symmetric top (oblate). Use the given energy expression,
E = (A - B) K2 + B J(J + 1),
A = 6.20 cm-1, B = 9.44 cm-1, selection rules ?J = ±1, and the fact that ¦Ì0¡ú lies along the
figure axis such that ?K = 0, to give:
?E = 2B (J + 1) = 2B, 4B, and 6B (J = 0, 1, and 2).
So, lines are at 18.88 cm-1, 37.76 cm-1, and 56.64 cm-1.
28.
To convert between cm-1 and energy, multiply by hc = (6.62618x10-34J
sec)(2.997925x1010cm sec-1) = 1.9865x1023 J cm.
Let all quantities in cm-1 be designated with a bar,
e.g. Be? = 1.78 cm-1.
a. hcBe? = h
_2
2¦ÌRe2
Re = h
_
2¦ÌhcBe?
,
¦Ì = mBmOmB + mO = (11)(16)(11 + 16) x 1.66056x10-27 kg
= 1.0824x10-26 kg.
70
hcBe? = hc(1.78 cm-1) = 3.5359x10-23 J
Re = 1.05459x10
-34 J sec
(2)1.0824x10-26 kg.3.5359x10-23 J
Re = 1.205x10-10 m = 1.205 ?
De = 4Be
3
h_¦Øe2 , De
? = 4Be
?3
¦Øe? 2 =
(4)(1.78 cm-1)3
(1885 cm-1)2 = 6.35x10-6 cm-1
¦Øexe = h
_¦Ø
e2
4D0e , ¦Øexe
? = ¦Øe
? 2
4D0e? =
(1885 cm-1)2
(4)(66782.2 cm-1) = 13.30 cm-1.
D00 = D0e - h
_¦Ø
e
2 +
h_¦Øexe
4 , D00
? = D0
e
? - ¦Øe
?
2 +
¦Øexe?
4
= 66782.2 - 18852 + 13.34
= 65843.0 cm-1 = 8.16 eV.
¦Áe = -6Be
2
h_¦Øe +
6 Be3h_¦Øexe
h_¦Øe
¦Áe? = -6Be
?2
¦Øe? +
6 Be?3¦Øexe?
¦Øe?
¦Áe? = (-6)(1.78)
2
(1885) +
6 (1.78)3(13.3)
(1885) = 0.0175 cm-1.
B0 = Be - ¦Áe(1/2) , B0? = Be? - ¦Áe?(1/2) = 1.78 - 0.0175/2
= 1.77 cm-1
B1 = Be - ¦Áe(3/2) , B1? = Be? - ¦Áe?(3/2) = 1.78 - 0.0175(1.5)
= 1.75 cm-1
71
b. The molecule has a dipole moment and so it should have a pure rotational
spectrum. In addition, the dipole moment should change with R and so it should have a
vibration-rotation spectrum.
The first three lines correspond to J = 1 ¡ú 0, J = 2 ¡ú 1, J = 3 ¡ú 2
E = h_ ¦Øe(v + 1/2) - h_ ¦Øexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2
?E = h_ ¦Øe - 2h_ ¦Øexe - B0J(J + 1) + B1J(J - 1) - 4DeJ3
?E? = ¦Øe? - 2¦Øexe? - B0? J(J + 1) + B1? J(J - 1) - 4De? J3
?E? = 1885 - 2(13.3) - 1.77J(J + 1) + 1.75J(J - 1) - 4(6.35x10-6)J3
= 1858.4 - 1.77J(J + 1) + 1.75J(J - 1) - 2.54x10-5J3
?E? (J = 1) = 1854.9 cm-1
?E? (J = 2) = 1851.3 cm-1
?E? (J = 3) = 1847.7 cm-1
29.
The C2H2Cl2 molecule has a ¦Òh plane of symmetry (plane of molecule), a C2 axis (¡Í to
the molecular plane), and inversion symmetry, this results in C2h symmetry. Using C2h
symmetry, the modes can be labeled as follows: ¦Í1, ¦Í2, ¦Í3, ¦Í4, and ¦Í5 are ag, ¦Í6 and ¦Í7
are au, ¦Í8 is bg, and ¦Í9, ¦Í10, ¦Í11, and ¦Í12 are bu.
72
30.
R
¦È HH
y
z
C
Molecule I Molecule II
RCH = 1.121 ? RCH = 1.076 ?
¡ÏHCH = 104° ¡ÏHCH = 136°
yH = R Sin (¦È/2) = ±0.8834 yH = ±0.9976
zH = R Cos (¦È/2) = -0.6902 zH = -0.4031
Center of Mass(COM):
clearly, X = Y = 0,
Z = 12(0) - 2RCos(¦È/2)14 = -0.0986 Z = -0.0576
a. Ixx = ¡Æ
j
mj(yj2 + zj2) - M(Y2 + Z2)
Ixy = -¡Æ
j
mjxjyj - MXY
Ixx = 2(1.121)2 - 14(-0.0986)2 Ixx = 2(1.076)2 - 14(-0.0576)2
= 2.377 = 2.269
73
Iyy = 2(0.6902)2 - 14(-0.0986)2 Iyy = 2(0.4031)2 - 14(-0.0576)2
= 0.8167 = 0.2786
Izz = 2(0.8834)2 Izz = 2(0.9976)2
= 1.561 = 1.990
Ixz = Iyz = Ixy = 0
b. Since the moment of inertia tensor is already diagonal, the principal moments
of inertia have already been determined to be
(Ia < Ib < Ic):
Iyy < Izz < Ixx Iyy < Izz < Ixx
0.8167 < 1.561 < 2.377 0.2786 < 1.990 < 2.269
Using the formula: A = h8pi2cIa = 6.626x10
-27
8pi2(3x1010)Ia X
6.02x1023
(1x10-8)2
A = 16.84Ia cm-1
similarly, B = 16.84Ib cm-1, and C = 16.84Ic cm-1.
So,
Molecule I Molecule II
y ? A = 20.62 y ? A = 60.45
z ? B = 10.79 z ? B = 8.46
x ? C = 7.08 x ? C = 7.42
c. Averaging B + C:
B = (B + C)/2 = 8.94 B = (B + C)/2 = 7.94
A - B = 11.68 A - B = 52.51
74
Using the prolate top formula:
E = (A - B) K2 + B J(J + 1),
Molecule I Molecule II
E = 11.68K2 + 8.94J(J + 1) E = 52.51K2 + 7.94J(J + 1)
Levels: J = 0,1,2,... and K = 0,1, ... J
For a given level defined by J and K, there are MJ degeneracies given by: (2J + 1) x
??
?
??
?
2 for K ¡Ù 0
1 for K = 0
d.
Molecule I Molecule II
HH
C
z => Ib
y => Ia
HH
y => Ia
z => Ib
C
e. Assume molecule I is CH2- and molecule II is CH2. Then,
?E = EJj(CH2) - EJi(CH2-), where:
E(CH2) = 52.51K2 + 7.94J(J + 1), and E(CH2-) = 11.68K2 + 8.94J(J + 1)
For R-branches: Jj = Ji + 1, ?K = 0:
?ER = EJj(CH2) - EJi(CH2-)
75
= 7.94(Ji + 1)(Ji + 1 + 1) - 8.94Ji(Ji + 1)
= (Ji + 1){7.94(Ji + 1 + 1) - 8.94Ji}
= (Ji + 1){(7.94- 8.94)Ji + 2(7.94)}
= (Ji + 1){-Ji + 15.88}
For P-branches: Jj = Ji - 1, ?K = 0:
?EP = EJj(CH2) - EJi(CH2-)
= 7.94(Ji - 1)(Ji - 1 + 1) - 8.94Ji(Ji + 1)
= Ji{7.94(Ji - 1) - 8.94(Ji + 1)}
= Ji{(7.94- 8.94)Ji - 7.94 - 8.94}
= Ji{-Ji - 16.88}
This indicates that the R branch lines occur at energies which grow closer and closer
together as J increases (since the 15.88 - Ji term will cancel). The P branch lines occur at
energies which lie more and more negative (i.e. to the left of the origin). So, you can
predict that if molecule I is CH2- and molecule II is CH2 then the R-branch has a band
head and the P-branch does not. This is observed, therefore our assumption was correct:
molecule I is CH2- and molecule II is CH2.
f. The band head occurs when d(?ER)dJ = 0.
d(?ER)
dJ =
d
dJ [(Ji + 1){-Ji + 15.88}] = 0
= ddJ(-Ji2 - Ji + 15.88Ji + 15.88) = 0
= -2Ji + 14.88 = 0
76
¡à Ji = 7.44, so J = 7 or 8.
At J = 7.44:
?ER = (J + 1){-J + 15.88}
?ER = (7.44 + 1){-7.44 + 15.88} = (8.44)(8.44) = 71.2 cm-1 above
the origin.
31.
a.
D6h E 2C6 2C3 C2 3C2
'
3C2
"
i 2S3 2S6 ¦Òh 3¦Òd 3¦Òv
A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2+y2,z2
A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz
B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1
E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0 Rx,Ry (xz,yz)
E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0 (x2-y2,xy)
A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
77
A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z
B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1
B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1
E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x,y)
E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0
¦£C-H 6 0 0 0 0 2 0 0 0 6 2 0
b. The number of irreducible representations may be found by using the following
formula:
nirrep = 1g¡Æ
R
¦Öred(R)¦Öirrep(R) ,
where g = the order of the point group (24 for D6h).
nA1g = 124¡Æ
R
¦£C-H(R).A1g(R)
= 124 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)
+(3)(0)(1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(1)
+(2)(0)(1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(1)}
= 1
nA2g = 124 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)
+(3)(0)(-1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(1)
+(2)(0)(1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(-1)}
78
= 0
nB1g = 124 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)
+(3)(0)(1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(-1)
+(2)(0)(1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(-1)}
= 0
nB2g = 124 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)
+(3)(0)(-1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(-1)
+(2)(0)(1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(1)}
= 0
nE1g = 124 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)
+(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(1)
+(2)(0)(-1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}
= 0
nE2g = 124 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)
+(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(-1)
+(2)(0)(-1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}
= 1
nA1u = 124 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)
+(3)(0)(1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(-1)
+(2)(0)(-1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(-1)}
= 0
79
nA2u = 124 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)
+(3)(0)(-1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(-1)
+(2)(0)(-1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(1)}
= 0
nB1u = 124 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)
+(3)(0)(1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(1)
+(2)(0)(-1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(1)}
= 0
nB2u = 124 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)
+(3)(0)(-1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(1)
+(2)(0)(-1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(-1)}
= 1
nE1u = 124 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)
+(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(-1)
+(2)(0)(1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}
= 1
nE2u = 124 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)
+(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(1)
+(2)(0)(1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}
= 0
We see that ¦£C-H = A1g¨’E2g¨’B2u¨’E1u
80
c. x and y ? E1u , z ? A2u , so, the ground state A1g level can be excited to the
degenerate E1u level by coupling through the x or y transition dipoles. Therefore E1u is
infrared active and ¡Í polarized.
d. (x2 + y2, z2) ? A1g, (xz, yz) ? E1g, (x2 - y2, xy) ? E2g ,so, the ground state
A1g level can be excited to the degenerate E2g level by coupling through the x2 - y2 or xy
transitions or be excited to the degenerate A1g level by coupling through the xz or yz
transitions. Therefore A1g and E2g are Raman active..
e. The B2u mode is not IR or Raman active.
32.
a. Evaluate the z-component of ¦Ìfi:
¦Ìfi = <2pz|e r Cos¦È|1s>, where ¦×1s = 1pi ??? ???Za0
3
2 e
-Zr
a0 , and ¦×2p
z =
1
4 2pi ?
?? ???Za
0
5
2 r Cos¦È e
-Zr
2a0 .
¦Ìfi = 14 2pi ??? ???Za0
5
2 1
pi ?
?? ???Za
0
3
2 <r Cos¦È e
-Zr
2a0 |e r Cos¦È|e
-Zr
a0 >
= 14pi 2 ??? ???Za0 4 <r Cos¦È e
-Zr
2a0 |e r Cos¦È|e
-Zr
a0 >
81
= e4pi 2 ??? ???Za0 4 ??
0
¡Þ
r2dr??
0
pi
Sin¦Èd¦È ??
0
2pi
d??
?? ???
r2 e
-Zr
2a0 e
-Zr
a0 Cos2¦È
= e4pi 2 2pi ??? ???Za0 4 ?
ÿ?
0
¡Þ
??
?
??
?
r4 e
-3Zr
2a0 dr ??
0
pi
Sin¦ÈCos2¦Èd¦È
= e4pi 2 2pi ??? ???Za0 4 4!
??
?
??
?3Z
2a0
5 ??
?
??
?-1
3 Cos3¦È??
??pi
0
= e4pi 2 2pi ??? ???Za0 4 2
5a054!
35Z5 ??
?
??
?-1
3 ( )(-1)3 - (1)3
= e2 2
8a0
35Z =
ea0
Z
28
235 = 0.7449
ea0
Z
b. Examine the symmetry of the integrands for <2pz| e x |1s> and <2pz| e y |1s>.
Consider reflection in the xy plane:
Function Symmetry
2pz -1
x +1
82
1s +1
y +1
Under this operation, the integrand of <2pz| e x |1s> is (-1)(1)(1) = -1 (it is
antisymmetric) and hence <2pz| e x |1s> = 0.
Similarly, under this operation the integrand of <2pz| e y |1s> is
(-1)(1)(1) = -1 (it is also antisymmetric) and hence <2pz| e y |1s> = 0.
c. ¦ÓR = 3h
-4c3
4(Ei - Ef)3|¦Ìfi|2 ,
Ei = E2pz = -14 Z2 ??
?
??
?e2
2a0
Ef = E1s = -Z2 ??
?
??
?e2
2a0
Ei - Ef = 38 ??
?
??
?e2
a0 Z2
Making the substitutions for Ei - Ef and |¦Ìfi| in the expression for ¦ÓR we obtain:
¦ÓR = 3h
-4c3
4??
?
??
?3
8 ??
?
??
?e2
a0 Z2
3
??
?
??
?
??
?
??
?ea0
Z
28
235
2 ,
= 3h
-4c3
4 3
3
83 ??
?
??
?e6
a03 Z6 ??
?
??
?e2a02
Z2
216
(2)310
,
= h
-4c3 38 a0
e8 Z4 28 ,
83
Inserting e2 = h
-2
mea0 we obtain:
¦ÓR = h
-4c3 38 a0 me4a04
h-8 Z4 28 =
38
28
c3 a05 me4
h-4 Z4
= 25.6289 c
3 a05 me4
h-4 Z4
= 25,6289 ??? ???1Z4 x
(2.998x1010 cm sec-1)3(0.529177x10-8 cm)5(9.109x10-28 g)4
(1.0546x10-27 g cm2 sec-1)4
= 1.595x10-9 sec x ??? ???1Z4
So, for example:
Atom ¦ÓR
H 1.595 ns
He+ 99.7 ps
Li+2 19.7 ps
Be+3 6.23 ps
Ne+9 159 fs
33.
84
a. H = H0 + ¦ËH'(t), H'(t) = V¦È(t), H0?k = Ek?k, ¦Øk = Ek/h-
ih-?¦×?t = H¦×
let ¦×(r,t) = ih-¡Æ
j
cj(t)?je-i¦Øjt and insert into the Schr?dinger equation:
ih-¡Æ
j
?? ??c?j - i¦Øjcj e-i¦Øjt?j = ih-¡Æ
j
cj(t)e-i¦Øjt(H0 + ¦ËH'(t)) ?j
¡Æ
j
?? ??ih-c?j + Ejcj - cjEj - cj¦ËH' e-i¦Øjt?j = 0
¡Æ
j
?? ??ih-c?j<m|j> - cj¦Ë<m|H'|j> e-i¦Øjt = 0
ih-c? m e-i¦Ømt = ¡Æ
j
cj¦ËH'mj e-i¦Øjt
So,
c? m = 1ih-¡Æ
j
cj¦ËH'mj e-i(¦Øjm)t
Going back a few equations and multiplying from the left by ?k instead of ?m we obtain:
¡Æ
j
?? ??ih-c?j<k|j> - cj¦Ë<k|H'|j> e-i¦Øjt = 0
ih-c? k e-i¦Økt = ¡Æ
j
cj¦ËH'kj e-i¦Øjt
So,
85
c? k = 1ih-¡Æ
j
cj¦ËH'kj e-i(¦Øjk)t
Now, let:
cm = cm(0) + cm(1)¦Ë + cm(2)¦Ë2 + ...
ck = ck(0) + ck(1)¦Ë + ck(2)¦Ë2 + ...
and substituting into above we obtain:
c? m(0) + c? m(1)¦Ë + c? m(2)¦Ë2 + ... = 1ih-¡Æ
j
[cj(0) + cj(1)¦Ë + cj(2)¦Ë2 + ...] ¦ËH'mj e-i(¦Øjm)t
first order:
c? m(0) = 0 ? cm(0) = 1
second order:
c? m(1) = 1ih-¡Æ
j
cj(0) H'mj e-i(¦Øjm)t
(n+1)st order:
c? m(n) = 1ih-¡Æ
j
cj(n-1) H'mj e-i(¦Øjm)t
Similarly:
first order:
c? k(0) = 0 ? ck¡Ùm(0) = 0
second order:
c? k(1) = 1ih-¡Æ
j
cj(0) H'kj e-i(¦Øjk)t
86
(n+1)st order:
c? k(n) = 1ih-¡Æ
j
cj(n-1) H'kj e-i(¦Øjk)t
So,
c? m(1) = 1ih- cm(0) H'mm e-i(¦Ømm)t = 1ih- H'mm
cm(1)(t) = 1ih- ??
0
t
dt' Vmm = Vmmtih-
and similarly,
c? k(1) = 1ih- cm(0) H'km e-i(¦Ømk)t = 1ih- H'km e-i(¦Ømk)t
ck(1)(t) = 1ih- Vkm ??
0
t
dt' e-i(¦Ømk)t' = Vkmh-¦Ø
mk[ ]
e-i(¦Ømk)t - 1
c? m(2) = 1ih-¡Æ
j
cj(1) H'mj e-i(¦Øjm)t
c? m(2) = ¡Æ
j¡Ùm
1ih- Vjmh-¦Ø
mj[ ]
e-i(¦Ømj)t - 1 H'mj e-i(¦Øjm)t + 1ih- Vmmtih- H'mm
cm(2) = ¡Æ
j¡Ùm
1ih- VjmVmjh-¦Ø
mj
??
0
t
dt' e-i(¦Øjm)t' [ ]e-i(¦Ømj)t' - 1 - VmmVmmh-2 ??
0
t
t'dt'
= ¡Æ
j¡Ùm
VjmVmjih-2¦Ø
mj
??
0
t
dt'[ ]1 - e-i(¦Øjm)t' - |Vmm|
2
h-2
t2
2
87
= ¡Æ
j¡Ùm
VjmVmjih-2¦Ø
mj
??
?
??
?
t - e
-i(¦Øjm)t - 1
-i¦Øjm -
|Vmm|2
h-2
t2
2
= ¡Æ
j¡Ùm
'VjmVmjh-2¦Ø
mj2
( )e-i(¦Øjm)t - 1 + ¡Æ
j¡Ùm
' VjmVmjih-2¦Ø
mj
t - |Vmm|
2 t2
2h-2
Similarly,
c? k(2) = 1ih-¡Æ
j
cj(1) H'kj e-i(¦Øjk)t
= ¡Æ
j¡Ùm
1ih- Vjmh-¦Ø
mj[ ]
e-i(¦Ømj)t - 1 H'kj e-i(¦Øjk)t +
1ih- Vmmtih- H'km e-i(¦Ømk)t
ck(2)(t) = ¡Æ
j¡Ùm
' VjmVkjih-2¦Ø
mj
??
0
t
dt' e-i(¦Øjk)t' [ ]e-i(¦Ømj)t' - 1
- VmmVkmh-2 ??
0
t
t'dt' e-i(¦Ømk)t'
= ¡Æ
j¡Ùm
'VjmVkjih-2¦Ø
mj
??
?
??
?e-i(¦Ømj+¦Øjm)t - 1
-i¦Ømk -
e-i(¦Øjk)t - 1
-i¦Øjk
- VmmVkmh-2 ??
?
??
?
e-i(¦Ømk)t'??
?
??
?t'
-i¦Ømk -
1
-(i¦Ømk)2
t
0
= ¡Æ
j¡Ùm
'VjmVkjh-2¦Ø
mj
??
?
??
?e-i(¦Ømk)t - 1
¦Ømk -
e-i(¦Øjk)t - 1
¦Øjk
88
+ VmmVkmh-2¦Ø
mk
??? ???e-i(¦Ømk)t'??? ???t'i - 1¦Ømk t0
= ¡Æ
j¡Ùm
'VjmVkjEm - Ej ??
?
??
?e-i(¦Ømk)t - 1
Em - Ek -
e-i(¦Øjk)t - 1
Ej - Ek
+ VmmVkmh-(E
m - Ek)
??? ???e-i(¦Ømk)t??? ???ti - 1¦Ømk + 1¦Ømk
So, the overall amplitudes cm, and ck, to second order are:
cm(t) = 1 + Vmmtih- + ¡Æ
j¡Ùm
' VjmVmjih-(E
m - Ej)
t +
¡Æ
j¡Ùm
' VjmVmjh-2(E
m - Ej)2
( )e-i(¦Øjm)t - 1 - |Vmm|
2 t2
2h-2
ck(t) = Vkm(Em - Ek)[ ]e-i(¦Ømk)t - 1 +
VmmVkm(Em - Ek)2 [ ]1 - e-i(¦Ømk)t + VmmVkm(Em - Ek) th-i e-i(¦Ømk)t +
¡Æ
j¡Ùm
'VjmVkjEm - Ej ??
?
??
?e-i(¦Ømk)t - 1
Em - Ek -
e-i(¦Øjk)t - 1
Ej - Ek
b. The perturbation equations still hold:
c? m(n) = 1ih-¡Æ
j
cj(n-1) H'mj e-i(¦Øjm)t ; c? k(n) = 1ih-¡Æ
j
cj(n-1) H'kj e-i(¦Øjk)t
So, cm(0) = 1 and ck(0) = 0
c? m(1) = 1ih- H'mm
89
cm(1) = 1ih- Vmm ??
-¡Þ
t
dt' e¦Çt = Vmme
¦Çt
ih-¦Ç
c? k(1) = 1ih- H'km e-i(¦Ømk)t
ck(1) = 1ih- Vkm ??
-¡Þ
t
dt' e-i(¦Ømk+¦Ç)t' = Vkmih-(-i¦Ø
mk+¦Ç)[ ]
e-i(¦Ømk+¦Ç)t
= VkmE
m - Ek + ih-¦Ç[ ]
e-i(¦Ømk+¦Ç)t
c? m(2) = ¡Æ
j¡Ùm
'1ih- VjmE
m - Ej + ih-¦Ç
e-i(¦Ømj+¦Ç)t Vmj e¦Çt e-i(¦Øjm)t +
1
ih-
Vmm e¦Çt
ih-¦Ç Vmm e
¦Çt
cm(2) = ¡Æ
j¡Ùm
'1ih- VjmVmjE
m - Ej + ih-¦Ç
??
-¡Þ
t
e2¦Çt'dt' - |Vmm|
2
h-2¦Ç
??
-¡Þ
t
e2¦Çt'dt'
= ¡Æ
j¡Ùm
' VjmVmjih-2¦Ç(E
m - Ej + ih-¦Ç)
e2¦Çt - |Vmm|
2
2h-2¦Ç2 e
2¦Çt
c? k(2) = ¡Æ
j¡Ùm
'1ih- VjmE
m - Ej + ih-¦Ç
e-i(¦Ømj+¦Ç)t H'kj e-i(¦Øjk)t +
1ih- Vmm e
¦Çt
ih-¦Ç H'km e
-i(¦Ømk)t
ck(2) = ¡Æ
j¡Ùm
'1ih- VjmVkjE
m - Ej + ih-¦Ç
??
-¡Þ
t
e-i(¦Ømk+2¦Ç)t'dt' -
90
VmmVkm
h-2¦Ç
??
-¡Þ
t
e-i(¦Ømk+2¦Ç)t'dt'
= ¡Æ
j¡Ùm
' VjmVkj e
-i(¦Ømk+2¦Ç)t
(Em - Ej + ih-¦Ç)(Em - Ek + 2ih-¦Ç) -
VmmVkm e-i(¦Ømk+2¦Ç)t
ih-¦Ç(Em - Ek + 2ih-¦Ç)
Therefore, to second order:
cm(t) = 1 + Vmme
¦Çt
ih-¦Ç + ¡Æj
VjmVmj
ih-2¦Ç(Em - Ej + ih-¦Ç) e
2¦Çt
ck(t) = Vkmih-(-i¦Ø
mk+¦Ç)[ ]
e-i(¦Ømk+¦Ç)t
+ ¡Æ
j
VjmVkj e
-i(¦Ømk+2¦Ç)t
(Em - Ej + ih-¦Ç)(Em - Ek + 2ih-¦Ç)
c. In part a. the c(2)(t) grow linearly with time (for Vmm = 0) while in part b. they
remain finite for ¦Ç > 0. The result in part a. is due to the sudden turning on of the field.
d. |ck(t)|2 =
??
??
??
??¡Æ
j
VjmVkj e
-i(¦Ømk+2¦Ç)t
(Em - Ej + ih-¦Ç)(Em - Ek + 2ih-¦Ç)
2
= ¡Æ
jj'
VkjVkj'VjmVj'm e
-i(¦Ømk+2¦Ç)tei(¦Ømk+2¦Ç)t
(Em-Ej+ih-¦Ç)(Em-Ej'-ih-¦Ç)(Em-Ek+2ih-¦Ç)(Em-Ek-2ih-¦Ç)
= ¡Æ
jj'
VkjVkj'VjmVj'm e
4¦Çt
[(Em-Ej)(Em-Ej')+ih-¦Ç(Ej-Ej')+h-2¦Ç2]((Em-Ek)2+4h-2¦Ç2)
d
dt |ck(t)|2 = ¡Æ
jj'
4¦Ç VkjVkj'VjmVj'm[(E
m-Ej)(Em-Ej')+ih-¦Ç(Ej-Ej')+h-2¦Ç2]((Em-Ek)2+4h-2¦Ç2)
Now, look at the limit as ¦Ç ¡ú 0+:
91
d
dt |ck(t)|2 ¡Ù 0 when Em = Ek
lim¦Ç¡ú0+ 4¦Ç
((Em-Ek)2+4h-2¦Ç2) ¦Á ¦Ä(Em-Ek)
So, the final result is the 2nd order golden rule expression:
d
dt |ck(t)|2 =
2pi
h- ¦Ä(Em-Ek)
lim¦Ç¡ú0+
??
??
??
??¡Æ
j
VjmVkj(E
j - Em - ih-¦Ç)
2
34.
a. Tnm ¡Ö |<n|V|m>|
2
h-2¦Ønm2
evaluating <1s|V|2s> (using only the radial portions of the 1s and 2s wavefunctions since
the spherical harmonics will integrate to unity) where V = (e2/r), the change in Coulomb
potential when tritium becomes He:
<1s|V|2s> = ?ÿ
?
2??? ???Za0
3
2 e
-Zr
a0 1r 1
2 ?
?? ???Za
0
3
2 ??? ???1 - Zr2a
0 e
-Zr
2a0 r2dr
<1s|V|2s> = 22 ??? ???Za0 3 ??
??
??
??
?ÿ
?
re
-3Zr
2a0 dr - ?ÿ? Zr22a
0 e
-3Zr
2a0 dr
= 22 ??? ???Za0 3
??
??
??
??1
??
?
??
?3Z
2a0
2 - ??
?
??
?Z
2a0
2
??
?
??
?3Z
2a0
3
92
<1s|V|2s> = 22 ??? ???Za0 3 ??
?
??
?22a02
32Z2 -
23a02
33Z2
<1s|V|2s> = 22 ??? ???Za0 3 ??
?
??
?(3)22a02 - 23a02
33Z2 =
8Z
227a0
Now,
En = - Z
2e2
n22a0 , E1s = -
Z2e2
2a0 , E2s = -
Z2e2
8a0 , E2s - E1s =
3Z2e2
8a0
So,
Tnm =
??
?
??
?8Z
227a0
2
??
?
??
?3Z2
8a0
2 =
26Z226a02
(2)38a02Z4 =
211
38Z2 = 0.312 (for Z = 1)
b. ?m(r) = ?1s = 2??? ???Za0
3
2 e
-Zr
a0 Y00
The orthogonality of the spherical harmonics results in only s-states having non-zero
values for Anm. We can then drop the Y00 (integrating this term will only result in unity)
in determining the value of A1s,2s.
¦×n(r) = ¦×2s = 12 ??? ???Za0
3
2 ??? ???1 - Zr2a
0 e
-Zr
2a0
Remember for ?1s Z = 1 and for ¦×2s Z = 2
Anm = ?ÿ
?
2??? ???Za0
3
2 e
-Zr
a0 1
2 ?
?? ???Z+1a
0
3
2 ??? ???1 - (Z+1)r2a
0 e
-(Z+1)r
2a0 r2dr
Anm = 22??? ???Za0
3
2??? ???Z+1a
0
3
2?ÿ? e
-(3Z+1)r
2a0 ??? ???1 - (Z+1)r2a
0 r2dr
93
Anm = 22??? ???Za0
3
2??? ???Z+1a
0
3
2
??
??
??
??
?ÿ
?
r2 e
-(3Z+1)r
2a0 dr - ?ÿ?(Z+1)r32a
0 e
-(3Z+1)r
2a0 dr
We obtain:
Anm = 22??? ???Za0
3
2??? ???Z+1a
0
3
2
??
??
??
??2
??
?
??
?3Z+1
2a0
3 - ??
?
??
?Z+1
2a0
(3)(2)
??
?
??
?3Z+1
2a0
4
Anm = 22??? ???Za0
3
2??? ???Z+1a
0
3
2 ??? ???24a03
(3Z+1)3 - (Z+1)
(3)24a03
(3Z+1)4
Anm = 22??? ???Za0
3
2??? ???Z+1a
0
3
2 ??? ???-25a03
(3Z+1)4
Anm = -2 [ ]
23Z(Z+1)
3
2
(3Z+1)4
The transition probability is the square of this amplitude:
Tnm = ?
?? ???
-2 [ ]
23Z(Z+1)
3
2
(3Z+1)4
2
= 2
11Z3(Z+1)3
(3Z+1)8 = 0.25 (for Z = 1).
The difference in these two results (parts a. and b.) will become negligible at large values
of Z when the perturbation becomes less significant than in the case of Z = 1.
35.
94
¦Å¡ú is along Z (lab fixed), and ¦Ì¡ú is along z (the C-I molecule fixed bond). The angle
between Z and z is ¦Â:
¦Å¡ú . ¦Ì¡ú = ¦Å¦ÌCos¦Â = ¦Å¦ÌD001* (¦Á¦Â¦Ã)
So,
I = <DM'K'J' | ¦Å¡ú . ¦Ì¡ú |DMKJ > = ?ÿ
?
DM'K'J' ¦Å¡ú. ¦Ì¡úDMKJ Sin¦Âd¦Âd¦Ãd¦Á
= ¦Å¦Ì??DM'K'J' D001* DMKJ Sin¦Âd¦Âd¦Ãd¦Á.
Now use:
DM'n'J'* D001* = ¡Æ
jmn
<J'M'10|jm>*Dmnj* <jn|J'K'10> *,
to obtain:
I = ¦Å¦Ì ¡Æ
jmn
<J'M'10|jm>*<jn|J'K'10> *??Dmnj* DMKJ Sin¦Âd¦Âd¦Ãd¦Á.
Now use:
??Dmnj* DMKJ Sin¦Âd¦Âd¦Ãd¦Á = 8pi
2
2J+1 ¦ÄJj¦ÄMm¦Ä¦ªn,
to obtain:
I = ¦Å¦Ì 8pi
2
2J+1 ¡Æ
jmn
<J'M'10|jm>*<jn|J'K'10> *¦ÄJj¦ÄMm¦Ä¦ªn
= ¦Å¦Ì 8pi
2
2J+1 <J'M'10|JM><JK|J'K'10>.
We use:
95
<JK|J'K'10> = 2J+1(-i)(J'-1+K) ?? ??K' 0 KJ' 1 J
and,
<J'M'10|JM> = 2J+1(-i)(J'-1+M)?? ??M' 0 MJ' 1 J
to give:
I = ¦Å¦Ì 8pi
2
2J+1 2J+1(-i)(J'-1+M)?? ??M' 0 MJ' 1 J 2J+1(-i)(J'-1+K) ?? ??K' 0 KJ' 1 J
= ¦Å¦Ì8pi2(-i)(J'-1+M+J'-1+K)?? ??M' 0 MJ' 1 J ?? ??K' 0 KJ' 1 J
= ¦Å¦Ì8pi2(-i)(M+K)?? ??M' 0 MJ' 1 J ?? ??K' 0 KJ' 1 J
The 3-J symbols vanish unless: K' + 0 = K and M' + 0 = M.
So,
I = ¦Å¦Ì8pi2(-i)(M+K)?? ??M 0 MJ' 1 J ?? ??K 0 KJ' 1 J ¦ÄM'M¦ÄK'K.
b. ?? ??M 0 MJ' 1 J and ?? ??K 0 KJ' 1 J vanish unless J' = J + 1, J, J - 1
¡à ?J = ±1, 0
The K quantum number can not change because the dipole moment lies along the
molecule's C3 axis and the light's electric field thus can exert no torque that twists the
molecule about this axis. As a result, the light can not induce transitions that excite the
molecule's spinning motion about this axis.
36.
96
a. B atom: 1s22s22p1, 2P ground state L = 1, S = 12 , gives a degeneracy ((2L+1)(2S+1))
of 6.
O atom: 1s22s22p4, 3P ground state L = 1, S = 1, gives a degeneracy
((2L+1)(2S+1)) of 9.
The total number of states formed is then (6)(9) = 54.
b. We need only consider the p orbitals to find the low lying molecular states:
2pi
1pi
6¦Ò
5¦Ò
2p2p
Which, in reality look like this:
5¦Ò
6¦Ò
1pi
2pi
This is the correct ordering to give a 2¦²+ ground state. The only low-lying electron
configurations are 1pi35¦Ò2 or 1pi45¦Ò1. These lead to 2¦° and 2¦²+ states, respectively.
97
c. The bond orders in both states are 2.5.
d. The 2¦² is + but g/u symmetry cannot be specified since this is a heteronuclear
molecule.
e. Only one excited state, the 2¦°, is spin-allowed to radiate to the 2¦²+. Consider
symmetries of transition moment operators that arise in the electric dipole contributions
to the transition rate z ¡ú ¦²+, x,y ¡ú ¦°, ¡à the 2¦° ¡ú 2¦²+ is electric dipole allowed via a
perpendicular band.
f. Since ionization will remove a bonding electron, the BO+ bond is weaker than
the BO bond.
g. The ground state BO+ is 1¦²+ corresponding to a 1pi4 electron configuration. An
electron configuration of 1pi3 5¦Ò1 leads to a 3¦° and a 1¦° state. The 3¦° will be lower in
energy. A 1pi2 5¦Ò2 configuration will lead to higher lying states of 3¦²-, 1?, and 1¦²+.
h. There should be 3 bands corresponding to formation of BO+ in the 1¦²+, 3¦°,
and 1¦° states. Since each of these involves removing a bonding electron, the Franck-
Conden integrals will be appreciable for several vibrational levels, and thus a vibrational
progression should be observed.
37.
a. The bending (pi) vibration is degenerate.
b. H---C¡ÔN
98
?
bending fundamental
c. H---C¡ÔN
?
stretching fundamental
d. CH stretch (¦Í3 in figure) is ¦Ò, CN stretch is ¦Ò, and HCN (¦Í2 in figure) bend is
pi.
e. Under z (¦Ò) light the CN stretch and the CH stretch can be excited, since ¦×0 =
¦Ò, ¦×1 = ¦Ò and z = ¦Ò provides coupling.
f. Under x,y (pi) light the HCN bend can be excited, since ¦×0 = ¦Ò, ¦×1 = pi and x,y
= pi provides coupling.
g. The bending vibration is active under (x,y) perpendicular polarized light. ?J =
0, ±1 are the selection rules for ¡Í transitions. The CH stretching vibration is active under
(z) || polarized light. ?J = ±1 are the selection rules for || transitions.
99
38.
F ¦Õi = ¦Åi ¦Õj = h ¦Õi + ¡Æ
j
[ ]Jj - Kj ¦Õi
Let the closed shell Fock potential be written as:
Vij = ¡Æ
k
?? ??2< >ik|jk - < >ik|kj , and the 1e- component as:
hij = < ¦Õi| - 12 ?2 - ¡Æ
A
ZA|r - RA| |¦Õj > , and the delta as:
¦Äij = < >i|j , so that: hij + Vij = ¦Äij¦Åi.
using: ¦Õi = ¡Æ
¦Ì
C¦Ìi¦Ö¦Ì , ¦Õj = ¡Æ
¦Í
C¦Íj¦Ö¦Í , and ¦Õk = ¡Æ
¦Ã
C¦Ãk¦Ö¦Ã , and transforming from the MO
to AO basis we obtain:
Vij = ¡Æ
k¦Ì¦Ã¦Í¦Ê
C¦ÌiC¦ÃkC¦ÍjC¦Êk?? ??2< >¦Ì¦Ã|¦Í¦Ê - < >¦Ì¦Ã|¦Ê¦Í
= ¡Æ
k¦Ì¦Ã¦Í¦Ê
(C¦ÃkC¦Êk)(C¦ÌiC¦Íj)?? ??2< >¦Ì¦Ã|¦Í¦Ê - < >¦Ì¦Ã|¦Ê¦Í
= ¡Æ
¦Ì¦Í
(C¦ÌiC¦Íj) V¦Ì¦Í where,
V¦Ì¦Í = ¡Æ
¦Ã¦Ê
P¦Ã¦Ê?? ??2< >¦Ì¦Ã|¦Í¦Ê - < >¦Ì¦Ã|¦Ê¦Í , and P¦Ã¦Ê = ¡Æ
k
(C¦ÃkC¦Êk) ,
hij = ¡Æ
¦Ì¦Í
(C¦ÌiC¦Íj) h¦Ì¦Í , where
100
h¦Ì¦Í = < ¦Ö¦Ì| - 12 ?2 - ¡Æ
A
ZA|r - RA| |¦Ö¦Í > , and
¦Äij = < >i|j = ¡Æ
¦Ì¦Í
(C¦ÌiS¦Ì¦ÍC¦Íj) .
So, hij + Vij = ¦Äij¦Åj becomes:
¡Æ
¦Ì¦Í
(C¦ÌiC¦Íj) h¦Ì¦Í + ¡Æ
¦Ì¦Í
(C¦ÌiC¦Íj) V¦Ì¦Í = ¡Æ
¦Ì¦Í
(C¦ÌiS¦Ì¦ÍC¦Íj) ¦Åj ,
¡Æ
¦Ì¦Í
(C¦ÌiS¦Ì¦ÍC¦Íj) ¦Åj - ¡Æ
¦Ì¦Í
(C¦ÌiC¦Íj) h¦Ì¦Í - ¡Æ
¦Ì¦Í
(C¦ÌiC¦Íj) V¦Ì¦Í = 0 for all i,j
¡Æ
¦Ì¦Í
C¦Ìi[ ]¦ÅjS¦Ì¦Í - h¦Ì¦Í - V¦Ì¦Í C¦Íj = 0 for all i,j
Therefore,
¡Æ
¦Í
[ ]h¦Ì¦Í + V¦Ì¦Í - ¦ÅjS¦Ì¦Í - C¦Íj = 0
This is FC = SCE in the AO basis.
39.
The Slater Condon rule for zero (spin orbital) difference with N electrons in N spin
orbitals is:
101
E = < >|H + G| = ¡Æ
i
N
< >¦Õi|h|¦Õi + ¡Æ
i>j
N
?? ??< >¦Õi¦Õj|g|¦Õi¦Õj - < >¦Õi¦Õj|g|¦Õj¦Õi
= ¡Æ
i
hii + ¡Æ
i>j
( )gijij - gijji
= ¡Æ
i
hii + 12¡Æ
ij
( )gijij - gijji
If all orbitals are doubly occupied and we carry out the spin integration we obtain:
E = 2 ¡Æ
i
occ
hii + ¡Æ
ij
occ
( )2gijij - gijji ,
where i and j now refer to orbitals (not spin-orbitals).
40.
If the occupied orbitals obey F¦Õk = ¦Åk¦Õk , then the expression for E in problem 39 can be
rewritten as.
E = ¡Æ
i
occ
??
??
??
??hii + ¡Æ
j
occ
( )2gijij - gijji + ¡Æ
i
occ
hii
We recognize the closed shell Fock operator expression and rewrite this as:
E = ¡Æ
i
occ
Fii + ¡Æ
i
occ
hii = ¡Æ
i
occ
( )¦Åi + hii
102
41.
I will use the QMIC software to do this problem. Lets just start from the beginning. Get
the starting "guess" MO coefficients on disk. Using the program MOCOEFS it asks us
for the first and second MO vectors. We input 1, 0 for the first mo (this means that the
first MO is 1.0 times the He 1s orbital plus 0.0 times the H 1s orbital; this bonding MO is
more likely to be heavily weighted on the atom having the higher nuclear charge) and 0,
1 for the second. Our beginning LCAO-MO array looks like: ???
?
??
??1.0 0.0
0.0 1.0 and is placed
on disk in a file we choose to call "mocoefs.dat". We also put the AO integrals on disk
using the program RW_INTS. It asks for the unique one- and two- electron integrals and
places a canonical list of these on disk in a file we choose to call "ao_integrals.dat". At
this point it is useful for us to step back and look at the set of equations which we wish to
solve: FC = SCE. The QMIC software does not provide us with a so-called generalized
eigenvalue solver (one that contains an overlap matrix; or metric), so in order to use the
diagonalization program that is provided we must transform this equation (FC = SCE) to
one that looks like (F'C' = C'E). We do that in the following manner:
Since S is symmetric and positive definite we can find an S-
1
2 such that S-
1
2 S+
1
2 = 1, S-
1
2
S = S+
1
2 , etc.
103
rewrite FC = SCE by inserting unity between FC and multiplying the whole equation on
the left by S-
1
2 . This gives:
S-
1
2 FS-
1
2 S+
1
2 C = S-
1
2 SCE = S+
1
2 CE.
Letting: F' = S-
1
2 FS-
1
2
C' = S+
1
2 C, and inserting these expressions above give:
F'C' = C'E
Note, that to get the next iteration¡¯s MO coefficients we must calculate C from C':
C' = S+
1
2 C, so, multiplying through on the left by S-
1
2 gives:
S-
1
2 C' = S-
1
2 S+
1
2 C = C
This will be the method we will use to solve our fock equations.
Find S-
1
2 by using the program FUNCT_MAT (this program generates a function of a
matrix). This program will ask for the elements of the S array and write to disk a file
(name of your choice ... a good name might be "shalf") containing the S-
1
2 array. Now
we are ready to begin the iterative Fock procedure.
a. Calculate the Fock matrix, F, using program FOCK which reads in the MO
coefficients from "mocoefs.dat" and the integrals from "ao_integrals.dat" and writes the
resulting Fock matrix to a user specified file (a good filename to use might be something
like "fock1").
104
b. Calculate F' = S-
1
2 FS-
1
2 using the program UTMATU which reads in F and S-
1
2
from files on the disk and writes F' to a user specified file (a good filename to use might
be something like "fock1p"). Diagonalize F' using the program DIAG. This program
reads in the matrix to be diagonalized from a user specified filename and writes the
resulting eigenvectors to disk using a user specified filename (a good filename to use
might be something like "coef1p"). You may wish to choose the option to write the
eigenvalues (Fock orbital energies) to disk in order to use them at a later time in program
FENERGY. Calculate C by using. C = S-
1
2 C'. This is accomplished by using the
program MATXMAT which reads in two matrices to be multiplied from user specified
files and writes the product to disk using a user specified filename (a good filename to
use might be something like "mocoefs.dat").
c. The QMIC program FENERGY calculates the total energy:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í , and
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í .
This is the conclusion of one iteration of the Fock procedure ... you may continue by
going back to part a. and proceeding onward.
d. and e. Results for the successful convergence of this system using the supplied
QMIC software are as follows (this data is provided to give the student assurance that
105
they are on the right track; alternatively one could switch to the QMIC program SCF and
allow that program to iteratively converge the Fock equations):
The one-electron AO integrals: ???
?
??
??-2.644200 -1.511300
-1.511300 -1.720100
The two-electron AO integrals:
1 1 1 1 1.054700
2 1 1 1 0.4744000
2 1 2 1 0.5664000
2 2 1 1 0.2469000
2 2 2 1 0.3504000
2 2 2 2 0.6250000
The "initial" MO-AO coefficients: ???
?
??
??1.000000 0.000000
0.000000 1.000000
AO overlap matrix (S): ???
?
??
??1.000000 0.578400
0.578400 1.000000
S -
1
2
??
??
??
??1.168032 -0.3720709
-0.3720709 1.168031
106
**************
ITERATION 1
**************
The charge bond order matrix: ???
?
??
??1.000000 0.0000000
0.0000000 0.0000000
The Fock matrix (F): ???
?
??
??-1.589500 -1.036900
-1.036900 -0.8342001
S -
1
2 F S -
1
2
??
??
??
??-1.382781 -0.5048679
-0.5048678 -0.4568883
The eigenvalues of this matrix (Fock orbital energies) are:
[ ]-1.604825 -0.2348450
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
??
??
??
??-0.9153809 -0.4025888
-0.4025888 0.9153810
107
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.9194022 -0.8108231
-0.1296498 1.218985
The one-electron MO integrals:
??
??
??
??-2.624352 -0.1644336
-0.1644336 -1.306845
The two-electron MO integrals:
1 1 1 1 0.9779331
2 1 1 1 0.1924623
2 1 2 1 0.5972075
2 2 1 1 0.1170838
2 2 2 1 -0.0007945194
2 2 2 2 0.6157323
The closed shell Fock energy from formula:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84219933
108
from formula:
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.80060530
the difference is: -0.04159403
**************
ITERATION 2
**************
The charge bond order matrix: ???
?
??
??0.8453005 0.1192003
0.1192003 0.01680906
The Fock matrix: ???
?
??
??-1.624673 -1.083623
-1.083623 -0.8772071
S -
1
2 F S -
1
2
??
??
??
??-1.396111 -0.5411037
-0.5411037 -0.4798213
The eigenvalues of this matrix (Fock orbital energies) are:
109
[ ]-1.646972 -0.2289599
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
??
??
??
??-0.9072427 -0.4206074
-0.4206074 0.9072427
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.9031923 -0.8288413
-0.1537240 1.216184
The one-electron MO integrals:
??
??
??
??-2.617336 -0.1903475
-0.1903475 -1.313861
The two-electron MO integrals:
1 1 1 1 0.9626070
2 1 1 1 0.1949828
110
2 1 2 1 0.6048143
2 2 1 1 0.1246907
2 2 2 1 0.003694540
2 2 2 2 0.6158437
The closed shell Fock energy from formula:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84349298
from formula:
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.83573675
the difference is: -0.00775623
**************
ITERATION 3
**************
The charge bond order matrix: ???
?
??
??0.8157563 0.1388423
0.1388423 0.02363107
111
The Fock matrix: ???
?
??
??-1.631153 -1.091825
-1.091825 -0.8853514
S -
1
2 F S -
1
2
??
??
??
??-1.398951 -0.5470731
-0.5470730 -0.4847007
The eigenvalues of this matrix (Fock orbital energies) are:
[ ]-1.654745 -0.2289078
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
??
??
??
??-0.9058709 -0.4235546
-0.4235545 0.9058706
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.9004935 -0.8317733
-0.1576767 1.215678
The one-electron MO integrals:
112
??
??
??
??-2.616086 -0.1945811
-0.1945811 -1.315112
The two-electron MO integrals:
1 1 1 1 0.9600707
2 1 1 1 0.1953255
2 1 2 1 0.6060572
2 2 1 1 0.1259332
2 2 2 1 0.004475587
2 2 2 2 0.6158972
The closed shell Fock energy from formula:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84353018
from formula:
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84225941
113
the difference is: -0.00127077
**************
ITERATION 4
**************
The charge bond order matrix: ???
?
??
??0.8108885 0.1419869
0.1419869 0.02486194
The Fock matrix: ???
?
??
??-1.632213 -1.093155
-1.093155 -0.8866909
S -
1
2 F S -
1
2
??
??
??
??-1.399426 -0.5480287
-0.5480287 -0.4855191
The eigenvalues of this matrix (Fock orbital energies) are:
[ ]-1.656015 -0.2289308
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
??
??
??
??-0.9056494 -0.4240271
-0.4240271 0.9056495
114
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.9000589 -0.8322428
-0.1583111 1.215595
The one-electron MO integrals:
??
??
??
??-2.615881 -0.1952594
-0.1952594 -1.315315
The two-electron MO integrals:
1 1 1 1 0.9596615
2 1 1 1 0.1953781
2 1 2 1 0.6062557
2 2 1 1 0.1261321
2 2 2 1 0.004601604
2 2 2 2 0.6159065
The closed shell Fock energy from formula:
115
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352922
from formula:
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84332418
the difference is: -0.00020504
**************
ITERATION 5
**************
The charge bond order matrix: ???
?
??
??0.8101060 0.1424893
0.1424893 0.02506241
The Fock matrix: ???
?
??
??-1.632385 -1.093368
-1.093368 -0.8869066
S -
1
2 F S -
1
2
??
??
??
??-1.399504 -0.5481812
-0.5481813 -0.4856516
116
The eigenvalues of this matrix (Fock orbital energies) are:
[ ]-1.656219 -0.2289360
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
??
??
??
??-0.9056138 -0.4241026
-0.4241028 0.9056141
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.8999892 -0.8323179
-0.1584127 1.215582
The one-electron MO integrals:
??
??
??
??-2.615847 -0.1953674
-0.1953674 -1.315348
The two-electron MO integrals:
1 1 1 1 0.9595956
117
2 1 1 1 0.1953862
2 1 2 1 0.6062872
2 2 1 1 0.1261639
2 2 2 1 0.004621811
2 2 2 2 0.6159078
The closed shell Fock energy from formula:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352779
from formula:
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84349489
the difference is: -0.00003290
**************
ITERATION 6
**************
118
The charge bond order matrix: ???
?
??
??0.8099805 0.1425698
0.1425698 0.02509460
The Fock matrix: ???
?
??
??-1.632412 -1.093402
-1.093402 -0.8869413
S -
1
2 F S -
1
2
??
??
??
??-1.399517 -0.5482056
-0.5482056 -0.4856730
The eigenvalues of this matrix (Fock orbital energies) are:
[ ]-1.656253 -0.2289375
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
??
??
??
??-0.9056085 -0.4241144
-0.4241144 0.9056086
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.8999786 -0.8323296
-0.1584283 1.215580
119
The one-electron MO integrals:
??
??
??
??-2.615843 -0.1953846
-0.1953846 -1.315353
The two-electron MO integrals:
1 1 1 1 0.9595859
2 1 1 1 0.1953878
2 1 2 1 0.6062925
2 2 1 1 0.1261690
2 2 2 1 0.004625196
2 2 2 2 0.6159083
The closed shell Fock energy from formula:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352827
from formula:
120
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352398
the difference is: -0.00000429
**************
ITERATION 7
**************
The charge bond order matrix: ???
?
??
??0.8099616 0.1425821
0.1425821 0.02509952
The Fock matrix: ???
?
??
??-1.632416 -1.093407
-1.093407 -0.8869464
S -
1
2 F S -
1
2
??
??
??
??-1.399519 -0.5482093
-0.5482092 -0.4856761
The eigenvalues of this matrix (Fock orbital energies) are:
[ ]-1.656257 -0.2289374
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
121
??
??
??
??-0.9056076 -0.4241164
-0.4241164 0.9056077
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.8999770 -0.8323317
-0.1584310 1.215580
The one-electron MO integrals:
??
??
??
??-2.615843 -0.1953876
-0.1953876 -1.315354
The two-electron MO integrals:
1 1 1 1 0.9595849
2 1 1 1 0.1953881
2 1 2 1 0.6062936
2 2 1 1 0.1261697
2 2 2 1 0.004625696
2 2 2 2 0.6159083
122
The closed shell Fock energy from formula:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352922
from formula:
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352827
the difference is: -0.00000095
**************
ITERATION 8
**************
The charge bond order matrix: ???
?
??
??0.8099585 0.1425842
0.1425842 0.02510037
The Fock matrix: ???
?
??
??-1.632416 -1.093408
-1.093408 -0.8869470
123
S -
1
2 F S -
1
2
??
??
??
??-1.399518 -0.5482103
-0.5482102 -0.4856761
The eigenvalues of this matrix (Fock orbital energies) are:
[ ]-1.656258 -0.2289368
Their corresponding eigenvectors (C' = S +
1
2 * C) are:
??
??
??
??-0.9056074 -0.4241168
-0.4241168 0.9056075
The "new" MO-AO coefficients (C = S -
1
2 * C'):
??
??
??
??-0.8999765 -0.8323320
-0.1584315 1.215579
The one-electron MO integrals:
??
??
??
??-2.615842 -0.1953882
-0.1953882 -1.315354
124
The two-electron MO integrals:
1 1 1 1 0.9595841
2 1 1 1 0.1953881
2 1 2 1 0.6062934
2 2 1 1 0.1261700
2 2 2 1 0.004625901
2 2 2 2 0.6159081
The closed shell Fock energy from formula:
¡Æ
kl
2<k|h|k> + 2<kl|kl> - <kl|lk> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352827
from formula:
¡Æ
k
¦Åk + <k|h|k> + ¡Æ
¦Ì>¦Í
Z¦ÌZ¦ÍR¦Ì¦Í = -2.84352827
the difference is: 0.00000000
f. In looking at the energy convergence we see the following:
125
Iter Formula 1 Formula 2
1 -2.84219933 -2.80060530
2 -2.84349298 -2.83573675
3 -2.84353018 -2.84225941
4 -2.84352922 -2.84332418
5 -2.84352779 -2.84349489
6 -2.84352827 -2.84352398
7 -2.84352922 -2.84352827
8 -2.84352827 -2.84352827
If you look at the energy differences (SCF at iteration n - SCF converged) and plot this
data versus iteration number, and do a 5th order polynomial fit, we see the following:
0 2 4 6 8 10
0.00
0.01
0.02
0.03
0.04
0.05
Iteration
SCF(iter) - SCF(conv)
y = 0.144 - 0.153x + 0.063x^2 - 0.013x^3 + 0.001x^4 R = 1.00
126
In looking at the polynomial fit we see that the convergence is primarily linear since the
coefficient of the linear term is much larger than those of the cubic and higher terms.
g. The converged SCF total energy calculated using the result of problem 40 is an
upper bound to the ground state energy, but, during the iterative procedure it is not. Only
at convergence does the expectation value of the Hamiltonian for the Hartree Fock
determinant become equal to that given by the equation in problem 40.
h. Yes, the 1¦Ò2 configuration does dissociate properly because at at R¡ú¡Þ the
lowest energy state is He + H+, which also has a 1¦Ò2 orbital occupancy (i.e., 1s2 on He
and 1s0 on H+).
42.
2. At convergence the MO coefficients are:
¦Õ1 = ???
?
??
??-0.8999765
-0.1584315 ¦Õ2 = ??
??
??
??-0.8323320
1.215579
and the integrals in this MO basis are:
h11 = -2.615842 h21 = -0.1953882 h22 = -1.315354
g1111 = 0.9595841 g2111 = 0.1953881 g2121 = 0.6062934
g2211 = 0.1261700 g2221 = 004625901 g2222 = 0.6159081
a. H = ???
?
??
??<1¦Ò2|H|1¦Ò2> <1¦Ò2|H|2¦Ò2>
<2¦Ò2|H|1¦Ò2> <2¦Ò2|H|2¦Ò2> = ??
??
??
??2h11 + g1111 g1122
g1122 2h22 + g2222
127
= ???
?
??
??2*-2.615842 + 0.9595841 0.1261700
0.1261700 2*-1.315354 + 0.6159081
= ???
?
??
??-4.272100 0.126170
0.126170 -2.014800
b. The eigenvalues are E1 = -4.279131 and E2 = -2.007770. The corresponding
eigenvectors are:
C1 = ???
?
??
??-.99845123
0.05563439 , C2 = ??
??
??
??0.05563438
0.99845140
c.
1
2 ?
?? ?????? ?????? ???a12¦Õ
1 + b
1
2¦Õ
2 ¦Á?
?? ???a12¦Õ
1 - b
1
2¦Õ
2 ¦Â + ?
?? ?????? ???a12¦Õ
1 - b
1
2¦Õ
2 ¦Á?
?? ???a12¦Õ
1 + b
1
2¦Õ
2 ¦Â
= 12 2 ??
?
??
?
??
?
??
?
a
1
2¦Õ
1 + b
1
2¦Õ
2 ?
?? ???a12¦Õ
1 - b
1
2¦Õ
2 + ?
?? ???a12¦Õ
1 - b
1
2¦Õ
2 ?
?? ???a12¦Õ
1 + b
1
2¦Õ
2 (¦Á¦Â - ¦Â¦Á)
= 12( )a¦Õ1¦Õ1 - b¦Õ2¦Õ2 (¦Á¦Â - ¦Â¦Á)
= a| |¦Õ1¦Á¦Õ1¦Â - b| |¦Õ2¦Á¦Õ2¦Â .
d. The third configuration |1¦Ò2¦Ò| = 12[ ]|1¦Á2¦Â| - |1¦Â2¦Á| ,
Adding this configuration to the previous 2x2 CI results in the following 3x3 'full' CI:
H =
??
??
??
??<1¦Ò
2|H|1¦Ò2> <1¦Ò2|H|2¦Ò2> <1¦Ò2|H|1¦Ò2¦Ò>
<2¦Ò2|H|1¦Ò2> <2¦Ò2|H|2¦Ò2> <2¦Ò2|H|1¦Ò2¦Ò>
<1¦Ò2¦Ò|H|1¦Ò2> <2¦Ò2|H|1¦Ò2¦Ò> <1¦Ò2¦Ò|H|1¦Ò2¦Ò>
128
=
?
?
?
?
?
?
?
?2h11 + g1111 g1122 1
2[ ]2h12 + 2g2111
g1122 2h22 + g2222 12[ ]2h12 + 2g2221
1
2[ ]2h12 + 2g2111
1
2[ ]2h12 + 2g2221 h11 + h22 + g2121 + g2211
Evaluating the new matrix elements:
H13 = H31 = 2 *(-0.1953882 + 0.1953881) = 0.0
H23 = H32 = 2 *(-0.1953882 + 0.004626) = -0.269778
H33 = -2.615842 - 1.315354 + 0.606293 + 0.126170
= -3.198733
= ??
??
??
??-4.272100 0.126170 0.00.126170 -2.014800 -0.269778
0.0 -0.269778 -3.198733
e. The eigenvalues are E1 = -4.279345, E2 = -3.256612 and E3 = -1.949678. The
corresponding eigenvectors are:
C1 = ??
??
??
??-0.998252800.05732290
0.01431085
, C2 = ??
??
??
??-0.02605343-0.20969283
-0.97742000
, C3 = ??
??
??
??-0.05302767-0.97608540
0.21082004
f. We need the non-vanishing matrix elements of the dipole operator in the MO
basis. These can be obtained by calculating them by hand. They are more easily
obtained by using the TRANS program. Put the 1e- AO integrals on disk by running the
129
program RW_INTS. In this case you are inserting z11 = 0.0, z21 = 0.2854, and z22 = 1.4
(insert 0.0 for all the 2e- integrals) ... call the output file "ao_dipole.ints" for example.
The converged MO-AO coefficients should be in a file ("mocoefs.dat" is fine). The
transformed integrals can be written to a file (name of your choice) for example
"mo_dipole.ints". These matrix elements are:
z11 = 0.11652690, z21 = -0.54420990, z22 = 1.49117320
The excitation energies are E2 - E1 = -3.256612 - -4.279345 = 1.022733, and
E3 - E1 = -1.949678.- -4.279345 = 2.329667.
Using the Slater-Conden rules to obtain the matrix elements between configurations we
obtain:
Hz =
??
??
??
??<1¦Ò
2|z|1¦Ò2> <1¦Ò2|z|2¦Ò2> <1¦Ò2|z|1¦Ò2¦Ò>
<2¦Ò2|z|1¦Ò2> <2¦Ò2|z|2¦Ò2> <2¦Ò2|z|1¦Ò2¦Ò>
<1¦Ò2¦Ò|z|1¦Ò2> <2¦Ò2|z|1¦Ò2¦Ò> <1¦Ò2¦Ò|z|1¦Ò2¦Ò>
=
?
?
?
?
?
?
?
?2z11 0 1
2[ ]2z12
0 2z22 12[ ]2z12
1
2[ ]2z12
1
2[ ]2z12 z11 + z22
= ??
??
??
??0.233054 0 -0.7696290 2.982346 -0.769629
-0.769629 -0.769629 1.607700
Now, <¦·1|z|¦·2> = C1THzC2, (this can be accomplished with the program UTMATU)
130
= ??
?
??
?-0.99825280
0.05732290
0.01431085
T
??
?
??
?0.233054 0 -0.769629
0 2.982346 -0.769629
-0.769629 -0.769629 1.607700
??
?
??
?-0.02605343
-0.20969283
-0.97742000
= -.757494
and, <¦·1|z|¦·3> = C1THzC3
= ??
?
??
?-0.99825280
0.05732290
0.01431085
T
??
?
??
?0.233054 0 -0.769629
0 2.982346 -0.769629
-0.769629 -0.769629 1.607700
??
?
??
?-0.05302767
-0.97608540
0.21082004
= 0.014322
g. Using the converged coefficients the orbital energies obtained from solving the
Fock equations are ¦Å1 = -1.656258 and ¦Å2 = -0.228938. The resulting expression for the
PT first-order wavefunction becomes:
|1¦Ò2>(1) = - g22112(¦Å2 - ¦Å1) |2¦Ò2>
|1¦Ò2>(1) = - 0.1261702(-0.228938 + 1.656258) |2¦Ò2>
|1¦Ò2>(1) = -0.0441982|2¦Ò2>
h. As you can see from part c., the matrix element <1¦Ò2|H|1¦Ò2¦Ò> = 0 (this is also
a result of the Brillouin theorem) and hence this configuration does not enter into the
first-order wavefunction.
i. |0> = |1¦Ò2> - 0.0441982|2¦Ò2>. To normalize we divide by:
[ ]1 + (0.0441982)2 = 1.0009762
131
|0> = 0.999025|1¦Ò2> - 0.044155|2¦Ò2>
In the 2x2 CI we obtained:
|0> = 0.99845123|1¦Ò2> - 0.05563439|2¦Ò2>
j. The expression for the 2nd order RSPT is:
E(2) = - |g2211|
2
2(¦Å2 - ¦Å1) = -
0.1261702
2(-0.228938 + 1.656258)
= -0.005576 au
Comparing the 2x2 CI energy obtained to the SCF result we have:
-4.279131 - (-4.272102) = -0.007029 au
43. STO total energy: -2.8435283
STO3G total energy -2.8340561
3-21G total energy -2.8864405
The STO3G orbitals were generated as a best fit of 3 primitive Gaussians (giving 1
CGTO) to the STO. So, STO3G can at best reproduce the STO result. The 3-21G
orbitals are more flexible since there are 2 CGTOs per atom. This gives 4 orbitals
(more parameters to optimize) and a lower total energy.
44.
R HeH+ Energy H2 Energy
1.0 -2.812787056 -1.071953297
1.2 -2.870357513 -1.113775015
132
1.4 -2.886440516 -1.122933507
1.6 -2.886063576 -1.115567684
1.8 -2.880080938 -1.099872589
2.0 -2.872805595 -1.080269098
2.5 -2.856760263 -1.026927710
10.0 -2.835679293 -0.7361705303
Plotting total energy vs. geometry for HeH+:
0 2 4 6 8 10 12
-2.90
-2.88
-2.86
-2.84
-2.82
-2.80
R (au)
Total Energy (au)
Plotting total energy vs. geometry for H2:
133
0 2 4 6 8 10 12
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
Internuclear Distance (au)
Total Energy (au)
For HeH+ at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:
-.1003571E+01 -.4961988E+00 .5864846E+00 .1981702E+01
.4579189E+00 -.8245406E-05 .1532163E-04 .1157140E+01
.6572777E+00 -.4580946E-05 -.6822942E-05 -.1056716E+01
-.1415438E-05 .3734069E+00 .1255539E+01 -.1669342E-04
.1112778E-04 .7173244E+00 -.1096019E+01 .2031348E-04
Notice that this indicates that orbital 1 is a combination of the s functions on He only
(dissociating properly to He + H+).
134
For H2 at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:
-.2458041E+00 -.1456223E+00 .1137235E+01 .1137825E+01
.1977649E+00 -.1978204E+00 .1006458E+01 -.7903225E+00
.5632566E+00 -.5628273E+00 -.8179120E+00 .6424941E+00
.1976312E+00 .1979216E+00 .7902887E+00 .1006491E+01
.5629326E+00 .5631776E+00 -.6421731E+00 -.8181460E+00
Notice that this indicates that orbital 1 is a combination of the s functions on both H
atoms (dissociating improperly; equal probabilities of H2 dissociating to two neutral
atoms or to a proton plus hydride ion).
45. The H2 CI result:
R 1¦²g+ 3¦²u+ 1¦²u+ 1¦²g+
1.0 -1.074970 -0.5323429 -0.3997412 0.3841676
1.2 -1.118442 -0.6450778 -0.4898805 0.1763018
1.4 -1.129904 -0.7221781 -0.5440346 0.0151913
1.6 -1.125582 -0.7787328 -0.5784428 -0.1140074
1.8 -1.113702 -0.8221166 -0.6013855 -0.2190144
2.0 -1.098676 -0.8562555 -0.6172761 -0.3044956
135
2.5 -1.060052 -0.9141968 -0.6384557 -0.4530645
5.0 -0.9835886 -0.9790545 -0.5879662 -0.5802447
7.5 -0.9806238 -0.9805795 -0.5247415 -0.5246646
10.0 -0.980598 -0.9805982 -0.4914058 -0.4913532
0 2 4 6 8 10
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
State 1
State 2
State 3
State 4
Internuclear Distance (au)
Total Energy (au)
For H2 at R = 1.4 au, the eigenvalues of the Hamiltonian matrix and the corresponding
determinant amplitudes are:
determinant -1.129904 -0.722178 -0.544035 0.015191
136
|1¦Òg¦Á1¦Òg¦Â| 0.99695 0.00000 0.00000 0.07802
|1¦Òg¦Â1¦Òu¦Á| 0.00000 0.70711 0.70711 0.00000
|1¦Òg¦Á1¦Òu¦Â| 0.00000 0.70711 -0.70711 0.00000
|1¦Òu¦Á1¦Òu¦Â| -0.07802 0.00000 0.00000 0.99695
This shows, as expected, the mixing of the first 1¦²g+ (1¦Òg2) and the 2nd 1¦²g+ (1¦Òu2)
determinants in the first and fourth states, and the
3¦²u+ = ( 1
2( )|1¦Òg¦Â1¦Òu¦Á| + |1¦Òg¦Á1¦Òu¦Â| ),
and 1¦²u+= ( 12( )|1¦Òg¦Â1¦Òu¦Á| - |1¦Òg¦Á1¦Òu¦Â| )
states as the second and third states.
Also notice that the first 1¦²g+ state has coefficients (0.99695 - 0.07802) (note specifically
the + - combination) and the second 1¦²g+ state has the opposite coefficients with the
same signs (note specifically the + + combination). The + + combination always gives a
higher energy than the + - combination.
46.
F atoms have 1s22s22p5 2P ground electronic states that are split by spin-orbit coupling
into 2P3/2 and 2P1/2 states that differ by only 0.05 eV in energy.
137
a.
The degeneracy of a state having a given J is 2J+1, and the J=3/2 state is lower in energy
because the 2p orbital shell is more than half filled (I learned this in inorganic chemistry
class), so
qel = 4 exp(-0/kT) + 2 exp(-0.05 eV/kT).
0.05 eV is equivalent to k(500 K), so 0.05/kT = 500/T, hence
qel = 4 exp(-0/kT) + 2 exp(-500/T).
b.
Q = qN/N!
so, ln Q = N lnq ¨C lnN!
E =kT2 ?lnQ/?T = NkT2 ?lnq/?T = Nk{1000 exp(-500/T)/[4 + 2 exp(-500/T)]}
c. Using the fact that kT=0.03eV at T=300°K, make a (qualitative) graph of E /N vs T for
T ranging from 100°K to 3000°K.
138
T
E/N
T = 100 K
T = 3000 K
1000k/6
At T = 100 K, E/N is small and equal to 1000k exp(-5)/(4 + 2 exp(-5)).
At T = 3000 K, E/N has grown to 1000k exp(-1/6)/(4 + 2 exp(-1/6)) which is
approximately 1000k/6.
47.
a.
The difference between a linear and bent transition state would arise in the vibrational
and rotational partition functions. For the linear TS, one has 3N-6 vibrations (recall that
139
one loses one vibration as a reaction coordinate), but for the bent TS, one has 3N-7
vibrations. For the linear TS, one has 2 rotational axes, and for the bent TS, one has 3.
So the ratio of rate constants will reduce to ratios of vibration and rotation partition
functions. In particular, one will have
klinear/kbent = (qvib3N-6 qrot2/qvib3N-7qrot3) = (qvib/qrot).
b. Using
qt ~ 108, qr ~ 102, qv ~ 1,
I would expect klinear/kbent to be of the order of 1/102 = 10-2.
140
48.
Constructing the Slater determinant corresponding to the "state" 1s(¦Á)1s(¦Á) with the rows
labeling the orbitals and the columns labeling the electron gives:
|1s¦Á1s¦Á| = 12!???
?
??
??1s¦Á(1) 1s¦Á(2)
1s¦Á(1) 1s¦Á(2)
= 12 ( )1s¦Á(1)1s¦Á(2) - 1s¦Á(1)1s¦Á(2)
= 0
49.
Starting with the MS=1 3S state (which in a "box" for this ML=0, MS=1 case would
contain only one product function; |1s¦Á2s¦Á|) and applying S- gives:
S- 3S(S=1,MS=1) = 1(1 + 1) - 1(1 - 1) h¡« 3S(S=1,MS=0)
= h¡« 2 3S(S=1,MS=0)
= ( )S-(1) + S-(2) |1s¦Á2s¦Á|
= S-(1)|1s¦Á2s¦Á| + S-(2)|1s¦Á2s¦Á|
= h¡« 12??
?
??
?1
2 + 1 -
1
2??
?
??
?1
2 - 1 |1s¦Â2s¦Á|
+ h¡« 12??
?
??
?1
2 + 1 -
1
2??
?
??
?1
2 - 1 |1s¦Á2s¦Â|
141
= h¡« ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
So, h¡« 2 3S(S=1,MS=0) = h¡« ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
3S(S=1,MS=0) = 12 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
The three triplet states are then:
3S(S=1,MS=1)= |1s¦Á2s¦Á|,
3S(S=1,MS=0) = 1
2 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â| , and
3S(S=1,MS=-1) = |1s¦Â2s¦Â|.
The singlet state which must be constructed orthogonal to the three singlet states (and in
particular to the 3S(S=1,MS=0) state) can be seen to be:
1S(S=0,MS=0) = 1
2 ( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â| .
Applying S2 and Sz to each of these states gives:
Sz |1s¦Á2s¦Á| = ( )Sz(1) + Sz(2) |1s¦Á2s¦Á|
= Sz(1)|1s¦Á2s¦Á| + Sz(2))|1s¦Á2s¦Á|
= h¡« ??
?
??
?1
2 |1s¦Á2s¦Á| + h¡« ??
?
??
?1
2 |1s¦Á2s¦Á|
= h¡« |1s¦Á2s¦Á|
S2 |1s¦Á2s¦Á| = (S-S+ + Sz2 + h¡« Sz) |1s¦Á2s¦Á|
= S-S+|1s¦Á2s¦Á| + Sz2|1s¦Á2s¦Á| + h¡« Sz|1s¦Á2s¦Á|
= 0 + h¡« 2 |1s¦Á2s¦Á| + h¡« 2|1s¦Á2s¦Á|
= 2h¡« 2 |1s¦Á2s¦Á|
142
Sz 12 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â| = ( )Sz(1) + Sz(2) 12 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
= 12 ( )Sz(1) + Sz(2) |1s¦Â2s¦Á|
+ 12 ( )Sz(1) + Sz(2) |1s¦Á2s¦Â|
= 12 ??
?
??
?
h¡« ??
?
??
?
-12 + h¡« ??
?
??
?1
2 |1s¦Â2s¦Á|
+ 12 ??
?
??
?
h¡« ??
?
??
?1
2 + h¡« ??
?
??
?
-12 |1s¦Á2s¦Â|
= 0h¡« 12 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
S2 12 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â| = (S-S+ + Sz2 + h¡« Sz) 12 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
= S-S+ 12 ( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
= 12( )S-(S+(1) + S+(2))|1s¦Â2s¦Á| + S-(S+(1) + S+(2))|1s¦Á2s¦Â|
= 12( )S- h¡« |1s¦Á2s¦Á| + S- h¡« |1s¦Á2s¦Á|
= 2 h¡« 12( )(S-(1) + S-(2))|1s¦Á2s¦Á|
= 2 h¡« 12( )h¡«|1s¦Â2s¦Á| + h¡«|1s¦Á2s¦Â|
= 2 h¡« 2 12( )|1s¦Â2s¦Á| + |1s¦Á2s¦Â|
Sz |1s¦Â2s¦Â| = ( )Sz(1) + Sz(2) |1s¦Â2s¦Â|
= Sz(1)|1s¦Â2s¦Â| + Sz(2))|1s¦Â2s¦Â|
143
= h¡« ??
?
??
?
-12 |1s¦Â2s¦Â| + h¡« ??
?
??
?
-12 |1s¦Â2s¦Â|
= -h¡« |1s¦Â2s¦Â|
S2 |1s¦Â2s¦Â| = (S+S- + Sz2 - h¡« Sz) |1s¦Â2s¦Â|
= S+S-|1s¦Â2s¦Â| + Sz2|1s¦Â2s¦Â| - h¡« Sz|1s¦Â2s¦Â|
= 0 + h¡« 2 |1s¦Â2s¦Â| + h¡« 2|1s¦Â2s¦Â|
= 2h¡« 2 |1s¦Â2s¦Â|
Sz 12 ( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â| = ( )Sz(1) + Sz(2) 12 ( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â|
= 12 ( )Sz(1) + Sz(2) |1s¦Â2s¦Á|
- 12 ( )Sz(1) + Sz(2) |1s¦Á2s¦Â|
= 12 ??
?
??
?
h¡« ??
?
??
?
-12 + h¡« ??
?
??
?1
2 |1s¦Â2s¦Á|
- 12 ??
?
??
?
h¡« ??
?
??
?1
2 + h¡« ??
?
??
?
-12 |1s¦Á2s¦Â|
= 0h¡« 12 ( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â|
S2 12 ( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â| = (S-S+ + Sz2 + h¡« Sz) 12 ( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â|
= S-S+ 12 ( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â|
= 12( )S-(S+(1) + S+(2))|1s¦Â2s¦Á| - S-(S+(1) + S+(2))|1s¦Á2s¦Â|
= 12( )S- h¡« |1s¦Á2s¦Á| - S- h¡« |1s¦Á2s¦Á|
144
= 0 h¡« 12( )(S-(1) + S-(2))|1s¦Á2s¦Á|
= 0 h¡« 12( )h¡«|1s¦Â2s¦Á| - h¡«|1s¦Á2s¦Â|
= 0 h¡« 2 12( )|1s¦Â2s¦Á| - |1s¦Á2s¦Â|
50.
As shown in problem 22c, for two equivalent pi electrons one obtains six states:
1? (ML=2); one state (MS=0),
1? (ML=-2); one state (MS=0),
1¦² (ML=0); one state (MS=0), and
3¦² (ML=0); three states (MS=1,0, and -1).
By inspecting the "box" in problem 22c, it should be fairly straightforward to write down
the wavefunctions for each of these:
1? (ML=2); |pi1¦Ápi1¦Â|
1? (ML=-2); |pi-1¦Ápi-1¦Â|
1¦² (ML=0); 1
2( )|pi1¦Âpi-1¦Á| - |pi1¦Ápi-1¦Â|
3¦² (ML=0, MS=1); |pi1¦Ápi-1¦Á|
3¦² (ML=0, MS=0); 1
2( )|pi1¦Âpi-1¦Á| + |pi1¦Ápi-1¦Â|
145
3¦² (ML=0, MS=-1); |pi1¦Âpi-1¦Â|
51.
We can conveniently couple another s electron to the states generated from the 1s12s1
configuration:
3S(L=0, S=1) with 3s1(L=0, S=12 ) giving:
L=0, S=32 , 12 ; 4S (4 states) and 2S (2 states).
1S(L=0, S=0) with 3s1(L=0, S=12 ) giving:
L=0, S=12 ; 2S (2 states).
Constructing a "box" for this case would yield:
146
ML
MS
0
3
2
|1s¦Á2s¦Á3s¦Á|
1
2
|1s¦Á2s¦Á3s¦Â|, |1s¦Á2s¦Â3s¦Á|, |1s¦Â2s¦Á3s¦Á|
One can immediately identify the wavefunctions for two of the quartets (they are single
entries):
4S(S=32 ,MS=32 ): |1s¦Á2s¦Á3s¦Á|
4S(S=32 ,MS=-32 ): |1s¦Â2s¦Â3s¦Â|
Applying S- to 4S(S=32 ,MS=32 ) yields:
S-4S(S=32 ,MS=32 ) = h¡« 32(32 + 1) - 32(32 - 1) 4S(S=32 ,MS=12 )
= h¡« 3 4S(S=32 ,MS=12 )
S-|1s¦Á2s¦Á3s¦Á| = h¡« ( )|1s¦Â2s¦Á3s¦Á| + |1s¦Á2s¦Â3s¦Á| + |1s¦Á2s¦Á3s¦Â|
So, 4S(S=32 ,MS=12 ) = 13 ( )|1s¦Â2s¦Á3s¦Á| + |1s¦Á2s¦Â3s¦Á| + |1s¦Á2s¦Á3s¦Â|
Applying S+ to 4S(S=32 ,MS=-32 ) yields:
S+4S(S=32 ,MS=-32 ) = h¡« 32(32 + 1) - -32(-32 + 1) 4S(S=32 ,MS=-12 )
= h¡« 3 4S(S=32 ,MS=-12 )
147
S+|1s¦Â2s¦Â3s¦Â| = h¡« ( )|1s¦Á2s¦Â3s¦Â| + |1s¦Â2s¦Á3s¦Â| + |1s¦Â2s¦Â3s¦Á|
So, 4S(S=32 ,MS=-12 ) = 13 ( )|1s¦Á2s¦Â3s¦Â| + |1s¦Â2s¦Á3s¦Â| + |1s¦Â2s¦Â3s¦Á|
It only remains to construct the doublet states which are orthogonal to these quartet
states. Recall that the orthogonal combinations for systems having three equal
components (for example when symmetry adapting the 3 sp2 hybrids in C2v or D3h
symmetry) give results of + + +, +2 - -, and 0 + -. Notice that the quartets are the + + +
combinations and therefore the doublets can be recognized as:
2S(S=12 ,MS=12 ) = 1
6 ( )|1s¦Â2s¦Á3s¦Á| + |1s¦Á2s¦Â3s¦Á| - 2|1s¦Á2s¦Á3s¦Â|
2S(S=12 ,MS=12 ) = 1
2 ( )|1s¦Â2s¦Á3s¦Á| - |1s¦Á2s¦Â3s¦Á| + 0|1s¦Á2s¦Á3s¦Â|
2S(S=12 ,MS=-12 ) = 1
6 ( )|1s¦Á2s¦Â3s¦Â| + |1s¦Â2s¦Á3s¦Â| - 2|1s¦Â2s¦Â3s¦Á|
2S(S=12 ,MS=-12 ) = 1
3 ( )|1s¦Á2s¦Â3s¦Â| - |1s¦Â2s¦Á3s¦Â| + 0|1s¦Â2s¦Â3s¦Á|
52.
As illustrated in problem 24, a p2 configuration (two equivalent p electrons) gives rise to
the term symbols: 3P, 1D, and 1S. Coupling an additional electron (3d1) to this p2
configuration will give the desired 1s22s22p23d1 term symbols:
3P(L=1,S=1) with 2D(L=2,S=12 ) generates;
L=3,2,1, and S=32 , 12 with term symbols 4F, 2F,4D, 2D,4P, and 2P,
148
1D(L=2,S=0) with 2D(L=2,S=12 ) generates;
L=4,3,2,1,0, and S=12 with term symbols 2G, 2F, 2D, 2P, and 2S,
1S(L=0,S=0) with 2D(L=2,S=12 ) generates;
L=2 and S=12 with term symbol 2D.
53. The notation used for the Slater Condon rules will be as follows:
(a.) zero (spin orbital) difference;
< >|F + G| = ¡Æ
i
< >¦Õi|f|¦Õi + ¡Æ
i>j
?? ??< >¦Õi¦Õj|g|¦Õi¦Õj - < >¦Õi¦Õj|g|¦Õj¦Õi
= ¡Æ
i
fii + ¡Æ
i>j
( )gijij - gijji
(b.) one (spin orbital) difference (¦Õp ¡Ù ¦Õp');
< >|F + G| = < >¦Õp|f|¦Õp' + ¡Æ
j¡Ùp;p'
?? ??< >¦Õp¦Õj|g|¦Õp'¦Õj - < >¦Õp¦Õj|g|¦Õj¦Õp'
= fpp' + ¡Æ
j¡Ùp;p'
( )gpjp'j - gpjjp'
(c.) two (spin orbital) differences (¦Õp ¡Ù ¦Õp' and ¦Õq ¡Ù ¦Õq');
< >|F + G| = < >¦Õp¦Õq|g|¦Õp'¦Õq' - < >¦Õp¦Õq|g|¦Õq'¦Õp'
= gpqp'q' - gpqq'p'
(d.) three or more (spin orbital) differences;
< >|F + G| = 0
149
i. 3P(ML=1,MS=1) = |p1¦Áp0¦Á|
< >|p1¦Áp0¦Á|H|p1¦Áp0¦Á| = <| 10| H | 10|>
Using the Slater Condon rule (a.) above (I will denote these SCa-SCd):
< >|10|H|10| = f11 + f00 + g1010 - g1001
ii. 3P(ML=0,MS=0) = 12( )|p1¦Áp-1¦Â| + |p1¦Âp-1¦Á|
< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)
= 12(< >|p1¦Áp-1¦Â|H|p1¦Áp-1¦Â| + < >|p1¦Áp-1¦Â|H|p1¦Âp-1¦Á|
+ < >|p1¦Âp-1¦Á|H|p1¦Áp-1¦Â| + < >|p1¦Âp-1¦Á|H|p1¦Âp-1¦Á| )
Evaluating each matrix element gives:
< >|p1¦Áp-1¦Â|H|p1¦Áp-1¦Â| = f1¦Á1¦Á + f-1¦Â-1¦Â + g1¦Á-1¦Â1¦Á-1¦Â - g1¦Á-1¦Â-1¦Â1¦Á (SCa)
= f11 + f-1-1 + g1-11-1 - 0
< >|p1¦Áp-1¦Â|H|p1¦Âp-1¦Á| = g1¦Á-1¦Â1¦Â-1¦Á - g1¦Á-1¦Â-1¦Á1¦Â (SCc)
= 0 - g1-1-11
< >|p1¦Âp-1¦Á|H|p1¦Áp-1¦Â| = g1¦Â-1¦Á1¦Á-1¦Â - g1¦Â-1¦Á-1¦Â1¦Á (SCc)
= 0 - g1-1-11
< >|p1¦Âp-1¦Á|H|p1¦Âp-1¦Á| = f1¦Â1¦Â + f-1¦Á-1¦Á + g1¦Â-1¦Á1¦Â-1¦Á - g1¦Â-1¦Á-1¦Á1¦Â (SCa)
150
= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:
< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)
= 12 (f11 + f-1-1 + g1-11-1 - g1-1-11 - g1-1-11
+ f11 + f-1-1 + g1-11-1)
= f11 + f-1-1 + g1-11-1 - g1-1-11
iii. 1S(ML=0,MS=0); 13(|p0¦Áp0¦Â| - |p1¦Áp-1¦Â| - |p-1¦Áp1¦Â|)
< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)
= 13(< >|p0¦Áp0¦Â|H|p0¦Áp0¦Â| - < >|p0¦Áp0¦Â|H|p1¦Áp-1¦Â|
- < >|p0¦Áp0¦Â|H|p-1¦Áp1¦Â| - < >|p1¦Áp-1¦Â|H|p0¦Áp0¦Â|
+ < >|p1¦Áp-1¦Â|H|p1¦Áp-1¦Â| + < >|p1¦Áp-1¦Â|H|p-1¦Áp1¦Â|
- < >|p-1¦Áp1¦Â|H|p0¦Áp0¦Â| + < >|p-1¦Áp1¦Â|H|p1¦Áp-1¦Â|
+ < >|p-1¦Áp1¦Â|H|p-1¦Áp1¦Â| )
Evaluating each matrix element gives:
< >|p0¦Áp0¦Â|H|p0¦Áp0¦Â| = f0¦Á0¦Á + f0¦Â0¦Â + g0¦Á0¦Â0¦Á0¦Â - g0¦Á0¦Â0¦Â0¦Á (SCa)
= f00 + f00 + g0000 - 0
< >|p0¦Áp0¦Â|H|p1¦Áp-1¦Â| = < >|p1¦Áp-1¦Â|H|p0¦Áp0¦Â|
= g0¦Á0¦Â1¦Á-1¦Â - g0¦Á0¦Â-1¦Â1¦Á (SCc)
151
= g001-1 - 0
< >|p0¦Áp0¦Â|H|p-1¦Áp1¦Â| = < >|p-1¦Áp1¦Â|H|p0¦Áp0¦Â|
= g0¦Á0¦Â?1¦Á1¦Â - g0¦Á0¦Â1¦Â?1¦Á (SCc)
= g00-11 - 0
< >|p1¦Áp-1¦Â|H|p1¦Áp-1¦Â| = f1¦Á1¦Á + f-1¦Â-1¦Â + g1¦Á-1¦Â1¦Á-1¦Â - g1¦Á-1¦Â-1¦Â1¦Á (SCa)
= f11 + f-1-1 + g1-11-1 - 0
< >|p1¦Áp-1¦Â|H|p-1¦Áp1¦Â| = < >|p-1¦Áp1¦Â|H|p1¦Áp-1¦Â|
= g1¦Á-1¦Â-1¦Á1¦Â - g1¦Á-1¦Â1¦Â-1¦Á (SCc)
= g1-1-11 - 0
< >|p-1¦Áp1¦Â|H|p-1¦Áp1¦Â| = f-1¦Á?1¦Á + f1¦Â1¦Â + g-1¦Á1¦Â?1¦Á1¦Â - g-1¦Á1¦Â1¦Â?1¦Á (SCa)
= f-1-1 + f11 + g-11-11 - 0
Substitution of these expressions give:
< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)
= 13(f00 + f00 + g0000 - g001-1 - g00-11 - g001-1 + f11 + f-1-1
+ g1-11-1 + g1-1-11 - g00-11 + g1-1-11 + f-1-1 + f11 + g-11-11)
= 13(2f00 + 2f11 + 2f-1-1 + g0000 - 4g001-1 + 2g1-11-1 + 2g1-1-11)
iv. 1D(ML=0,MS=0) = 16( )2|p0¦Áp0¦Â| + |p1¦Áp-1¦Â| + |p-1¦Áp1¦Â|
152
Evaluating < >1D(ML=0,MS=0)|H|1D(ML=0,MS=0) we note that all the Slater Condon
matrix elements generated are the same as those evaluated in part iii. (the signs for the
wavefunction components and the multiplicative factor of two for one of the components,
however, are different).
< >1D(ML=0,MS=0)|H|1D(ML=0,MS=0)
= 16(4f00 + 4f00 + 4g0000 + 2g001-1 + 2g00-11 + 2g001-1 + f11
+ f-1-1 + g1-11-1 + g1-1-11 + 2g00-11 + g1-1-11 + f-1-1 + f11
+ g-11-11)
= 16(8f00 + 2f11 + 2f-1-1 + 4g0000 + 8g001-1 + 2g1-11-1 + 2g1-1-11)
54.
i. 1?(ML=2,MS=0) = |pi1¦Ápi1¦Â|
< >1?(ML=2,MS=0)|H|1?(ML=2,MS=0)
= < >|pi1¦Ápi1¦Â|H|pi1¦Ápi1¦Â|
= f1¦Á1¦Á + f1¦Â1¦Â + g1¦Á1¦Â1¦Á1¦Â - g1¦Á1¦Â1¦Â1¦Á (SCa)
= f11 + f11 + g1111 - 0
= 2f11 + g1111
153
ii. 1¦²(ML=0,MS=0) = 12( )|pi1¦Ápi-1¦Â| - |pi1¦Âpi-1¦Á|
< >3¦²(ML=0,MS=0)|H|3¦²(ML=0,MS=0)
= 12(< >|pi1¦Ápi-1¦Â|H|pi1¦Ápi-1¦Â| - < >|pi1¦Ápi-1¦Â|H|pi1¦Âpi-1¦Á|
- < >|pi1¦Âpi-1¦Á|H|pi1¦Ápi-1¦Â| + < >|pi1¦Âpi-1¦Á|H|pi1¦Âpi-1¦Á| )
Evaluating each matrix element gives:
< >|pi1¦Ápi-1¦Â|H|pi1¦Ápi-1¦Â| = f1¦Á1¦Á + f-1¦Â-1¦Â + g1¦Á-1¦Â1¦Á-1¦Â - g1¦Á-1¦Â-1¦Â1¦Á (SCa)
= f11 + f-1-1 + g1-11-1 - 0
< >|pi1¦Ápi-1¦Â|H|pi1¦Âpi-1¦Á| = g1¦Á-1¦Â1¦Â-1¦Á - g1¦Á-1¦Â-1¦Á1¦Â (SCc)
= 0 - g1-1-11
< >|pi1¦Âpi-1¦Á|H|pi1¦Ápi-1¦Â| = g1¦Â-1¦Á1¦Á-1¦Â - g1¦Â-1¦Á-1¦Â1¦Á (SCc)
= 0 - g1-1-11
< >|pi1¦Âpi-1¦Á|H|pi1¦Âpi-1¦Á| = f1¦Â1¦Â + f-1¦Á-1¦Á + g1¦Â-1¦Á1¦Â-1¦Á - g1¦Â-1¦Á-1¦Á1¦Â (SCa)
= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:
< >3¦²(ML=0,MS=0)|H|3¦²(ML=0,MS=0)
= 12 (f11 + f-1-1 + g1-11-1+ g1-1-11+ g1-1-11 + f11 + f-1-1 + g1-11-1)
= f11 + f-1-1 + g1-11-1+ g1-1-11
iii. 3¦²(ML=0,MS=0) = 12( )|pi1¦Ápi-1¦Â| + |pi1¦Âpi-1¦Á|
154
< >3¦²(ML=0,MS=0)|H|3¦²(ML=0,MS=0)
= f11 + f-1-1 + g1-11-1 - 0
< >|pi1¦Ápi-1¦Â|H|pi1¦Âpi-1¦Á| = g1¦Á-1¦Â1¦Â-1¦Á - g1¦Á-1¦Â-1¦Á1¦Â (SCc)
= 0 - g1-1-11
< >|pi1¦Âpi-1¦Á|H|pi1¦Ápi-1¦Â| = g1¦Â-1¦Á1¦Á-1¦Â - g1¦Â-1¦Á-1¦Â1¦Á (SCc)
= 0 - g1-1-11
< >|pi1¦Âpi-1¦Á|H|pi1¦Âpi-1¦Á| = f1¦Â1¦Â + f-1¦Á-1¦Á + g1¦Â-1¦Á1¦Â-1¦Á - g1¦Â-1¦Á-1¦Á1¦Â (SCa)
= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:
< >3¦²(ML=0,MS=0)|H|3¦²(ML=0,MS=0)
= 12 (f11 + f-1-1 + g1-11-1- g1-1-11- g1-1-11 + f11 + f-1-1 + g1-11-1)
= f11 + f-1-1 + g1-11-1- g1-1-11
55.
The order of the answers is J, I, G. K, B, D, E, A, C, H, F
56.
155
p = N/(V-Nb) ¨C N2 a/(kTV2)
but p/kT = (?lnQ/?V)T,N
so we can integrate to obtain ln Q
lnQ = ¡Ò (p/kT) dV = ¡Ò [N/(V-Nb) ¨C N2 a/(kTV2)] dV
= N ln(V-Nb) + N2a/kT (1/V)
So,
Q = {(V-Nb)exp[(a/kT) (N/V)]}N
57.
a.
MD because you need to keep track of how far the molecule moves as a function of time
and MC does not deal with time.
b.
MC is capable of doing this although MD is also. However, MC requires fewer
computational steps, so I would prefer to use it.
156
c.
MC can do this, as could MD. Again, because MC needs fewer computational steps, I¡¯d
use it.
Suppose you are carrying out a Monte-Carlo simulation involving 1000 Ar atoms.
Further suppose that the potentials are pairwise additive and that your computer requires
approximately 50 floating point operations (FPO's) (e.g. multiply, add, divide, etc.) to
compute the interaction potential between any pair of atoms
d.
For each MC move, we must compute only the change in potential energy. To do this, we
need to compute only the change in the pair energies that involve the atom that was
moved. This will require 999x50 FPOs (the 99 being the number of atoms other than the
one that moved). So, for a million MC steps, I would need 106 x 999 x 50 FPOs. At 100
x106 FPOs per second, this will require 495 seconds, or a little over eight minutes.
e.
157
Because the statistical fluctuations in MC calculations are proportional to (1/N)1/2, where
N is the number of steps taken, I will have to take 4 times as many steps to cut the
statistical errors in half. So, this will require 4 x 495 seconds or 1980 seconds.
f.
If we have one million rather than one thousand atoms, the 495 second calculation of part
d would require
999,999/999
times as much time. This ratio arises because the time to compute the change in potential
energy accompanying a MC move is proportional to the number of other atoms. So, the
calculation would take 495 x (999,999/999) seconds or about 500,000 seconds or about
140 hours.
g.
We would be taking 10-9s/(10-15 s per step) = 106 MD steps.
Each step requires that we compute all forces(-?V?RI,J) between all pairs of atoms. There
are 1000x999/2 such pairs. So, to compute all the forces would require
(1000x999/2)x 50 FPOs = 2.5 x107 FPOs. So, we will need
158
2.5 x107 FPOs/step x 106 steps/(100 FPOs per second)
= 2.5 x105 seconds or about 70 hours.
h.
The graduate student is 108 times slower than the 100 Mflop computer, so it will take
her/him 108 times as long, so 495 x108 seconds or about 1570 years.
58.
First, Na has a 2S ground state term symbol whose degeneracy is 2S + 1 = 2.
Na2 has a 1¦² ground state whose degeneracy is 1.
The symmetry number for Na2 is ¦Ò = 2.
The D0 value given is 17.3 kcal mol-1.
The Kp equilibrium constant would be given in terms of partial pressures as (and then
using pV=NkT)
Kp = pNa2/pNa2 = (kT)-1 (qNa/V)2/(qNa2/V)
in terms of the partition functions.
159
a.
qNa = (2pimkT/h2)3/2 V qel
qNA2 = (2pim¡¯kT/h2)3/2 V (8pi2IkT/h2) 1/2 [ exp-h¦Í/2kT) (1- exp-h¦Í/kT))-1 exp(De/kT)
We can combine the De and the ¨Ch¦Í/2kT to obtain the D0 which is what we were given.
b. For Na (I will use cgs units in all cases):
q/V = (2pi 23 1.66x10-24 1.38 x10-16 1000)3/2 2
= (6.54 x1026) x 2 = 1.31 x1027
For Na2:
q/N = 23/2 x (6.54 x1026) (1000/0.221) (1/2) (1-exp(-229/1000))-1 exp(D0/kT)
= 1.85 x1027 (2.26 x103) (4.88) (5.96 x103)
= 1.22 x1035
So,
Kp = [1.22 x1035]/[(1.38 x10-16)(1000) (1.72 x1054)
= 0.50 x10-6 dynes cm-2 = 0.50 atm-1.
160
59.
The differences in krate will arise from differences in the number of translational,
rotational, and vibrational partition functions arising in the adsorbed and gas-phase
species. Recall that
krate = (kT/h) exp(-E*/kT) [qTS/V]/[(qNO/V) (qCl2/V)]
In the gas phase,
NO has 3 translations, two rotations, and one vibration
Cl2 has 3 translations, two rotations, and one vibration
the NOCl2 TS, which is bent, has 3 translations, three rotations, and five vibrations (recall
that one vibration is missing and is the reaction coordinate)
In the adsorbed state,
NO has 2 translations, one rotation, and three vibrations
Cl2 has 2 translations, one rotation, and three vibrations
the NOCl2 TS, which is bent, has 2 translations, one rotation, and eight vibrations (again,
one vibration is missing and is the reaction coordinate).
161
So, in computing the partition function ratio:
[qTS/V]/[(qNO/V) (qCl2/V)]
for the adsorbed and gas-phase cases, one does not obtain the same number of
translational, rotational, and vibrational factors. In particular, the ratio of these factors for
the adsorbed and gas-phase cases gives the ratio of rate constants as follows:
kad/kgas = (qtrans/V)/qvib
which should be of the order of 108 (using the ratio of partition functions as given).
Notice that this result suggests that reaction rates can be altered by constraining the
reacting species to move freely in lower dimensions even if one does not alter the
energetics (e.g., activation energy or thermochemistry).