Lecture 31: Genetic Heterogeneity and
Complex Traits
? Allelic heterogeneity
? Nonallelic heterogeneity
? r
? Twin studies
? Sib-pair analysis
Each of the heritable human traits that we have discussed in recent weeks is
monogenic
Each of these traits was quite straightforward from a Mendelian perspective:
invariably caused by mutation in the same gene.
Sickle cell disease: autosomal recessive
Phenylketonuria: autosomal recessive
Huntington's disease: autosomal dominant
genetic homogeneity
all affected individuals have the same mutation in the same gene
ALLELIC HETEROGENEITY
cystic fibrosis (CF):
? autosomal recessive disorder affecting 1/2500 newborns in
populations of European origin
? phenotype: sticky viscous secretions ? obstruction of pancreas and
airways ? pancreatic insufficiency (treated with enzyme
supplements) + lung infections
? mapped to chromosome 7 by genetic linkage analysis in 1985
? gene identified at molecular level in 1989: encodes a chloride channel
protein
allelic heterogeneity
Would such allelic heterogeneity affect the outcome of combining
LOD scores from multiple families with affected children?
No, because all such families would show linkage to the
same chromosomal locus.
? > 600 mutant alleles in the gene have been identified
DUCHEYNNE BECKER
TWO MUSCULAR DYSTROPHIES
retinitis pigmentosa (RP):
? degeneration of retina (accompanied by deposits of pigment in retina) ?
progressive visual impairment ? blindness
? population prevalence of 1/3,000
? one of most common causes of blindness among middle aged in
developed countries
? autosomal recessive inheritance in 84% of affected families
? autosomal dominant inheritance in 10% of affected families
? X-linked recessive inheritance in 6% of affected families
? At least 66 different genetic loci implicated
but RP appears to be result of a single gene mutation in any
given family, at least in most cases
NON-ALLELIC HETEROGENEITY
How could one begin to genetically dissect a trait like RP that shows
nonallelic heterogeneity?
Approach 1: Linkage analysis on large families with many affected individuals.
combining LOD
scores from different families might obscure rather than clarify the situation.
However, this trap can be avoided if one can identify a family with sufficient
numbers of affected individuals (and informative meioses) to provide, by
itself, a LOD score of 3.
Approach 2: Direct search for mutations in candidate genes.
In some diseases, one can make good guesses as to the biochemical
structures or pathways that are likely sites of causative mutations. In such
cases, a direct search for mutations at the DNA sequence level in "candidate
genes" -- can be an effective strategy -- even in the absence of any prior
genetic linkage analysis.
Different families with RP may show linkage to different loci,
This "candidate gene" approach will become increasingly prominent given:
? Complete sequence of human genome
? Falling cost of sequencing
Complete sequence of human genome (rough draft published in 2001;
reference grade sequence expected in 2003)
Perhaps 10 years from now, scientists will routinely sequence the
entire genomes of individuals with unexplained phenotypes.
r = coefficient of relationship between two individuals
= likelihood of sharing by descent a given allele at a given locus
= expected proportion of all alleles (at all genes) that two
individuals share by descent
coefficient of relationship, r ≠ inbreeding coefficient, F
(likelihood that an individual is
homozygous by descent at a given
locus)
First cousins
Aunt/niece
Siblings
Parent-child
rdegreeRelationship
1st 1/2
1st 1/2
2nd 1/4
3rd 1/8
Cleft lip is a common birth defect.
First cousins
Nephews and nieces
Aunts and uncles
Children
Sibs
Risk (relative to
general
population)
% affecteddegree
Relatives of affected
child
1st 4.1 x40
1st 3.5 x35
2nd 0.7 x7
2nd 0.8 x8
3rd 0.3 x3
Are these findings consistent with autosomal dominant inheritance of cleft lip?
No, because the percentages of 1
st
and 2
nd
degree relatives who are
affected are too low (would expect 50% and 25%, respectively).
Are these findings consistent with autosomal recessive inheritance of cleft lip?
No, because the percentage of affected siblings is too low (would
expect 25%) and because the risk in children is nearly as high as that
in siblings.
about 0.001,
incidence in the general population is
but relatives of affected children are at higher risk:
Its
Phenotypic concordance in monozygotic (MZ; identical)
and
dizygotic (DZ; fraternal) twins
MZ twins arise when a developing embryo (derived from one zygote;
fertilization of one egg by one sperm) splits into two parts,
each giving rise to a baby
DZ twins arise from two separate, but nearly simultaneous fertilization
events.
1/21stParent-child
1/21stSiblings
1/42ndAunt/niece
1/83rdFirst Cousins
DZ twins
MZ twins
rdegreeRelationship
0 1
1st 1/2
InterpretationDZ twinsMZ twins
Concordance Rates in
environmental (contagious)
environment + multiple genes
Twin studies:
Concordance = both twins display phenotype in question
Discordance = one twin displays phenotype in question, other does not
Schizophrenia
Coronary heart disease
Insulin-dependent
diabetes
Cleft lip
Measles
Cystic fibrosis
Sickle cell disease
Huntington's disease
100% 50% autosomal dominant
100% 25% autosomal recessive
100% 25% autosomal recessive
97% 94%
40% 4%
30% 6% environment, ≥1 gene
46% 12% environment, ≥1 gene
46% 14% environment, ≥1 gene
male homosexuality
Non-twin brothers
DZ twins
MZ twins
Concordance Rates
In early 1990's, Dean Hamer and colleagues at NIH embarked
on genetic studies of male homosexuality. They phenotyped
the individuals by asking them to answer a number of questions
about their sexuality: self-identification, attraction, fantasy, and
behavior ? bimodal distribution of scores.
57%
24%
13%
Pedigree figures removed due to copyright considerations.
Pedigree figures removed due to copyright considerations.
Hamer and colleagues then employed concordant sib-pair analysis,
variation on conventional genetic linkage analysis that
1. requires no knowledge of mode of inheritance
2. unaffected by incomplete penetrance
3. can tolerate some degree of non-allelic heterogeneity
Sib-pair analysis =
search for nonrandom sharing of alleles between phenotypically
concordant sibs
Hamer and colleagues (Science 261:321-327 [1993]) identified 40 nuclear
families in which there were two homosexual brothers.
C/Y A/B
Identical by descent (IBD)
A/Y A/Y
B/Y B/Y
Nonidentical
A/Y B/Y
B/Y A/Y
In each of the 40
families, they studied the transmission of X-linked SSRs from the mother to
the homosexual sons. For an X-linked SSR, there are two possible
genotypes in each son, and thus there are four possible combinations of
genotypes in the two sons:
If the region of the X chromosome being tested plays no causal role in
male homosexuality, then the four possible combinations should be equally
likely, and identity by descent and nonidentity should be equally likely.
Expected
NonidenticalIBD
20 20
On the distal long arm of the X chromosome, Hamer and colleagues
observed a dramatic departure from random expectations among the 40
families:
Observed
NonidenticalIBD
33 7
Chi-square =
(33-20)
2
+ (7-20)
2
20 20
= 16.9
O? E( )
2
E
∑
=
Suggests that a gene on distal long arm of X chromosome contributes
to the development of male homosexuality -- in some but not all cases.
p = probability, given the null hypothesis, of observing the data (or data
even more diverged from the null expectations)
p <<< 0.005
The table of critical values of the X distribution has been removed
due to copyright considerations.ew Text
2