1
§ 7.1 Hook’s force law
1. Ideal model—spring oscillator
Equilibrium position
A?
A+
x
Horizontal direction:
2. Hook’s force law
ikxF
?
s
?=
r
elasticity
inertia
2
§ 7.2 Simple harmonic oscillation
1. Differential equation of a simple harmonic
oscillation and its solution
x
0
d
d
2
2
=+ x
m
k
t
x
i
t
x
mikx
?
d
d
?
2
2
=?
xx
amikxF
r
r
=?=
?
General Solution:
)cos()(or
sincos)(
φω
ωω
+=
+=
tAtx
tbtatx
a
b
baA
?=
+=
φtan
)(
2122
§ 7.2 Simple harmonic oscillation
A
m
x
2. The quantities describing the oscillation
3
§ 7.2 Simple harmonic oscillation
① Angular frequency , period and frequency
0
d
d
2
2
=+ x
m
k
t
x
)cos()( φω += tAtx
m
k
m
k
tx
m
k
tx
==∴
=+?
ωω
ω
or
0)()(
2
2
Q
Angular frequency ω is related to the spring
constant and the mass. It is decided by the
nature of the system. Unit is rad/s.
The period T :
])(cos[)(
)cos()(
φω
φω
++=+=
+=
TtATtx
tAtx
§ 7.2 Simple harmonic oscillation
ω
π
πω
2
2 == TT
Unit is s.
Frequency ν : πνω
π
ω
ν 2
2
1
===
T
Unit is 1/s or Hertz (Hz).
② Amplitude
)cos()( φω += tAtx )sin(
d
)(d
)( φωω +?== tA
t
tx
tv
t =0
φω
φ
sin)0(
cos)0(
0
0
Avv
Axx
?==
==
2
2
02
0
ω
v
xxA
m
+==
The range of the oscillation is 2A=2x
m
.
4
§ 7.2 Simple harmonic oscillation
③ Initial phase angle and phase
t =0
φω
φ
sin)0(
cos)0(
0
0
Avv
Axx
?==
==
)(tan
0
0
1
ω
φ
x
v
?=
?
φ describe the initial state of the spring oscillator.
It is called initial phase or phase constant.
A and φ is related to the initial states or conditions
of the system.
ωt+φ is called the phase of the motion. It
describes the states of the oscillation system.
)cos()( φω += tAtx )sin(
d
)(d
)( φωω +?== tA
t
tx
tv
§ 7.2 Simple harmonic oscillation
ωt+φ=π/3
iAtviAtx
?
2
3
)(
?
2
1
)( ω?==
rr
ωt+φ= -π/3 iAtviAtx
?
2
3
)(
?
2
1
)( ω==
rr
3. The graphs of x(t), v(t) and a(t) of simple
harmonic oscillation
5
§ 7.2 Simple harmonic oscillation
)cos()( φω += tAtx
)sin(
d
)(d
)( φωω +?== tA
t
tx
tv
)cos(
d
)(d
)(
2
2
2
φωω +?=
=
tA
t
tx
ta
mm
m
mm
aavxx
avvx
aavxx
+==?=
=?==
?==+=
0
00
0
A+
A+
Aω+
Aω?
A
2
ω+
A
2
ω+
φ=0
4. How to determine if an oscillatory motion is
simple harmonic oscillation?(criterion)
ikxF
?
total
?=
r
Criterion 1:
One force or the sum of
several forces
Criterion 2:
0
d
d
2
2
=+ x
m
k
t
x
Criterion 3: )cos()( φω += tAtx
§ 7.2 Simple harmonic oscillation
6
§ 7.3 A vertically oriented spring
1. Is the motion of this system simple harmonic?
New equilibrium position:
mgxk
e
=
′
imgixxkF
e
??
)(
total
++
′
?=
r
§ 7.3 A vertically oriented spring
i
t
x
mimaikx
x
?
d
d
??
2
2
==?
ikximgixxkF
ex
???
)(
total,
?=++′?=
r
m
k
x
m
k
t
x
=
=+
ω
0
d
d
2
2
The origin of x is the new equilibrium position.
7
§ 7.3 A vertically oriented spring
Solution: The system is composed of 2 m and k.
,
2m
k
=ω
k
m
T
2
2π=
The angular frequency and the period are
respectively
m
h
m
k
Example 1: as shown in Fig. 1,
when the block of mass m falls
freely and make a completely
unelastic collision with the plate
of mass m, the system will
oscillate up and down. Find the
T, A and φ of the motion.
Fig. 1
§ 7.3 A vertically oriented spring
0
2
0
>=
gh
v
0
0
22
0
mvghm
k
mg
x
=
<?=
m
h
m
k
x
o
0=t
0
v
r
0
x
From the initial condition
mg
kh
k
mg
k
mgh
k
gmv
xA
+=
+=+=
1
2
22
2
2
0
2
0
ω
We can obtain the amplitude
8
ππ
ω
φ +=+?=
mg
kh
x
v
arctg)(arctg
0
0
0sin
0cos
0
0
>?=
<=
φω
φ
Av
A
x
0sin <φ
πφ >
From the initial condition
§ 7.3 A vertically oriented spring
§ 7.4 simple harmonic motion and the uniform
circular motion
1. Gelileo’s observation of the moons of Jupiter
What can you imagine from the results?
9
§ 7.4 simple harmonic motion and the uniform
circular motion
Simple harmonic motion can be described as
the projection of a uniform circular motion
along a diameter of the circle.
is called rotating vector.
A
r
A
r
π?
2
3
=
0=?π?=
2π? =
0
0
<
>
v
x
0
0
>
>
v
x
0
0
>
<
v
x
0
0
<
<
v
x
ω
A
r
§ 7.4 simple harmonic motion and the uniform
circular motion
A
Aω
)cos()( φω += tAtx
)sin()( φωω +?= tAtv
10
§ 7.4 simple harmonic motion and the uniform
circular motion
A
2
ω
)cos()(
2
φωω +?= tAta
The virtues of describing the
simple harmonic motion by
using the uniform circular
motion:
1express the A, T and
ω t+φ of simple harmonic
motion;
2determine the initial
phase of oscillation easily;
3make the superposition
of several oscillations
conveniently.
§ 7.4 simple harmonic motion and the uniform
circular motion
Example 1: There is a simple harmonic
oscillation of amplitude 0.24 m and period 3s. At
initial time, t=0, x
0
=0.12m, v
0
<0. Find the initial
phase and the shortest time interval in which the
oscillator arrive at position x= ?0.12m.
)m(x
o 0.24
Solution:
-0.12
)(tA
r
s5.0
6
1
min
== Tt?
Draw the rotating
vectors at t =0 and t .
3πφ =
0.12
)0( =tA
r
φ
11
§ 7.5 the superposition of simple harmonic motions
)cos(
111
?ω += tAx
)cos(
222
?ω += tAx
)cos(
21
?ω +=
+=
tA
xxx
)cos(2
1221
2
2
2
1
?? ?++= AAAAA
2211
2211
coscos
sinsin
arctg
??
??
?
AA
AA
+
+
=
21
AAA
rrr
+=
A
r
1
A
r
2
A
r
ω
ω
ω
x
1
x
2
x
?
1
?
2
?
x
1. Same frequency and same direction of motion
Changes with time
§ 7.5 the superposition of simple harmonic motions
2. Different frequency and same direction of motion
A
r
1
A
r
2
A
r
1
ω
2
ω
ω
x
1
x
2
x
?
1
?
2
?
x
)cos(
)cos(
2222
1111
?ω
?ω
+=
+=
tAx
tAx
21
ωω ≠
)
2
cos()
2
cos(2
1212
21
?
ωωωω
+
+
?
?
=+= ttAxxx
21
AAA
rrr
+=
Simple harmonic
,
21
AAA == ??? ==
21
12
§ 7.5 the superposition of simple harmonic motions
22
1212
ωωωω +
<<
?
if
beat
av
12
2
ω
ωω
=
+
Carrier frequency
amp
beat12
2ω
ωωω
=
=?
Beat frequency
Amplitude modulation
t(s)
t(s)
t(s)
amplitude
amp
12
2
ω
ωω
=
?
Modulation frequency
§ 7.5 the superposition of simple harmonic motions
3. Fourier analysis
)7cos
7
1
5cos
5
1
3cos
3
1
(cos
4
???+?+?= tttt
A
x ωωωω
π
ω
A
π
A4
ω7ω5ω3ω
a. Periodic motion
ω
min
--basic frequency
n ω
min
—harmonic
frequency
13
b. non-periodic motion
Damped harmonic motion
§ 7.5 the superposition of simple harmonic motions
§ 7.6 The simple pendulum and chaos
1. The simple pendulum and the force diagram
θsinW
θcosW
W
r
14
θsinW
θcosW
W
r
2. The equation of the simple pendulum
t
L
t
s
v
Ls
d
d
d
d θ
θ
==
=
t
v
mW
maF
tt
d
d
sin =?
=
θ
0sin
d
d
d
d
sin
2
2
2
2
=+
=?
θ
θ
θ
θ
L
g
t
t
mLmg
§ 7.6 The simple pendulum and chaos
§ 7.6 The simple pendulum and chaos
θsinW
θcosW
W
r
0
d
d
2
2
=+ θ
θ
L
g
t
θθ ≈sin
1For small θ,
The small- θ
approximation means
that a pendulum will
have true simple
harmonic motion.
15
????+?=
!5!3
sin
53
θθ
θθ
)cos(cos2)
d
d
(
0
22
θθω
θ
?=
t
2For large θ,
0sin
d
d
2
2
=+ θ
θ
l
g
t
C
t
=? θω
θ
cos)
d
d
(
2
1
22
,0=t ,
0
θθ = 0
d
d
=
t
θ
0
2
cosθω?=CIf when then
§ 7.6 The simple pendulum and chaos
(b)
0
0
5<θ
0
d
d
2
2
2
=+ θω
θ
t
C
t
=+
222
)
d
d
( θω
θ
1
/
2
22
=+
ω
θθ
CC
&
θ
θ
&
Discussion:
(a) 0
0
=θ
Equilibrium state
initial condition
different ellipse
constant C
§ 7.6 The simple pendulum and chaos
16
(d) πθ =
0
),( GG ′Saddle points
(c)
πθ <
0
Periodical motion
(e) Give additional energy
The motion is not definite.
Rotational motion.
Clockwise
anticlockwise
§ 7.6 The simple pendulum and chaos
chaos--混沌
1 . 混沌 : 决定性动力学系统中出现的貌似随机的运动。
运动方程是完全确定的(非线性微分方程)
由方程自身演化出来,在一定条件下行为不完全确
定(内在随机性)
例 1: 任意摆角的无阻尼单摆
系统运动的描述(微分方程)完全确定
)(系统运行中一定条件下 πθ =
出现随机性状态: GG
′
,鞍点
§ 7.6 The simple pendulum and chaos
0sin
2
=+ θωθ
&&
17
:,GG
′
介于往复摆动和单向旋转间临界状态究竟
如何运动?
取决于初始条件的细微差别
轻杆上联结质点组成单摆,给一个初值,
让它恰好摆到最高点静止,能否实现?
问题
例 2: 湍流
雷诺实验
流速达一定值 层流 湍流
§ 7.6 The simple pendulum and chaos
§ 7.6 The simple pendulum and chaos
18
多节摆(演示)例 5:
水流速较高时,
滴水间隔时间出现混沌。
例 4: 滴水龙头
水流速度达到一定值,水轮的运动不可预测,出现混沌。
例 3:
洛仑兹水桶
§ 7.6 The simple pendulum and chaos
2. 混沌的特征和意义
世界本质上是非线性的,线性系统只是理想
模型。混沌是自然界的普遍现象。
物理、化学、生物、气象、农业、工程、经济 …...
无所不在 (稳定与突变)
(1) 普遍性
(2) 对初始条件的极端敏感
混沌的发现 :
1963年:美国气象学家洛仑兹研究天气预报
构建大气动力学模型
§ 7.6 The simple pendulum and chaos
19
用计算机模拟求解。偶然发现初值的微小差异带来
结果的巨大偏差
bzxyxyz
t
z
xzyxxzyx
x
y
yxyx
t
x
?=+?=
??=??=
??=+?=
3
8
28
)(1010
d
d
d
d
d
d
γ
σ
x-对流强度
y-上升下降流温差
z-温度分布的非线性
§ 7.6 The simple pendulum and chaos
系统状态演变对初值极端敏感,相图中两个任意靠
近的点经过足够长时间,在吸引子上宏观的分离开,对
应截然不同的状态 ——由于实际上对初值的测量不可能
绝对精确,这种不确定性在一定条件下被放大,导致不
可预测的结果 ——蝴蝶效应。
相图:
洛仑兹奇异吸引子
相轨迹在两“翅”上跳跃,自身不相交,不构成任
何周期运动,系统状态变化具有不可预测的随机性。
§ 7.6 The simple pendulum and chaos
20
§ 7.6 The simple pendulum and chaos
台球问题
理论计算的完全对称的结
果实际操作如何?
不能保证A与B、C同时接
触,初值无限小的偏离造成
截然不同的结果。
光滑水平面上有三个完全相同的台球,A沿B、
C 中心联线的垂直平分线射去,完全弹性碰撞,碰
后如何运动?
A
v
v
B
C
§ 7.6 The simple pendulum and chaos
21
数学问题
叠代
)1(4
11 ??
?=
nnn
xxx
取
1.0
0
=x 10000001.0
0
=x 1000001.0
0
=x
混沌:不稳定性, “差之毫厘,失之千里”
§ 7.6 The simple pendulum and chaos
(3)强调整体论思维方式,开创复杂性研究的新方向
物理学中的
两类描述
确定性描述 ——牛顿力学 ...
概率性描述 ——分子物理
量子力学 ...
确定性实例:
“我们必须把目前的宇宙状态看成它以前状态的结果,以及以
后发展的原因。如果有一种智慧能了解在每一时刻支配着自然
界的所有力,了解宇宙中所有物体的相互位置,如果这种智慧
伟大到能对这样众多的数据进行分析,把宇宙中最庞大的天体
到最轻微的原子的运动归结到一个公式之中,那么对他来说没
有什么事情是不确定的,将来就象过去的那样展现在他的眼
前。”
—— 拉普拉斯
§ 7.6 The simple pendulum and chaos
22
一定条件下必然发生某一结果:
物理实验中采用多次重
复求平均值方法来减小
误差,日食、月食、哈
雷慧星回归 …...
§ 7.6 The simple pendulum and chaos
概率性描述实例 :
分子运动与气体压强 , 投骰子、硬币,打靶 ...
共同特征:
物理量在随机因素影响下可取不同数值,
无法预知。但存在总体规律,物理量取某
值的概率是确定的。伴随涨落。
短期(少量)无法预侧。
长期(大量)呈现规律。
混沌 ——确定性系统的内在随机性
伪随机性(貌似随机)
方程是确定的 .物理量短期值可以预测 .但由于初值
不可能绝对准确 .长期预测是不可能的。
§ 7.6 The simple pendulum and chaos
23
确定性描述
概率性描述
非线性系统
内在随机性
人类认识的
一次飞跃
开创物理学的新篇章
物理学发展
三大方向
{
微观 ——粒子物理
宏观 ——天体物理 .宇宙学
复杂性 ——凝聚态物理
非线性物理
线性世界 ——小孤岛
“当你一旦离开线性近似法,你就开始航行在一
个非常广阔的海洋上。”
——考温 (美国桑塔费研究所创始人)
§ 7.6 The simple pendulum and chaos
(4)方法论角度: 整体论和还原论
传统物理学遵循 还原论 思维方式
复杂 简单
多元 一元
对物质世界进行简
单、统一的描述
(基本要素)
重视要素间关系,系统与环境的关系,不同
层次的交叉渗透。强调横向性、综合性、复杂
性、整体优化原则。提供跨学科研究和学科统一
的可能性。
整体论:
§ 7.6 The simple pendulum and chaos
24
“通往诺贝尔奖的堂皇道路通常是由简化论的思维
取道的,也就是把世界分解的尽可能小,尽可能简
单。你为一系列或多或少理想化了的问题寻求解题
的方案,但却因此背离了真实世界。把问题限制到
你能发现解决办法的地步。这就造成了科学上越来
越多的碎裂片。而真实的世界却要求我们用更加整
体的眼光去看问题。任何事情都会影响到其它事情,
你必须了解事情的整个关联网。”
《复杂》 P.72
§ 7.6 The simple pendulum and chaos
1. 梁美灵、王则柯,
《童心与发现 ——混沌与均衡纵横谈》
(三联书店: 1996)
2. (美)米歇尔 ·沃尔德罗普,
《复杂 ——诞生与秩序与混沌边沿的科学》
( 三联书店: 1997)
3. 卢侃 孙建华编译
《混沌学传奇》
(上海翻译出版公司 :1991)
§ 7.6 The simple pendulum and chaos
25
§ 7.7 Damped harmonic motion, forced
oscillation and and resonance
1. Damped harmonic motion
0
d
d
d
d
???
?
?
2
2
spring
=++
=??
?=
?=
kx
t
x
t
x
m
imaivikx
ivf
ikxF
xx
xk
β
β
β
r
r
)cos()( φω
α
+=
?
tAetx
t
Where
212
])
2
([
2
mm
k
m
β
ω
β
α
?=
=
§ 7.7 Damped harmonic motion, forced
oscillation and and resonance
26
2. Forced oscillation and resonance
§ 7.7 Damped harmonic motion, forced
oscillation and and resonance
xxx
makxvF =?? β
applied
applied
2
2
d
d
d
d
x
Fkx
t
x
t
x
m =++ β
212
0
2
0
0applied
]2)()[(
)(
)cos()()(
cos
m
mF
A
tAtx
tFF
x
βωωω
ω
φωω
ω
+?
=
+=
=