1 § 7.1 Hook’s force law 1. Ideal model—spring oscillator Equilibrium position A? A+ x Horizontal direction: 2. Hook’s force law ikxF ? s ?= r elasticity inertia 2 § 7.2 Simple harmonic oscillation 1. Differential equation of a simple harmonic oscillation and its solution x 0 d d 2 2 =+ x m k t x i t x mikx ? d d ? 2 2 =? xx amikxF r r =?= ? General Solution: )cos()(or sincos)( φω ωω += += tAtx tbtatx a b baA ?= += φtan )( 2122 § 7.2 Simple harmonic oscillation A m x 2. The quantities describing the oscillation 3 § 7.2 Simple harmonic oscillation ① Angular frequency , period and frequency 0 d d 2 2 =+ x m k t x )cos()( φω += tAtx m k m k tx m k tx ==∴ =+? ωω ω or 0)()( 2 2 Q Angular frequency ω is related to the spring constant and the mass. It is decided by the nature of the system. Unit is rad/s. The period T : ])(cos[)( )cos()( φω φω ++=+= += TtATtx tAtx § 7.2 Simple harmonic oscillation ω π πω 2 2 == TT Unit is s. Frequency ν : πνω π ω ν 2 2 1 === T Unit is 1/s or Hertz (Hz). ② Amplitude )cos()( φω += tAtx )sin( d )(d )( φωω +?== tA t tx tv t =0 φω φ sin)0( cos)0( 0 0 Avv Axx ?== == 2 2 02 0 ω v xxA m +== The range of the oscillation is 2A=2x m . 4 § 7.2 Simple harmonic oscillation ③ Initial phase angle and phase t =0 φω φ sin)0( cos)0( 0 0 Avv Axx ?== == )(tan 0 0 1 ω φ x v ?= ? φ describe the initial state of the spring oscillator. It is called initial phase or phase constant. A and φ is related to the initial states or conditions of the system. ωt+φ is called the phase of the motion. It describes the states of the oscillation system. )cos()( φω += tAtx )sin( d )(d )( φωω +?== tA t tx tv § 7.2 Simple harmonic oscillation ωt+φ=π/3 iAtviAtx ? 2 3 )( ? 2 1 )( ω?== rr ωt+φ= -π/3 iAtviAtx ? 2 3 )( ? 2 1 )( ω== rr 3. The graphs of x(t), v(t) and a(t) of simple harmonic oscillation 5 § 7.2 Simple harmonic oscillation )cos()( φω += tAtx )sin( d )(d )( φωω +?== tA t tx tv )cos( d )(d )( 2 2 2 φωω +?= = tA t tx ta mm m mm aavxx avvx aavxx +==?= =?== ?==+= 0 00 0 A+ A+ Aω+ Aω? A 2 ω+ A 2 ω+ φ=0 4. How to determine if an oscillatory motion is simple harmonic oscillation?(criterion) ikxF ? total ?= r Criterion 1: One force or the sum of several forces Criterion 2: 0 d d 2 2 =+ x m k t x Criterion 3: )cos()( φω += tAtx § 7.2 Simple harmonic oscillation 6 § 7.3 A vertically oriented spring 1. Is the motion of this system simple harmonic? New equilibrium position: mgxk e = ′ imgixxkF e ?? )( total ++ ′ ?= r § 7.3 A vertically oriented spring i t x mimaikx x ? d d ?? 2 2 ==? ikximgixxkF ex ??? )( total, ?=++′?= r m k x m k t x = =+ ω 0 d d 2 2 The origin of x is the new equilibrium position. 7 § 7.3 A vertically oriented spring Solution: The system is composed of 2 m and k. , 2m k =ω k m T 2 2π= The angular frequency and the period are respectively m h m k Example 1: as shown in Fig. 1, when the block of mass m falls freely and make a completely unelastic collision with the plate of mass m, the system will oscillate up and down. Find the T, A and φ of the motion. Fig. 1 § 7.3 A vertically oriented spring 0 2 0 >= gh v 0 0 22 0 mvghm k mg x = <?= m h m k x o 0=t 0 v r 0 x From the initial condition mg kh k mg k mgh k gmv xA += +=+= 1 2 22 2 2 0 2 0 ω We can obtain the amplitude 8 ππ ω φ +=+?= mg kh x v arctg)(arctg 0 0 0sin 0cos 0 0 >?= <= φω φ Av A x 0sin <φ πφ > From the initial condition § 7.3 A vertically oriented spring § 7.4 simple harmonic motion and the uniform circular motion 1. Gelileo’s observation of the moons of Jupiter What can you imagine from the results? 9 § 7.4 simple harmonic motion and the uniform circular motion Simple harmonic motion can be described as the projection of a uniform circular motion along a diameter of the circle. is called rotating vector. A r A r π? 2 3 = 0=?π?= 2π? = 0 0 < > v x 0 0 > > v x 0 0 > < v x 0 0 < < v x ω A r § 7.4 simple harmonic motion and the uniform circular motion A Aω )cos()( φω += tAtx )sin()( φωω +?= tAtv 10 § 7.4 simple harmonic motion and the uniform circular motion A 2 ω )cos()( 2 φωω +?= tAta The virtues of describing the simple harmonic motion by using the uniform circular motion: 1express the A, T and ω t+φ of simple harmonic motion; 2determine the initial phase of oscillation easily; 3make the superposition of several oscillations conveniently. § 7.4 simple harmonic motion and the uniform circular motion Example 1: There is a simple harmonic oscillation of amplitude 0.24 m and period 3s. At initial time, t=0, x 0 =0.12m, v 0 <0. Find the initial phase and the shortest time interval in which the oscillator arrive at position x= ?0.12m. )m(x o 0.24 Solution: -0.12 )(tA r s5.0 6 1 min == Tt? Draw the rotating vectors at t =0 and t . 3πφ = 0.12 )0( =tA r φ 11 § 7.5 the superposition of simple harmonic motions )cos( 111 ?ω += tAx )cos( 222 ?ω += tAx )cos( 21 ?ω += += tA xxx )cos(2 1221 2 2 2 1 ?? ?++= AAAAA 2211 2211 coscos sinsin arctg ?? ?? ? AA AA + + = 21 AAA rrr += A r 1 A r 2 A r ω ω ω x 1 x 2 x ? 1 ? 2 ? x 1. Same frequency and same direction of motion Changes with time § 7.5 the superposition of simple harmonic motions 2. Different frequency and same direction of motion A r 1 A r 2 A r 1 ω 2 ω ω x 1 x 2 x ? 1 ? 2 ? x )cos( )cos( 2222 1111 ?ω ?ω += += tAx tAx 21 ωω ≠ ) 2 cos() 2 cos(2 1212 21 ? ωωωω + + ? ? =+= ttAxxx 21 AAA rrr += Simple harmonic , 21 AAA == ??? == 21 12 § 7.5 the superposition of simple harmonic motions 22 1212 ωωωω + << ? if beat av 12 2 ω ωω = + Carrier frequency amp beat12 2ω ωωω = =? Beat frequency Amplitude modulation t(s) t(s) t(s) amplitude amp 12 2 ω ωω = ? Modulation frequency § 7.5 the superposition of simple harmonic motions 3. Fourier analysis )7cos 7 1 5cos 5 1 3cos 3 1 (cos 4 ???+?+?= tttt A x ωωωω π ω A π A4 ω7ω5ω3ω a. Periodic motion ω min --basic frequency n ω min —harmonic frequency 13 b. non-periodic motion Damped harmonic motion § 7.5 the superposition of simple harmonic motions § 7.6 The simple pendulum and chaos 1. The simple pendulum and the force diagram θsinW θcosW W r 14 θsinW θcosW W r 2. The equation of the simple pendulum t L t s v Ls d d d d θ θ == = t v mW maF tt d d sin =? = θ 0sin d d d d sin 2 2 2 2 =+ =? θ θ θ θ L g t t mLmg § 7.6 The simple pendulum and chaos § 7.6 The simple pendulum and chaos θsinW θcosW W r 0 d d 2 2 =+ θ θ L g t θθ ≈sin 1For small θ, The small- θ approximation means that a pendulum will have true simple harmonic motion. 15 ????+?= !5!3 sin 53 θθ θθ )cos(cos2) d d ( 0 22 θθω θ ?= t 2For large θ, 0sin d d 2 2 =+ θ θ l g t C t =? θω θ cos) d d ( 2 1 22 ,0=t , 0 θθ = 0 d d = t θ 0 2 cosθω?=CIf when then § 7.6 The simple pendulum and chaos (b) 0 0 5<θ 0 d d 2 2 2 =+ θω θ t C t =+ 222 ) d d ( θω θ 1 / 2 22 =+ ω θθ CC & θ θ & Discussion: (a) 0 0 =θ Equilibrium state initial condition different ellipse constant C § 7.6 The simple pendulum and chaos 16 (d) πθ = 0 ),( GG ′Saddle points (c) πθ < 0 Periodical motion (e) Give additional energy The motion is not definite. Rotational motion. Clockwise anticlockwise § 7.6 The simple pendulum and chaos chaos--混沌 1 . 混沌 : 决定性动力学系统中出现的貌似随机的运动。 运动方程是完全确定的(非线性微分方程) 由方程自身演化出来,在一定条件下行为不完全确 定(内在随机性) 例 1: 任意摆角的无阻尼单摆 系统运动的描述(微分方程)完全确定 )(系统运行中一定条件下 πθ = 出现随机性状态: GG ′ ,鞍点 § 7.6 The simple pendulum and chaos 0sin 2 =+ θωθ && 17 :,GG ′ 介于往复摆动和单向旋转间临界状态究竟 如何运动? 取决于初始条件的细微差别 轻杆上联结质点组成单摆,给一个初值, 让它恰好摆到最高点静止,能否实现? 问题 例 2: 湍流 雷诺实验 流速达一定值 层流 湍流 § 7.6 The simple pendulum and chaos § 7.6 The simple pendulum and chaos 18 多节摆(演示)例 5: 水流速较高时, 滴水间隔时间出现混沌。 例 4: 滴水龙头 水流速度达到一定值,水轮的运动不可预测,出现混沌。 例 3: 洛仑兹水桶 § 7.6 The simple pendulum and chaos 2. 混沌的特征和意义 世界本质上是非线性的,线性系统只是理想 模型。混沌是自然界的普遍现象。 物理、化学、生物、气象、农业、工程、经济 …... 无所不在 (稳定与突变) (1) 普遍性 (2) 对初始条件的极端敏感 混沌的发现 : 1963年:美国气象学家洛仑兹研究天气预报 构建大气动力学模型 § 7.6 The simple pendulum and chaos 19 用计算机模拟求解。偶然发现初值的微小差异带来 结果的巨大偏差 bzxyxyz t z xzyxxzyx x y yxyx t x ?=+?= ??=??= ??=+?= 3 8 28 )(1010 d d d d d d γ σ x-对流强度 y-上升下降流温差 z-温度分布的非线性 § 7.6 The simple pendulum and chaos 系统状态演变对初值极端敏感,相图中两个任意靠 近的点经过足够长时间,在吸引子上宏观的分离开,对 应截然不同的状态 ——由于实际上对初值的测量不可能 绝对精确,这种不确定性在一定条件下被放大,导致不 可预测的结果 ——蝴蝶效应。 相图: 洛仑兹奇异吸引子 相轨迹在两“翅”上跳跃,自身不相交,不构成任 何周期运动,系统状态变化具有不可预测的随机性。 § 7.6 The simple pendulum and chaos 20 § 7.6 The simple pendulum and chaos 台球问题 理论计算的完全对称的结 果实际操作如何? 不能保证A与B、C同时接 触,初值无限小的偏离造成 截然不同的结果。 光滑水平面上有三个完全相同的台球,A沿B、 C 中心联线的垂直平分线射去,完全弹性碰撞,碰 后如何运动? A v v B C § 7.6 The simple pendulum and chaos 21 数学问题 叠代 )1(4 11 ?? ?= nnn xxx 取 1.0 0 =x 10000001.0 0 =x 1000001.0 0 =x 混沌:不稳定性, “差之毫厘,失之千里” § 7.6 The simple pendulum and chaos (3)强调整体论思维方式,开创复杂性研究的新方向 物理学中的 两类描述 确定性描述 ——牛顿力学 ... 概率性描述 ——分子物理 量子力学 ... 确定性实例: “我们必须把目前的宇宙状态看成它以前状态的结果,以及以 后发展的原因。如果有一种智慧能了解在每一时刻支配着自然 界的所有力,了解宇宙中所有物体的相互位置,如果这种智慧 伟大到能对这样众多的数据进行分析,把宇宙中最庞大的天体 到最轻微的原子的运动归结到一个公式之中,那么对他来说没 有什么事情是不确定的,将来就象过去的那样展现在他的眼 前。” —— 拉普拉斯 § 7.6 The simple pendulum and chaos 22 一定条件下必然发生某一结果: 物理实验中采用多次重 复求平均值方法来减小 误差,日食、月食、哈 雷慧星回归 …... § 7.6 The simple pendulum and chaos 概率性描述实例 : 分子运动与气体压强 , 投骰子、硬币,打靶 ... 共同特征: 物理量在随机因素影响下可取不同数值, 无法预知。但存在总体规律,物理量取某 值的概率是确定的。伴随涨落。 短期(少量)无法预侧。 长期(大量)呈现规律。 混沌 ——确定性系统的内在随机性 伪随机性(貌似随机) 方程是确定的 .物理量短期值可以预测 .但由于初值 不可能绝对准确 .长期预测是不可能的。 § 7.6 The simple pendulum and chaos 23 确定性描述 概率性描述 非线性系统 内在随机性 人类认识的 一次飞跃 开创物理学的新篇章 物理学发展 三大方向 { 微观 ——粒子物理 宏观 ——天体物理 .宇宙学 复杂性 ——凝聚态物理 非线性物理 线性世界 ——小孤岛 “当你一旦离开线性近似法,你就开始航行在一 个非常广阔的海洋上。” ——考温 (美国桑塔费研究所创始人) § 7.6 The simple pendulum and chaos (4)方法论角度: 整体论和还原论 传统物理学遵循 还原论 思维方式 复杂 简单 多元 一元 对物质世界进行简 单、统一的描述 (基本要素) 重视要素间关系,系统与环境的关系,不同 层次的交叉渗透。强调横向性、综合性、复杂 性、整体优化原则。提供跨学科研究和学科统一 的可能性。 整体论: § 7.6 The simple pendulum and chaos 24 “通往诺贝尔奖的堂皇道路通常是由简化论的思维 取道的,也就是把世界分解的尽可能小,尽可能简 单。你为一系列或多或少理想化了的问题寻求解题 的方案,但却因此背离了真实世界。把问题限制到 你能发现解决办法的地步。这就造成了科学上越来 越多的碎裂片。而真实的世界却要求我们用更加整 体的眼光去看问题。任何事情都会影响到其它事情, 你必须了解事情的整个关联网。” 《复杂》 P.72 § 7.6 The simple pendulum and chaos 1. 梁美灵、王则柯, 《童心与发现 ——混沌与均衡纵横谈》 (三联书店: 1996) 2. (美)米歇尔 ·沃尔德罗普, 《复杂 ——诞生与秩序与混沌边沿的科学》 ( 三联书店: 1997) 3. 卢侃 孙建华编译 《混沌学传奇》 (上海翻译出版公司 :1991) § 7.6 The simple pendulum and chaos 25 § 7.7 Damped harmonic motion, forced oscillation and and resonance 1. Damped harmonic motion 0 d d d d ??? ? ? 2 2 spring =++ =?? ?= ?= kx t x t x m imaivikx ivf ikxF xx xk β β β r r )cos()( φω α += ? tAetx t Where 212 ]) 2 ([ 2 mm k m β ω β α ?= = § 7.7 Damped harmonic motion, forced oscillation and and resonance 26 2. Forced oscillation and resonance § 7.7 Damped harmonic motion, forced oscillation and and resonance xxx makxvF =?? β applied applied 2 2 d d d d x Fkx t x t x m =++ β 212 0 2 0 0applied ]2)()[( )( )cos()()( cos m mF A tAtx tFF x βωωω ω φωω ω +? = += =