1
1. Why we introduce the concepts of work
and energy?
CWE theoremamF
r
r
=
total
CWE theorem Conservation of energy
(More universal)
2. About the systems that we discuss
Ignore the size, internal structure, internal
motion, deformations, and thermal effects.
§8.1 Work done by variable force
2
SFSFW
vv
?=??= θcos
θ
F
v
s
v
F
v
3. The work done by a constant force
sF
rF
rFW
dcos
cosd
dd
θ
θ
=
??=
?=
v
v
v
differential work
a
b
o
F
v
r
v
d
sd
r
v r′
v
θ
F
r
4. The work done by variable force
§8.1 Work done by variable force
§8.1 Work done by variable force
Define the differential work
done by any force is
rFW
r
r
dd ?=
The work done by a
particular force is F
r
∫∫
?==
f
i
rFW
r
r
ddW
In Cartesian coordinate system:
)ddd(
)
?
d
?
d
?
d(
)
???
(W
zFyFxF
kzjyix
kFjFiF
zy
r
r
x
zy
r
r
x
f
i
f
i
++=
++
?++=
∫
∫
r
r
r
r
a
b
o
F
v
r
v
d
sd
r
v r′
v
θ
F
r
3
∫∫∫
∫
++=
++=
f
i
f
i
f
i
f
i
z
z
z
y
y
y
x
x
x
zy
r
r
x
zFyFxF
zFyFxF
ddd
)ddd(W
r
r
Work done by a constant force:
kzjyixr
kzjyixr
ffff
iiii
???
???
++=
++=
r
r
)()()(
dddW
ifzifyifx
z
z
z
y
y
y
x
x
x
zzFyyFxxF
zFyFxF
f
i
f
i
f
i
?+?+?=
++=
∫∫∫
)(
if
rrFrFW
rr
r
r
r
??=?= ?
§8.1 Work done by variable force
The properties of the work:
1work is a scalar quantity;
2the work done by a force
depends on the path
followed by the system;
§8.1 Work done by variable force
sfisifrfrfW
kkk
B
A
k
?=??=?=?=
∫
)
?
()
?
(d
r
r
r
r
?
sfisifrfrfW
kkk
A
B
k
?=??=?=?=
∫
)
?
()
?
(d
r
r
r
r
?
A
B
s
x
y
sfsfsfWWW
kkk
2
pathclsd
?=??=
′
+=
0,0,0 >=< AAA
4
3the work done by a force
depends on the choice of the
reference frame. Elevator:W=0,
Earth: W≠0
y
g
W
r
v
r
0=+
′NN
WW
N
r
′
c
v
N
r
v
m
c
f
r
′
s
s
′
M
0<+
′ff
WW
f
r
m
§8.1 Work done by variable force
4the work done by a pair of
forces is not always zero.
5. The work done by the total force
The work done by the total force acting on the
system is the algebraic, scalar sum of the work
done by the individual forces.
§8.1 Work done by variable force
L
L
r
r
r
r
r
L
rr
r
r
++=
+?+?=
?++=?=
∫∫
∫∫
21
21
21totaltotal
dd
d)(d
WW
rFrF
rFFrFW
f
i
f
i
f
i
5
§8.1 Work done by variable force
6. The the geometric interpretation
∫∫∫
++=
f
i
f
i
f
i
z
z
z
y
y
y
x
x
x
zFyFxF dddW
The work done on the system by the force
component as the system moves from to is the
area under the curves of the graph of that force
components versus the corresponding coordinate.
i
r
r
f
r
r
Positive or negative work (area) depends on both
the sign of the force and the direction of . r
r
?
§8.1 Work done by variable force
6
Example 1: A spring hangs vertically in its
relaxed state. A block of mass m is attached to
the spring, but the block is held in place so that
the spring at first does not stretch. Now the
hand holding block is slowly lowered, so that the
block descends at constant speed until it reaches
the point at which it hangs at equilibrium with
the hand removed. At this point the spring is
measured to have stretched a distance d from its
previous relaxed length. Find the work done on
the block in this process by (a)gravity, (b)the
spring, (c) the hand.
§8.1 Work done by variable force
Solution: (a)gravity—a constant force
mgdjdjmgrFW
gg
=???=?=
?
)0(
?
r
r
?
(b)the spring—a variable force
mgdkdjyjkyjyFW
ss
2
1
2
1
?
d
??
d
2
-d
0
-d
0
?=?=??=?=
∫∫
r
jkyF
s
?
?=
r
d
mg
kmgkd ==
(c)the hand —a variable force
jmgjkyFFF
FFF
gsh
ghs
??
0
+=??=
=++
rrr
rrv
gm
r
s
F
r
h
F
ry
§8.1 Work done by variable force
7
mgdgmdmgd
ymgkyjyFW
dd
hh
2
1
2
1
)d(
?
d
00
?=?=
+=?=
∫∫
??
r
0=++
ghs
WWW
Can you explain?
gm
r
s
F
r
h
F
r
y
§8.1 Work done by variable force
Example 2: A small object
of mass m is suspended
from a string of length L.
the object is pulled
sideways by a force F that
is always horizontal, until
the string finally makes an
angle φ
m
with the vertical.
The displacement is
accomplished at a small
constant speed. Find the
work done by all forces
that act on the object.
§8.1 Work done by variable force
8
Solution: From the force diagram
φtanmgF =
Eliminate T, we find
)cos-(1dsin
)sind(tandtan
dd
m
0
φφφ
φφφ
φ
mgLmgL
Lmgxmg
xFrFW
m
f
i
f
i
f
i
f
i
F
==
==
=?=
∫
∫∫
∫∫
r
r
x component:
y component: 0cos
0sin
=?
=?
mgT
TF
φ
φ
§8.1 Work done by variable force
)cos(
d
d
?
0d
cos
0
m
LL
f
i
g
T
LLmg
ymg
rjmgW
rTW
m
φ
φ
??=
?=
??=
=?=
∫
∫
∫
?
r
r
r
0=++=
gTF
WWWW
§8.1 Work done by variable force
r
r
d
9
M
F
k
S
Example 3: As shown in
figure, M=2kg , k =200N·m
-1
,
S=0.2m , g
≈
10m·s
-2
. A
student pull the string very
slowly, ignore the friction
between the pulley and the
string , as well as the masses
of the pulley and string . At
initial time, the spring is in
the relaxed state. Find the
work done by the force .
F
r
§8.1 Work done by variable force
Solution:
m2.0and m1.0
00
==→= SxMgkxQ
0.1mbewilltheofheightthe M∴
When the string is pulled down 0.2 m,
what will be the height of M?
F=
k x (0<x≤0.1m) a variable force
k x
0
=Mg (0.1<x≤0.2m) a constant force
()J3||
dd
2.0
1.0
1.0
0
2
2
1
2.0
1.0
1.0
0
=+=
+=
∫∫
Mgxkx
xMgxkxW
F
then
§8.1 Work done by variable force
10
§8.2 Conservative force and the potential energy
1. What is conservative force
If a work done by the force on any system as
it moves between two points is independent
of the path following by the system between
the two points; or if the work done by the
force on any system around any closed path
is zero. Then the force is called conservative
force.
0d =?
∫
rF
r
r
∫∫
?=?
b
a
b
a
rFrF
)2()1(
dd
r
r
r
r
b
0d ≠?
∫
rF
r
r
If , then the force is called
nonconservative force.
If , then the force is called zero-work
force.
0d =?
∫
rF
r
r
2. Some examples of conservative forces
1local gravitational force
rFW
r
r
??=
jmgF
?
?=
r
--a constant force
§8.2 Conservative force and the potential energy
11
y
a
2
L
1
L
f
y
i
y
r′
r
r
r
r
r
d
gm
r
b
o
z
x
yd
)(
d
)
?
d
?
d
?
d()
?
(
d
f
i
b
a
b
a
if
y
y
mgymgy
ymg
kzjyixjmg
rFW
??=
?=
++??=
?=
∫
∫
∫
r
r
)(
]
?
)(
?
)(
?
)[(
?
if
ififif
mgymgy
kzzjyyixxjmg
rFW
??=
?+?+???=
??=
r
r
or
§8.2 Conservative force and the potential energy
2the gravitational force
r
r
GMm
F
?
2
?=
r
)]()[(
d
cosd
d
?
d
2
2
2
if
r
r
b
a
b
a
b
a
r
mM
G
r
mM
G
r
r
mM
G
r
r
mM
G
rr
r
mM
GrFW
f
i
????=
?=
?=
??=?=
∫
∫
∫∫
θ
r
rr
r
r
r
rd
r
′
r
a
b
M
L
i
r
r
f
r
r
F
r
r
r
d
or
∫∫
?=??=
f
i
r
r
b
a
r
r
mM
Grrr
r
mM
GW d
?
d
?
22
§8.2 Conservative force and the potential energy
12
3spring force
i
x
f
x
0
ixr
ikxF
?
dd
?
=
?=
r
r
)
22
(d
?
d)
?
(
2
2
i
f
x
x
x
x
x
k
x
kxxkixikxW
f
i
f
i
??=?=??=
∫∫
3. Potential energy
To exploit the position dependence of the work
done by conservative force on a system, we
introduce the concept of the potential energy.
§8.2 Conservative force and the potential energy
define
PEPEPEW
if
??=??= )(
consrv
1gravitational potential energy near the earth
2gravitational potential energy
§8.2 Conservative force and the potential energy
)()(
local ifif
PEPEmgymgyW ??=??=
mgyPE =
local
y=0, PE
local
=0.
)]()[(
if
r
mM
G
r
mM
GW ????=
r
mM
GPE ?=
grav
r=∞, PE
grav
=0.
13
3 potential energy of spring force system
)(
22
2
2
if
i
f
PEPE
x
k
x
kW ??=+?=
§8.2 Conservative force and the potential energy
Note:
1Potential energy is the function of position;
2the choice of the position where the potential
energy is zero is discretional.
3Potential energy is belong to the two particles of
interaction.
④potential energy is the work done by
conservative force from some position to the zero
potential energy point.
2
2
spring
x
kPE =
x=0, PE
spring
=0.
§8.2 Conservative force and the potential energy
2
d
?
d)
?
(
2
0
i
x
x
x
x
kxxkixikxW
i
f
i
=?=??=
∫∫
Potential energy of spring force system:
r
mM
Gr
r
mM
G
r
r
mM
Grrr
r
mM
GW
i
f
i
r
r
r
b
a
?=?=
?=??=
∫
∫∫
∞
d
d
?
d
?
2
22
Gravitational potential energy:
i
y
y
y
mgyymgymgrFW =?=?=?=
∫∫∫
0b
a
i
f
i
ddd
r
r
Gravitational potential energy near the earth:
14
Example : A uniform chain of mass m and
length l is put on a frictionless horizontal
surface.The length of hanging down part is 0.2
l ,pull the chain very slowly back to the
surface. Find the work done by the pulling
force.
0.8 l
0.2 l
0=μ
m
x
F
§8.2 Conservative force and the potential energy
Solution 1:
Work done by a
variable force
g
l
mx
G =
50
d
?
d
?
d
0
2.0
mgl
xx
l
mg
ixi
l
mg
rGW
l
G
?==?=?=
∫∫∫
r
r
50
mgl
WW
GF
=?=
0.8 l
0.2 l
0=μ
m
x
F
The mass of the
hanging down
part
x
l
m
§8.2 Conservative force and the potential energy
15
Solution 2:
On the surface
Initial state:
Final state:
Work done by mg:
Work done by F:
0=PE
( )
501055
1
mgl
l
mg
c
mg
hPE ?=?==
0
2
=PE
()
50
12
mgl
PEPEPEW
G
?=??=??=
50
mgl
WW
GF
=?=
the potential energy
0.8 l
0.2 l
0=μ
m
x
F
§8.2 Conservative force and the potential energy
§8.2 Conservative force and the potential energy
5. Conservative force and the potential energy
Simple harmonic oscillation:
x
PE
F
PExFixiFrFW
x
xx
d
)d(
)(dd
?
d
?
dd
spring
?=
?==?=?=
r
r
The gravitational force:
r
PE
F
PErFrrrFrFW
r
rr
d
)d(
)(dd
?
d
?
dd
?=
?==?=?=
r
r
Generalization:
k
z
PE
j
y
PE
i
x
PE
kFjFiFF
zyx
?
)(
?
)(
?
)(
???
?
?
?
?
?
?
?
?
?=++=
r
16
§8.3 The CWE theorem
1. Work and kinetic energy
For a single particle:
∫∫∫
?=?=?=
===
f
i
f
i
vvmr
t
v
mrFW
t
r
v
t
v
mamF
rrr
r
r
r
r
r
r
r
r
dd
d
d
d
d
d
,
d
d
totaltotal
total
222
total
2
1
2
1
d
2
1
)(d
2
1
)(d
2
1
d
d
d
2
d
d
d
d
d
)(d
if
f
i
v
v
mvmvvmvvmW
vvvv
v
t
v
t
v
vv
t
v
t
vv
f
i
?==?=∴
?=?
?=?+?=
?
∫∫
rr
rrrr
r
rr
rr
rrr
Q
Kinetic energy is defined :
2
2
1
mvKE =
1Kinetic energy is a scalar;
2Kinetic energy never be negative;
3this definition holds true only at v<<c;
4 the SI unit for kinetic energy is J.
Note:
For a particle-group:
∑∑∑
?==
nn
nn
n
n
ninf
vmvmWW
22
total,total
2
1
2
1
§8.3 The CWE theorem
17
2. The CWE theorem
∑∑∑
?==
nn
nn
n
n
ninf
vmvmWW
22
total,total
2
1
2
1
22
total
2
1
2
1
if
mvmvW ?=
KEKEKEW
if
?=?=
total
The effect of the work done by all forces acting
on a particle or a particle-group is that to
change the value of the kinetic energy
property of the particle or the particle-group.
§8.3 The CWE theorem
Conclusions:
1work is the measure of the energy transfer.
If nonzero total work is done on a system, the
kinetic energy of the system changes, it means
that the energy is transferred to the system.
2The CWE theorem of a particle is the scalar
equivalent of the second law on the particle.
3. The total mechanical energy and the
conservation of mechanical energy
forces
Conservative force
Noncoservative force
§8.3 The CWE theorem
18
EPEKEPEKE
PEPEKEKEPEKEW
PEW
KEWW
iiff
ifif
?=+?+=
?+?=?+?=
??=
?=+
)()(
)()(
other
consrv
consrvother
4. Conservation law of mechanical energy
PEKEE +=
mechanical energy:
a. If the forces acting on the system are all
conservative forces;
b. If the work done by all “others” forces
acting on the system is zero.
ttancons=+==+=
fffiii
PEKEEPEKEE
§8.3 The CWE theorem
(1)The kinetic energy
of the satellite;
(2)The gravitational
potential energy;
(3)The total
mechanical energy。
O
r
F
2R
R
M
m
§8.3 The CWE theorem
Example 1: A man-made satellite of mass m
moves around a circular path above the
surface of the earth 2R height (v<<c). In terms
of m, R, G, and M, present
19
Solution:
,cv <<
nonrelative
()
R
GmM
mvKE
R
v
m
R
mM
G
62
1
3
3
2
2
2
==
=①
②
R
mM
Gr
r
mM
GPE
R
3
d
3
2
?=?=
∫
∞
③
R
GMm
PEKEE
6
?=+=
Confined in the gravitational field of the Earth
O
r
F
2R
R
M
m
§8.3 The CWE theorem
思考:卫星对接问题
a
b
a
R
b
R
设飞船a 、b 圆轨道在同一平面内,飞船a 要追
上b并与之对接,能否直接加速?
R
GMm
PEKEE
6
?=+=
加速,发动机做功,ΔE>0,
轨道半径R增大,不能对接;
方法:
a 减速
ΔE<0
R减小
R
C
轨道
加速
R
b
轨道
§8.3 The CWE theorem
20
a
b
a
R
b
R
c
c
R
方法:
a 减速
ΔE<0
R减小
R
C
轨道
加速
R
b
轨道
§8.3 The CWE theorem
§8.3 The CWE theorem
Example 2: P 346 8.18
The mass of the system m, the height h
0
, the
spring constant k are given. Find the maximum
extent to which the spring is compressed.
y
x
0
h
o
21
Solution:
1The process
Descent down
Encounter with the spring
1
N
r
W
r
W
r
s
F
r
2
N
r
)()(
other iiff
PEKEPEKEEW +?+=?=
According to the CWE theorem:
2a single application of CWE theorem
§8.3 The CWE theorem
0)()(
other
=+?+=?=
iiff
PEKEPEKEEW
Initial state:
0
0 mghPEKE
ii
+=+
Final state:
2
2
1
0 kxPEKE
ff
+=+
0
2
1
0
2
=?mghkx
Therefore
k
mgh
x
k
mgh
x
00
22
?=?±=
The solution is
§8.3 The CWE theorem
22
Example 3: As shown in figure, on a thin staff
of mass m
1
and length L, there is a small ring
of mass m
2
which is connected with a light
spring, the spring constant is k. At initial time,
the system is static, under the application of an
external force the system rotates at constant
angular speed , the m
2
slide very slowly to
the end of the staff A, at this instant, the
kinetic energy of the staff is
ω
§8.3 The CWE theorem
k
m
2
m
1
L
A
o
22
1
3
1
ωLm
Find the work done by
the external force .
KEWW ?=+
consvother
2
0
consv
)(
2
1
d xkxkxWW
x
s
??=?==
∫
?
§8.3 The CWE theorem
k
m
2
m
1
L
A
o
()
22
2
22
1
2
2
1
other
2
1
6
1
ωω LmLmxkW +=??
Lmxk
2
2
ω=?
Solution:
Solve the equations!
23
1. Energy diagram
x
PE
0
mgh h = 0
2
2
1
kx
x = 0
r
mM
G? r = ∞
h
PE
0
r
PE
0
force
Local
gravity
spring
gravity
PE PE=0
Energy diagram
§8.4 energy diagram
2. Bound (confined) state of a system
(a) Simple harmonic oscillator:
)(sin
2
1
)(
2
1
)(
)(cos
2
1
)(
2
1
)(
)sin()(
)cos()(
2222
222
φωω
φω
φωω
φω
+==
+==
+?=
+=
tmAtmvtKE
tkAtkxtPE
tAtv
tAtx
x
x
2
2
2
1
)()( kAtKEtPEE
m
k
=+=
=ω
§8.4 energy diagram
24
)()( tKEtPE +
)(tPE
)(tKE
)()( tKEtPE +
)(tPE
)(tKE
A+A?
PEE
PEE
m
v
PEmvE
≥
≥?=
+=
0)](
2
[
2
1
2
2
x
PE
0
PE
KE
A+A?
§8.4 energy diagram
x >A, v
2
<0, forbidden;
x <-A, v
2
<0, forbidden;
-A≤x ≤A,
KE
PE r
PE
0
0<E
0>E
No turning point
?
Turning point
x
PE
0
PE
KE
A+A?
??
Turning
point
Turning
point
are called
unbounded
particles
0≥E
, the motion
is bounded
0<E
0>?= PEEKE
(b)gravitational field
§8.4 energy diagram
25
Example : A particle of mass m is in the
one-dimension potential field.
m7
ms2
kg2
0
1
0
=
?=
=
?
x
iv
m
v
find:
①the range of motion of
the particle
②in which area F>0
③in which area v=v
max
=?
x (m)
2
PE (J)
4
-4
01 4 79
mv
0
r
§8.4 energy diagram
Solution:
①Initial state
()J4
2
02
1
==
+=
mv
PEKEE
J4=E
Draw the line
x (m)
2
PE(J)
4
-4
01 4 79
mv
0
r
J4=E
?
§8.4 energy diagram
1≥x
The intersection point at x=1, We have the
range of the motion :
26
③At x = 4 m , the
potential energy is least
and the kinetic energy
is the most large.
() EmvPE =+
2
maxmin
2
1
②0
d
d
>?=
x
PE
FIf one wish 0
d
d
<
x
PE
then
That means the tangential of the potential
curve must be negative.
941 ><< xx
Then we have
x (m)
2
PE (J)
4
-4
01 4 79
mv
0
r
§8.4 energy diagram
( )
1
max
ms82.222
?
≈=v
()
min
2
max
2
1
PEEmv ?=
( ) ( )J844 =??=
§8.4 energy diagram
27
0>?= PEEKE
0)](
2
[
2
1
21
2
≥?=
+=
PEE
m
v
PEmvE
EPE, EPE,
PE
J0.5=E
2
at J0.5 xKE =
5
atJ0.1 xxKE >=
J0.1=E
J0.3=E
J0.4=E
§8.4 energy diagram
§8.5 The escape speed and black holes
1. The escape speed
The escape speed is the minimum speed needed
to project a mass m upward from the surface of
another mass M so that m never returns.
R
M
m
escape
v
r
0)()(
other
=+?+=?=
if
PEKEPEKEEW
00
2
1
2
escape
=?==
?==
f
ff
ii
r
GMm
PEKE
R
GMm
PEmvKE
R
GM
v
2
escape
=
28
§8.5 The escape speed and black holes
2. The relative escape speed
R
GM
v
2
escape
=
⊕
⊕
⊕
=
R
GM
v
2
The escape speed from the Earth
21
escape
)
ratioradius
ratiomass
(
/
/
==
⊕
⊕
⊕
RR
MM
v
v
§8.5 The escape speed and black holes
3. Black holes
If the mass M is compressed to a small size
that the escape speed exceeds the speed of
light, the mass M form a black hole.
The critical radius (Schwarzschild radius):
2
escape
2
2
lightofspeed
c
GM
R
c
R
GM
cv
s
s
=
=∴
==Q
29
恒星的起源及其演化
1、恒星分类
主序星——恒星一生
的主要阶段。其光度和
表面温度与质量成正
比;存在时间与质量成
反比;燃烧氢生成氦。
巨星——恒星演化的晚
期阶段。当主序星中心
随氢燃烧成氦,温度变
低而形成。
超巨星——最亮的恒
星。年轻的、演化迅速
的大质量恒星。
白矮星——低光度、高密度、高温
度的恒星。恒星的老年阶段,核能
接近枯竭,内温极高,爆发后余一
高密度核而成。
2、恒星的起源
星际空间稀薄物质由于涨落分裂成团块,并在引力作
用下凝聚成弥漫星云,经快收缩和慢收缩阶段成为“星胎
(原始恒星)”。再经过几千万到几亿年的收缩中心温度
达1000万K,氢燃烧的核反应提供足够的能量是内压与引
力处于相对平衡状态。
恒星的起源及其演化
30
3、恒星的演化和归宿
高温高压核聚变辐射能量、消耗核燃料(氢--氦),燃料
用完,内压减小,引力引起塌缩,外部聚变成碳、氧、
氖、…、铁(结合能最大的核子),内部引力压缩将原子压
碎,变成中子核,同时引力使外围物质向内坍缩,与内核区
相撞,产生极强的巨大激波,使恒星增亮为太阳的100亿
倍——超新星爆发。
1054年
超新星
爆发后
的蟹状
星云
超新星爆发带来积极的一面:恒星
外层加热,进一步核聚变产生
金、铅、铀等元素,连同早期产
生的碳、氧等抛出,与其它碎片
混合,产生下一代恒星和行星。
恒星的起源及其演化
4、白矮星、中子星、黑洞
白矮星——原子态(超固态)的物质组成。
一般物质宏观状态下是致密的,但微观状态下
却是空虚的,犹如一个足球场上只有一两个足球。
在万有引力的作用下恒星要收缩使物质原子一个挨
一个成为原子态或超固态——白矮星。
什么样的恒星会演化成白矮星?
M=0.4~1M
日
R=1/40~1/100R
日
ρ =10
5
g/cm
3
M< 1.2M
日
的恒星将演化成白矮星。
恒星的起源及其演化
31
星际星云→原始恒星→主序星→红巨星→超新星爆发
(或白矮星)→黑洞(或中子星、星际物质)
恒星的起源及其演化
中子星——当恒星质量1.2M
日
<M< 3.2M
日
时,由于引力较大,恒星中的原子态物质将
进一步被压缩,电子和核内质子结合形成中
子,恒星处于中子态。
中子星(脉冲星)
ρ =10
15
g/cm
3
中子星密度极高:
1967年发现中子星,
由于其强大的磁场和
高速旋转,地球上接
收到的信号为脉冲式
——脉冲星。
恒星的起源及其演化
32
黑洞——当恒星质量M>
3.2M
日
时,中子星状态也无
法维持恒星的平衡,恒星
将继续收缩,直至形成致
密的、引力极大的、连光
也无法逃脱的天体。
1968年韦伯声称接
受到银河系中央的引力
波信号;2000年10月26
日,美麻省理工学院由美
国宇航局“钱德拉”X射
线望远镜观测到X射线
爆持续了3个小时,期
间有10分钟减弱消失,
是射线穿过黑洞区域的
证明,该区域不超过1.5
亿公里,质量260亿万
个太阳。X射线由黑洞
吞噬彗星形成。
恒星的起源及其演化
黑洞吸积盘
恒星的起源及其演化
33
黑洞的性质:
①黑洞无其他天体的性质,无磁场、无射线
爆、无物质结构、……
②黑洞无毛定理
黑洞的全部性质可以用质量、角动量和电荷这
三个量(三根毛)描述。
③黑洞可以辐射(蒸发)
黑洞辐射是一种量子效应。
恒星的起源及其演化
黑
洞
视
界
34
主要参考书目:
《相对论天体和宇宙》王永久著
《宇宙与人》忻迎一著
《时间简史插图本》史蒂芬?霍金著
《果壳中的宇宙》史蒂芬?霍金著
§8.6 The power
1. Average power
t
W
P
?
?
=
av (J/s)
2. Instantaneous power
vF
t
rF
t
W
t
W
P
t
r
r
r
r
?=
?
==
?
?
=
→?
d
d
d
d
lim
0
vF
t
rF
t
W
t
W
P
t
r
r
r
r
?=
?
==
?
?
=
→?
total
total
0
total
d
d
d
d
lim
3. The power of the total force acting on a system