1
§ 6.5 染色应用举例—求图的边色数及色数的算法
一、排课表问题—求二部图的正常 )(Gχ′ 边染色
1,问题,有 m 位教师
m
xxx,,,
21
null,n 个班级
n
yyy,,,
21
null 。教师 x
i
每周需要给班级 y
j
上
p
ij
次(节)课。要求制订一张周课时尽可能少的课程表。
2,图论模型,构造二部图 ),( YXG =,其中 X= {
m
xxx,,,
21
null },Y= {
n
yyy,,,
21
null },
顶点
i
x 与
j
y 之间连
ij
p 条边。
一个课时的安排方案对应于二部图 G 的一个匹配。排课表问题等价于:将 E(G)划分成一些匹配,使得匹配的数目尽可能地少。
按 )(Gχ′ 的定义,这个最小的数目便是 )(Gχ′ 。由定理 6.2.1,() ()GGχ′ =Δ 。因此,
排课表问题等价于:求二部图 G 的边正常 )(GΔ 染色。
如§ 6.1 中所述,虽然求简单图的正常( 1+Δ )边染色存在多项式时间算法,但求简单图 G 的边色数 )(Gχ′ 及其相应的正常边染色是一个 NPC 问题
[28]
。尽管如此,求二部图的边正常 Δ 染色却有多项式时间算法。求图的边色数的近似算法可参考文献 [29]~[51]。
[28] I,Holyer,The NP-completeness of edge-coloring,SIAM J,Computing,10,4(1981),718-720,
[29] E,Petrank,The hardness of approximation,gap location,Computational Complexity,4
(1994),133-157,
[30] D,Leven and Z,Galil,NP completeness of finding the chromatic index of regular graphs,J,
Algorithms,4(1983) 35-44,
[31] P,Crescenzi,V,Kann,R,Silvestri,and L,Trevisan,Structure in approximation classes,SIAM
J,Comp.,28 (1999),1759-1782,
[32] J,Misra and D,Gries,A constructive proof of Vizing's theorem,Inform,Process,Lett,41
(1992),131-133,
[33] O,Terada,and T,Nishizeki,Approximate algorithms for the edge-coloring of graphs,Trans,
Inst,Eletron,Commun,Engr,Japan J65-D,11(1982),1382-1389,
[34] M,Chrobak,and T,Nishizeki,Improved edge-coloring algorithms for planar graphs,J,
Algorithms,11(1990),102-116,
[35] I,Caragiannis,A,Ferreira,C,Kaklamanis,S,Perennes,P,Persiano and H,Rivano,
Approximate constrained bipartite edge coloring,Discrete Applied Mathematics,143(2004),54-61
[36] M,R,Salavatipour,A polynomial time algorithm for strong edge coloring of partial k-trees,
Discrete Applied Mathematics,143(2004),285-291,
[37] D.A,Grable,A,Panconesi,Nearly optimal distributed edge coloring in O (log log n) rounds,
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,January,
(1997),278–285,
[38] Yijie Han,Weifa Liang and Xiaojun Shen,Very fast parallel algorithms for approximate edge
coloring,Discrete Applied Mathematics,108(2001),227-238,
[39] M,Fürer and B,Raghavachari,Parallel edge coloring approximation,Parallel Process,Lett.,
6 (1996),321–329,
2
[40] H.J,Karloff and D.B,Shmoys,Efficient parallel algorithms for edge coloring problems,J,
Algorithms 8 (1987),39–52,
[41] W,Liang,Fast parallel algorithms for the approximate edge-coloring problem,Inform,
Process,Lett,56 (1995),333–338,
[42] W,Liang,X,Shen and Q,Hu,Parallel algorithms for the edge-coloring and edge-coloring
update problems,J,Parallel Distrib,Comput,32 (1996),66-73,
[43] R,Motwani,J,Naor and M,Naor,The probabilistic method yields deterministic parallel
algorithms,J,Comput,System Sci,49 (1994),478-516,
[44] D,Bertsimas,C-P,Teo,and R,Vohra,On dependent randomized rounding algorithms,Proc,
5th Int,Conf,on Integer Prog,and Combinatorial Optimization,Lecture Notes in Comput,Sci,
1084,Springer-Verlag,(1996),330-344,
[45] M.K,Goldberg,Edge-colorings of multigraphs,recoloring technique,J,Graph Theory,
8(1984),123-127,
[46] D.S,Hochbaum,T,Nishizeki and D.B,Shmoys,Better than,Best Possible” algorithm to
edge color multi graphs,Journal of Algorithms,7(1986),79-104
[47] T,Nishizeki and K,Kashiwagi,On the 1.1 edge-coloring of multigraphs,SIAM J,Disc,
Math.,3(1990),391-410,
[48] J,Kahn,Asymptotics of the chromatic index for multigraphs,Journal of Combinatorial
Theory (Ser,B),68(1996),233-254,
[49] X,Zhou H,Susuki,and T,Nishizeki,A linear algorithm for edge-coloring series-parallel
multigraphs,J,Algorithms,20(1996),174-201,
[50] X,Zhou H,Susuki,and T,Nishizeki,An NC parallel algorithm for edge-coloring
series-parallel multigraphs,J,Algorithms,23(1997),359-374,
[51] B,Berger and J,Rompel,Simulating (log
c
n)-wise independence in NC,J,ACM 38 (1991),
1026–1046,
3,求二部图 ),( YXG = 的边正常 )(GΔ 染色的算法
§ 6.5 染色应用举例—求图的边色数及色数的算法
一、排课表问题—求二部图的正常 )(Gχ′ 边染色
1,问题,有 m 位教师
m
xxx,,,
21
null,n 个班级
n
yyy,,,
21
null 。教师 x
i
每周需要给班级 y
j
上
p
ij
次(节)课。要求制订一张周课时尽可能少的课程表。
2,图论模型,构造二部图 ),( YXG =,其中 X= {
m
xxx,,,
21
null },Y= {
n
yyy,,,
21
null },
顶点
i
x 与
j
y 之间连
ij
p 条边。
一个课时的安排方案对应于二部图 G 的一个匹配。排课表问题等价于:将 E(G)划分成一些匹配,使得匹配的数目尽可能地少。
按 )(Gχ′ 的定义,这个最小的数目便是 )(Gχ′ 。由定理 6.2.1,() ()GGχ′ =Δ 。因此,
排课表问题等价于:求二部图 G 的边正常 )(GΔ 染色。
如§ 6.1 中所述,虽然求简单图的正常( 1+Δ )边染色存在多项式时间算法,但求简单图 G 的边色数 )(Gχ′ 及其相应的正常边染色是一个 NPC 问题
[28]
。尽管如此,求二部图的边正常 Δ 染色却有多项式时间算法。求图的边色数的近似算法可参考文献 [29]~[51]。
[28] I,Holyer,The NP-completeness of edge-coloring,SIAM J,Computing,10,4(1981),718-720,
[29] E,Petrank,The hardness of approximation,gap location,Computational Complexity,4
(1994),133-157,
[30] D,Leven and Z,Galil,NP completeness of finding the chromatic index of regular graphs,J,
Algorithms,4(1983) 35-44,
[31] P,Crescenzi,V,Kann,R,Silvestri,and L,Trevisan,Structure in approximation classes,SIAM
J,Comp.,28 (1999),1759-1782,
[32] J,Misra and D,Gries,A constructive proof of Vizing's theorem,Inform,Process,Lett,41
(1992),131-133,
[33] O,Terada,and T,Nishizeki,Approximate algorithms for the edge-coloring of graphs,Trans,
Inst,Eletron,Commun,Engr,Japan J65-D,11(1982),1382-1389,
[34] M,Chrobak,and T,Nishizeki,Improved edge-coloring algorithms for planar graphs,J,
Algorithms,11(1990),102-116,
[35] I,Caragiannis,A,Ferreira,C,Kaklamanis,S,Perennes,P,Persiano and H,Rivano,
Approximate constrained bipartite edge coloring,Discrete Applied Mathematics,143(2004),54-61
[36] M,R,Salavatipour,A polynomial time algorithm for strong edge coloring of partial k-trees,
Discrete Applied Mathematics,143(2004),285-291,
[37] D.A,Grable,A,Panconesi,Nearly optimal distributed edge coloring in O (log log n) rounds,
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,January,
(1997),278–285,
[38] Yijie Han,Weifa Liang and Xiaojun Shen,Very fast parallel algorithms for approximate edge
coloring,Discrete Applied Mathematics,108(2001),227-238,
[39] M,Fürer and B,Raghavachari,Parallel edge coloring approximation,Parallel Process,Lett.,
6 (1996),321–329,
2
[40] H.J,Karloff and D.B,Shmoys,Efficient parallel algorithms for edge coloring problems,J,
Algorithms 8 (1987),39–52,
[41] W,Liang,Fast parallel algorithms for the approximate edge-coloring problem,Inform,
Process,Lett,56 (1995),333–338,
[42] W,Liang,X,Shen and Q,Hu,Parallel algorithms for the edge-coloring and edge-coloring
update problems,J,Parallel Distrib,Comput,32 (1996),66-73,
[43] R,Motwani,J,Naor and M,Naor,The probabilistic method yields deterministic parallel
algorithms,J,Comput,System Sci,49 (1994),478-516,
[44] D,Bertsimas,C-P,Teo,and R,Vohra,On dependent randomized rounding algorithms,Proc,
5th Int,Conf,on Integer Prog,and Combinatorial Optimization,Lecture Notes in Comput,Sci,
1084,Springer-Verlag,(1996),330-344,
[45] M.K,Goldberg,Edge-colorings of multigraphs,recoloring technique,J,Graph Theory,
8(1984),123-127,
[46] D.S,Hochbaum,T,Nishizeki and D.B,Shmoys,Better than,Best Possible” algorithm to
edge color multi graphs,Journal of Algorithms,7(1986),79-104
[47] T,Nishizeki and K,Kashiwagi,On the 1.1 edge-coloring of multigraphs,SIAM J,Disc,
Math.,3(1990),391-410,
[48] J,Kahn,Asymptotics of the chromatic index for multigraphs,Journal of Combinatorial
Theory (Ser,B),68(1996),233-254,
[49] X,Zhou H,Susuki,and T,Nishizeki,A linear algorithm for edge-coloring series-parallel
multigraphs,J,Algorithms,20(1996),174-201,
[50] X,Zhou H,Susuki,and T,Nishizeki,An NC parallel algorithm for edge-coloring
series-parallel multigraphs,J,Algorithms,23(1997),359-374,
[51] B,Berger and J,Rompel,Simulating (log
c
n)-wise independence in NC,J,ACM 38 (1991),
1026–1046,
3,求二部图 ),( YXG = 的边正常 )(GΔ 染色的算法