Chapter 1 NAME
The Market
Introduction,The problems in this chapter examine some variations on
the apartment market described in the text,In most of the problems we
work with the true demand curve constructed from the reservation prices
of the consumers rather than the \smoothed" demand curve that we used
in the text.
Remember that the reservation price of a consumer is that price
where he is just indi erent between renting or not renting the apartment.
At any price below the reservation price the consumer will demand one
apartment,at any price above the reservation price the consumer will de-
mand zero apartments,and exactly at the reservation price the consumer
will be indi erent between having zero or one apartment.
You should also observe that when demand curves have the \stair-
case" shape used here,there will typically be a range of prices where
supply equals demand,Thus we will ask for the the highest and lowest
price in the range.
1.1 (3) Suppose that we have 8 people who want to rent an apartment.
Their reservation prices are given below,(To keep the numbers small,
think of these numbers as being daily rent payments.)
Person=ABCDEFGH
Price = 40 25 30 35 10 18 15 5
(a) Plot the market demand curve in the following graph,(Hint,When
the market price is equal to some consumer i’s reservation price,there
will be two di erent quantities of apartments demanded,since consumer
i will be indi erent between having or not having an apartment.)
2 THE MARKET (Ch,1)
012345678
10
20
30
40
60
50
Price
Apartments
(b) Suppose the supply of apartments is xed at 5 units,In this case
there is a whole range of prices that will be equilibrium prices,What is
the highest price that would make the demand for apartments equal to 5
units? $18.
(c) What is the lowest price that would make the market demand equal
to 5 units? $15.
(d) With a supply of 4 apartments,which of the people A{H end up
getting apartments? A,B,C,D.
(e) What if the supply of apartments increases to 6 units,What is the
range of equilibrium prices? $10 to $15.
1.2 (3) Suppose that there are originally 5 units in the market and that
1 of them is turned into a condominium.
(a) Suppose that person A decides to buy the condominium,What will
be the highest price at which the demand for apartments will equal the
supply of apartments? What will be the lowest price? Enter your an-
swers in column A,in the table,Then calculate the equilibrium prices of
apartments if B,C,:::,decide to buy the condominium.
NAME 3
Person A B C D E F G H
High price 18 18 18 18 25 25 25 25
Low price 15 15 15 15 18 15 18 18
(b) Suppose that there were two people at each reservation price and 10
apartments,What is the highest price at which demand equals supply?
18,Suppose that one of the apartments was turned into a condo-
minium,Is that price still an equilibrium price? Yes.
1.3 (2) Suppose now that a monopolist owns all the apartments and that
he is trying to determine which price and quantity maximize his revenues.
(a) Fill in the box with the maximum price and revenue that the monop-
olist can make if he rents 1,2,:::,8 apartments,(Assume that he must
charge one price for all apartments.)
Number 1 2 3 4 5 6 7 8
Price 40 35 30 25 18 15 10 5
Revenue 40 70 90 100 90 90 70 40
(b) Which of the people A{F would get apartments? A,B,C,D.
(c) If the monopolist were required by law to rent exactly 5 apartments,
what price would he charge to maximize his revenue? $18.
(d) Who would get apartments? A,B,C,D,F.
(e) If this landlord could charge each individual a di erent price,and he
knew the reservation prices of all the individuals,what is the maximum
revenue he could make if he rented all 5 apartments? $148.
(f) If 5 apartments were rented,which individuals would get the apart-
ments? A,B,C,D,F.
1.4 (2) Suppose that there are 5 apartments to be rented and that the
city rent-control board sets a maximum rent of $9,Further suppose that
people A,B,C,D,and E manage to get an apartment,while F,G,and
H are frozen out.
4 THE MARKET (Ch,1)
(a) If subletting is legal|or,at least,practiced|who will sublet to whom
in equilibrium? (Assume that people who sublet can evade the city rent-
control restrictions.) E,who is willing to pay only
$10 for an apartment would sublet to F,
who is willing to pay $18.
(b) What will be the maximum amount that can be charged for the sublet
payment? $18.
(c) If you have rent control with unlimited subletting allowed,which of
the consumers described above will end up in the 5 apartments? A,
B,C,D,F.
(d) How does this compare to the market outcome? It’s the
same.
1.5 (2) In the text we argued that a tax on landlords would not get
passed along to the renters,What would happen if instead the tax was
imposed on renters?
(a) To answer this question,consider the group of people in Problem 1.1.
What is the maximum that they would be willing to pay to the landlord
if they each had to pay a $5 tax on apartments to the city? Fill in the
box below with these reservation prices.
Person A B C D E F G H
Reservation Price 35 20 25 30 5 13 10 0
(b) Using this information determine the maximum equilibrium price if
there are 5 apartments to be rented,$13.
(c) Of course,the total price a renter pays consists of his or her rent plus
the tax,This amount is $18.
(d) How does this compare to what happens if the tax is levied on the
landlords? It’s the same.
Chapter 2 NAME
Budget Constraint
Introduction,These workouts are designed to build your skills in de-
scribing economic situations with graphs and algebra,Budget sets are a
good place to start,because both the algebra and the graphing are very
easy,Where there are just two goods,a consumer who consumes x
1
units
of good 1 and x
2
units of good 2 is said to consume the consumption bun-
dle,(x
1;x
2
),Any consumption bundle can be represented by a point on
a two-dimensional graph with quantities of good 1 on the horizontal axis
and quantities of good 2 on the vertical axis,If the prices are p
1
for good 1
and p
2
for good 2,and if the consumer has income m,then she can a ord
any consumption bundle,(x
1;x
2
),such thatp
1
x
1
+p
2
x
2
m,On a graph,
the budget line is just the line segment with equation p
1
x
1
+ p
2
x
2
= m
and with x
1
and x
2
both nonnegative,The budget line is the boundary
of the budget set,All of the points that the consumer can a ord lie on
one side of the line and all of the points that the consumer cannot a ord
lie on the other.
If you know prices and income,you can construct a consumer’s bud-
get line by nding two commodity bundles that she can \just a ord" and
drawing the straight line that runs through both points.
Example,Myrtle has 50 dollars to spend,She consumes only apples and
bananas,Apples cost 2 dollars each and bananas cost 1 dollar each,You
are to graph her budget line,where apples are measured on the horizontal
axis and bananas on the vertical axis,Notice that if she spends all of her
income on apples,she can a ord 25 apples and no bananas,Therefore
her budget line goes through the point (25;0) on the horizontal axis,If
she spends all of her income on bananas,she can a ord 50 bananas and
no apples,Therfore her budget line also passes throught the point (0;50)
on the vertical axis,Mark these two points on your graph,Then draw a
straight line between them,This is Myrtle’s budget line.
What if you are not told prices or income,but you know two com-
modity bundles that the consumer can just a ord? Then,if there are just
two commodities,you know that a unique line can be drawn through two
points,so you have enough information to draw the budget line.
Example,Laurel consumes only ale and bread,If she spends all of her
income,she can just a ord 20 bottles of ale and 5 loaves of bread,Another
commodity bundle that she can a ord if she spends her entire income is
10 bottles of ale and 10 loaves of bread,If the price of ale is 1 dollar per
bottle,how much money does she have to spend? You could solve this
problem graphically,Measure ale on the horizontal axis and bread on the
vertical axis,Plot the two points,(20;5) and (10;10),that you know to
be on the budget line,Draw the straight line between these points and
extend the line to the horizontal axis,This point denotes the amount of
6 BUDGET CONSTRAINT (Ch,2)
ale Laurel can a ord if she spends all of her money on ale,Since ale costs
1 dollar a bottle,her income in dollars is equal to the largest number of
bottles she can a ord,Alternatively,you can reason as follows,Since
the bundles (20;5) and (10;10) cost the same,it must be that giving up
10 bottles of ale makes her able to a ord an extra 5 loaves of bread,So
bread costs twice as much as ale,The price of ale is 1 dollar,so the price
of bread is 2 dollars,The bundle (20;5)costsasmuchasherincome.
Therefore her income must be 20 1+5 2 = 30.
When you have completed this workout,we hope that you will be
able to do the following:
Write an equation for the budget line and draw the budget set on a
graph when you are given prices and income or when you are given
two points on the budget line.
Graph the e ects of changes in prices and income on budget sets.
Understand the concept of numeraire and know what happens to the
budget set when income and all prices are multiplied by the same
positive amount.
Know what the budget set looks like if one or more of the prices is
negative.
See that the idea of a \budget set" can be applied to constrained
choices where there are other constraints on what you can have,in
addition to a constraint on money expenditure.
NAME 7
2.1 (0) You have an income of $40 to spend on two commodities,Com-
modity 1 costs $10 per unit,and commodity 2 costs $5 per unit.
(a) Write down your budget equation,10x
1
+5x
2
=40.
(b) If you spent all your income on commodity 1,how much could you
buy? 4.
(c) If you spent all of your income on commodity 2,how much could
you buy? 8,Use blue ink to draw your budget line in the graph
below.
02468
2
4
6
x1
x2
8
Blue Line
Red Line
Black Line
Black Shading
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
Blue
Shading
(d) Suppose that the price of commodity 1 falls to $5 while everything else
stays the same,Write down your new budget equation,5x
1
+5x
2
=
40,On the graph above,use red ink to draw your new budget line.
(e) Suppose that the amount you are allowed to spend falls to $30,while
the prices of both commodities remain at $5,Write down your budget
equation,5x
1
+5x
2
=30,Use black ink to draw this budget
line.
(f) On your diagram,use blue ink to shade in the area representing com-
modity bundles that you can a ord with the budget in Part (e) but could
not a ord to buy with the budget in Part (a),Use black ink or pencil to
shade in the area representing commodity bundles that you could a ord
with the budget in Part (a) but cannot a ord with the budget in Part
(e).
2.2 (0) On the graph below,draw a budget line for each case.
8 BUDGET CONSTRAINT (Ch,2)
(a) p
1
=1,p
2
=1,m = 15,(Use blue ink.)
(b) p
1
=1,p
2
=2,m = 20,(Use red ink.)
(c) p
1
=0,p
2
=1,m = 10,(Use black ink.)
(d) p
1
= p
2
,m =15p
1
,(Use pencil or black ink,Hint,How much of
good 1 could you a ord if you spend your entire budget on good 1?)
0 5 10 15 20
5
10
15
x1
x2
20
Blue Line
Red Line
Black Line
2.3 (0) Your budget is such that if you spend your entire income,you
can a ord either 4 units of good x and 6 units of good y or 12 units of x
and 2 units of y.
(a) Mark these two consumption bundles and draw the budget line in the
graph below.
0481216
4
8
12
x
y
16
NAME 9
(b) What is the ratio of the price of x to the price of y? 1/2.
(c) If you spent all of your income on x,howmuchx could you buy?
16.
(d) If you spent all of your income on y,howmuchy could you buy?
8.
(e) Write a budget equation that gives you this budget line,where the
price of x is 1,x+2y =16.
(f) Write another budget equation that gives you the same budget line,
but where the price of x is 3,3x+6y =48.
2.4 (1) Murphy was consuming 100 units of X and 50 units of Y.The
price of X rose from 2 to 3,The price of Y remained at 4.
(a) How much would Murphy’s income have to rise so that he can still
exactly a ord 100 units of X and 50 units of Y? $100.
2.5 (1) If Amy spent her entire allowance,she could a ord 8 candy bars
and 8 comic books a week,She could also just a ord 10 candy bars and
4 comic books a week,The price of a candy bar is 50 cents,Draw her
budget line in the box below,What is Amy’s weekly allowance? $6.
0 8 16 24 32
8
16
24
Candy bars
Comic books
32
12
10 BUDGET CONSTRAINT (Ch,2)
2.6 (0) In a small country near the Baltic Sea,there are only three
commodities,potatoes,meatballs,and jam,Prices have been remark-
ably stable for the last 50 years or so,Potatoes cost 2 crowns per sack,
meatballs cost 4 crowns per crock,and jam costs 6 crowns per jar.
(a) Write down a budget equation for a citizen named Gunnar who has
an income of 360 crowns per year,Let P stand for the number of sacks of
potatoes,M for the number of crocks of meatballs,and J for the number
of jars of jam consumed by Gunnar in a year,2P +4M +6J =
360.
(b) The citizens of this country are in general very clever people,but they
are not good at multiplying by 2,This made shopping for potatoes excru-
ciatingly di cult for many citizens,Therefore it was decided to introduce
a new unit of currency,such that potatoes would be the numeraire,A
sack of potatoes costs one unit of the new currency while the same rel-
ative prices apply as in the past,In terms of the new currency,what is
the price of meatballs? 2 crowns.
(c) In terms of the new currency,what is the price of jam? 3
crowns.
(d) What would Gunnar’s income in the new currency have to be for him
to be exactly able to a ord the same commodity bundles that he could
a ord before the change? 180 crowns.
(e) Write down Gunnar’s new budget equation,P +2M +3J =
180,Is Gunnar’s budget set any di erent than it was before the change?
No.
2.7 (0) Edmund Stench consumes two commodities,namely garbage and
punk rock video cassettes,He doesn’t actually eat the former but keeps
it in his backyard where it is eaten by billy goats and assorted vermin.
The reason that he accepts the garbage is that people pay him $2 per
sack for taking it,Edmund can accept as much garbage as he wishes at
that price,He has no other source of income,Video cassettes cost him
$6 each.
(a) If Edmund accepts zero sacks of garbage,how many video cassettes
can he buy? 0.
NAME 11
(b) If he accepts 15 sacks of garbage,how many video cassettes can he
buy? 5.
(c) Write down an equation for his budget line,6C?2G =0.
(d) Draw Edmund’s budget line and shade in his budget set.
0 5 10 15 20
5
10
15
Video cassettes
Garbage
20
Budget Line
Budget Set
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
2.8 (0) If you think Edmund is odd,consider his brother Emmett.
Emmett consumes speeches by politicians and university administrators.
He is paid $1 per hour for listening to politicians and $2 per hour for
listening to university administrators,(Emmett is in great demand to help
ll empty chairs at public lectures because of his distinguished appearance
and his ability to refrain from making rude noises.) Emmett consumes
one good for which he must pay,We have agreed not to disclose what
that good is,but we can tell you that it costs $15 per unit and we shall
call it Good X,In addition to what he is paid for consuming speeches,
Emmett receives a pension of $50 per week.
0255075100
25
50
75
Politician speeches
Administrator speeches
100
12 BUDGET CONSTRAINT (Ch,2)
(a) Write down a budget equation stating those combinations of the three
commodities,Good X,hours of speeches by politicians (P),and hours of
speeches by university administrators (A) that Emmett could a ord to
consume per week,15X?1P?2A =50.
(b) On the graph above,draw a two-dimensional diagram showing the
locus of consumptions of the two kinds of speeches that would be possible
for Emmett if he consumed 10 units of Good X per week.
2.9 (0) Jonathan Livingstone Yuppie is a prosperous lawyer,He
has,in his own words,\outgrown those con ning two-commodity lim-
its." Jonathan consumes three goods,unblended Scotch whiskey,de-
signer tennis shoes,and meals in French gourmet restaurants,The price
of Jonathan’s brand of whiskey is $20 per bottle,the price of designer
tennis shoes is $80 per pair,and the price of gourmet restaurant meals
is $50 per meal,After he has paid his taxes and alimony,Jonathan has
$400 a week to spend.
(a) Write down a budget equation for Jonathan,where W stands for
the number of bottles of whiskey,T stands for the number of pairs of
tennis shoes,and M for the number of gourmet restaurant meals that he
consumes,20W +80T +50M = 400.
(b) Draw a three-dimensional diagram to show his budget set,Label the
intersections of the budget set with each axis.
M
TW
8
5
20
(c) Suppose that he determines that he will buy one pair of designer tennis
shoes per week,What equation must be satis ed by the combinations of
restaurant meals and whiskey that he could a ord? 20W+50M =
320.
2.10 (0) Martha is preparing for exams in economics and sociology,She
has time to read 40 pages of economics and 30 pages of sociology,In the
same amount of time she could also read 30 pages of economics and 60
pages of sociology.
NAME 13
(a) Assuming that the number of pages per hour that she can read of
either subject does not depend on how she allocates her time,how many
pages of sociology could she read if she decided to spend all of her time
on sociology and none on economics? 150 pages,(Hint,You
have two points on her budget line,so you should be able to determine
the entire line.)
(b) How many pages of economics could she read if she decided to spend
all of her time reading economics? 50 pages.
2.11 (1) Harry Hype has $5,000 to spend on advertising a new kind of
dehydrated sushi,Market research shows that the people most likely to
buy this new product are recent recipients of M.B.A,degrees and lawyers
who own hot tubs,Harry is considering advertising in two publications,
a boring business magazine and a trendy consumer publication for people
who wish they lived in California.
Fact 1,Ads in the boring business magazine cost $500 each and ads in
the consumer magazine cost $250 each.
Fact 2,Each ad in the business magazine will be read by 1,000 recent
M.B.A.’s and 300 lawyers with hot tubs.
Fact 3,Each ad in the consumer publication will be read by 300 recent
M.B.A.’s and 250 lawyers who own hot tubs.
Fact 4,Nobody reads more than one ad,and nobody who reads one
magazine reads the other.
(a) If Harry spends his entire advertising budget on the business pub-
lication,his ad will be read by 10,000 recent M.B.A.’s and by
3,000 lawyers with hot tubs.
(b) If he spends his entire advertising budget on the consumer publication,
his ad will be read by 6,000 recent M.B.A.’s and by 5,000
lawyers with hot tubs.
(c) Suppose he spent half of his advertising budget on each publication.
His ad would be read by 8,000 recent M.B.A.’s and by 4,000
lawyers with hot tubs.
(d) Draw a \budget line" showing the combinations of number of readings
by recent M.B.A.’s and by lawyers with hot tubs that he can obtain if he
spends his entire advertising budget,Does this line extend all the way
to the axes? No,Sketch,shade in,and label the budget set,which
includes all the combinations of MBA’s and lawyers he can reach if he
spends no more than his budget.
14 BUDGET CONSTRAINT (Ch,2)
(e) Let M stand for the number of instances of an ad being read by an
M.B.A,and L stand for the number of instances of an ad being read by
a lawyer,This budget line is a line segment that lies on the line with
equation M +2L =16,With a xed advertising budget,how
many readings by M.B.A.’s must he sacri ce to get an additional reading
by a lawyer with a hot tub? 2.
0481216
4
8
12
Lawyers x 1000
MBA's x 1000
16
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
,,,,,,,,
c
a
b
5
10
Budget
Set
Budget line
2
3
6
2.12 (0) On the planet Mungo,they have two kinds of money,blue
money and red money,Every commodity has two prices|a red-money
price and a blue-money price,Every Mungoan has two incomes|a red
income and a blue income.
In order to buy an object,a Mungoan has to pay that object’s red-
money price in red money and its blue-money price in blue money,(The
shops simply have two cash registers,and you have to pay at both registers
to buy an object.) It is forbidden to trade one kind of money for the other,
and this prohibition is strictly enforced by Mungo’s ruthless and e cient
monetary police.
There are just two consumer goods on Mungo,ambrosia and bubble
gum,All Mungoans prefer more of each good to less.
The blue prices are 1 bcu (bcu stands for blue currency unit) per
unit of ambrosia and 1 bcu per unit of bubble gum.
The red prices are 2 rcus (red currency units) per unit of ambrosia
and 6 rcus per unit of bubble gum.
(a) On the graph below,draw the red budget (with red ink) and the
blue budget (with blue ink) for a Mungoan named Harold whose blue
income is 10 and whose red income is 30,Shade in the \budget set"
containing all of the commodity bundles that Harold can a ord,given
NAME 15
its
two budget constraints,Remember,Harold has to have enough blue
money and enough red money to pay both the blue-money cost and the
red-money cost of a bundle of goods.
0 5 10 15 20
5
10
15
Ambrosia
Gum
20
Blue Lines
Red Line
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
(b) Another Mungoan,Gladys,faces the same prices that Harold faces
and has the same red income as Harold,but Gladys has a blue income of
20,Explain how it is that Gladys will not spend its entire blue income
no matter what its tastes may be,(Hint,Draw Gladys’s budget lines.)
The blue budget line lies strictly outside
the red budget line,so to satisfy both
budgets,one must be strictly inside the
red budget line.
(c) A group of radical economic reformers on Mungo believe that the
currency rules are unfair,\Why should everyone have to pay two prices
for everything?" they ask,They propose the following scheme,Mungo
will continue to have two currencies,every good will have a blue price and
a red price,and every Mungoan will have a blue income and a red income.
But nobody has to pay both prices,Instead,everyone on Mungo must
declare itself to be either a Blue-Money Purchaser (a \Blue") or a Red-
Money Purchaser (a \Red") before it buys anything at all,Blues must
make all of their purchases in blue money at the blue prices,spending
only their blue incomes,Reds must make all of their purchases in red
money,spending only their red incomes.
Suppose that Harold has the same income after this reform,and that
prices do not change,Before declaring which kind of purchaser it will be,
We refer to all Mungoans by the gender-neutral pronoun,\it." Al-
though Mungo has two sexes,neither of them is remotely like either of
ours.
16 BUDGET CONSTRAINT (Ch,2)
Harold contemplates the set of commodity bundles that it could a ord
by making one declaration or the other,Let us call a commodity bundle
\attainable" if Harold can a ord it by declaring itself to be a \Blue" and
buying the bundle with blue money or if Harold can a ord the bundle
by declaring itself to be a \Red" and buying it with red money,On the
diagram below,shade in all of the attainable bundles.
0 5 10 15 20
5
10
15
Ambrosia
Gum
20
Blue Line
Red Line
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
2.13 (0) Are Mungoan budgets really so fanciful? Can you think of sit-
uations on earth where people must simultaneously satisfy more than one
budget constraint? Is money the only scarce resource that people use up
when consuming? Consumption of many commodities
takes time as well as money,People have
to simultaneously satisfy a time budget
and a money budget,Other examples--people
may have a calorie budget or a cholesterol
budget or an alcohol-intake budget.
Chapter 3 NAME
Preferences
Introduction,In the previous section you learned how to use graphs to
show the set of commodity bundles that a consumer can a ord,In this
section,you learn to put information about the consumer’s preferences on
the same kind of graph,Most of the problems ask you to draw indi erence
curves.
Sometimes we give you a formula for the indi erence curve,Then
all you have to do is graph a known equation,But in some problems,we
give you only \qualitative" information about the consumer’s preferences
and ask you to sketch indi erence curves that are consistent with this
information,This requires a little more thought,Don’t be surprised or
disappointed if you cannot immediately see the answer when you look
at a problem,and don’t expect that you will nd the answers hiding
somewhere in your textbook,The best way we know to nd answers is to
\think and doodle." Draw some axes on scratch paper and label them,
then mark a point on your graph and ask yourself,\What other points on
the graph would the consumer nd indi erent to this point?" If possible,
draw a curve connecting such points,making sure that the shape of the
line you draw reflects the features required by the problem,This gives
you one indi erence curve,Now pick another point that is preferred to
the rst one you drew and draw an indi erence curve through it.
Example,Jocasta loves to dance and hates housecleaning,She has strictly
convex preferences,She prefers dancing to any other activity and never
gets tired of dancing,but the more time she spends cleaning house,the less
happy she is,Let us try to draw an indi erence curve that is consistent
with her preferences,There is not enough information here to tell us
exactly where her indi erence curves go,but there is enough information
to determine some things about their shape,Take a piece of scratch
paper and draw a pair of axes,Label the horizontal axis \Hours per day of
housecleaning." Label the vertical axis \Hours per day of dancing." Mark
a point a little ways up the vertical axis and write a 4 next to it,At this
point,she spends 4 hours a day dancing and no time housecleaning,Other
points that would be indi erent to this point would have to be points
where she did more dancing and more housecleaning,The pain of the
extra housekeeping should just compensate for the pleasure of the extra
dancing,So an indi erence curve for Jocasta must be upward sloping.
Because she loves dancing and hates housecleaning,it must be that she
prefers all the points above this indi erence curve to all of the points on
or below it,If Jocasta has strictly convex preferences,then it must be
that if you draw a line between any two points on the same indi erence
curve,all the points on the line (except the endpoints) are preferred to
the endpoints,For this to be the case,it must be that the indi erence
curve slopes upward ever more steeply as you move to the right along it.
You should convince yourself of this by making some drawings on scratch
18 PREFERENCES (Ch,3)
paper,Draw an upward-sloping curve passing through the point (0;4)
and getting steeper as one moves to the right.
When you have completed this workout,we hope that you will be
able to do the following:
Given the formula for an indi erence curve,draw this curve,and nd
its slope at any point on the curve.
Determine whether a consumer prefers one bundle to another or is
indi erent between them,given speci c indi erence curves.
Draw indi erence curves for the special cases of perfect substitutes
and perfect complements.
Draw indi erence curves for someone who dislikes one or both com-
modities.
Draw indi erence curves for someone who likes goods up to a point
but who can get \too much" of one or more goods.
Identify weakly preferred sets and determine whether these are con-
vex sets and whether preferences are convex.
Know what the marginal rate of substitution is and be able to deter-
mine whether an indi erence curve exhibits \diminishing marginal
rate of substitution."
Determine whether a preference relation or any other relation be-
tween pairs of things is transitive,whether it is reflexive,and whether
it is complete.
3.1 (0) Charlie likes both apples and bananas,He consumes nothing else.
The consumption bundle where Charlie consumes x
A
bushels of apples
per year and x
B
bushels of bananas per year is written as (x
A;x
B
),Last
year,Charlie consumed 20 bushels of apples and 5 bushels of bananas,It
happens that the set of consumption bundles (x
A;x
B
) such that Charlie
is indi erent between (x
A;x
B
)and(20;5) is the set of all bundles such
that x
B
= 100=x
A
,The set of bundles (x
A;x
B
) such that Charlie is just
indi erent between (x
A;x
B
) and the bundle (10;15) is the set of bundles
such that x
B
= 150=x
A
.
(a) On the graph below,plot several points that lie on the indi erence
curve that passes through the point (20;5),and sketch this curve,using
blue ink,Do the same,using red ink,for the indi erence curve passing
through the point (10;15).
(b) Use pencil to shade in the set of commodity bundles that Charlie
weakly prefers to the bundle (10;15),Use blue ink to shade in the set
of commodity bundles such that Charlie weakly prefers (20;5) to these
bundles.
NAME 19
010203040
10
20
30
Apples
Bananas
40
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
Blue Curve
Pencil Shading
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
Red Curve
Blue Shading
For each of the following statements about Charlie’s preferences,write
\true" or \false."
(c) (30;5) (10;15),True.
(d) (10;15) (20;5),True.
(e) (20;5) (10;10),True.
(f) (24;4) (11;9:1),False.
(g) (11;14) (2;49),True.
(h) A set is convex if for any two points in the set,the line segment
between them is also in the set,Is the set of bundles that Charlie weakly
prefers to (20;5) a convex set? Yes.
(i) Is the set of bundles that Charlie considers inferior to (20;5) a convex
set? No.
(j) The slope of Charlie’s indi erence curve through a point,(x
A;x
B
),is
known as his marginal rate of substitution at that point.
20 PREFERENCES (Ch,3)
(k) Remember that Charlie’s indi erence curve through the point (10;10)
has the equation x
B
= 100=x
A
,Those of you who know calculus will
remember that the slope of a curve is just its derivative,which in this
case is?100=x
2
A
,(If you don’t know calculus,you will have to take our
word for this.) Find Charlie’s marginal rate of substitution at the point,
(10;10),?1.
(l) What is his marginal rate of substitution at the point (5;20)4.
(m) What is his marginal rate of substitution at the point (20;5)?
(?:25).
(n) Do the indi erence curves you have drawn for Charlie exhibit dimin-
ishing marginal rate of substitution? Yes.
3.2 (0) Ambrose consumes only nuts and berries,Fortunately,he likes
both goods,The consumption bundle where Ambrose consumes x
1
units
of nuts per week and x
2
units of berries per week is written as (x
1;x
2
).
The set of consumption bundles (x
1;x
2
) such that Ambrose is indi erent
between (x
1;x
2
)and(1;16) is the set of bundles such that x
1
0,x
2
0,
and x
2
=20?4
p
x
1
,The set of bundles (x
1;x
2
) such that (x
1;x
2
)
(36;0) is the set of bundles such that x
1
0,x
2
0andx
2
=24?4
p
x
1
.
(a) On the graph below,plot several points that lie on the indi erence
curve that passes through the point (1;16),and sketch this curve,using
blue ink,Do the same,using red ink,for the indi erence curve passing
through the point (36;0).
(b) Use pencil to shade in the set of commodity bundles that Ambrose
weakly prefers to the bundle (1;16),Use red ink to shade in the set of
all commodity bundles (x
1;x
2
) such that Ambrose weakly prefers (36;0)
to these bundles,Is the set of bundles that Ambrose prefers to (1;16) a
convex set? Yes.
(c) What is the slope of Ambrose’s indi erence curve at the point (9;8)?
(Hint,Recall from calculus the way to calculate the slope of a curve,If
you don’t know calculus,you will have to draw your diagram carefully
and estimate the slope.)?2=3.
NAME 21
(d) What is the slope of his indi erence curve at the point (4;12)1.
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
010203040
10
20
30
Nuts
Berries
40
Pencil Shading
Red Curve
,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
Red
Shading
Blue Curve
(e) What is the slope of his indi erence curve at the point (9;12)2=3
at the point (4;16)1.
(f) Do the indi erence curves you have drawn for Ambrose exhibit dimin-
ishing marginal rate of substitution? Yes.
(g) Does Ambrose have convex preferences? Yes.
3.3 (0) Shirley Sixpack is in the habit of drinking beer each evening
while watching \The Best of Bowlerama" on TV,She has a strong thumb
and a big refrigerator,so she doesn’t care about the size of the cans that
beer comes in,she only cares about how much beer she has.
(a) On the graph below,draw some of Shirley’s indi erence curves be-
tween 16-ounce cans and 8-ounce cans of beer,Use blue ink to draw these
indi erence curves.
22 PREFERENCES (Ch,3)
02468
2
4
6
16-ounce
8-ounce
8
Blue Lines
Red Lines
(b) Lorraine Quiche likes to have a beer while she watches \Masterpiece
Theatre." She only allows herself an 8-ounce glass of beer at any one
time,Since her cat doesn’t like beer and she hates stale beer,if there is
more than 8 ounces in the can she pours the excess into the sink,(She
has no moral scruples about wasting beer.) On the graph above,use red
ink to draw some of Lorraine’s indi erence curves.
3.4 (0) Elmo nds himself at a Coke machine on a hot and dusty Sunday.
The Coke machine requires exact change|two quarters and a dime,No
other combination of coins will make anything come out of the machine.
No stores are open; no one is in sight,Elmo is so thirsty that the only
thing he cares about is how many soft drinks he will be able to buy with
the change in his pocket; the more he can buy,the better,While Elmo
searches his pockets,your task is to draw some indi erence curves that
describe Elmo’s preferences about what he nds.
NAME 23
02468
2
4
6
Quarters
Dimes
8
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,,,,,,,,,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,
,
,
,,,,,,,,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,,,,,,
Red
shading
Blue
shading
Black
lines
(a) If Elmo has 2 quarters and a dime in his pockets,he can buy 1 soft
drink,How many soft drinks can he buy if he has 4 quarters and 2 dimes?
2.
(b) Use red ink to shade in the area on the graph consisting of all com-
binations of quarters and dimes that Elmo thinks are just indi erent to
having 2 quarters and 1 dime,(Imagine that it is possible for Elmo to
have fractions of quarters or of dimes,but,of course,they would be use-
less in the machine.) Now use blue ink to shade in the area consisting of
all combinations that Elmo thinks are just indi erent to having 4 quarters
and 2 dimes,Notice that Elmo has indi erence \bands," not indi erence
curves.
(c) Does Elmo have convex preferences between dimes and quarters?
Yes.
(d) Does Elmo always prefer more of both kinds of money to less? No.
(e) Does Elmo have a bliss point? No.
(f) If Elmo had arrived at the Coke machine on a Saturday,the drugstore
across the street would have been open,This drugstore has a soda foun-
tain that will sell you as much Coke as you want at a price of 4 cents an
ounce,The salesperson will take any combination of dimes and quarters
in payment,Suppose that Elmo plans to spend all of the money in his
pocket on Coke at the drugstore on Saturday,On the graph above,use
pencil or black ink to draw one or two of Elmo’s indi erence curves be-
tween quarters and dimes in his pocket,(For simplicity,draw your graph
24 PREFERENCES (Ch,3)
as if Elmo’s fractional quarters and fractional dimes are accepted at the
corresponding fraction of their value.) Describe these new indi erence
curves in words,Line segments with slope?2:5.
3.5 (0) Randy Ratpack hates studying both economics and history,The
more time he spends studying either subject,the less happy he is,But
Randy has strictly convex preferences.
(a) Sketch an indi erence curve for Randy where the two commodities
are hours per week spent studying economics and hours per week spent
studying history,Will the slope of an indi erence curve be positive or
negative? Negative.
(b) Do Randy’s indi erence curves get steeper or flatter as you move from
left to right along one of them? Steeper.
02468
2
4
6
Hours studying economics
Hours studying history
8
Preference
direction
3.6 (0) Flossy Toothsome likes to spend some time studying and some
time dating,In fact her indi erence curves between hours per week spent
studying and hours per week spent dating are concentric circles around
her favorite combination,which is 20 hours of studying and 15 hours of
dating per week,The closer she is to her favorite combination,the happier
she is.
NAME 25
(a) Suppose that Flossy is currently studying 25 hours a week and dating
3hoursaweek,Wouldsheprefertobestudying30hoursaweekand
dating8hoursaweek? Yes,(Hint,Remember the formula for the
distance between two points in the plane?)
(b) On the axes below,draw a few of Flossy’s indi erence curves and
use your diagram to illustrate which of the two time allocations discussed
above Flossy would prefer.
010203040
10
20
30
Hours studying
Hours dating
40
,
(25,3)
(30,8)
(20,15)
Preference
direction
3.7 (0) Joan likes chocolate cake and ice cream,but after 10 slices of
cake,she gets tired of cake,and eating more cake makes her less happy.
Joan always prefers more ice cream to less,Joan’s parents require her to
eat everything put on her plate,In the axes below,use blue ink to draw a
set of indi erence curves that depict her preferences between plates with
di erent amounts of cake and ice cream,Be sure to label the axes.
(a) Suppose that Joan’s preferences are as before,but that her parents
allow her to leave anything on her plate that she doesn’t want,On the
graph below,use red ink to draw some indi erence curves depicting her
preferences between plates with di erent amounts of cake and ice cream.
Blue curves
Red curves
Ice cream
Chocolate cake
10
Preference
direction
26 PREFERENCES (Ch,3)
3.8 (0) Professor Goodheart always gives two midterms in his commu-
nications class,He only uses the higher of the two scores that a student
gets on the midterms when he calculates the course grade.
(a) Nancy Lerner wants to maximize her grade in this course,Let x
1
be
her score on the rst midterm and x
2
be her score on the second midterm.
Which combination of scores would Nancy prefer,x
1
=20andx
2
=70
or x
1
=60andx
2
= 60? (20,70).
(b) On the graph below,use red ink to draw an indi erence curve showing
all of the combinations of scores that Nancy likes exactly as much as
x
1
=20andx
2
= 70,Also use red ink to draw an indi erence curve
showing the combinations that Nancy likes exactly as much as x
1
=60
and x
2
= 60.
(c) Does Nancy have convex preferences over these combinations? No.
020406080
20
40
60
Grade on first midterm
Grade on second midterm
80
,
Preference
direction
Blue curves
Red
curves
(d) Nancy is also taking a course in economics from Professor Stern.
Professor Stern gives two midterms,Instead of discarding the lower grade,
Professor Stern discards the higher one,Let x
1
be her score on the rst
midterm and x
2
be her score on the second midterm,Which combination
of scores would Nancy prefer,x
1
=20andx
2
=70orx
1
=60and
x
2
= 50? (60,50).
(e) On the graph above,use blue ink to draw an indi erence curve showing
all of the combinations of scores on her econ exams that Nancy likes
exactly as well as x
1
=20andx
2
= 70,Also use blue ink to draw an
indi erence curve showing the combinations that Nancy likes exactly as
well as x
1
=60andx
2
= 50,Does Nancy have convex preferences over
these combinations? Yes.
NAME 27
3.9 (0) Mary Granola loves to consume two goods,grapefruits and
avocados.
(a) On the graph below,the slope of an indi erence curve through any
point where she has more grapefruits than avocados is?2,This means
that when she has more grapefruits than avocados,she is willing to give
up 2 grapefruit(s) to get one avocado.
(b) On the same graph,the slope of an indi erence curve at points where
she has fewer grapefruits than avocados is?1=2,This means that when
she has fewer grapefruits than avocados,she is just willing to give up
1/2 grapefruit(s) to get one avocado.
(c) On this graph,draw an indi erence curve for Mary through bundle
(10A;10G),Draw another indi erence curve through (20A;20G).
010203040
10
20
30
Avocados
Grapefruits
40
45
Slope -2
Slope -1/2
(d) Does Mary have convex preferences? Yes.
3.10 (2) Ralph Rigid likes to eat lunch at 12 noon,However,he also
likes to save money so he can buy other consumption goods by attending
the \early bird specials" and \late lunchers" promoted by his local diner.
Ralph has 15 dollars a day to spend on lunch and other stu,Lunch at
noon costs $5,If he delays his lunch until t hours after noon,he is able
to buy his lunch for a price of $5?t,Similarly if he eats his lunch t hours
before noon,he can buy it for a price of $5?t,(This is true for fractions
of hours as well as integer numbers of hours.)
(a) If Ralph eats lunch at noon,how much money does he have per day
to spend on other stu? $10.
28 PREFERENCES (Ch,3)
(b) How much money per day would he have left for other stu if he ate
at 2 P.M.? $12.
(c) On the graph below,use blue ink to draw the broken line that shows
combinations of meal time and money for other stu that Ralph can just
a ord,On this same graph,draw some indi erence curves that would be
consistent with Ralph choosing to eat his lunch at 11 A.M.
0
11 12 1 2
5
10
15
Time
Money
20
10
3.11 (0) Henry Hanover is currently consuming 20 cheeseburgers and 20
Cherry Cokes a week,A typical indi erence curve for Henry is depicted
below.
Cheeseburgers
Cherry Coke
10 20 30 400
40
30
20
10
NAME 29
(a) If someone o ered to trade Henry one extra cheeseburger for every
Coke he gave up,would Henry want to do this? No.
(b) What if it were the other way around,for every cheeseburger Henry
gave up,he would get an extra Coke,Would he accept this o er? Yes.
(c) At what rate of exchange would Henry be willing to stay put at his
current consumption level? 2 cheeseburgers for 1
Coke.
3.12 (1) Tommy Twit is happiest when he has 8 cookies and 4 glasses of
milk per day,Whenever he has more than his favorite amount of either
food,giving him still more makes him worse o,Whenever he has less
than his favorite amount of either food,giving him more makes him better
o,His mother makes him drink 7 glasses of milk and only allows him 2
cookies per day,One day when his mother was gone,Tommy’s sadistic
sister made him eat 13 cookies and only gave him 1 glass of milk,despite
the fact that Tommy complained bitterly about the last 5 cookies that she
made him eat and begged for more milk,Although Tommy complained
later to his mother,he had to admit that he liked the diet that his sister
forced on him better than what his mother demanded.
(a) Use black ink to draw some indi erence curves for Tommy that are
consistent with this story.
0
(8,4)
(13,1)
(2,7)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cookies
1
2
3
4
5
6
7
8
9
10
11
12
Milk
30 PREFERENCES (Ch,3)
(b) Tommy’s mother believes that the optimal amount for him to consume
is 7 glasses of milk and 2 cookies,She measures deviations by absolute
values,If Tommy consumes some other bundle,say,(c;m),she measures
his departure from the optimal bundle by D = j7?mj+j2?cj.The
larger D is,the worse o she thinks Tommy is,Use blue ink in the graph
above to sketch a few of Mrs,Twit’s indi erence curves for Tommy’s
consumption,(Hint,Before you try to draw Mrs,Twit’s indi erence
curves,we suggest that you take a piece of scrap paper and draw a graph
of the locus of points (x
1;x
2
) such that jx
1
j+jx
2
j=1.)
3.13 (0) Coach Steroid likes his players to be big,fast,and obedient,If
player A is better than player B in two of these three characteristics,then
Coach Steroid prefers A to B,but if B is better than A in two of these
three characteristics,then Steroid prefers B to A,Otherwise,Steroid is
indi erent between them,Wilbur Westinghouse weighs 340 pounds,runs
very slowly,and is fairly obedient,Harold Hotpoint weighs 240 pounds,
runs very fast,and is very disobedient,Jerry Jacuzzi weighs 150 pounds,
runs at average speed,and is extremely obedient.
(a) Does Steroid prefer Westinghouse to Hotpoint or vice versa? He
prefers Westinghouse to Hotpoint.
(b) Does Steroid prefer Hotpoint to Jacuzzi or vice versa? He
prefers Hotpoint to Jacuzzi.
(c) Does Steroid prefer Westinghouse to Jacuzzi or vice versa? He
prefers Jacuzzi to Westinghouse.
(d) Does Coach Steroid have transitive preferences? No.
(e) After several losing seasons,Coach Steroid decides to change his way of
judging players,According to his new preferences,Steroid prefers player
A to player B if player A is better in all three of the characteristics that
Steroid values,and he prefers B to A if player B is better at all three
things,He is indi erent between A and B if they weigh the same,are
equally fast,and are equally obedient,In all other cases,Coach Steroid
simply says \A and B are not comparable."
(f) Are Coach Steroid’s new preferences complete? No.
(g) Are Coach Steroid’s new preferences transitive? Yes.
NAME 31
(h) Are Coach Steroid’s new preferences reflexive? Yes.
3.14 (0) The Bear family is trying to decide what to have for din-
ner,Baby Bear says that his ranking of the possibilities is (honey,grubs,
Goldilocks),Mama Bear ranks the choices (grubs,Goldilocks,honey),
while Papa Bear’s ranking is (Goldilocks,honey,grubs),They decide to
take each pair of alternatives and let a majority vote determine the family
rankings.
(a) Papa suggests that they rst consider honey vs,grubs,and then the
winner of that contest vs,Goldilocks,Which alternative will be chosen?
Goldilocks.
(b) Mama suggests instead that they consider honey vs,Goldilocks and
then the winner vs,grubs,Which gets chosen? Grubs.
(c) What order should Baby Bear suggest if he wants to get his favorite
food for dinner? Grubs versus Goldilocks,then
Honey versus the winner.
(d) Are the Bear family’s \collective preferences," as determined by vot-
ing,transitive? No.
3.15 (0) Olson likes strong co ee,the stronger the better,But he can’t
distinguish small di erences,Over the years,Mrs,Olson has discovered
that if she changes the amount of co ee by more than one teaspoon in
her six-cup pot,Olson can tell that she did it,But he cannot distinguish
di erences smaller than one teaspoon per pot,Where A and B are two
di erent cups of co ee,let us write A B if Olson prefers cup A to
cup B,Let us write A B if Olson either prefers A to B,or can’t tell
the di erence between them,Let us write A B if Olson can’t tell the
di erence between cups A and B,Suppose that Olson is o ered cups A,
B,andC all brewed in the Olsons’ six-cup pot,Cup A was brewed using
14 teaspoons of co ee in the pot,CupB was brewed using 14.75 teaspoons
of co ee in the pot and cup C was brewed using 15.5 teaspoons of co ee
in the pot,For each of the following expressions determine whether it is
true of false.
(a) A B,True.
(b) B A,True.
32 PREFERENCES (Ch,3)
(c) B C,True.
(d) A C,False.
(e) C A,False.
(f) A B,True.
(g) B A,True.
(h) B C,True.
(i) A C,False.
(j) C A,True.
(k) A B,False.
(l) B A,False.
(m) B C,False.
(n) A C,False.
(o) C A,True.
(p) Is Olson’s \at-least-as-good-as" relation,,transitive? No.
(q) Is Olson’s \can’t-tell-the-di erence" relation,,transitive? No.
(r) is Olson’s \better-than" relation,,transitive,Yes.
Chapter 4 NAME
Utility
Introduction,In the previous chapter,you learned about preferences
and indi erence curves,Here we study another way of describing prefer-
ences,the utility function,A utility function that represents a person’s
preferences is a function that assigns a utility number to each commodity
bundle,The numbers are assigned in such a way that commodity bundle
(x;y) gets a higher utility number than bundle (x
0;y
0
) if and only if the
consumer prefers (x;y)to(x
0;y
0
),If a consumer has the utility function
U(x
1;x
2
),then she will be indi erent between two bundles if they are
assigned the same utility.
If you know a consumer’s utility function,then you can nd the
indi erence curve passing through any commodity bundle,Recall from
the previous chapter that when good 1 is graphed on the horizontal axis
and good 2 on the vertical axis,the slope of the indi erence curve passing
through a point (x
1;x
2
)isknownasthemarginal rate of substitution.An
important and convenient fact is that the slope of an indi erence curve is
minus the ratio of the marginal utility of good 1 to the marginal utility of
good 2,For those of you who know even a tiny bit of calculus,calculating
marginal utilities is easy,To nd the marginal utility of either good,
you just take the derivative of utility with respect to the amount of that
good,treating the amount of the other good as a constant,(If you don’t
know any calculus at all,you can calculate an approximation to marginal
utility by the method described in your textbook,Also,at the beginning
of this section of the workbook,we list the marginal utility functions for
commonly encountered utility functions,Even if you can’t compute these
yourself,you can refer to this list when later problems require you to use
marginal utilities.)
Example,Arthur’s utility function is U(x
1;x
2
)=x
1
x
2
,Let us nd the
indi erence curve for Arthur that passes through the point (3;4),First,
calculate U(3;4) = 3 4 = 12,The indi erence curve through this
point consists of all (x
1;x
2
) such that x
1
x
2
= 12,This last equation
is equivalent to x
2
=12=x
1
,Therefore to draw Arthur’s indi erence
curve through (3;4),just draw the curve with equation x
2
=12=x
1
.At
the point (x
1;x
2
),the marginal utility of good 1 is x
2
and the marginal
utility of good 2 is x
1
,Therefore Arthur’s marginal rate of substitution
at the point (3;4) is?x
2
=x
1
=?4=3.
Example,Arthur’s uncle,Basil,has the utility function U
(x
1;x
2
)=
3x
1
x
2
10,Notice that U
(x
1;x
2
)=3U(x
1;x
2
)?10,where U(x
1;x
2
)is
Arthur’s utility function,Since U
is a positive multiple of U minus a con-
stant,it must be that any change in consumption that increases U will also
increase U
(and vice versa),Therefore we say that Basil’s utility function
is a monotonic increasing transformation of Arthur’s utility function,Let
34 UTILITY (Ch,4)
us nd Basil’s indi erence curve through the point (3;4),First we nd
that U
(3;4) = 3 3 4?10 = 26,The indi erence curve passing through
this point consists of all (x
1;x
2
) such that 3x
1
x
2
10 = 26,Simplify this
last expression by adding 10 to both sides of the equation and dividing
both sides by 3,You nd x
1
x
2
= 12,or equivalently,x
2
=12=x
1
.This
is exactly the same curve as Arthur’s indi erence curve through (3;4).
We could have known in advance that this would happen,because if two
consumers’ utility functions are monotonic increasing transformations of
each other,then these consumers must have the same preference relation
between any pair of commodity bundles.
When you have nished this workout,we hope that you will be able
to do the following:
Draw an indi erence curve through a speci ed commodity bundle
when you know the utility function.
Calculate marginal utilities and marginal rates of substitution when
you know the utility function.
Determine whether one utility function is just a \monotonic transfor-
mation" of another and know what that implies about preferences.
Find utility functions that represent preferences when goods are per-
fect substitutes and when goods are perfect complements.
Recognize utility functions for commonly studied preferences such as
perfect substitutes,perfect complements,and other kinked indi er-
ence curves,quasilinear utility,and Cobb-Douglas utility.
4.0 WarmUpExercise,This is the rst of several \warm up ex-
ercises" that you will nd in Workouts,These are here to help you see
how to do calculations that are needed in later problems,The answers to
all warm up exercises are in your answer pages,If you nd the warm up
exercises easy and boring,go ahead|skip them and get on to the main
problems,You can come back and look at them if you get stuck later.
This exercise asks you to calculate marginal utilities and marginal
rates of substitution for some common utility functions,These utility
functions will reappear in several chapters,so it is a good idea to get to
know them now,If you know calculus,you will nd this to be a breeze.
Even if your calculus is shaky or nonexistent,you can handle the rst three
utility functions just by using the de nitions in the textbook,These three
are easy because the utility functions are linear,If you do not know any
calculus,ll in the rest of the answers from the back of the workbook and
keep a copy of this exercise for reference when you encounter these utility
functions in later problems.
NAME 35
u(x
1;x
2
) MU
1
(x
1;x
2
) MU
2
(x
1;x
2
) MRS(x
1;x
2
)
2x
1
+3x
2
2 3?2=3
4x
1
+6x
2
4 6?2=3
ax
1
+bx
2
a b?a=b
2
p
x
1
+x
2
1
p
x
1
1?
1
p
x
1
lnx
1
+x
2
1=x
1
1?1=x
1
v(x
1
)+x
2
v
0
(x
1
) 1?v
0
(x
1
)
x
1
x
2
x
2
x
1
x
2
=x
1
x
a
1
x
b
2
ax
a?1
1
x
b
2
bx
a
1
x
b?1
2
ax
2
bx
1
(x
1
+2)(x
2
+1) x
2
+1 x
1
+2?
x
2
+1
x
1
+2
(x
1
+a)(x
2
+b) x
2
+b x
1
+a?
x
2
+b
x
1
+a
x
a
1
+x
a
2
ax
a?1
1
ax
a?1
2
x
1
x
2
a?1
36 UTILITY (Ch,4)
4.1 (0) Remember Charlie from Chapter 3? Charlie consumes apples and
bananas,We had a look at two of his indi erence curves,In this problem
we give you enough information so you can nd all of Charlie’s indi erence
curves,We do this by telling you that Charlie’s utility function happens
to be U(x
A;x
B
)=x
A
x
B
.
(a) Charlie has 40 apples and 5 bananas,Charlie’s utility for the bun-
dle (40;5) is U(40;5) = 200,The indi erence curve through (40;5)
includes all commodity bundles (x
A;x
B
) such that x
A
x
B
= 200,So
the indi erence curve through (40;5) has the equation x
B
=
200
x
A
,On
the graph below,draw the indi erence curve showing all of the bundles
that Charlie likes exactly as well as the bundle (40;5).
010203040
10
20
30
Apples
Bananas
40
(b) Donna o ers to give Charlie 15 bananas if he will give her 25 apples.
Would Charlie have a bundle that he likes better than (40;5) if he makes
this trade? Yes,What is the largest number of apples that Donna
could demand from Charlie in return for 15 bananas if she expects him to
be willing to trade or at least indi erent about trading? 30,(Hint,If
Donna gives Charlie 15 bananas,he will have a total of 20 bananas,If he
has 20 bananas,how many apples does he need in order to be as well-o
as he would be without trade?)
4.2 (0) Ambrose,whom you met in the last chapter,continues to thrive
on nuts and berries,You saw two of his indi erence curves,One indif-
ference curve had the equation x
2
=20?4
p
x
1
,and another indi erence
curve had the equation x
2
=24?4
p
x
1
,wherex
1
is his consumption of
NAME 37
nuts and x
2
is his consumption of berries,Now it can be told that Am-
brose has quasilinear utility,In fact,his preferences can be represented
by the utility function U(x
1;x
2
)=4
p
x
1
+x
2
.
(a) Ambrose originally consumed 9 units of nuts and 10 units of berries.
His consumption of nuts is reduced to 4 units,but he is given enough
berries so that he is just as well-o as he was before,After the change,
how many units of berries does Ambrose consume? 14.
(b) On the graph below,indicate Ambrose’s original consumption and
sketch an indi erence curve passing through this point,As you can verify,
Ambrose is indi erent between the bundle (9,10) and the bundle (25,2).
If you doubled the amount of each good in each bundle,you would have
bundles (18,20) and (50,4),Are these two bundles on the same indi er-
ence curve? No,(Hint,How do you check whether two bundles are
indi erent when you know the utility function?)
0 5 10 15 20
5
10
15
Nuts
Berries
20
(9,10)
(c) What is Ambrose’s marginal rate of substitution,MRS(x
1;x
2
),when
he is consuming the bundle (9;10)? (Give a numerical answer.)?2=3.
What is Ambrose’s marginal rate of substitution when he is consuming
the bundle (9;20)2=3.
(d) We can write a general expression for Ambrose’s marginal rate of
substitution when he is consuming commodity bundle (x
1;x
2
),This is
MRS(x
1;x
2
)=?2=
p
x
1
,Although we always write MRS(x
1;x
2
)
as a function of the two variables,x
1
and x
2
,we see that Ambrose’s utility
function has the special property that his marginal rate of substitution
does not change when the variable x
2
changes.
38 UTILITY (Ch,4)
4.3 (0) Burt’s utility function is U(x
1;x
2
)=(x
1
+2)(x
2
+ 6),where x
1
is the number of cookies and x
2
is the number of glasses of milk that he
consumes.
(a) What is the slope of Burt’s indi erence curve at the point where he
is consuming the bundle (4;6)2,Use pencil or black ink to draw
a line with this slope through the point (4;6),(Try to make this graph
fairly neat and precise,since details will matter.) The line you just drew
is the tangent line to the consumer’s indi erence curve at the point (4;6).
(b) The indi erence curve through the point (4;6) passes through the
points ( 10,0),(7,2 ),and (2,12 ),Use blue ink
to sketch in this indi erence curve,Incidentally,the equation for Burt’s
indi erence curve through the point (4;6) is x
2
= 72=(x
1
+2)?6.
0481216
4
8
12
Cookies
Glasses of milk
16
a
b
Red Line
Black Line
Blue curve
(c) Burt currently has the bundle (4;6),Ernie o ers to give Burt 9
glasses of milk if Burt will give Ernie 3 cookies,If Burt makes this trade,
he would have the bundle (1;15),Burt refuses to trade,Was this
a wise decision? Yes,U(1;15) = 63 <U(4;6) = 72.
Mark the bundle (1;15) on your graph.
(d) Ernie says to Burt,\Burt,your marginal rate of substitution is?2.
That means that an extra cookie is worth only twice as much to you as
an extra glass of milk,I o ered to give you 3 glasses of milk for every
cookie you give me,If I o er to give you more than your marginal rate
of substitution,then you should want to trade with me." Burt replies,
NAME 39
\Ernie,you are right that my marginal rate of substitution is?2,That
means that I am willing to make small trades where I get more than 2
glasses of milk for every cookie I give you,but 9 glasses of milk for 3
cookies is too big a trade,My indi erence curves are not straight lines,
you see." Would Burt be willing to give up 1 cookie for 3 glasses of milk?
Yes,U(3;9) = 75 >U(4;6) = 72,Would Burt object to
giving up 2 cookies for 6 glasses of milk? No,U(2;12) = 72 =
U(4;6).
(e) On your graph,use red ink to draw a line with slope?3 through the
point (4;6),This line shows all of the bundles that Burt can achieve by
trading cookies for milk (or milk for cookies) at the rate of 1 cookie for
every 3 glasses of milk,Only a segment of this line represents trades that
make Burt better o than he was without trade,Label this line segment
on your graph AB.
4.4 (0) Phil Rupp’s utility function is U(x;y)=maxfx;2yg.
(a) On the graph below,use blue ink to draw and label the line whose
equation is x = 10,Also use blue ink to draw and label the line whose
equation is 2y = 10.
(b) If x =10and2y<10,then U(x;y)= 10,If x<10 and 2y = 10,
then U(x;y)= 10.
(c) Now use red ink to sketch in the indi erence curve along which
U(x;y) = 10,Does Phil have convex preferences? No.
0 5 10 15 20
5
10
15
x
y
20
Red
indifference
curve
Blue
lines
x=10
2y=10
40 UTILITY (Ch,4)
4.5 (0) As you may recall,Nancy Lerner is taking Professor Stern’s
economics course,She will take two examinations in the course,and her
score for the course is the minimum of the scores that she gets on the two
exams,Nancy wants to get the highest possible score for the course.
(a) Write a utility function that represents Nancy’s preferences over al-
ternative combinations of test scores x
1
and x
2
on tests 1 and 2 re-
spectively,U(x
1;x
2
)= minfx
1;x
2
g,or any monotonic
transformation.
4.6 (0) Remember Shirley Sixpack and Lorraine Quiche from the last
chapter? Shirley thinks a 16-ounce can of beer is just as good as two
8-ounce cans,Lorraine only drinks 8 ounces at a time and hates stale
beer,so she thinks a 16-ounce can is no better or worse than an 8-ounce
can.
(a) Write a utility function that represents Shirley’s preferences between
commodity bundles comprised of 8-ounce cans and 16-ounce cans of beer.
Let X stand for the number of 8-ounce cans and Y stand for the number
of 16-ounce cans,u(X;Y)=X +2Y.
(b) Now write a utility function that represents Lorraine’s preferences.
u(X;Y)=X +Y.
(c) Would the function utility U(X;Y) = 100X+200Y represent Shirley’s
preferences? Yes,Would the utility function U(x;y)=(5X +10Y )
2
represent her preferences? Yes,Would the utility function U(x;y)=
X +3Y represent her preferences? No.
(d) Give an example of two commodity bundles such that Shirley likes
the rst bundle better than the second bundle,while Lorraine likes the
second bundle better than the rst bundle,Shirley prefers
(0,2) to (3,0),Lorraine disagrees.
4.7 (0) Harry Mazzola has the utility function u(x
1;x
2
)=minfx
1
+
2x
2;2x
1
+ x
2
g,wherex
1
is his consumption of corn chips and x
2
is his
consumption of french fries.
(a) On the graph below,use a pencil to draw the locus of points along
which x
1
+2x
2
=2x
1
+x
2
,Use blue ink to show the locus of points for
which x
1
+2x
2
= 12,and also use blue ink to draw the locus of points
for which 2x
1
+x
2
= 12.
NAME 41
(b) On the graph you have drawn,shade in the region where both of the
following inequalities are satis ed,x
1
+2x
2
12 and 2x
1
+ x
2
12.
At the bundle (x
1;x
2
)=(8;2),one sees that 2x
1
+ x
2
= 18 and
x
1
+2x
2
= 12,Therefore u(8;2) = 12.
(c) Use black ink to sketch in the indi erence curve along which Harry’s
utility is 12,Use red ink to sketch in the indi erence curve along which
Harry’s utility is 6,(Hint,Is there anything about Harry Mazzola that
reminds you of Mary Granola?)
02468
2
4
6
Corn chips
French fries
8
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
Pencil line
Red
line
Blue
lines
Black line
Blue
lines
(d) At the point where Harry is consuming 5 units of corn chips and 2
units of french fries,how many units of corn chips would he be willing to
trade for one unit of french fries? 2.
4.8 (1) Vanna Boogie likes to have large parties,She also has a strong
preference for having exactly as many men as women at her parties,In
fact,Vanna’s preferences among parties can be represented by the utility
function U(x;y)=minf2x?y;2y?xg where x is the number of women
and y is the number of men at the party,On the graph below,let us try
to draw the indi erence curve along which Vanna’s utility is 10.
(a) Use pencil to draw the locus of points at which x = y.Whatpoint
on this gives Vanna a utility of 10? (10;10),Use blue ink to draw
the line along which 2y?x = 10,When minf2x?y;2y?xg =2y?x,
42 UTILITY (Ch,4)
there are (more men than women,more women than men)? More
women,Draw a squiggly red line over the part of the blue line for which
U(x;y)=minf2x?y;2y?xg=2y?x,This shows all the combinations
that Vanna thinks are just as good as (10;10) but where there are (more
men than women,more women than men)? More women,Now
draw a blue line along which 2x?y = 10,Draw a squiggly red line over
the part of this new blue line for which minf2x?y;2y?xg=2x?y.Use
pencil to shade in the area on the graph that represents all combinations
that Vanna likes at least as well as (10;10).
(b) Suppose that there are 9 men and 10 women at Vanna’s party,Would
Vanna think it was a better party or a worse party if 5 more men came
to her party? Worse.
(c) If Vanna has 16 women at her party and more men than women,and
if she thinks the party is exactly as good as having 10 men and 10 women,
how many men does she have at the party? 22,If Vanna has 16 women
at her party and more women than men,and if she thinks the party is
exactly as good as having 10 men and 10 women,how many men does
she have at her party? 13.
(d) Vanna’s indi erence curves are shaped like what letter of the alpha-
bet? V.
0 5 10 15 20
5
10
15
x
y
20
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
Pencil
line
Blue
lines
Squiggly
red
lines
4.9 (0) Suppose that the utility functions u(x;y)andv(x;y) are related
by v(x;y)=f(u(x;y)),In each case below,write \Yes" if the function
f is a positive monotonic transformation and \No" if it is not,(Hint for
NAME 43
calculus users,A di erentiable function f(u) is an increasing function of
u if its derivative is positive.)
(a) f(u)=3:141592u,Yes.
(b) f(u)=5;000?23u,No.
(c) f(u)=u?100;000,Yes.
(d) f(u)=log
10
u,Yes.
(e) f(u)=?e
u
,Yes.
(f) f(u)=1=u,No.
(g) f(u)=?1=u,Yes.
4.10 (0) Martha Modest has preferences represented by the utility func-
tion U(a;b)=ab=100,where a is the number of ounces of animal crackers
that she consumes and b is the number of ounces of beans that she con-
sumes.
(a) On the graph below,sketch the locus of points that Martha nds
indi erent to having 8 ounces of animal crackers and 2 ounces of beans.
Also sketch the locus of points that she nds indi erent to having 6 ounces
of animal crackers and 4 ounces of beans.
02468
2
4
6
Animal crackers
Beans
8
(8,2)
(6,4)
44 UTILITY (Ch,4)
(b) Bertha Brassy has preferences represented by the utility function
V(a;b)=1;000a
2
b
2
,wherea is the number of ounces of animal crack-
ers that she consumes and b is the number of ounces of beans that she
consumes,On the graph below,sketch the locus of points that Bertha
nds indi erent to having 8 ounces of animal crackers and 2 ounces of
beans,Also sketch the locus of points that she nds indi erent to having
6 ounces of animal crackers and 4 ounces of beans.
02468
2
4
6
Animal crackers
Beans
8
(8,2)
(6,4)
(c) Are Martha’s preferences convex? Yes,Are Bertha’s? Yes.
(d) What can you say about the di erence between the indi erence curves
you drew for Bertha and those you drew for Martha? There is no
difference.
(e) How could you tell this was going to happen without having to draw
the curves? Their utility functions only differ
by a monotonic transformation.
4.11 (0) Willy Wheeler’s preferences over bundles that contain non-
negative amounts of x
1
and x
2
are represented by the utility function
U(x
1;x
2
)=x
2
1
+x
2
2
.
(a) Draw a few of his indi erence curves,What kind of geometric g-
ure are they? Quarter circles centered at the
origin,Does Willy have convex preferences? No.
NAME 45
02468
2
4
6
x1
x2
8
Calculus 4.12 (0) Joe Bob has a utility function given by u(x
1;x
2
)=x
2
1
+2x
1
x
2
+
x
2
2
.
(a) Compute Joe Bob’s marginal rate of substitution,MRS(x
1;x
2
)=
1.
(b) Joe Bob’s straight cousin,Al,has a utility function v(x
1;x
2
)=x
2
+x
1
.
Compute Al’s marginal rate of substitution,MRS(x
1;x
2
)=?1.
(c) Do u(x
1;x
2
)andv(x
1;x
2
) represent the same preferences? Yes.
Can you show that Joe Bob’s utility function is a monotonic transforma-
tion of Al’s? (Hint,Some have said that Joe Bob is square.) Notice
that u(x
1;x
2
)=[v(x
1;x
2
)]
2
.
4.13 (0) The idea of assigning numerical values to determine a preference
ordering over a set of objects is not limited in application to commodity
bundles,The Bill James Baseball Abstract argues that a baseball player’s
batting average is not an adequate measure of his o ensive productivity.
Batting averages treat singles just the same as extra base hits,Further-
more they do not give credit for \walks," although a walk is almost as
good as a single,James argues that a double in two at-bats is better than
a single,but not as good as two singles,To reflect these considerations,
James proposes the following index,which he calls \runs created." Let A
be the number of hits plus the number of walks that a batter gets in a sea-
son,Let B be the number of total bases that the batter gets in the season.
(Thus,if a batter has S singles,W walks,D doubles,T triples,and H
46 UTILITY (Ch,4)
home runs,then A = S+D+T+H+W and B = S+W+2D+3T+4H.)
Let N be the number of times the batter bats,Then his index of runs
created in the season is de ned to be AB=N and will be called his RC.
(a) In 1987,George Bell batted 649 times,He had 39 walks,105 singles,
32 doubles,4 triples,and 47 home runs,In 1987,Wade Boggs batted 656
times,He had 105 walks,130 singles,40 doubles,6 triples,and 24 home
runs,In 1987,Alan Trammell batted 657 times,He had 60 walks,140
singles,34 doubles,3 triples,and 28 home runs,In 1987,Tony Gwynn
batted 671 times,He had 82 walks,162 singles,36 doubles,13 triples,and
7 home runs,We can calculate A,the number of hits plus walks,B the
number of total bases,and RC,the runs created index for each of these
players,For Bell,A = 227,B = 408,RC = 143,For Boggs,A = 305,
B = 429,RC = 199,For Trammell,A = 265,B = 389,RC = 157,For
Gwynn,A = 300,B = 383,RC = 171.
(b) If somebody has a preference ordering among these players,based only
on the runs-created index,which player(s) would she prefer to Trammell?
Boggs and Gwynn.
(c) The di erences in the number of times at bat for these players are
small,and we will ignore them for simplicity of calculation,On the graph
below,plot the combinations of A and B achieved by each of the players.
Draw four \indi erence curves," one through each of the four points you
have plotted,These indi erence curves should represent combinations of
A and B that lead to the same number of runs-created.
0 120 180 240 300 360
Number of hits plus walks
80
160
240
320
400
Number of total bases
480
60
Bell
Trammell
Gwynn
Boggs
NAME 47
4.14 (0) This problem concerns the runs-created index discussed in the
preceding problem,Consider a batter who bats 100 times and always
either makes an out,hits for a single,or hits a home run.
(a) Let x be the number of singles and y be the number of home runs
in 100 at-bats,Suppose that the utility function U(x;y)bywhichwe
evaluate alternative combinations of singles and home runs is the runs-
created index,Then the formula for the utility function is U(x;y)=
(x+y)(x+4y)=100.
(b) Let’s try to nd out about the shape of an indi erence curve between
singles and home runs,Hitting 10 home runs and no singles would give
him the same runs-created index as hitting 20 singles and no
home runs,Mark the points (0;10) and (x;0),where U(x;0) = U(0;10).
(c) Where x is the number of singles you solved for in the previous part,
mark the point (x=2;5) on your graph,Is U(x=2;5) greater than or less
than or equal to U(0;10)? Greater than,Is this consistent with
the batter having convex preferences between singles and home runs?
Yes.
0 5 10 15 20
5
10
15
Singles
Home runs
20
(0,10)
(20,0)
(10,5)
Preference
direction
48 UTILITY (Ch,4)
Chapter 5 NAME
Choice
Introduction,You have studied budgets,and you have studied prefer-
ences,Now is the time to put these two ideas together and do something
with them,In this chapter you study the commodity bundle chosen by a
utility-maximizing consumer from a given budget.
Given prices and income,you know how to graph a consumer’s bud-
get,If you also know the consumer’s preferences,you can graph some of
his indi erence curves,The consumer will choose the \best" indi erence
curve that he can reach given his budget,But when you try to do this,you
have to ask yourself,\How do I nd the most desirable indi erence curve
that the consumer can reach?" The answer to this question is \look in the
likely places." Where are the likely places? As your textbook tells you,
there are three kinds of likely places,These are,(i) a tangency between
an indi erence curve and the budget line; (ii) a kink in an indi erence
curve; (iii) a \corner" where the consumer specializes in consuming just
one good.
Here is how you nd a point of tangency if we are told the consumer’s
utility function,the prices of both goods,and the consumer’s income,The
budget line and an indi erence curve are tangent at a point (x
1;x
2
)ifthey
have the same slope at that point,Now the slope of an indi erence curve
at (x
1;x
2
)istheratio?MU
1
(x
1;x
2
)=MU
2
(x
1;x
2
),(This slope is also
known as the marginal rate of substitution.) The slope of the budget line
is?p
1
=p
2
,Therefore an indi erence curve is tangent to the budget line
at the point (x
1;x
2
)whenMU
1
(x
1;x
2
)=MU
2
(x
1;x
2
)=p
1
=p
2
.Thisgives
us one equation in the two unknowns,x
1
and x
2
,If we hope to solve
for the x’s,we need another equation,That other equation is the budget
equation p
1
x
1
+ p
2
x
2
= m,With these two equations you can solve for
(x
1;x
2
).
Example,A consumer has the utility function U(x
1;x
2
)=x
2
1
x
2
.The
price of good 1 is p
1
= 1,the price of good 2 is p
2
= 3,and his income
is 180,Then,MU
1
(x
1;x
2
)=2x
1
x
2
and MU
2
(x
1;x
2
)=x
2
1
.There-
fore his marginal rate of substitution is?MU
1
(x
1;x
2
)=MU
2
(x
1;x
2
)=
2x
1
x
2
=x
2
1
=?2x
2
=x
1
,This implies that his indi erence curve will be
tangent to his budget line when?2x
2
=x
1
=?p
1
=p
2
=?1=3,Simplifying
this expression,we have 6x
2
= x
1
,This is one of the two equations we
need to solve for the two unknowns,x
1
and x
2
,The other equation is
the budget equation,In this case the budget equation is x
1
+3x
2
= 180.
Solving these two equations in two unknowns,we nd x
1
= 120 and
Some people have trouble remembering whether the marginal rate
of substitution is?MU
1
=MU
2
or?MU
2
=MU
1
,It isn’t really crucial to
remember which way this goes as long as you remember that a tangency
happens when the marginal utilities of any two goods are in the same
proportion as their prices.
50 CHOICE (Ch,5)
x
2
= 20,Therefore we know that the consumer chooses the bundle
(x
1;x
2
) = (120;20).
For equilibrium at kinks or at corners,we don’t need the slope of
the indi erence curves to equal the slope of the budget line,So we don’t
have the tangency equation to work with,But we still have the budget
equation,The second equation that you can use is an equation that tells
you that you are at one of the kinky points or at a corner,You will see
exactly how this works when you work a few exercises.
Example,A consumer has the utility function U(x
1;x
2
)=minfx
1;3x
2
g.
The price of x
1
is 2,the price of x
2
is 1,and her income is 140,Her
indi erence curves are L-shaped,The corners of the L’s all lie along the
line x
1
=3x
2
,She will choose a combination at one of the corners,so this
gives us one of the two equations we need for nding the unknowns x
1
and
x
2
,The second equation is her budget equation,which is 2x
1
+x
2
= 140.
Solve these two equations to nd that x
1
=60andx
2
= 20,So we know
that the consumer chooses the bundle (x
1;x
2
)=(60;20).
When you have nished these exercises,we hope that you will be
able to do the following:
Calculate the best bundle a consumer can a ord at given prices and
income in the case of simple utility functions where the best a ord-
able bundle happens at a point of tangency.
Find the best a ordable bundle,given prices and income for a con-
sumer with kinked indi erence curves.
Recognize standard examples where the best bundle a consumer can
a ord happens at a corner of the budget set.
Draw a diagram illustrating each of the above types of equilibrium.
Apply the methods you have learned to choices made with some kinds
of nonlinear budgets that arise in real-world situations.
5.1 (0) We begin again with Charlie of the apples and bananas,Recall
that Charlie’s utility function is U(x
A;x
B
)=x
A
x
B
,Suppose that the
price of apples is 1,the price of bananas is 2,and Charlie’s income is 40.
(a) On the graph below,use blue ink to draw Charlie’s budget line,(Use
a ruler and try to make this line accurate.) Plot a few points on the
indi erence curve that gives Charlie a utility of 150 and sketch this curve
with red ink,Now plot a few points on the indi erence curve that gives
Charlie a utility of 300 and sketch this curve with black ink or pencil.
NAME 51
010203040
10
20
30
Apples
Bananas
40
a
e
Blue
budget
line
Red
curves
Black curve
Pencil line
(b) Can Charlie a ord any bundles that give him a utility of 150? Yes.
(c) Can Charlie a ord any bundles that give him a utility of 300? No.
(d) On your graph,mark a point that Charlie can a ord and that gives
him a higher utility than 150,Label that point A.
(e) Neither of the indi erence curves that you drew is tangent to Charlie’s
budget line,Let’s try to nd one that is,At any point,(x
A;x
B
),Charlie’s
marginal rate of substitution is a function of x
A
and x
B
,In fact,if you
calculate the ratio of marginal utilities for Charlie’s utility function,you
will nd that Charlie’s marginal rate of substitution is MRS(x
A;x
B
)=
x
B
=x
A
,This is the slope of his indi erence curve at (x
A;x
B
),The
slope of Charlie’s budget line is?1=2 (give a numerical answer).
(f) Write an equation that implies that the budget line is tangent to an
indi erence curve at (x
A;x
B
),?x
B
=x
A
=?1=2,There are
many solutions to this equation,Each of these solutions corresponds to
a point on a di erent indi erence curve,Use pencil to draw a line that
passes through all of these points.
52 CHOICE (Ch,5)
(g) The best bundle that Charlie can a ord must lie somewhere on the
line you just penciled in,It must also lie on his budget line,If the point
is outside of his budget line,he can’t a ord it,If the point lies inside
of his budget line,he can a ord to do better by buying more of both
goods,On your graph,label this best a ordable bundle with an E.This
happens where x
A
= 20 and x
B
= 10,Verify your answer by
solving the two simultaneous equations given by his budget equation and
the tangency condition.
(h) What is Charlie’s utility if he consumes the bundle (20;10)? 200.
(i) On the graph above,use red ink to draw his indi erence curve through
(20,10),Does this indi erence curve cross Charlie’s budget line,just touch
it,or never touch it? Just touch it.
5.2 (0) Clara’s utility function is U(X;Y)=(X +2)(Y + 1),where X
is her consumption of good X and Y is her consumption of good Y.
(a) Write an equation for Clara’s indi erence curve that goes through the
point (X;Y)=(2;8),Y =
36
X+2
1,On the axes below,sketch
Clara’s indi erence curve for U = 36.
0481216
4
8
12
Y
16
11
11
U=36
X
(b) Suppose that the price of each good is 1 and that Clara has an income
of 11,Draw in her budget line,Can Clara achieve a utility of 36 with
this budget? Yes.
NAME 53
(c) At the commodity bundle,(X;Y),Clara’s marginal rate of substitu-
tion is?
Y+1
X+2
:
(d) If we set the absolute value of the MRS equal to the price ratio,we
have the equation
Y+1
X+2
=1:
(e) The budget equation is X +Y =11.
(f) Solving these two equations for the two unknowns,X and Y,we nd
X = 5 and Y = 6.
5.3 (0) Ambrose,the nut and berry consumer,has a utility function
U(x
1;x
2
)=4
p
x
1
+x
2
,wherex
1
is his consumption of nuts and x
2
is his
consumption of berries.
(a) The commodity bundle (25;0) gives Ambrose a utility of 20,Other
points that give him the same utility are (16;4),(9,8 ),(4,
12 ),(1,16 ),and (0,20 ),Plot these points on
the axes below and draw a red indi erence curve through them.
(b) Suppose that the price of a unit of nuts is 1,the price of a unit of
berries is 2,and Ambrose’s income is 24,Draw Ambrose’s budget line
with blue ink,How many units of nuts does he choose to buy? 16
units.
(c) How many units of berries? 4 units.
(d) Find some points on the indi erence curve that gives him a utility of
25 and sketch this indi erence curve (in red).
(e) Now suppose that the prices are as before,but Ambrose’s income is
34,Draw his new budget line (with pencil),How many units of nuts will
he choose? 16 units,How many units of berries? 9 units.
54 CHOICE (Ch,5)
010152025
Nuts
5
10
15
20
Berries
5 30
Red
curve
Blue line
Red curve
Pencil line
Blue
line
(f) Now let us explore a case where there is a \boundary solution." Sup-
pose that the price of nuts is still 1 and the price of berries is 2,but
Ambrose’s income is only 9,Draw his budget line (in blue),Sketch the
indi erence curve that passes through the point (9;0),What is the slope
of his indi erence curve at the point (9;0)2=3.
(g) What is the slope of his budget line at this point1=2.
(h) Which is steeper at this point,the budget line or the indi erence
curve? Indifference curve.
(i) Can Ambrose a ord any bundles that he likes better than the point
(9;0)? No.
5.4 (1) Nancy Lerner is trying to decide how to allocate her time in
studying for her economics course,There are two examinations in this
course,Her overall score for the course will be the minimum of her scores
on the two examinations,She has decided to devote a total of 1,200
minutes to studying for these two exams,and she wants to get as high an
overall score as possible,She knows that on the rst examination if she
doesn’t study at all,she will get a score of zero on it,For every 10 minutes
that she spends studying for the rst examination,she will increase her
score by one point,If she doesn’t study at all for the second examination
she will get a zero on it,For every 20 minutes she spends studying for
the second examination,she will increase her score by one point.
NAME 55
(a) On the graph below,draw a \budget line" showing the various com-
binations of scores on the two exams that she can achieve with a total of
1,200 minutes of studying,On the same graph,draw two or three \indif-
ference curves" for Nancy,On your graph,draw a straight line that goes
through the kinks in Nancy’s indi erence curves,Label the point where
this line hits Nancy’s budget with the letter A,Draw Nancy’s indi erence
curve through this point.
0 40 60 80 100
Score on test 1
20
40
60
80
Score on test 2
20 120
a
Budget line
"L" shaped
indifference
curves
(b) Write an equation for the line passing through the kinks of Nancy’s
indi erence curves,x
1
= x
2
.
(c) Write an equation for Nancy’s budget line,10x
1
+20x
2
=
1;200.
(d) Solve these two equations in two unknowns to determine the intersec-
tion of these lines,This happens at the point (x
1;x
2
)= (40;40).
(e) Given that she spends a total of 1,200 minutes studying,Nancy will
maximize her overall score by spending 400 minutes studying for the
rst examination and 800 minutes studying for the second examina-
tion.
5.5 (1) In her communications course,Nancy also takes two examina-
tions,Her overall grade for the course will be the maximum of her scores
on the two examinations,Nancy decides to spend a total of 400 minutes
studying for these two examinations,If she spends m
1
minutes studying
56 CHOICE (Ch,5)
for the rst examination,her score on this exam will be x
1
= m
1
=5,If
she spends m
2
minutes studying for the second examination,her score on
this exam will be x
2
= m
2
=10.
(a) On the graph below,draw a \budget line" showing the various combi-
nations of scores on the two exams that she can achieve with a total of 400
minutes of studying,On the same graph,draw two or three \indi erence
curves" for Nancy,On your graph,nd the point on Nancy’s budget line
that gives her the best overall score in the course.
(b) Given that she spends a total of 400 minutes studying,Nancy will
maximize her overall score by achieving a score of 80 on the rst
examination and 0 on the second examination.
(c) Her overall score for the course will then be 80.
020406080
20
40
60
Score on test 1
Score on test 2
80
,
Preference
direction
Max,
overall
score
5.6 (0) Elmer’s utility function is U(x;y)=minfx;y
2
g.
(a) If Elmer consumes 4 units of x and 3 units of y,his utility is 4.
(b) If Elmer consumes 4 units of x and 2 units of y,his utility is 4.
(c) If Elmer consumes 5 units of x and 2 units of y,his utility is 4.
(d) On the graph below,use blue ink to draw the indi erence curve for
Elmer that contains the bundles that he likes exactly as well as the bundle
(4;2).
NAME 57
(e) On the same graph,use blue ink to draw the indi erence curve for
Elmer that contains bundles that he likes exactly as well as the bundle
(1;1) and the indi erence curve that passes through the point (16;5).
(f) On your graph,use black ink to show the locus of points at which
Elmer’s indi erence curves have kinks,What is the equation for this
curve? x = y
2
.
(g) On the same graph,use black ink to draw Elmer’s budget line when
the price of x is 1,the price of y is 2,and his income is 8,What bundle
does Elmer choose in this situation? (4,2).
0 8 12 16 20
x
4
8
12
16
y
4 24
Black
line
(16,5)
Blue
curves
Blue curve
Black curve
Chosen
bundle
(h) Suppose that the price of x is 10 and the price of y is 15 and Elmer
buys 100 units of x,What is Elmer’s income? 1,150,(Hint,At rst
you might think there is too little information to answer this question.
But think about how much y he must be demanding if he chooses 100
units of x.)
5.7 (0) Linus has the utility function U(x;y)=x+3y.
(a) On the graph below,use blue ink to draw the indi erence curve passing
through the point (x;y)=(3;3),Use black ink to sketch the indi erence
curve connecting bundles that give Linus a utility of 6.
58 CHOICE (Ch,5)
0481216
4
8
12
Y
16
X
(3,3)
Blue
curve
Black
curve
Red line
(b) On the same graph,use red ink to draw Linus’s budget line if the
price of x is 1 and the price of y is 2 and his income is 8,What bundle
does Linus choose in this situation? (0,4).
(c) What bundle would Linus choose if the price of x is 1,the price of y
is 4,and his income is 8? (8,0).
5.8 (2) Remember our friend Ralph Rigid from Chapter 3? His favorite
diner,Food for Thought,has adopted the following policy to reduce the
crowds at lunch time,if you show up for lunch t hours before or after
12 noon,you get to deduct t dollars from your bill,(This holds for any
fraction of an hour as well.)
NAME 59
0
11 12 1 2
5
10
15
Time
Money
20
10
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyy
Red curves
Blue budget set
(a) Use blue ink to show Ralph’s budget set,On this graph,the horizontal
axis measures the time of day that he eats lunch,and the vertical axis
measures the amount of money that he will have to spend on things other
than lunch,Assume that he has $20 total to spend and that lunch at
noon costs $10,(Hint,How much money would he have left if he ate at
noon?at1P.M.?at11A.M.?)
(b) Recall that Ralph’s preferred lunch time is 12 noon,but that he is
willing to eat at another time if the food is su ciently cheap,Draw
some red indi erence curves for Ralph that would be consistent with his
choosing to eat at 11 A.M.
5.9 (0) Joe Grad has just arrived at the big U,He has a fellowship that
covers his tuition and the rent on an apartment,In order to get by,Joe
has become a grader in intermediate price theory,earning $100 a month.
Out of this $100 he must pay for his food and utilities in his apartment.
His utilities expenses consist of heating costs when he heats his apartment
and air-conditioning costs when he cools it,To raise the temperature of
his apartment by one degree,it costs $2 per month (or $20 per month
to raise it ten degrees),To use air-conditioning to cool his apartment by
a degree,it costs $3 per month,Whatever is left over after paying the
utilities,he uses to buy food at $1 per unit.
60 CHOICE (Ch,5)
02030405060
Temperature
20
40
60
80
100
Food
120
10 70 80 90 100
December September August
Black budget constraint
Blue budget constraint
Red budget constraint
(a) When Joe rst arrives in September,the temperature of his apartment
is 60 degrees,If he spends nothing on heating or cooling,the temperature
in his room will be 60 degrees and he will have $100 left to spend on food.
If he heated the room to 70 degrees,he would have $80 left to spend
on food,If he cooled the room to 50 degrees,he would have $70 left
to spend on food,On the graph below,show Joe’s September budget
constraint (with black ink),(Hint,You have just found three points that
Joe can a ord,Apparently,his budget set is not bounded by a single
straight line.)
(b) In December,the outside temperature is 30 degrees and in August
poor Joe is trying to understand macroeconomics while the temperature
outside is 85 degrees,On the same graph you used above,draw Joe’s
budget constraints for the months of December (in blue ink) and August
(in red ink).
(c) Draw a few smooth (unkinky) indi erence curves for Joe in such a way
that the following are true,(i) His favorite temperature for his apartment
would be 65 degrees if it cost him nothing to heat it or cool it,(ii)Joe
chooses to use the furnace in December,air-conditioning in August,and
neither in September,(iii) Joe is better o in December than in August.
(d) In what months is the slope of Joe’s budget constraint equal to the
slope of his indi erence curve? August and December.
NAME 61
(e) In December Joe’s marginal rate of substitution between food and
degrees Fahrenheit is -2,In August,his MRS is 3.
(f) Since Joe neither heats nor cools his apartment in September,we
cannot determine his marginal rate of substitution exactly,but we do
know that it must be no smaller than -2 and no larger than
3,(Hint,Look carefully at your graph.)
5.10 (0) Central High School has $60,000 to spend on computers and
other stu,so its budget equation is C + X =60;000,where C is ex-
penditure on computers and X is expenditures on other things,C.H.S.
currently plans to spend $20,000 on computers.
The State Education Commission wants to encourage \computer lit-
eracy" in the high schools under its jurisdiction,The following plans have
been proposed.
Plan A,This plan would give a grant of $10,000 to each high school in
the state that the school could spend as it wished.
Plan B,This plan would give a $10,000 grant to any high school,so
long as the school spent at least $10,000 more than it currently spends on
computers,Any high school can choose not to participate,in which case it
does not receive the grant,but it doesn’t have to increase its expenditure
on computers.
Plan C,Plan C is a \matching grant." For every dollar’s worth of
computers that a high school orders,the state will give the school 50
cents.
Plan D,This plan is like plan C,except that the maximum amount of
matching funds that any high school could get from the state would be
limited to $10,000.
(a) Write an equation for Central High School’s budget if plan A is
adopted,C + X =70;000,Use black ink to draw the bud-
get line for Central High School if plan A is adopted.
(b) If plan B is adopted,the boundary of Central High School’s budget set
has two separate downward-sloping line segments,One of these segments
describes the cases where C.H.S,spends at least $30,000 on computers.
This line segment runs from the point (C;X)=(70;000;0) to the point
(C;X)= (30,000,40,000).
(c) Another line segment corresponds to the cases where C.H.S,spends
less than $30,000 on computers,This line segment runs from (C;X)=
(30,000,30,000) to the point (C;X)=(0;60;000),Use red
ink to draw these two line segments.
62 CHOICE (Ch,5)
(d) If plan C is adopted and Central High School spendsC dollars on com-
puters,then it will have X =60;000?:5C dollars left to spend on other
things,Therefore its budget line has the equation,5C+X=60,000.
Use blue ink to draw this budget line.
(e) If plan D is adopted,the school district’s budget consists of two
line segments that intersect at the point where expenditure on comput-
ers is 20,000 and expenditure on other instructional materials is
50,000.
(f) The slope of the flatter line segment is?:5,The slope of the
steeper segment is?1,Use pencil to draw this budget line.
0 20 30 40 50 60
Thousands of dollars worth of computers
10
20
30
40
50
Thousands of dollars worth of other things
60
10
Red budget line
(plan B)
Black budget line (plan A)
Pencil budget line
(plan D)
Blue
budget
line
(plan C)
5.11 (0) Suppose that Central High School has preferences that can
be represented by the utility function U(C;X)=CX
2
,Let us try to
determine how the various plans described in the last problem will a ect
the amount that C.H.S,spends on computers.
NAME 63
(a) If the state adopts none of the new plans,nd the expenditure on
computers that maximizes the district’s utility subject to its budget con-
straint,20,000.
(b) If plan A is adopted,nd the expenditure on computers that maxi-
mizes the district’s utility subject to its budget constraint,23,333.
(c) On your graph,sketch the indi erence curve that passes through the
point (30,000,40,000) if plan B is adopted,At this point,which is steeper,
the indi erence curve or the budget line? The budget line.
(d) If plan B is adopted,nd the expenditure on computers that maxi-
mizes the district’s utility subject to its budget constraint,(Hint,Look
at your graph.) 30,000.
(e) If plan C is adopted,nd the expenditure on computers that maxi-
mizes the district’s utility subject to its budget constraint,40,000.
(f) If plan D is adopted,nd the expenditure on computers that maxi-
mizes the district’s utility subject to its budget constraint,23,333.
5.12 (0) The telephone company allows one to choose between two
di erent pricing plans,For a fee of $12 per month you can make as
many local phone calls as you want,at no additional charge per call.
Alternatively,you can pay $8 per month and be charged 5 cents for each
local phone call that you make,Suppose that you have a total of $20 per
month to spend.
(a) On the graph below,use black ink to sketch a budget line for someone
who chooses the rst plan,Use red ink to draw a budget line for someone
who chooses the second plan,Where do the two budget lines cross?
(80;8).
64 CHOICE (Ch,5)
0 40 60 80 100
Local phone calls
4
8
12
16
Other goods
20 120
Black line
Red line
Pencil curve
Blue curve
(b) On the graph above,use pencil to draw indi erence curves for some-
one who prefers the second plan to the rst,Use blue ink to draw an
indi erence curve for someone who prefers the rst plan to the second.
5.13 (1) This is a puzzle|just for fun,Lewis Carroll (1832-1898),
author of Alice in Wonderland and Through the Looking Glass,was a
mathematician,logician,and political scientist,Carroll loved careful rea-
soning about puzzling things,Here Carroll’s Alice presents a nice bit
of economic analysis,At rst glance,it may seem that Alice is talking
nonsense,but,indeed,her reasoning is impeccable.
\I should like to buy an egg,please." she said timidly,\How do you
sell them?"
\Fivepence farthing for one|twopence for two," the Sheep replied.
\Then two are cheaper than one?" Alice said,taking out her purse.
\Only you must eat them both if you buy two," said the Sheep.
\Then I’ll have one please," said Alice,as she put the money down
on the counter,For she thought to herself,\They mightn’t be at all nice,
you know."
(a) Let us try to draw a budget set and indi erence curves that are
consistent with this story,Suppose that Alice has a total of 8 pence to
spend and that she can buy either 0,1,or 2 eggs from the Sheep,but no
fractional eggs,Then her budget set consists of just three points,The
point where she buys no eggs is (0;8),Plot this point and label it A.On
your graph,the point where she buys 1 egg is (1;2
3
4
),(A farthing is 1/4
of a penny.) Plot this point and label it B.
(b) The point where she buys 2 eggs is (2;6),Plot this point and
label it C,If Alice chooses to buy 1 egg,she must like the bundleB better
than either the bundle A or the bundle C,Draw indi erence curves for
Alice that are consistent with this behavior.
NAME 65
01234
2
4
6
Eggs
Other goods
8
b
a
c
66 CHOICE (Ch,5)
Chapter 6 NAME
Demand
Introduction,In the previous chapter,you found the commodity bundle
that a consumer with a given utility function would choose in a speci c
price-income situation,In this chapter,we take this idea a step further.
We nd demand functions,which tell us for any prices and income you
might want to name,how much of each good a consumer would want,In
general,the amount of each good demanded may depend not only on its
own price,but also on the price of other goods and on income,Where
there are two goods,we write demand functions for Goods 1 and 2 as
x
1
(p
1;p
2;m)andx
2
(p
1;p
2;m).
When the consumer is choosing positive amounts of all commodities
and indi erence curves have no kinks,the consumer chooses a point of
tangency between her budget line and the highest indi erence curve that
it touches.
Example,Consider a consumer with utility function U(x
1;x
2
)=(x
1
+
2)(x
2
+ 10),To nd x
1
(p
1;p
2;m)andx
2
(p
1;p
2;m),we need to nd a
commodity bundle (x
1;x
2
) on her budget line at which her indi erence
curve is tangent to her budget line,The budget line will be tangent to
the indi erence curve at (x
1;x
2
) if the price ratio equals the marginal
rate of substitution,For this utility function,MU
1
(x
1;x
2
)=x
2
+10 and
MU
2
(x
1;x
2
)=x
1
+ 2,Therefore the \tangency equation" is p
1
=p
2
=
(x
2
+ 10)=(x
1
+ 2),Cross-multiplying the tangency equation,one nds
p
1
x
1
+2p
1
= p
2
x
2
+10p
2
.
The bundle chosen must also satisfy the budget equation,p
1
x
1
+
p
2
x
2
= m,This gives us two linear equations in the two unknowns,x
1
and x
2
,You can solve these equations yourself,using high school algebra.
You will nd that the solution for the two \demand functions" is
x
1
=
m?2p
1
+10p
2
2p
1
x
2
=
m+2p
1
10p
2
2p
2
:
There is one thing left to worry about with the \demand functions" we
just found,Notice that these expressions will be positive only if m?2p
1
+
10p
2
> 0andm+2p
1
10p
2
> 0,If either of these expressions is negative,
then it doesn’t make sense as a demand function,What happens in this
For some utility functions,demand for a good may not be a ected by
all of these variables,For example,with Cobb-Douglas utility,demand
for a good depends on the good’s own price and on income but not on the
other good’s price,Still,there is no harm in writing demand for Good
1 as a function of p
1
,p
2
,andm,It just happens that the derivative of
x
1
(p
1;p
2;m) with respect to p
2
is zero.
68 DEMAND (Ch,6)
case is that the consumer will choose a \boundary solution" where she
consumes only one good,At this point,her indi erence curve will not be
tangent to her budget line.
When a consumer has kinks in her indi erence curves,she may choose
a bundle that is located at a kink,In the problems with kinks,you
will be able to solve for the demand functions quite easily by looking
at diagrams and doing a little algebra,Typically,instead of nding a
tangency equation,you will nd an equation that tells you \where the
kinks are." With this equation and the budget equation,you can then
solve for demand.
You might wonder why we pay so much attention to kinky indi er-
ence curves,straight line indi erence curves,and other \funny cases."
Our reason is this,In the funny cases,computations are usually pretty
easy,But often you may have to draw a graph and think about what
you are doing,That is what we want you to do,Think and ddle with
graphs,Don’t just memorize formulas,Formulas you will forget,but the
habit of thinking will stick with you.
When you have nished this workout,we hope that you will be able
to do the following:
Find demand functions for consumers with Cobb-Douglas and other
similar utility functions.
Find demand functions for consumers with quasilinear utility func-
tions.
Find demand functions for consumers with kinked indi erence curves
and for consumers with straight-line indi erence curves.
Recognize complements and substitutes from looking at a demand
curve.
Recognize normal goods,inferior goods,luxuries,and necessities from
looking at information about demand.
Calculate the equation of an inverse demand curve,given a simple
demand equation.
6.1 (0) Charlie is back|still consuming apples and bananas,His util-
ity function is U(x
A;x
B
)=x
A
x
B
,We want to nd his demand func-
tion for apples,x
A
(p
A;p
B;m),and his demand function for bananas,
x
B
(p
A;p
B;m).
(a) When the prices arep
A
andp
B
and Charlie’s income ism,the equation
for Charlie’s budget line isp
A
x
A
+p
B
x
B
= m,The slope of Charlie’s indif-
ference curve at the bundle (x
A;x
B
)is?MU
1
(x
A;x
B
)=MU
2
(x
A;x
B
)=
x
B
=x
A
,The slope of Charlie’s budget line is?p
A
=p
B
,Char-
lie’s indi erence curve will be tangent to his budget line at the point
(x
A;x
B
) if the following equation is satis ed,p
A
=p
B
= x
B
=x
A
.
NAME 69
(b) You now have two equations,the budget equation and the tan-
gency equation,that must be satis ed by the bundle demanded,Solve
these two equations for x
A
and x
B
,Charlie’s demand function for ap-
ples is x
A
(p
A;p
B;m)=
m
2p
A
,and his demand function for bananas is
x
B
(p
A;p
B;m)=
m
2p
B
.
(c) In general,the demand for both commodities will depend on the price
of both commodities and on income,But for Charlie’s utility function,
the demand function for apples depends only on income and the price
of apples,Similarly,the demand for bananas depends only on income
and the price of bananas,Charlie always spends the same fraction of his
income on bananas,What fraction is this? 1=2.
6.2 (0) Douglas Corn eld’s preferences are represented by the utility
function u(x
1;x
2
)=x
2
1
x
3
2
,The prices of x
1
and x
2
are p
1
and p
2
.
(a) The slope of Corn eld’s indi erence curve at the point (x
1;x
2
)is
2x
2
=3x
1
.
(b) If Corn eld’s budget line is tangent to his indi erence curve at (x
1;x
2
),
then
p
1
x
1
p
2
x
2
= 2/3,(Hint,Look at the equation that equates the slope
of his indi erence curve with the slope of his budget line.) When he is
consuming the best bundle he can a ord,what fraction of his income does
Douglas spend on x
1
2/5.
(c) Other members of Doug’s family have similar utility functions,but
the exponents may be di erent,or their utilities may be multiplied by a
positive constant,If a family member has a utility function U(x;y)=
cx
a
1
x
b
2
where a,b,andc are positive numbers,what fraction of his or her
income will that family member spend on x
1
a/(a+b).
6.3 (0) Our thoughts return to Ambrose and his nuts and berries,Am-
brose’s utility function is U(x
1;x
2
)=4
p
x
1
+ x
2
,wherex
1
is his con-
sumption of nuts and x
2
is his consumption of berries.
(a) Let us nd his demand function for nuts,The slope of Ambrose’s
indi erence curve at (x
1;x
2
)is?
2
p
x
1
,Setting this slope equal to
the slope of the budget line,you can solve for x
1
without even using the
budget equation,The solution is x
1
=
2p
2
p
1
2
.
70 DEMAND (Ch,6)
(b) Let us nd his demand for berries,Now we need the budget equation.
In Part (a),you solved for the amount of x
1
that he will demand,The
budget equation tells us that p
1
x
1
+ p
2
x
2
= M,Plug the solution that
you found for x
1
into the budget equation and solve for x
2
as a function
of income and prices,The answer is x
2
=
M
p
2
4
p
2
p
1
.
(c) When we visited Ambrose in Chapter 5,we looked at a \boundary
solution," where Ambrose consumed only nuts and no berries,In that
example,p
1
=1,p
2
=2,andM = 9,If you plug these numbers into the
formulas we found in Parts (a) and (b),you nd x
1
= 16,and
x
2
=?3:5,Since we get a negative solution for x
2
,it must be that
the budget line x
1
+2x
2
= 9 is not tangent to an indi erence curve when
x
2
0,The best that Ambrose can do with this budget is to spend all
of his income on nuts,Looking at the formulas,we see that at the prices
p
1
=1andp
2
= 2,Ambrose will demand a positive amount of both goods
if and only if M> 16.
6.4 (0) Donald Fribble is a stamp collector,The only things other
than stamps that Fribble consumes are Hostess Twinkies,It turns out
that Fribble’s preferences are represented by the utility function u(s;t)=
s +lnt where s is the number of stamps he collects and t is the number
of Twinkies he consumes,The price of stamps is p
s
and the price of
Twinkies is p
t
,Donald’s income is m.
(a) Write an expression that says that the ratio of Fribble’s marginal
utility for Twinkies to his marginal utility for stamps is equal to the ratio
of the price of Twinkies to the price of stamps,1=t = p
t
=p
s
,(Hint:
The derivative of lnt with respect to t is 1=t,and the derivative of s with
respect to s is 1.)
(b) You can use the equation you found in the last part to show that if he
buys both goods,Donald’s demand function for Twinkies depends only
on the price ratio and not on his income,Donald’s demand function for
Twinkies is t(p
s;p
t;m)=p
s
=p
t
.
(c) Notice that for this special utility function,if Fribble buys both goods,
then the total amount of money that he spends on Twinkies has the
peculiar property that it depends on only one of the three variables m,
p
t
,andp
s
,namely the variable p
s
,(Hint,The amount of money that
he spends on Twinkies is p
t
t(p
s;p
t;m).)
NAME 71
(d) Since there are only two goods,any money that is not spent on
Twinkies must be spent on stamps,Use the budget equation and Don-
ald’s demand function for Twinkies to nd an expression for the number
of stamps he will buy if his income is m,the price of stamps is p
s
and the
price of Twinkies is p
t
,s =
m
p
s
1.
(e) The expression you just wrote down is negative if m<p
s
,Surely
it makes no sense for him to be demanding negative amounts of postage
stamps,If m<p
s
,what would Fribble’s demand for postage stamps be?
s =0 What would his demand for Twinkies be? t = m=p
t
.
(Hint,Recall the discussion of boundary optimum.)
(f) Donald’s wife complains that whenever Donald gets an extra dollar,
he always spends it all on stamps,Is she right? (Assume that m>p
s
.)
Yes.
(g) Suppose that the price of Twinkies is $2 and the price of stamps is $1.
On the graph below,draw Fribble’s Engel curve for Twinkies in red ink
and his Engel curve for stamps in blue ink,(Hint,First draw the Engel
curves for incomes greater than $1,then draw them for incomes less than
$1.)
02468
2
4
6
Quantities
Income
8
Blue
line
Red line
1
0.5
6.5 (0) Shirley Sixpack,as you will recall,thinks that two 8-ounce cans
of beer are exactly as good as one 16-ounce can of beer,Suppose that
these are the only sizes of beer available to her and that she has $30 to
spend on beer,Suppose that an 8-ounce beer costs $.75 and a 16-ounce
beer costs $1,On the graph below,draw Shirley’s budget line in blue ink,
and draw some of her indi erence curves in red.
72 DEMAND (Ch,6)
010203040
10
20
30
16-ounce cans
8-ounce cans
40
Blue
budget
line
Red
curves
Red curve
(a) At these prices,which size can will she buy,or will she buy some of
each? 16-ounce cans.
(b) Suppose that the price of 16-ounce beers remains $1 and the price of
8-ounce beers falls to $.55,Will she buy more 8-ounce beers? No.
(c) What if the price of 8-ounce beers falls to $.40? How many 8-ounce
beers will she buy then? 75 cans.
(d) If the price of 16-ounce beers is $1 each and if Shirley chooses some
8-ounce beers and some 16-ounce beers,what must be the price of 8-ounce
beers? $.50.
(e) Now let us try to describe Shirley’s demand function for 16-ounce beers
as a function of general prices and income,Let the prices of 8-ounce and
16-ounce beers be p
8
and p
16
,and let her income be m.Ifp
16
< 2p
8
,then
the number of 16-ounce beers she will demand is m=p
16
,If p
16
> 2p
8
,
then the number of 16-ounce beers she will demand is 0,If p
16
=
2 p
8
,she will be indi erent between any a ordable combinations.
6.6 (0) Miss Mu et always likes to have things \just so." In fact the
only way she will consume her curds and whey is in the ratio of 2 units of
whey per unit of curds,She has an income of $20,Whey costs $.75 per
unit,Curds cost $1 per unit,On the graph below,draw Miss Mu et’s
budget line,and plot some of her indi erence curves,(Hint,Have you
noticed something kinky about Miss Mu et?)
NAME 73
(a) How many units of curds will Miss Mu et demand in this situation?
8 units,How many units of whey? 16 units.
0 8 16 24 32
8
16
24
Curds
Whey
32
w = 2c
Budget
line
Indifference
curves
(b) Write down Miss Mu et’s demand function for whey as a function
of the prices of curds and whey and of her income,where p
c
is the price
of curds,p
w
is the price of whey,and m is her income,D(p
c;p
w;m)=
m
p
w
+p
c
=2
,(Hint,You can solve for her demands by solving two equa-
tions in two unknowns,One equation tells you that she consumes twice
as much whey as curds,The second equation is her budget equation.)
6.7 (1) Mary’s utility function is U(b;c)=b+ 100c?c
2
,whereb is the
number of silver bells in her garden and c is the number of cockle shells.
She has 500 square feet in her garden to allocate between silver bells and
cockle shells,Silver bells each take up 1 square foot and cockle shells each
take up 4 square feet,She gets both kinds of seeds for free.
(a) To maximize her utility,given the size of her garden,Mary should
plant 308 silver bells and 48 cockle shells,(Hint,Write down
her \budget constraint" for space,Solve the problem as if it were an
ordinary demand problem.)
(b) If she suddenly acquires an extra 100 square feet for her garden,how
much should she increase her planting of silver bells? 100 extra
silver bells,How much should she increase her planting of
cockle shells? Not at all.
74 DEMAND (Ch,6)
(c) If Mary had only 144 square feet in her garden,how many cockle
shells would she grow? 36.
(d) If Mary grows both silver bells and cockle shells,then we know that
the number of square feet in her garden must be greater than 192.
6.8 (0) Casper consumes cocoa and cheese,He has an income of $16.
Cocoa is sold in an unusual way,There is only one supplier and the more
cocoa one buys from him,the higher the price one has to pay per unit.
In fact,x units of cocoa will cost Casper a total of x
2
dollars,Cheese is
sold in the usual way at a price of $2 per unit,Casper’s budget equation,
therefore,is x
2
+2y =16wherex is his consumption of cocoa and y is
his consumption of cheese,Casper’s utility function is U(x;y)=3x+y.
(a) On the graph below,draw the boundary of Casper’s budget set in
blue ink,Use red ink to sketch two or three of his indi erence curves.
0481216
4
8
12
Cheese
16
Cocoa
Red
indifference
curves
Blue budget line
(b) Write an equation that says that at the point (x;y),the slope
of Casper’s budget \line" equals the slope of his indi erence \curve."
2x=2=3=1,Casper demands 3 units of cocoa and 3.5
units of cheese.
6.9 (0) Perhaps after all of the problems with imaginary people and
places,you would like to try a problem based on actual fact,The U.S.
government’s Bureau of Labor Statistics periodically makes studies of
family budgets and uses the results to compile the consumer price index.
These budget studies and a wealth of other interesting economic data can
be found in the annually published Handbook of Labor Statistics,The
NAME 75
tables below report total current consumption expenditures and expendi-
tures on certain major categories of goods for 5 di erent income groups
in the United States in 1961,People within each of these groups all had
similar incomes,Group A is the lowest income group and Group E is the
highest.
Table 6.1
Expenditures by Category for Various Income Groups in 1961
Income Group A B C D E
Food Prepared at Home 465 783 1078 1382 1848
Food Away from Home 68 171 213 384 872
Housing 626 1090 1508 2043 4205
Clothing 119 328 508 830 1745
Transportation 139 519 826 1222 2048
Other 364 745 1039 1554 3490
Total Expenditures 1781 3636 5172 7415 14208
Table 6.2
Percentage Allocation of Family Budget
Income Group A B C D E
Food Prepared at Home 26 22 21 19 13
Food Away from Home 3.8 4.7 4.1 5.2 6.1
Housing 35 30 29 28 30
Clothing 6.7 9.0 9.8 11 12
Transportation 7.8 14 16 17 14
(a) Complete Table 6.2.
(b) Which of these goods are normal goods? All of them.
(c) Which of these goods satisfy your textbook’s de nition of luxury
goods at most income levels? Food away from home,
clothing,transportation.
76 DEMAND (Ch,6)
(d) Which of these goods satisfy your textbook’s de nition of necessity
goods at most income levels? Food prepared at home,
housing.
(e) On the graph below,use the information from Table 6.1 to draw
\Engel curves." (Use total expenditure on current consumption as income
for purposes of drawing this curve.) Use red ink to draw the Engel curve
for food prepared at home,Use blue ink to draw an Engel curve for food
away from home,Use pencil to draw an Engel curve for clothing,How
does the shape of an Engel curve for a luxury di er from the shape of
an Engel curve for a necessity? The curve for a luxury
gets flatter as income rises,the curve for
a necessity gets steeper.
0 750 1500 2250 3000
3
6
9
Total expenditures (thousands of dollars)
12
Expenditure on specific goods
Red lineBlue
line
Pencil
line
6.10 (0) Percy consumes cakes and ale,His demand function for cakes
is q
c
= m?30p
c
+20p
a
,wherem is his income,p
a
is the price of ale,p
c
is the price of cakes,and q
c
is his consumption of cakes,Percy’s income
is $100,and the price of ale is $1 per unit.
(a) Is ale a substitute for cakes or a complement? Explain,A
substitute,An increase in the price of
ale increases demand for cakes.
NAME 77
(b) Write an equation for Percy’s demand function for cakes where income
and the price of ale are held xed at $100 and $1,q
c
= 120?30p
c
.
(c) Write an equation for Percy’s inverse demand function for cakes where
income is $100 and the price of ale remains at $1,p
c
=4?q
c
=30.
At what price would Percy buy 30 cakes? $3,Use blue ink to draw
Percy’s inverse demand curve for cakes.
(d) Suppose that the price of ale rises to $2.50 per unit and remains
there,Write an equation for Percy’s inverse demand for cakes,p
c
=
5?q
c
=30,Use red ink to draw in Percy’s new inverse demand curve
for cakes.
0306090120
1
2
3
Number of cakes
Price
4
Blue Line
Red Line
6.11 (0) Richard and Mary Stout have fallen on hard times,but remain
rational consumers,They are making do on $80 a week,spending $40 on
food and $40 on all other goods,Food costs $1 per unit,On the graph
below,use black ink to draw a budget line,Label their consumption
bundle with the letter A.
(a) The Stouts suddenly become eligible for food stamps,This means
that they can go to the agency and buy coupons that can be exchanged
for $2 worth of food,Each coupon costs the Stouts $1,However,the
maximum number of coupons they can buy per week is 10,On the graph,
draw their new budget line with red ink.
78 DEMAND (Ch,6)
(b) If the Stouts have homothetic preferences,how much more food will
they buy once they enter the food stamp program? 5 units.
0 40 60 80 100 120
20
40
60
80
100
Dollars worth of other things
120
20
a
New consumption point
45
Red budget line
Black budget line
Food
Calculus 6.12 (2) As you may remember,Nancy Lerner is taking an economics
course in which her overall score is the minimum of the number of correct
answers she gets on two examinations,For the rst exam,each correct
answer costs Nancy 10 minutes of study time,For the second exam,each
correct answer costs her 20 minutes of study time,In the last chapter,
you found the best way for her to allocate 1200 minutes between the two
exams,Some people in Nancy’s class learn faster and some learn slower
than Nancy,Some people will choose to study more than she does,and
some will choose to study less than she does,In this section,we will nd
a general solution for a person’s choice of study times and exam scores as
a function of the time costs of improving one’s score.
(a) Suppose that if a student does not study for an examination,he or
she gets no correct answers,Every answer that the student gets right
on the rst examination costs P
1
minutes of studying for the rst exam.
Every answer that he or she gets right on the second examination costs
P
2
minutes of studying for the second exam,Suppose that this student
spends a total of M minutes studying for the two exams and allocates
the time between the two exams in the most e cient possible way,Will
the student have the same number of correct answers on both exams?
NAME 79
Yes,Write a general formula for this student’s overall score for the
course as a function of the three variables,P
1
,P
2
,andM,S =
M
P
1
+P
2
.
If this student wants to get an overall score of S,with the smallest pos-
sible total amount of studying,this student must spend P
1
S minutes
studying for the rst exam and P
2
S studying for the second exam.
(b) Suppose that a student has the utility function
U(S;M)=S?
A
2
M
2;
where S is the student’s overall score for the course,M is the number
of minutes the student spends studying,and A is a variable that reflects
how much the student dislikes studying,In Part (a) of this problem,you
found that a student who studies for M minutes and allocates this time
wisely between the two exams will get an overall score of S =
M
P
1
+P
2
.
Substitute
M
P
1
+P
2
for S in the utility function and then di erentiate with
respect to M to nd the amount of study time,M,that maximizes the
student’s utility,M =
1
A(P
1
+P
2
)
,Your answer will be a function of
the variables P
1
,P
2
,andA,If the student chooses the utility-maximizing
amount of study time and allocates it wisely between the two exams,he
or she will have an overall score for the course of S =
1
A(P
1
+P
2
)
2
.
(c) Nancy Lerner has a utility function like the one presented above,She
chose the utility-maximizing amount of study time for herself,For Nancy,
P
1
=10andP
2
= 20,She spent a total of M =1;200 minutes studying
for the two exams,This gives us enough information to solve for the
variable A in Nancy’s utility function,In fact,for Nancy,A =
1
36;000
.
(d) Ed Fungus is a student in Nancy’s class,Ed’s utility function is just
like Nancy’s,with the same value of A,But Ed learns more slowly than
Nancy,In fact it takes Ed exactly twice as long to learn anything as it
takes Nancy,so that for him,P
1
=20andP
2
= 40,Ed also chooses his
amount of study time so as to maximize his utility,Find the ratio of the
amount of time Ed spends studying to the amount of time Nancy spends
studying,1/2,Will his score for the course be greater than half,
equal to half,or less than half of Nancy’s? Less than half.
6.13 (1) Here is a puzzle for you,At rst glance,it would appear that
there is not nearly enough information to answer this question,But when
you graph the indi erence curve and think about it a little,you will see
that there is a neat,easily calculated solution.
80 DEMAND (Ch,6)
Kinko spends all his money on whips and leather jackets,Kinko’s
utility function is U(x;y)=minf4x;2x+yg,wherex is his consumption
of whips and y is his consumption of leather jackets,Kinko is consuming
15 whips and 10 leather jackets,The price of whips is $10,You are to
nd Kinko’s income.
(a) Graph the indi erence curve for Kinko that passes through the point
(15;10),What is the slope of this indi erence curve at (15;10)2.
What must be the price of leather jackets if Kinko chooses this point?
$5,Now,what is Kinko’s income? 15 10 + 10 5 = 200.
010203040
10
20
30
Whips
Leather jackets
40
(15,10)
Indifference
curve
2x + y = 40
4x = 40
Chapter 7 NAME
Revealed Preference
Introduction,In the last section,you were given a consumer’s pref-
erences and then you solved for his or her demand behavior,In this
chapter we turn this process around,you are given information about a
consumer’s demand behavior and you must deduce something about the
consumer’s preferences,The main tool is the weak axiom of revealed pref-
erence,This axiom says the following,If a consumer chooses commodity
bundle A when she can a ord bundleB,then she will never choose bundle
B from any budget in which she can also a ord A,The idea behind this
axiomisthatifyouchooseA when you could have had B,you must like
A better than B,But if you like A better than B,then you will never
choose B when you can have A,If somebody chooses A when she can
a ord B,we say that for her,A is directly revealed preferred to B.The
weak axiom says that if A is directly revealed preferred to B,thenB is
not directly revealed preferred to A.
Example,Let us look at an example of how you check whether one bundle
is revealed preferred to another,Suppose that a consumer buys the bundle
(x
A
1;x
A
2
)=(2;3) at prices (p
A
1;p
A
2
)=(1;4),The cost of bundle (x
A
1;x
A
2
)
at these prices is (2 1) + (3 4) = 14,Bundle (2;3) is directly revealed
preferred to all the other bundles that she can a ord at prices (1;4),when
she has an income of 14,For example,the bundle (5;2) costs only 13 at
prices (1;4),so we can say that for this consumer (2;3) is directly revealed
preferred to (1;4).
You will also have some problems about price and quantity indexes.
A price index is a comparison of average price levels between two di erent
times or two di erent places,If there is more than one commodity,it is not
necessarily the case that all prices changed in the same proportion,Let us
suppose that we want to compare the price level in the \current year" with
the price level in some \base year." One way to make this comparison
is to compare the costs in the two years of some \reference" commodity
bundle,Two reasonable choices for the reference bundle come to mind.
One possibility is to use the current year’s consumption bundle for the
reference bundle,The other possibility is to use the bundle consumed
in the base year,Typically these will be di erent bundles,If the base-
year bundle is the reference bundle,the resulting price index is called the
Laspeyres price index,If the current year’s consumption bundle is the
reference bundle,then the index is called the Paasche price index.
Example,Suppose that there are just two goods,In 1980,the prices
were (1;3) and a consumer consumed the bundle (4;2),In 1990,the
prices were (2;4) and the consumer consumed the bundle (3;3),The cost
of the 1980 bundle at 1980 prices is (1 4)+ (3 2) = 10,The cost of this
same bundle at 1990 prices is (2 4) + (4 2) = 16,If 1980 is treated
as the base year and 1990 as the current year,the Laspeyres price ratio
82 REVEALED PREFERENCE (Ch,7)
is 16=10,To calculate the Paasche price ratio,you nd the ratio of the
cost of the 1990 bundle at 1990 prices to the cost of the same bundle at
1980 prices,The 1990 bundle costs (2 3) + (4 3) = 18 at 1990 prices.
The same bundle cost (1 3) + (3 3) = 12 at 1980 prices,Therefore
the Paasche price index is 18=12,Notice that both price indexes indicate
that prices rose,but because the price changes are weighted di erently,
the two approaches give di erent price ratios.
Making an index of the \quantity" of stu consumed in the two
periods presents a similar problem,How do you weight changes in the
amount of good 1 relative to changes in the amount of good 2? This time
we could compare the cost of the two periods’ bundles evaluated at some
reference prices,Again there are at least two reasonable possibilities,the
Laspeyres quantity index and the Paasche quantity index,The Laspeyres
quantity index uses the base-year prices as the reference prices,and the
Paasche quantity index uses current prices as reference prices.
Example,In the example above,the Laspeyres quantity index is the ratio
of the cost of the 1990 bundle at 1980 prices to the cost of the 1980 bundle
at 1980 prices,The cost of the 1990 bundle at 1980 prices is 12 and the
cost of the 1980 bundle at 1980 prices is 10,so the Laspeyres quantity
index is 12/10,The cost of the 1990 bundle at 1990 prices is 18 and
the cost of the 1980 bundle at 1990 prices is 16,Therefore the Paasche
quantity index is 18/16.
When you have completed this section,we hope that you will be able
to do the following:
Decide from given data about prices and consumption whether one
commodity bundle is preferred to another.
Given price and consumption data,calculate Paasche and Laspeyres
price and quantity indexes.
Use the weak axiom of revealed preferences to make logical deduc-
tions about behavior.
Use the idea of revealed preference to make comparisons of well-being
across time and across countries.
7.1 (0) When prices are (4;6),Goldie chooses the bundle (6;6),and
when prices are (6;3),she chooses the bundle (10;0).
(a) On the graph below,show Goldie’s rst budget line in red ink and
her second budget line in blue ink,Mark her choice from the rst budget
with the label A,and her choice from the second budget with the label
B.
(b) Is Goldie’s behavior consistent with the weak axiom of revealed pref-
erence? No.
NAME 83
0 5 10 15 20
5
10
15
Good 1
Good 2
20
a
b
Blue line
Red line
7.2 (0) Freddy Frolic consumes only asparagus and tomatoes,which are
highly seasonal crops in Freddy’s part of the world,He sells umbrellas for
a living,which provides a fluctuating income depending on the weather.
But Freddy doesn’t mind; he never thinks of tomorrow,so each week he
spends as much as he earns,One week,when the prices of asparagus and
tomatoes were each $1 a pound,Freddy consumed 15 pounds of each,Use
blue ink to show the budget line in the diagram below,Label Freddy’s
consumption bundle with the letter A.
(a) What is Freddy’s income? $30.
(b) The next week the price of tomatoes rose to $2 a pound,but the price
of asparagus remained at $1 a pound,By chance,Freddy’s income had
changed so that his old consumption bundle of (15,15) was just a ordable
at the new prices,Use red ink to draw this new budget line on the graph
below,Does your new budget line go through the point A? Yes.
What is the slope of this line1=2.
(c) How much asparagus can he a ord now if he spent all of his income
on asparagus? 45 pounds.
(d) What is Freddy’s income now? $45.
84 REVEALED PREFERENCE (Ch,7)
(e) Use pencil to shade the bundles of goods on Freddy’s new red budget
line that he de nitely will not purchase with this budget,Is it possible
that he would increase his consumption of tomatoes when his budget
changes from the blue line to the red one? No.
010203040
10
20
30
Asparagus
Tomatoes
40
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
a
Blue line
Red line
Pencil
shading
7.3 (0) Pierre consumes bread and wine,For Pierre,the price of bread
is 4 francs per loaf,and the price of wine is 4 francs per glass,Pierre has
an income of 40 francs per day,Pierre consumes 6 glasses of wine and 4
loaves of bread per day.
Bob also consumes bread and wine,For Bob,the price of bread is
1/2 dollar per loaf and the price of wine is 2 dollars per glass,Bob has
an income of $15 per day.
(a) If Bob and Pierre have the same tastes,can you tell whether Bob is
better o than Pierre or vice versa? Explain,Bob is better
off,He can afford Pierre’s bundle and
still have income left.
(b) Suppose prices and incomes for Pierre and Bob are as above and that
Pierre’s consumption is as before,Suppose that Bob spends all of his
income,Give an example of a consumption bundle of wine and bread such
that,if Bob bought this bundle,we would know that Bob’s tastes are not
the same as Pierre’s tastes,7.5 wine and 0 bread,for
example,If they had the same preferences,
NAME 85
this violates WARP,since each can afford
but rejects the other’s bundle.
7.4 (0) Here is a table of prices and the demands of a consumer named
Ronald whose behavior was observed in 5 di erent price-income situa-
tions.
Situation p
1
p
2
x
1
x
2
A 1 1 5 35
B 1 2 35 10
C 1 1 10 15
D 3 1 5 15
E 1 2 10 10
(a) Sketch each of his budget lines and label the point chosen in each case
by the letters A,B,C,D,and E.
(b) Is Ronald’s behavior consistent with the Weak Axiom of Revealed
Preference? Yes.
(c) Shade lightly in red ink all of the points that you are certain are worse
for Ronald than the bundle C.
(d) Suppose that you are told that Ronald has convex and monotonic
preferences and that he obeys the strong axiom of revealed preference.
Shade lightly in blue ink all of the points that you are certain are at least
as good as the bundle C.
010203040
10
20
30
x1
x2
40
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyy
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,
,
,
,,
,,
e
d c
b
a
Red shading
Blue shading
86 REVEALED PREFERENCE (Ch,7)
7.5 (0) Horst and Nigel live in di erent countries,Possibly they have
di erent preferences,and certainly they face di erent prices,They each
consume only two goods,x and y,Horst has to pay 14 marks per unit of
x and 5 marks per unit of y,Horst spends his entire income of 167 marks
on 8 units of x and 11 units of y,Good x costs Nigel 9 quid per unit and
good y costs him 7 quid per unit,Nigel buys 10 units of x and 9 units of
y.
(a) Which prices and income would Horst prefer,Nigel’s income and prices
or his own,or is there too little information to tell? Explain your answer.
Horst prefers Nigel’s budget to his own.
With Nigel’s budget,he can afford his own
bundle with money left over.
(b) Would Nigel prefer to have Horst’s income and prices or his own,or
is there too little information to tell? There is too little
information to tell.
7.6 (0) Here is a table that illustrates some observed prices and choices
for three di erent goods at three di erent prices in three di erent situa-
tions.
Situation p
1
p
2
p
3
x
1
x
2
x
3
A 1 2 8 2 1 3
B 4 1 8 3 4 2
C 3 1 2 2 6 2
(a) We will ll in the table below as follows,Where i and j stand for any
of the letters A,B,and C in Row i and Column j of the matrix,write
the value of the Situation-j bundle at the Situation-i prices,For example,
in Row A and Column A,we put the value of the bundle purchased in
Situation A at Situation A prices,From the table above,we see that in
Situation A,the consumer bought bundle (2;1;3) at prices (1;2;8),The
cost of this bundle A at prices A is therefore (1 2)+(2 1)+(8 3) = 28,
so we put 28 in Row A,Column A,In Situation B the consumer bought
bundle (3;4;2),The value of the Situation-B bundle,evaluated at the
situation-A prices is (1 3) + (2 4) + (8 2) = 27,so put 27 in Row
A,Column B,We have lled in some of the boxes,but we leave a few for
you to do.
NAME 87
Prices=Quantities A B C
A 28 27 30
B 33 32 30
C 13 17 16
(b) Fill in the entry in Row i and Column j of the table below with a D if
the Situation-i bundle is directly revealed preferred to the Situation-j bun-
dle,For example,in Situation A the consumer’s expenditure is $28,We
see that at Situation-A prices,he could also a ord the Situation-B bun-
dle,which cost 27,Therefore the Situation-A bundle is directly revealed
preferred to the Situation-B bundle,so we put a D in Row A,Column
B,Now let us consider Row B,Column A,The cost of the Situation-B
bundle at Situation-B prices is 32,The cost of the Situation-A bundle
at Situation-B prices is 33,So,in Situation B,the consumer could not
a ord the Situation-A bundle,Therefore Situation B is not directly re-
vealed preferred to Situation A,So we leave the entry in Row B,Column
A blank,Generally,there is a D in Row i Column j if the number in the
ij entry of the table in part (a) is less than or equal to the entry in Row
i,Columni,There will be a violation of WARP if for some i and j,there
is a D in Row i Column j and also a D in Row j,Columni.Dothese
observations violate WARP? No.
Situation A B C
A | D I
B I | D
C D I |
(c) Now ll in Row i,Columnj with an I if observation i is indirectly
revealed preferred to j,Do these observations violate the Strong Axiom
of Revealed Preference? Yes.
7.7 (0) It is January,and Joe Grad,whom we met in Chapter 5,is
shivering in his apartment when the phone rings,It is Mandy Manana,
one of the students whose price theory problems he graded last term.
Mandy asks if Joe would be interested in spending the month of February
in her apartment,Mandy,who has switched majors from economics to
political science,plans to go to Aspen for the month and so her apartment
will be empty (alas),All Mandy asks is that Joe pay the monthly service
charge of $40 charged by her landlord and the heating bill for the month
of February,Since her apartment is much better insulated than Joe’s,
it only costs $1 per month to raise the temperature by 1 degree,Joe
88 REVEALED PREFERENCE (Ch,7)
thanks her and says he will let her know tomorrow,Joe puts his earmu s
back on and muses,If he accepts Mandy’s o er,he will still have to pay
rent on his current apartment but he won’t have to heat it,If he moved,
heating would be cheaper,but he would have the $40 service charge,The
outdoor temperature averages 20 degrees Fahrenheit in February,and it
costs him $2 per month to raise his apartment temperature by 1 degree.
Joe is still grading homework and has $100 a month left to spend on food
and utilities after he has paid the rent on his apartment,The price of
food is still $1 per unit.
(a) Draw Joe’s budget line for February if he moves to Mandy’s apartment
and on the same graph,draw his budget line if he doesn’t move.
(b) After drawing these lines himself,Joe decides that he would be better
o not moving,From this,we can tell,using the principle of revealed
preference that Joe must plan to keep his apartment at a temperature of
less than 60 degrees.
(c) Joe calls Mandy and tells her his decision,Mandy o ers to pay half
the service charge,Draw Joe’s budget line if he accepts Mandy’s new
o er,Joe now accepts Mandy’s o er,From the fact that Joe accepted
this o er we can tell that he plans to keep the temperature in Mandy’s
apartment above 40 degrees.
0 10 20 30 40 50 60 70 80
20
40
60
80
100
120
Food
Don't move budget line
Move budget line
'New offer'
budget line
Temperature
7.8 (0) Lord Peter Pommy is a distinguished criminologist,schooled
in the latest techniques of forensic revealed preference,Lord Peter is in-
vestigating the disappearance of Sir Cedric Pinchbottom who abandoned
his aging mother on a street corner in Liverpool and has not been seen
NAME 89
since,Lord Peter has learned that Sir Cedric left England and is living
under an assumed name somewhere in the Empire,There are three sus-
pects,R,Preston McAfee of Brass Monkey,Ontario,Canada,Richard
Manning of North Shag,New Zealand,and Richard Stevenson of Gooey
Shoes,Falkland Islands,Lord Peter has obtained Sir Cedric’s diary,which
recorded his consumption habits in minute detail,By careful observation,
he has also discovered the consumption behavior of McAfee,Manning,and
Stevenson,All three of these gentlemen,like Sir Cedric,spend their entire
incomes on beer and sausage,Their dossiers reveal the following:
Sir Cedric Pinchbottom | In the year before his departure,Sir
Cedric consumed 10 kilograms of sausage and 20 liters of beer per
week,At that time,beer cost 1 English pound per liter and sausage
cost 1 English pound per kilogram.
R,Preston McAfee | McAfee is known to consume 5 liters of beer
and 20 kilograms of sausage,In Brass Monkey,Ontario beer costs 1
Canadian dollar per liter and sausage costs 2 Canadian dollars per
kilogram.
Richard Manning | Manning consumes 5 kilograms of sausage
and 10 liters of beer per week,In North Shag,a liter of beer costs
2 New Zealand dollars and sausage costs 2 New Zealand dollars per
kilogram.
Richard Stevenson | Stevenson consumes 5 kilograms of sausage
and 30 liters of beer per week,In Gooey Shoes,a liter of beer costs 10
Falkland Island pounds and sausage costs 20 Falkland Island pounds
per kilogram.
(a) Draw the budget line for each of the three fugitives,using a di erent
color of ink for each one,Label the consumption bundle that each chooses.
On this graph,superimpose Sir Cedric’s budget line and the bundle he
chose.
90 REVEALED PREFERENCE (Ch,7)
010203040
10
20
30
Beer
Sausage
40
McAfee
Manning
Pinchbottom
Stevenson
(b) After pondering the dossiers for a few moments,Lord Peter an-
nounced,\Unless Sir Cedric has changed his tastes,I can eliminate one
of the suspects,Revealed preference tells me that one of the suspects is
innocent." Which one? McAfee.
(c) After thinking a bit longer,Lord Peter announced,\If Sir Cedric
left voluntarily,then he would have to be better o than he was before.
Therefore if Sir Cedric left voluntarily and if he has not changed his tastes,
he must be living in Falklands.
7.9 (1) The McCawber family is having a tough time making ends meet.
They spend $100 a week on food and $50 on other things,A new welfare
program has been introduced that gives them a choice between receiving
a grant of $50 per week that they can spend any way they want,and
buying any number of $2 food coupons for $1 apiece,(They naturally
are not allowed to resell these coupons.) Food is a normal good for the
McCawbers,As a family friend,you have been asked to help them decide
on which option to choose,Drawing on your growing fund of economic
knowledge,you proceed as follows.
(a) On the graph below,draw their old budget line in red ink and label
their current choice C,Now use black ink to draw the budget line that
they would have with the grant,If they chose the coupon option,how
much food could they buy if they spent all their money on food coupons?
$300,How much could they spend on other things if they bought
NAME 91
no food? $150,Use blue ink to draw their budget line if they choose
the coupon option.
0 30 60 90 120 150 180 210 240
30
60
90
120
150
180
Other things
Food
c
a
b
Black budget line
Blue budget line
Red budget line
(b) Using the fact that food is a normal good for the McCawbers,and
knowing what they purchased before,darken the portion of the black
budget line where their consumption bundle could possibly be if they
chose the lump-sum grant option,Label the ends of this line segment A
and B.
(c) After studying the graph you have drawn,you report to the McCaw-
bers,\I have enough information to be able to tell you which choice to
make,You should choose the coupon because you can
get more food even when other expenditure
is constant.
(d) Mr,McCawber thanks you for your help and then asks,\Would you
have been able to tell me what to do if you hadn’t known whether food
was a normal good for us?" On the axes below,draw the same budget
lines you drew on the diagram above,but draw indi erence curves for
which food is not a normal good and for which the McCawbers would be
better o with the program you advised them not to take.
92 REVEALED PREFERENCE (Ch,7)
0 30 60 90 120 150 180 210 240
30
60
90
120
150
180
Other things
Food
c
a
b
Black budget
line
Blue budget line
Red budget line
7.10 (0) In 1933,the Swedish economist Gunnar Myrdal (who later won
a Nobel prize in economics) and a group of his associates at Stockholm
University collected a fantastically detailed historical series of prices and
price indexes in Sweden from 1830 until 1930,This was published in a
book called The Cost of Living in Sweden,In this book you can nd
100 years of prices for goods such as oat groats,hard rye bread,salted
cod sh,beef,reindeer meat,birchwood,tallow candles,eggs,sugar,and
co ee,There are also estimates of the quantities of each good consumed
by an average working-class family in 1850 and again in 1890.
The table below gives prices in 1830,1850,1890,and 1913,for flour,
meat,milk,and potatoes,In this time period,these four staple foods
accounted for about 2/3 of the Swedish food budget.
Prices of Staple Foods in Sweden
Prices are in Swedish kronor per kilogram,except for milk,which is in
Swedish kronor per liter.
1830 1850 1890 1913
Grain Flour,14,14,16,19
Meat,28,34,66,85
Milk,07,08,10,13
Potatoes,032,044,051,064
Based on the tables published in Myrdal’s book,typical consump-
tion bundles for a working-class Swedish family in 1850 and 1890 are
listed below,(The reader should be warned that we have made some
NAME 93
approximations and simpli cations to draw these simple tables from the
much more detailed information in the original study.)
Quantities Consumed by a Typical Swedish Family
Quantities are measured in kilograms per year,except for milk,which is
measured in liters per year.
1850 1890
Grain Flour 165 220
Meat 22 42
Milk 120 180
Potatoes 200 200
(a) Complete the table below,which reports the annual cost of the 1850
and 1890 bundles of staple foods at various years’ prices.
Cost of 1850 and 1890 Bundles at Various Years’ Prices
Cost 1850 bundle 1890 bundle
Cost at 1830 Prices 44.1 61.6
Cost at 1850 Prices 49.0 68.3
Cost at 1890 Prices 63.1 91.1
Cost at 1913 Prices 78.5 113.7
(b) Is the 1890 bundle revealed preferred to the 1850 bundle? Yes.
(c) The Laspeyres quantity index for 1890 with base year 1850 is the ratio
of the value of the 1890 bundle at 1850 prices to the value of the 1850
bundle at 1850 prices,Calculate the Laspeyres quantity index of staple
food consumption for 1890 with base year 1850,1.39.
(d) The Paasche quantity index for 1890 with base year 1850 is the ratio
of the value of the 1890 bundle at 1890 prices to the value of the 1850
bundle at 1890 prices,Calculate the Paasche quantity index for 1890 with
base year 1850,1.44.
(e) The Laspeyres price index for 1890 with base year 1850 is calculated
using 1850 quantities for weights,Calculate the Laspeyres price index for
1890 with base year 1850 for this group of four staple foods,1.29.
94 REVEALED PREFERENCE (Ch,7)
(f) If a Swede were rich enough in 1850 to a ord the 1890 bundle of staple
foods in 1850,he would have to spend 1.39 timesasmuchonthese
foods as does the typical Swedish worker of 1850.
(g) If a Swede in 1890 decided to purchase the same bundle of food staples
that was consumed by typical 1850 workers,he would spend the fraction
.69 of the amount that the typical Swedish worker of 1890 spends on
these goods.
7.11 (0) This question draws from the tables in the previous question.
Let us try to get an idea of what it would cost an American family at
today’s prices to purchase the bundle consumed by an average Swedish
family in 1850,In the United States today,the price of flour is about $.40
per kilogram,the price of meat is about $3.75 per kilogram,the price of
milk is about $.50 per liter,and the price of potatoes is about $1 per
kilogram,We can also compute a Laspeyres price index across time and
across countries and use it to estimate the value of a current US dollar
relative to the value of an 1850 Swedish kronor.
(a) How much would it cost an American at today’s prices to buy the bun-
dle of staple food commodities purchased by an average Swedish working-
class family in 1850? $408.
(b) Myrdal estimates that in 1850,about 2=3 of the average family’s
budget was spent on food,In turn,the four staples discussed in the last
question constitute about 2=3 of the average family’s food budget,If the
prices of other goods relative to the price of the food staples are similar
in the United States today to what they were in Sweden in 1850,about
how much would it cost an American at current prices to consume the
same overall consumption bundle consumed by a Swedish working-class
family in 1850? $919.
(c) Using the Swedish consumption bundle of staple foods in 1850 as
weights,calculate a Laspeyres price index to compare prices in current
American dollars relative to prices in 1850 Swedish kronor,8.35,If
we use this to estimate the value of current dollars relative to 1850 Swedish
kronor,we would say that a U.S,dollar today is worth about,12 1850
Swedish kronor.
7.12 (0) Suppose that between 1960 and 1985,the price of all goods
exactly doubled while every consumer’s income tripled.
NAME 95
(a) Would the Laspeyres price index for 1985,with base year 1960 be less
than 2,greater than 2,or exactly equal to 2? Exactly 2,What
about the Paasche price index? Exactly 2.
(b) If bananas are a normal good,will total banana consumption in-
crease? Yes,If everybody has homothetic preferences,can you de-
termine by what percentage total banana consumption must have in-
creased? Explain,Yes,by 50%,Everybody’s budget
line shifted out by 50%,With homothetic
preferences,the consumption of each good
increases in the same proportion.
7.13 (1) Norm and Sheila consume only meat pies and beer,Meat pies
used to cost $2 each and beer was $1 per can,Their gross income used
to be $60 per week,but they had to pay an income tax of $10,Use red
ink to sketch their old budget line for meat pies and beer.
02030405060
10
20
30
40
50
60
10
Pies
Beer
Black
budget
line
Red budget line
Blue budget line
96 REVEALED PREFERENCE (Ch,7)
(a) They used to buy 30 cans of beer per week and spent the rest of their
income on meat pies,How many meat pies did they buy? 10.
(b) The government decided to eliminate the income tax and to put a
sales tax of $1 per can on beer,raising its price to $2 per can,Assuming
that Norm and Sheila’s pre-tax income and the price of meat pies did not
change,draw their new budget line in blue ink.
(c) The sales tax on beer induced Norm and Sheila to reduce their beer
consumption to 20 cans per week,What happened to their consumption
of meat pies? Stayed the same--10,How much revenue
did this tax raise from Norm and Sheila? $20.
(d) This part of the problem will require some careful thinking,Suppose
that instead of just taxing beer,the government decided to tax both beer
andmeatpiesatthesame percentage rate,and suppose that the price
of beer and the price of meat pies each went up by the full amount of
the tax,The new tax rate for both goods was set high enough to raise
exactly the same amount of money from Norm and Sheila as the tax on
beer used to raise,This new tax collects $,50 for every bottle of beer
sold and $ 1 for every meat pie sold,(Hint,If both goods are
taxed at the same rate,the e ect is the same as an income tax.) How
large an income tax would it take to raise the same revenue as the $1 tax
on beer? $20,Now you can gure out how big a tax on each good
is equivalent to an income tax of the amount you just found.
(e) Use black ink to draw the budget line for Norm and Sheila that cor-
responds to the tax in the last section,Are Norm and Sheila better o
having just beer taxed or having both beer and meat pies taxed if both
sets of taxes raise the same revenue? Both,(Hint,Try to use the
principle of revealed preference.)
Chapter 8 NAME
Slutsky Equation
Introduction,It is useful to think of a price change as having two dis-
tinct e ects,a substitution e ect and an income e ect,The substitution
e ect of a price change is the change that would have happened if in-
come changed at the same time in such a way that the consumer could
exactly a ord her old consumption bundle,The rest of the change in the
consumer’s demand is called the income e ect,Why do we bother with
breaking a real change into the sum of two hypothetical changes? Because
we know things about the pieces that we wouldn’t know about the whole
without taking it apart,In particular,we know that the substitution ef-
fect of increasing the price of a good must reduce the demand for it,We
also know that the income e ect of an increase in the price of a good is
equivalent to the e ect of a loss of income,Therefore if the good whose
price has risen is a normal good,then both the income and substitution
e ect operate to reduce demand,But if the good is an inferior good,
income and substitution e ects act in opposite directions.
Example,A consumer has the utility function U(x
1;x
2
)=x
1
x
2
and an
income of $24,Initially the price of good 1 was $1 and the price of good 2
was $2,Then the price of good 2 rose to $3 and the price of good 1 stayed
at $1,Using the methods you learned in Chapters 5 and 6,you will nd
that this consumer’s demand function for good 1 is D
1
(p
1;p
2;m)=m=2p
1
and her demand function for good 2 is D
2
(p
1;p
2;m)=m=2p
2
,Therefore
initially she will demand 12 units of good 1 and 6 units of good 2,If,
when the price of good 2 rose to $3,her income had changed enough so
that she could exactly a ord her old bundle,her new income would have
to be (1 12)+ (3 6) = $30,At an income of $30,at the new prices,she
would demand D
2
(1;3;30) = 5 units of good 2,Before the change she
bought 6 units of 2,so the substitution e ect of the price change on her
demand for good 2 is 5?6=?1 units,Our consumer’s income didn’t
really change,Her income stayed at $24,Her actual demand for good 2
after the price change was D
2
(1;3;24) = 4,The di erence between what
she actually demanded after the price change and what she would have
demanded if her income had changed to let her just a ord the old bundle
is the income e ect,In this case the income e ect is 4?5=?1 units
of good 2,Notice that in this example,both the income e ect and the
substitution e ect of the price increase worked to reduce the demand for
good 2.
When you have completed this workout,we hope that you will be
able to do the following:
Find Slutsky income e ect and substitution e ect of a speci c price
change if you know the demand function for a good.
Show the Slutsky income and substitution e ects of a price change
98 SLUTSKY EQUATION (Ch,8)
on an indi erence curve diagram.
Show the Hicks income and substitution e ects of a price change on
an indi erence curve diagram.
Find the Slutsky income and substitution e ects for special util-
ity functions such as perfect substitutes,perfect complements,and
Cobb-Douglas.
Use an indi erence-curve diagram to show how the case of a Gi en
good might arise.
Show that the substitution e ect of a price increase unambiguously
decreases demand for the good whose price rose.
Apply income and substitution e ects to draw some inferences about
behavior.
8.1 (0) Gentle Charlie,vegetarian that he is,continues to consume
apples and bananas,His utility function is U(x
A;x
B
)=x
A
x
B
,The price
of apples is $1,the price of bananas is $2,and Charlie’s income is $40 a
day,The price of bananas suddenly falls to $1.
(a) Before the price change,Charlie consumed 20 apples and
10 bananas per day,On the graph below,use black ink to draw
Charlie’s original budget line and put the label A on his chosen consump-
tion bundle.
(b) If,after the price change,Charlie’s income had changed so that he
could exactly a ord his old consumption bundle,his new income would
have been 30,With this income and the new prices,Charlie would
consume 15 apples and 15 bananas,Use red ink to draw
the budget line corresponding to this income and these prices,Label the
bundle that Charlie would choose at this income and the new prices with
the letter B.
(c) Does the substitution e ect of the fall in the price of bananas make
him buy more bananas or fewer bananas? More bananas,How
many more or fewer? 5 more.
(d) After the price change,Charlie actually buys 20 apples and
20 bananas,Use blue ink to draw Charlie’s actual budget line
after the price change,Put the label C on the bundle that he actually
chooses after the price change,Draw 3 horizontal lines on your graph,one
from A to the vertical axis,one from B to the vertical axis,and one from
C to the vertical axis,Along the vertical axis,label the income e ect,the
substitution e ect,and the total e ect on the demand for bananas,Is the
NAME 99
blue line parallel to the red line or the black line that you drew before?
Red line.
010203040
10
20
30
Apples
Bananas
40
a
b
c
Total
Substitution
Income
Red line
Blue line
Black line
(e) The income e ect of the fall in the price of bananas on Charlie’s
demand for bananas is the same as the e ect of an (increase,decrease)
increase in his income of $ 10 per day,Does the income
e ect make him consume more bananas or fewer? More,How many
more or how many fewer? 5 more.
(f) Does the substitution e ect of the fall in the price of bananas make
Charlie consume more apples or fewer? Fewer,How many more or
fewer? 5 fewer,Does the income e ect of the fall in the price of
bananas make Charlie consume more apples or fewer? More,What
is the total e ect of the change in the price of bananas on the demand for
apples? Zero.
8.2 (0) Neville’s passion is ne wine,When the prices of all other
goods are xed at current levels,Neville’s demand function for high-
quality claret is q =,02m?2p,wherem is his income,p is the price
of claret (in British pounds),and q is the number of bottles of claret that
he demands,Neville’s income is 7,500 pounds,and the price of a bottle
of suitable claret is 30 pounds.
100 SLUTSKY EQUATION (Ch,8)
(a) How many bottles of claret will Neville buy? 90.
(b) If the price of claret rose to 40 pounds,how much income would Neville
have to have in order to be exactly able to a ord the amount of claret
and the amount of other goods that he bought before the price change?
8,400 pounds,At this income,and a price of 40 pounds,how
many bottles would Neville buy? 88 bottles.
(c) At his original income of 7,500 and a price of 40,how much claret
would Neville demand? 70 bottles.
(d) When the price of claret rose from 30 to 40,the number of bottles
that Neville demanded decreased by 20,The substitution e ect (in-
creased,reduced) reduced his demand by 2 bottles and
the income e ect (increased,reduced) reduced his demand by 18
bottles.
8.3 (0) Note,Do this problem only if you have read the section entitled
\Another Substitution E ect" that describes the \Hicks substitution ef-
fect",Consider the gure below,which shows the budget constraint and
the indi erence curves of good King Zog,Zog is in equilibrium with an
income of $300,facing prices p
X
=$4andp
Y
= $10.
C
E
F
Y
X
30
22.5
30 35 43 9075 120
NAME 101
(a) How much X does Zog consume? 30.
(b) If the price of X falls to $2.50,while income and the price of Y stay
constant,how much X will Zog consume? 35.
(c) How much income must be taken away from Zog to isolate the Hicksian
income and substitution e ects (i.e.,to make him just able to a ord to
reach his old indi erence curve at the new prices)? $75.
(d) The total e ect of the price change is to change consumption from
the point E to the point C.
(e) The income e ect corresponds to the movement from the point
F to the point C while the substitution e ect corre-
sponds to the movement from the point E to the point F.
(f) Is X a normal good or an inferior good? An inferior
good.
(g) On the axes below,sketch an Engel curve and a demand curve for
Good X that would be reasonable given the information in the graph
above,Be sure to label the axes on both your graphs.
Income
x
300
225
4330
102 SLUTSKY EQUATION (Ch,8)
Price
x
1
2
3
4
30
2.5
35
8.4 (0) Maude spends all of her income on delphiniums and hollyhocks.
She thinks that delphiniums and hollyhocks are perfect substitutes; one
delphinium is just as good as one hollyhock,Delphiniums cost $4 a unit
and hollyhocks cost $5 a unit.
(a) If the price of delphiniums decreases to $3 a unit,will Maude buy
more of them? Yes,What part of the change in consumption is due
to the income e ect and what part is due to the substitution e ect?
All due to income effect.
(b) If the prices of delphiniums and hollyhocks are respectively p
d
=$4
and p
h
= $5 and if Maude has $120 to spend,draw her budget line in
blue ink,Draw the highest indi erence curve that she can attain in red
ink,and label the point that she chooses as A.
NAME 103
010203040
10
20
30
Hollyhocks
Delphiniums
40
a
b
Red
curves
Black line
Blue line
(c) Now let the price of hollyhocks fall to $3 a unit,while the price of
delphiniums does not change,Draw her new budget line in black ink.
Draw the highest indi erence curve that she can now reach with red ink.
Label the point she chooses now as B.
(d) How much would Maude’s income have to be after the price of holly-
hocks fell,so that she could just exactly a ord her old commodity bundle
A? $120.
(e) When the price of hollyhocks fell to $3,what part of the change in
Maude’s demand was due to the income e ect and what part was due to
the substitution e ect? All substitution effect.
8.5 (1) Suppose that two goods are perfect complements,If the price
of one good changes,what part of the change in demand is due to the
substitution e ect,and what part is due to the income e ect? All
income effect.
8.6 (0) Douglas Corn eld’s demand function for good x is x(p
x;p
y;m)=
2m=5p
x
,His income is $1,000,the price of x is $5,and the price of y is
$20,If the price of x falls to $4,then his demand for x will change from
80 to 100.
(a) If his income were to change at the same time so that he could exactly
a ord his old commodity bundle at p
x
=4andp
y
= 20,what would his
new income be? 920,What would be his demand for x at this new
level of income,at prices p
x
=4andp
y
= 20? 92.
104 SLUTSKY EQUATION (Ch,8)
(b) The substitution e ect is a change in demand from 80 to
92,The income e ect of the price change is a change in demand from
92 to 100.
(c) On the axes below,use blue ink to draw Douglas Corn eld’s budget
line before the price change,Locate the bundle he chooses at these prices
on your graph and label this point A,Use black ink to draw Douglas
Corn eld’s budget line after the price change,Label his consumption
bundle after the change by B.
0 40 80 120 160 200 240 280 320
20
40
60
80
y
x
a
b
c
Blue line
Black line
Black line
(d) On the graph above,use black ink to draw a budget line with the new
prices but with an income that just allows Douglas to buy his old bundle,
A,Find the bundle that he would choose with this budget line and label
this bundle C.
8.7 (1) Mr,Consumer allows himself to spend $100 per month on
cigarettes and ice cream,Mr,C’s preferences for cigarettes and ice cream
are una ected by the season of the year.
(a) In January,the price of cigarettes was $1 per pack,while ice cream
cost $2 per pint,Faced with these prices,Mr,C bought 30 pints of ice
cream and 40 packs of cigarettes,Draw Mr,C’s January budget line with
blue ink and label his January consumption bundle with the letter J.
NAME 105
10 20 30 40 50 60 70 80 90 100
10
20
30
40
50
60
70
80
90
100
J
F
Blue
budget
line
Red budget line
Black budget line
A
Pencil
budget
line
Cigarettes
Ice cream
0
(b) In February,Mr,C again had $100 to spend and ice cream still cost
$2 per pint,but the price of cigarettes rose to $1.25 per pack,Mr,C
consumed 30 pints of ice cream and 32 packs of cigarettes,Draw Mr,C’s
February budget line with red ink and mark his February bundle with
the letter F,The substitution e ect of this price change would make him
buy (less,more,the same amount of) less cigarettes and (less,more,
thesameamountof) more ice cream,Since this is true and the total
change in his ice cream consumption was zero,it must be that the income
e ect of this price change on his consumption of ice cream makes him buy
(more,less,the same amount of) less ice cream,The income
e ect of this price change is like the e ect of an (increase,decrease)
106 SLUTSKY EQUATION (Ch,8)
decrease in his income,Therefore the information we have suggests
that ice cream is a(n) (normal,inferior,neutral) normal good.
(c) In March,Mr,C again had $100 to spend,Ice cream was on sale for $1
per pint,Cigarette prices,meanwhile,increased to $1.50 per pack,Draw
his March budget line with black ink,Is he better o than in January,
worse o,or can you not make such a comparison? Better off.
How does your answer to the last question change if the price of cigarettes
had increased to $2 per pack? Now you can’t tell.
8.8 (1) This problem continues with the adventures of Mr,Consumer
from the previous problem.
(a) In April,cigarette prices rose to $2 per pack and ice cream was still
on sale for $1 per pint,Mr,Consumer bought 34 packs of cigarettes and
32 pints of ice cream,Draw his April budget line with pencil and label
his April bundle with the letter A,Was he better o or worse o than
in January? Worse off,Was he better o or worse o than in
February,or can’t one tell? Better off.
(b) In May,cigarettes stayed at $2 per pack and as the sale on ice cream
ended,the price returned to $2 per pint,On the way to the store,how-
ever,Mr,C found $30 lying in the street,He then had $130 to spend on
cigarettes and ice cream,Draw his May budget with a dashed line,With-
out knowing what he purchased,one can determine whether he is better
o than he was in at least one previous month,Which month or months?
He is better off in May than in February.
(c) In fact,Mr,C buys 40 packs of cigarettes and 25 pints of ice cream
in May,Does he satisfy WARP? No.
8.9 (2) In the last chapter,we studied a problem involving food prices
and consumption in Sweden in 1850 and 1890.
(a) Potato consumption was the same in both years,Real income must
have gone up between 1850 and 1890,since the amount of food staples
purchased,as measured by either the Laspeyres or the Paasche quantity
index,rose,The price of potatoes rose less rapidly than the price of either
meat or milk,and at about the same rate as the price of grain flour,So
real income went up and the price of potatoes went down relative to
other goods,From this information,determine whether potatoes were
NAME 107
most likely a normal or an inferior good,Explain your answer.
If potatoes were a normal good,both the
fall in potato price and the rise in income
would increase the demand for potatoes,But
potato consumption did not increase,So
potatoes must be an inferior good.
(b) Can one also tell from these data whether it is likely that pota-
toes were a Gi en good? If potatoes were a
Giffen good,then the fall in the price
of potatoes would decrease demand and the
rise in income would also decrease demand
for potatoes,But potato demand stayed
constant,So potatoes were probably not a
Giffen good.
8.10 (1) Agatha must travel on the Orient Express from Istanbul to
Paris,The distance is 1,500 miles,A traveler can choose to make any
fraction of the journey in a rst-class carriage and travel the rest of the
way in a second-class carriage,The price is 10 cents a mile for a second-
class carriage and 20 cents a mile for a rst-class carriage,Agatha much
prefers rst-class to second-class travel,but because of a misadventure in
an Istanbul bazaar,she has only $200 left with which to buy her tickets.
Luckily,she still has her toothbrush and a suitcase full of cucumber sand-
wiches to eat on the way,Agatha plans to spend her entire $200 on her
tickets for her trip,She will travel rst class as much as she can a ord
to,but she must get all the way to Paris,and $200 is not enough money
to get her all the way to Paris in rst class.
(a) On the graph below,use red ink to show the locus of combinations
of rst- and second-class tickets that Agatha can just a ord to purchase
with her $200,Use blue ink to show the locus of combinations of rst-
and second-class tickets that are su cient to carry her the entire distance
from Istanbul to Paris,Locate the combination of rst- and second-class
miles that Agatha will choose on your graph and label it A.
108 SLUTSKY EQUATION (Ch,8)
0 400 800 1200 1600
400
800
1200
Second-class miles
First-class miles
1600
Red
line
Blue line
Black line
a
Pencil line
b
c
(b) Let m
1
be the number of miles she travels by rst-class coach and m
2
be the number of miles she travels by second-class coach,Write down two
equations that you can solve to nd the number of miles she chooses to
travel by rst-class coach and the number of miles she chooses to travel
by second-class coach.,2m
1
+,1m
2
= 200,m
1
+ m
2
=
1;500.
(c) The number of miles that she travels by second-class coach is
1,000.
(d) Just before she was ready to buy her tickets,the price of second-class
tickets fell to $.05 while the price of rst-class tickets remained at $.20.
On the graph that you drew above,use pencil to show the combinations
of rst-class and second-class tickets that she can a ord with her $200
at these prices,On your graph,locate the combination of rst-class and
second-class tickets that she would now choose,(Remember,she is going
to travel as much rst-class as she can a ord to and still make the 1,500
mile trip on $200.) Label this point B.Howmanymilesdoesshetravel
by second class now? 666.66,(Hint,For an exact solution you
will have to solve two linear equations in two unknowns.) Is second-class
travel a normal good for Agatha? No,Is it a Gi en good for her?
Yes.
NAME 109
8.11 (0) We continue with the adventures of Agatha,from the previous
problem,Just after the price change from $.10 per mile to $.05 per mile
for second-class travel,and just before she had bought any tickets,Agatha
misplaced her handbag,Although she kept most of her money in her sock,
the money she lost was just enough so that at the new prices,she could
exactly a ord the combination of rst- and second-class tickets that she
would have purchased at the old prices,How much money did she lose?
$50,On the graph you started in the previous problem,use black ink
to draw the locus of combinations of rst- and second-class tickets that
she can just a ord after discovering her loss,Label the point that she
chooses with a C,How many miles will she travel by second class now?
1,000.
(a) Finally,poor Agatha nds her handbag again,How many miles will
she travel by second class now (assuming she didn’t buy any tickets before
she found her lost handbag)? 666.66,When the price of second-
class tickets fell from $.10 to $.05,how much of a change in Agatha’s de-
mand for second-class tickets was due to a substitution e ect? None.
How much of a change was due to an income e ect333:33.
110 SLUTSKY EQUATION (Ch,8)
Chapter 9 NAME
Buying and Selling
Introduction,In previous chapters,we studied the behavior of con-
sumers who start out without owning any goods,but who had some money
with which to buy goods,In this chapter,the consumer has an initial en-
dowment,which is the bundle of goods the consumer owns before any
trades are made,A consumer can trade away from his initial endowment
by selling one good and buying the other.
The techniques that you have already learned will serve you well here.
To nd out how much a consumer demands at given prices,you nd his
budget line and then nd a point of tangency between his budget line and
an indi erence curve,To determine a budget line for a consumer who
is trading from an initial endowment and who has no source of income
other than his initial endowment,notice two things,First,the initial
endowment must lie on the consumer’s budget line,This is true because,
no matter what the prices are,the consumer can always a ord his initial
endowment,Second,if the prices are p
1
and p
2
,the slope of the budget
line must be?p
1
=p
2
,This is true,since for every unit of good 1 the
consumer gives up,he can get exactly p
1
=p
2
units of good 2,Therefore
if you know the prices and you know the consumer’s initial endowment,
then you can always write an equation for the consumer’s budget line.
After all,if you know one point on a line and you know its slope,you
can either draw the line or write down its equation,Once you have the
budget equation,you can nd the bundle the consumer chooses,using the
same methods you learned in Chapter 5.
Example,A peasant consumes only rice and sh,He grows some rice and
some sh,but not necessarily in the same proportion in which he wants
to consume them,Suppose that if he makes no trades,he will have 20
units of rice and 5 units of sh,The price of rice is 1 yuan per unit,and
the price of sh is 2 yuan per unit,The value of the peasant’s endowment
is (1 20) + (2 5) = 30,Therefore the peasant can consume any bundle
(R;F) such that (1 R)+(2 F) = 30.
Perhaps the most interesting application of trading from an initial
endowment is the theory of labor supply,To study labor supply,we
consider the behavior of a consumer who is choosing between leisure and
other goods,The only thing that is at all new or \tricky" is nding
the appropriate budget constraint for the problem at hand,To study
labor supply,we think of the consumer as having an initial endowment of
leisure,some of which he may trade away for goods.
In most applications we set the price of \other goods" at 1,The
wage rate is the price of leisure,The role that is played by income in
the ordinary consumer-good model is now played by \full income." A
worker’s full income is the income she would have if she chose to take no
leisure.
112 BUYING AND SELLING (Ch,9)
Example,Sherwin has 18 hours a day which he divides between labor and
leisure,He can work as many hours a day as he wishes for a wage of $5
per hour,He also receives a pension that gives him $10 a day whether he
works or not,The price of other goods is $1 per unit,If Sherwin makes no
trades at all,he will have 18 hours of leisure and 10 units of other goods.
Therefore Sherwin’s initial endowment is 18 hours of leisure a day and
$10 a day for other goods,Let R be the amount of leisure that he has per
day,and let C be the number of dollars he has to spend per day on other
goods,If his wage is $5 an hour,he can a ord to consume bundle (R;C)
if it costs no more per day than the value of his initial endowment,The
value of his initial endowment (his full income) is $10 + ($5 18) = $100
per day,Therefore Sherwin’s budget equation is 5R +C = 100.
9.1 (0) Abishag Appleby owns 20 quinces and 5 kumquats,She has no
income from any other source,but she can buy or sell either quinces or
kumquats at their market prices,The price of kumquats is four times the
price of quinces,There are no other commodities of interest.
(a) How many quinces could she have if she was willing to do without
kumquats? 40,How many kumquats could she have if she was willing
to do without quinces? 10.
010203040
10
20
30
Quinces
Kumquats
40
Red line
Blue line
e
c
Squiggly
line
(b) Draw Abishag’s budget set,using blue ink,and label the endowment
bundle with the letter E,If the price of quinces is 1 and the price of
kumquats is 4,write Abishag’s budget equation,Q +4K =40.
If the price of quinces is 2 and the price of kumquats is 8,write Abishag’s
budget equation,2Q+8K =80,What e ect does doubling both
NAME 113
prices have on the set of commodity bundles that Abishag can a ord?
No effect.
(c) Suppose that Abishag decides to sell 10 quinces,Label her nal
consumption bundle in your graph with the letter C.
(d) Now,after she has sold 10 quinces and owns the bundle labelled C,
suppose that the price of kumquats falls so that kumquats cost the same
as quinces,On the diagram above,draw Abishag’s new budget line,using
red ink.
(e) If Abishag obeys the weak axiom of revealed preference,then there are
some points on her red budget line that we can be sure Abishag will not
choose,On the graph,make a squiggly line over the portion of Abishag’s
red budget line that we can be sure she will not choose.
9.2 (0) Mario has a small garden where he raises eggplant and tomatoes.
He consumes some of these vegetables,and he sells some in the market.
Eggplants and tomatoes are perfect complements for Mario,since the only
recipes he knows use them together in a 1:1 ratio,One week his garden
yielded 30 pounds of eggplant and 10 pounds of tomatoes,At that time
the price of each vegetable was $5 per pound.
(a) What is the monetary value of Mario’s endowment of vegetables?
$200.
(b) On the graph below,use blue ink to draw Mario’s budget line,Mario
ends up consuming 20 pounds of tomatoes and 20 pounds
of eggplant,Draw the indi erence curve through the consumption bundle
that Mario chooses and label this bundle A.
(c) Suppose that before Mario makes any trades,the price of tomatoes
rises to $15 a pound,while the price of eggplant stays at $5 a pound.
What is the value of Mario’s endowment now? $300,Draw his new
budget line,using red ink,He will now choose a consumption bundle
consisting of 15 tomatoes and 15 eggplants.
(d) Suppose that Mario had sold his entire crop at the market for a total
of $200,intending to buy back some tomatoes and eggplant for his own
consumption,Before he had a chance to buy anything back,the price of
tomatoes rose to $15,while the price of eggplant stayed at $5,Draw his
budget line,using pencil or black ink,Mario will now consume 10
pounds of tomatoes and 10 pounds of eggplant.
114 BUYING AND SELLING (Ch,9)
(e) Assuming that the price of tomatoes rose to $15 from $5 before Mario
made any transactions,the change in the demand for tomatoes due to
the substitution e ect was 0,The change in the demand for
tomatoes due to the ordinary income e ect was?10,The change
in the demand for tomatoes due to the endowment income e ect was
+5,The total change in the demand for tomatoes was?5.
010203040
10
20
30
40
Red line
Blue line
a
Black line
Tomatoes
Eggplant
9.3 (0) Lucetta consumes only two goods,A and B,Her only source of
income is gifts of these commodities from her many admirers,She doesn’t
always get these goods in the proportions in which she wants to consume
them in,but she can always buy or sell A at the price p
A
=1andB at
the price p
B
= 2,Lucetta’s utility function is U(a;b)=ab,wherea is the
amount of A she consumes and b istheamountofB she consumes.
(a) Suppose that Lucetta’s admirers give her 100 units of A and 200 units
of B,In the graph below,use red ink to draw her budget line,Label her
initial endowment E.
(b) What are Lucetta’s gross demands for A? 250 units,And for
B? 125 units.
(c) What are Lucetta’s net demands? 150 of A and?75 of
B.
NAME 115
(d) Suppose that before Lucetta has made any trades,the price of good
B falls to 1,and the price of good A stays at 1,Draw Lucetta’s budget
line at these prices on your graph,using blue ink.
(e) Does Lucetta’s consumption of good B rise or fall? It rises.
By how much? 25 units,What happens to Lucetta’s consumption
of good A? It decreases by 100 units.
0 225 300
100
200
300
400
500
600
75
Good A
Good B
Red budget line
Blue budget line
150
e
(f) Suppose that before the price of goodB fell,Lucetta had exchanged all
of her gifts for money,planning to use the money to buy her consumption
bundle later,How much good B will she choose to consume? 250
units,How much good A? 250 units.
(g) Explain why her consumption is di erent depending on whether she
was holding goods or money at the time of the price change,In
the former case,the fall in p
B
makes her
poorer because she is a net seller of good
B,In the latter case,her income doesn’t
116 BUYING AND SELLING (Ch,9)
change.
9.4 (0) Priscilla nds it optimal not to engage in trade at the going
prices and just consumes her endowment,Priscilla has no kinks in her
indi erence curves,and she is endowed with positive amounts of both
goods,Use pencil or black ink to draw a budget line and an indi erence
curve for Priscilla that would be consistent with these facts,Suppose that
the price of good 2 stays the same,but the price of good 1 falls below the
level at which Priscilla made no trade,Use blue ink to show her new bud-
get line,Priscilla satis es the weak axiom of revealed preference,Could
it happen that Priscilla will consume less of good 1 than before? Explain.
No,If p
1
falls,then with the new budget,
she can still afford her old bundle,She
could afford the bundles with less of good
1 than her endowment at the old prices,By
WARP she won’t choose them now.
X2
X1
e
Black
budget
line
Blue
budget
line
9.5 (0) Potatoes are a Gi en good for Paddy,who has a small potato
farm,The price of potatoes fell,but Paddy increased his potato consump-
tion,At rst this astonished the village economist,who thought that a
decrease in the price of a Gi en good was supposed to reduce demand.
But then he remembered that Paddy was a net supplier of potatoes,With
the help of a graph,he was able to explain Paddy’s behavior,In the axes
below,show how this could have happened,Put \potatoes" on the hor-
izontal axis and \all other goods" on the vertical axis,Label the old
equilibrium A and the new equilibrium B.DrawapointC so that the
Slutsky substitution e ect is the movement from A to C and the Slutsky
NAME 117
income e ect is the movement from C to B,On this same graph,you are
also going to have to show that potatoes are a Gi en good,To do this,
draw a budget line showing the e ect of a fall in the price of potatoes if
Paddy didn’t own any potatoes,but only had money income,Label the
new consumption point under these circumstances by D.(Warning:You
probably will need to make a few dry runs on some scratch paper to get
the whole story straight.)
All other goods
Potatoes
b
e
c
a
d
9.6 (0) Recall the travails of Agatha,from the previous chapter,She
had to travel 1,500 miles from Istanbul to Paris,She had only $200 with
which to buy rst-class and second-class tickets on the Orient Express
when the price of rst-class tickets was $.20 and the price of second-class
tickets was $.10,She bought tickets that enabled her to travel all the
way to Paris,with as many miles of rst class as she could a ord,After
she boarded the train,she discovered to her amazement that the price of
second-class tickets had fallen to $.05 while the price of rst-class tickets
remained at $.20,She also discovered that on the train it was possible to
buy or sell rst-class tickets for $.20 a mile and to buy or sell second-class
tickets for $.05 a mile,Agatha had no money left to buy either kind of
ticket,but she did have the tickets that she had already bought.
(a) On the graph below,use pencil to show the combinations of tickets
that she could a ord at the old prices,Use blue ink to show the combi-
nations of tickets that will take her exactly 1,500 miles,Mark the point
that she chooses with the letter A.
118 BUYING AND SELLING (Ch,9)
0 400 800 1200 1600
400
800
1200
Second-class miles
First-class miles
1600
Red line
Blue line
a
Pencil line
(b) Use red ink to draw a line showing all of the combinations of rst-class
and second-class travel that she can a ord when she is on the train,by
trading her endowment of tickets at the new prices that apply on board
the train.
(c) On your graph,show the point that she chooses after nding out
about the price change,Does she choose more,less,or the same amount
of second-class tickets? The same.
9.7 (0) Mr,Cog works in a machine factory,He can work as many
hours per day as he wishes at a wage rate of w.LetC be the number of
dollars he has to spend on consumer goods and let R be the number of
hours of leisure that he chooses.
(a) Suppose that Mr,Cog earns $8 an hour and has 18 hours per day
to devote to labor or leisure,and suppose that he has $16 of nonlabor
income per day,Write an equation for his budget between consumption
and leisure,C+8R = 160,Use blue ink to draw his budget line
in the graph below,His initial endowment is the point where he doesn’t
work,but keeps all of his leisure,Mark this point on the graph below with
the letter A,(When your draw your graph,remember that although Cog
can choose to work and thereby \sell" some of his endowment of leisure,
he cannot \buy leisure" by paying somebody else to loaf for him.) If Mr.
Cog has the utility function U(R;C)=CR,how many hours of leisure
per day will he choose? 10,How many hours per day will he work?
8.
NAME 119
01216204
40
80
120
160
200
240
4
Leisure
Consumption
Black budget line
Red budget line
Blue budget line
8
a
(b) Suppose that Mr,Cog’s wage rate rose to $12 an hour,Use red ink
to draw his new budget line,(He still has $16 a day in nonlabor income.)
If Mr,Cog continued to work exactly as many hours as he did before the
wage increase,how much more money would he have each day to spend
on consumption? $32,But with his new budget line,he chooses to
work 8
1
3
hours,and so his consumption actually increases by
$36.
(c) Suppose that Mr,Cog still receives $8 an hour but that his nonlabor
income rises to $48 per day,Use black ink to draw his budget line,How
many hours does he choose to work? 6.
(d) Suppose that Mr,Cog has a wage of $w perhourandanonlabor
income of $m,As before,assume that he has 18 hours to divide between
labor and leisure,Cog’s budget line has the equation C+wR = m+18w.
Using the same methods you used in the chapter on demand functions,
nd the amount of leisure that Mr,Cog will demand as a function of
wages and of nonlabor income,(Hint,Notice that this is just the same
as nding the demand for R when the price of R is w,the price of C is
120 BUYING AND SELLING (Ch,9)
1,and income is m +18w.) Mr,Cog’s demand function for leisure is
R(w;m)= 9+(m=2w),Mr,Cog’s supply function for labor is
therefore 18?R(w;m)= 9?m=2w.
9.8 (0) Fred has just arrived at college and is trying to gure out how to
supplement the meager checks that he gets from home,\How can anyone
live on $50 a week for spending money?" he asks,But he asks to no
avail,\If you want more money,get a job," say his parents,So Fred
glumly investigates the possibilities,The amount of leisure time that he
has left after allowing for necessary activities like sleeping,brushing teeth,
and studying for economics classes is 50 hours a week,He can work as
many hours per week at a nearby Taco Bell for $5 an hour,Fred’s utility
function for leisure and money to spend on consumption is U(C;L)=CL.
(a) Fred has an endowment that consists of $50 of money to spend on
consumption and 50 hours of leisure,some of which he might \sell"
for money,The money value of Fred’s endowment bundle,including both
his money allowance and the market value of his leisure time is therefore
$300,Fred’s \budget line" for leisure and consumption is like a budget
lineforsomeonewhocanbuythesetwogoodsatapriceof$1perunit
of consumption and a price of $5 per unit of leisure,The only
di erence is that this budget line doesn’t run all the way to the horizontal
axis.
(b) On the graph below,use black ink to show Fred’s budget line,(Hint:
Find the combination of leisure and consumption expenditures that he
could have if he didn’t work at all,Find the combination he would have
if he chose to have no leisure at all,What other points are on your graph?)
On the same graph,use blue ink to sketch the indi erence curves that
give Fred utility levels of 3,000,4,500,and 7,500.
(c) If you maximized Fred’s utility subject to the above budget,how
much consumption would he choose? $150,(Hint,Remember how
to solve for the demand function of someone with a Cobb-Douglas utility
function?)
(d) The amount of leisure that Fred will choose to consume is 30
hours,This means that his optimal labor supply will be 20 hours.
NAME 121
0304506
50
100
150
200
250
300
10
Leisure
Consumption
Black
budget
line
Blue
indifference
curve (3000)
20
Blue indifference curve
(4500)
Blue
indifference
curve
(7500)
9.9 (0) George Johnson earns $5 per hour in his job as a tru e snif-
fer,After allowing time for all of the activities necessary for bodily up-
keep,George has 80 hours per week to allocate between leisure and labor.
Sketch the budget constraints for George resulting from the following
government programs.
(a) There is no government subsidy or taxation of labor income,(Use
blue ink on the graph below.)
020406080
100
200
300
Leisure
Consumption
400
Blue budget line
Red budget line
122 BUYING AND SELLING (Ch,9)
(b) All individuals receive a lump-sum payment of $100 per week from the
government,There is no tax on the rst $100 per week of labor income.
But all labor income above $100 per week is subject to a 50% income tax.
(Use red ink on the graph above.)
(c) If an individual is not working,he receives a payment of $100,If he
works he does not receive the $100,and all wages are subject to a 50%
income tax,(Use blue ink on the graph below.)
020406080
100
200
300
Leisure
Consumption
400
Red budget line
Blue budget line
(d) The same conditions as in Part (c) apply,with the exception that the
rst 20 hours of labor are exempt from the tax,(Use red ink on the graph
above.)
(e) All wages are taxed at 50%,but as an incentive to encourage work,
the government gives a payment of $100 to anyone who works more than
20 hours a week,(Use blue ink on the graph below.)
NAME 123
020406080
100
200
300
Leisure
Consumption
400
Blue budget line
9.10 (0) In the United States,real wage rates in manufacturing have
risen steadily from 1890 to the present,In the period from 1890 to 1930,
the length of the work week was reduced dramatically,But after 1930,
despite continuing growth of real wage rates,the length of the work week
has stayed remarkably constant at about 40 hours per week.
Hourly Wages and Length of Work Week
in U.S,Manufacturing,1890-1983
Sources,Handbook of Labor Statistics,1983 and U.S,Economic History,
by Albert Niemi (p,274),Wages are in 1983 dollars.
Year Wage Hours Worked
1890 1.89 59.0
1909 2.63 51.0
1920 3.11 47.4
1930 3.69 42.1
1940 5.27 38.1
1950 6.86 40.5
1960 8.56 39.7
1970 9.66 39.8
1983 10.74 40.1
124 BUYING AND SELLING (Ch,9)
(a) Use these data to plot a \labor supply curve" on the graph below.
0304506
2
4
6
8
10
12
10
Hourly wage rate (in 1983 dollars)
20
Hours of work per week
(b) At wage rates below $4 an hour,does the workweek get longer or
shorter as the wage rate rises? Shorter.
(c) The data in this table could be consistent with workers choosing var-
ious hours a week to work,given the wage rate,An increase in wages
has both an endowment income e ect and a substitution e ect,The
substitution e ect alone would make for a (longer,shorter) longer
workweek,If leisure is a normal good,the endowment income e ect tends
to make people choose (more,less) more leisure and a (longer,shorter)
shorter workweek,At wage rates below $4 an hour,the (substi-
tution,endowment income) endowment income e ect appears
to dominate,How would you explain what happens at wages above $4
an hour? Substitution and endowment income
effects cancel each other out,so the
work week stays roughly constant.
(d) Between 1890 and 1909,wage rates rose by 39 percent,but
weekly earnings rose by only 20 percent,For this period,the
NAME 125
gain in earnings (overstates,understates) understates the gain
in worker’s wealth,since they chose to take (more,less) more leisure
in 1909 than they took in 1890.
9.11 (0) Professor Mohamed El Hodiri of the University of Kansas,in
a classic tongue-in-cheek article \The Economics of Sleeping," Manifold,
vol,17,1975,o ered the following analysis,\Assume there are 24 hours
in a day,Daily consumption being x and hours of sleep s,the consumer
maximizes a utility function of the form u = x
2
s,wherex = w(24?s),
with w being the wage rate."
(a) In El Hodiri’s model,does the optimal amount of sleeping increase,
decrease,or stay the same as wages increase? Stays the same.
(b) How many hours of sleep per day is best in El Hodiri’s model? 8.
9.12 (0) Wendy and Mac work in fast food restaurants,Wendy gets $4
an hour for the rst 40 hours that she works and $6 an hour for every
hour beyond 40 hours a week,Mac gets $5 an hour no matter how many
hours he works,Each has 80 hours a week to allocate between work and
leisure and neither has any income from sources other than labor,Each
has a utility function U = cr,wherec is consumption and r is leisure.
Each can choose the number of hours to work.
(a) How many hours will Mac choose to work? 40.
(b) Wendy’s budget \line" has a kink in it at the point wherer = 40
and c = 160,Use blue ink for the part of her budget line where she
would be if she does not work overtime,Use red ink for the part where
she would be if she worked overtime.
126 BUYING AND SELLING (Ch,9)
020406080
100
200
300
Leisure
Consumption
400
Blue part of line
Red part of line
(c) The blue line segment that you drew lies on a line with equation
c +4r = 320,The red line that you drew lies on a line with
equation c +6r = 400,(Hint,For the red line,you know one
point on the line and you know its slope.)
(d) If Wendy was paid $4 an hour no matter how many hours she worked,
she would work 40 hours and earn a total of $160 a week.
On your graph,use black ink to draw her indi erence curve through this
point.
(e) Will Wendy choose to work overtime? Yes,What is the best
choice for Wendy from the red budget line? (c;r)= (200;33:3).
How many hours a week will she work? 46.6.
(f) Suppose that the jobs are equally agreeable in all other respects,Since
Wendy and Mac have the same preferences,they will be able to agree
about who has the better job,Who has the better job? Mac,(Hint:
Calculate Wendy’s utility when she makes her best choice,Calculate what
her utility would be if she had Mac’s job and chose the best amount of
time to work.)
NAME 127
9.13 (1) Wally Piper is a plumber,He charges $10 per hour for his work
and he can work as many hours as he likes,Wally has no source of income
other than his labor,He has 168 hours per week to allocate between labor
and leisure,On the graph below,draw Wally’s budget set,showing the
various combinations of weekly leisure and income that Wally can a ord.
0 120 160 200 240
400
800
1200
1600
2000
2400
40
Income
80
Leisure
128
Red
budget
line
(a) Write down Wally’s budget equation,I +10R =1;680.
(b) While self-employed,Wally chose to work 40 hours per week,The
construction rm,Glitz and Drywall,had a rush job to complete,They
o ered Wally $20 an hour and said that he could work as many hours as
he liked,Wally still chose to work only 40 hours per week,On the graph
you drew above,draw in Wally’s new budget line.
(c) Wally has convex preferences and no kinks in his indi erence curves.
On the graph,draw indi erence curves that are consistent with his choice
of working hours when he was self-employed and when he worked for Glitz
and Drywall.
(d) Glitz and Drywall were in a great hurry to complete their project and
wanted Wally to work more than 40 hours,They decided that instead of
paying him $20 per hour,they would pay him only $10 an hour for the
rst 40 hours that he worked per week and $20 an hour for every hour of
128 BUYING AND SELLING (Ch,9)
\overtime" that he worked beyond 40 hours per week,On the graph that
you drew above,use red ink to sketch in Wally’s budget line with this
pay schedule,Draw the indi erence curve through the point that Wally
chooses with this pay schedule,Will Wally work more than 40 hours or
less than 40 hours per week with this pay schedule? More.
9.14 (1) Felicity loves her job,She is paid $10 an hour and can work
as many hours a day as she wishes,She chooses to work only 5 hours
a day,She says the job is so interesting that she is happier working at
this job than she would be if she made the same income without working
at all,A skeptic asks,\If you like the job better than not working at
all,why don’t you work more hours and earn more money?" Felicity,
who is entirely rational,patiently explains that work may be desirable on
average but undesirable on the margin,The skeptic insists that she show
him her indi erence curves and her budget line.
(a) On the axes below,draw a budget line and indi erence curves that are
consistent with Felicity’s behavior and her remarks,Put leisure on the
horizontal axis and income on the vertical axis,(Hint,Where does the
indi erence curve through her actual choice hit the vertical line l = 24?)
Income
Leisure
50
240
24
9.15 (2) Dudley’s utility function is U(C;R)=C?(12?R)
2
,whereR
is the amount of leisure he has per day,He has 16 hours a day to divide
between work and leisure,He has an income of $20 a day from nonlabor
sources,The price of consumption goods is $1 per unit.
(a) If Dudley can work as many hours a day as he likes but gets zero
wages for his labor,how many hours of leisure will he choose? 12.
NAME 129
(b) If Dudley can work as many hours a day as he wishes for a wage rate
of $10 an hour,how many hours will he choose to work? (Hint,Write
down Dudley’s budget constraint,Solve for his labor supply,Remember
that the amount of labor he wishes to supply is 16 minus his demand for
leisure.) 9.
(c) If Dudley’s nonlabor income decreased to $5 a day,how many hours
would he choose to work? 7.
(d) Suppose that Dudley has to pay an income tax of 20 percent on all
of his income,and suppose that his before-tax wage remained at $10 an
hour and his before-tax nonlabor income was $20 per day; how many
hours would he choose to work? 8.
130 BUYING AND SELLING (Ch,9)
Chapter 10 NAME
Intertemporal Choice
Introduction,The theory of consumer saving uses techniques that you
have already learned,In order to focus attention on consumption over
time,we will usually consider examples where there is only one consumer
good,but this good can be consumed in either of two time periods,We
will be using two \tricks." One trick is to treat consumption in period 1
and consumption in period 2 as two distinct commodities,If you make
period-1 consumption the numeraire,then the \price" of period-2 con-
sumption is the amount of period-1 consumption that you have to give
up to get an extra unit of period-2 consumption,This price turns out to
be 1=(1 +r),where r is the interest rate.
The second trick is in the way you treat income in the two di erent
periods,Suppose that a consumer has an income of m
1
in period 1 and
m
2
in period 2 and that there is no inflation,The total amount of period-
1 consumption that this consumer could buy,if he borrowed as much
money as he could possibly repay in period 2,is m
1
+
m
2
1+r
.Asyou
work the exercises and study the text,it should become clear that the
consumer’s budget equation for choosing consumption in the two periods
is always
c
1
+
c
2
1+r
= m
1
+
m
2
1+r
:
This budget constraint looks just like the standard budget constraint that
you studied in previous chapters,where the price of \good 1" is 1,the
price of \good 2" is 1=(1 + r),and \income" is m
1
+
m
2
(1+r)
,Therefore
if you are given a consumer’s utility function,the interest rate,and the
consumer’s income in each period,you can nd his demand for consump-
tion in periods 1 and 2 using the methods you already know,Having
solved for consumption in each period,you can also nd saving,since the
consumer’s saving is just the di erence between his period-1 income and
his period-1 consumption.
Example,A consumer has the utility function U(c
1;c
2
)=c
1
c
2
.Thereis
no inflation,the interest rate is 10%,and the consumer has income 100
in period 1 and 121 in period 2,Then the consumer’s budget constraint
c
1
+c
2
=1:1 = 100 + 121=1:1 = 210,The ratio of the price of good 1 to the
price of good 2 is 1 +r =1:1,The consumer will choose a consumption
bundle so that MU
1
=MU
2
=1:1,But MU
1
= c
2
and MU
2
= c
1
,sothe
consumer must choose a bundle such that c
2
=c
1
=1:1,Take this equation
together with the budget equation to solve for c
1
and c
2
,The solution is
c
1
= 105 and c
2
= 115:50,Since the consumer’s period-1 income is only
100,he must borrow 5 in order to consume 105 in period 1,To pay back
principal and interest in period 2,he must pay 5.50 out of his period-2
income of 121,This leaves him with 115.50 to consume.
You will also be asked to determine the e ects of inflation on con-
132 INTERTEMPORAL CHOICE (Ch,10)
sumer behavior,The key to understanding the e ects of inflation is to
see what happens to the budget constraint.
Example,Suppose that in the previous example,there happened to be
an inflation rate of 6%,and suppose that the price of period-1 goods is
1,Then if you save $1 in period 1 and get it back with 10% interest,
you will get back $1.10 in period 2,But because of the inflation,goods
in period 2 cost 1.06 dollars per unit,Therefore the amount of period-1
consumption that you have to give up to get a unit of period-2 consump-
tion is 1:06=1:10 =,964 units of period-2 consumption,If the consumer’s
money income in each period is unchanged,then his budget equation is
c
1
+,964c
2
= 210,This budget constraint is the same as the budget
constraint would be if there were no inflation and the interest rate were
r,where:964 = 1=(1 + r),The value of r that solves this equation is
known as the real rate of interest,In this case the real rate of interest
is about,038,When the interest rate and inflation rate are both small,
the real rate of interest is closely approximated by the di erence between
the nominal interest rate,(10% in this case) and the inflation rate (6%
in this case),that is,:038,10?:06,As you will see,this is not such a
good approximation if inflation rates and interest rates are large.
10.1 (0) Peregrine Pickle consumes (c
1;c
2
)andearns(m
1;m
2
)inperiods
1 and 2 respectively,Suppose the interest rate is r.
(a) Write down Peregrine’s intertemporal budget constraint in present
value terms,c
1
+
c
2
(1+r)
= m
1
+
m
2
(1+r)
.
(b) If Peregrine does not consume anything in period 1,what is the most
he can consume in period 2? m
1
(1+r)+m
2
,This is the (future
value,present value) of his endowment,Future value.
(c) If Peregrine does not consume anything in period 2,what is the most
he can consume in period 1? m
1
+
m
2
(1+r)
,This is the (future value,
present value) of his endowment,Present value,What is the
slope of Peregrine’s budget line(1 +r).
10.2 (0) Molly has a Cobb-Douglas utility function U(c
1;c
2
)=c
a
1
c
1?a
2
,
where 0 <a<1andwherec
1
and c
2
are her consumptions in periods 1
and 2 respectively,We saw earlier that if utility has the form u(x
1;x
2
)=
x
a
1
x
1?a
2
and the budget constraint is of the \standard" form p
1
x
1
+p
2
x
2
=
m,then the demand functions for the goods are x
1
= am=p
1
and x
2
=
(1?a)m=p
2
.
NAME 133
(a) Suppose that Molly’s income is m
1
in period 1 and m
2
in period 2.
Write down her budget constraint in terms of present values,c
1
+
c
2
=(1 +r)=m
1
+m
2
=(1 +r).
(b) We want to compare this budget constraint to one of the standard
form,In terms of Molly’s budget constraint,what is p
1
1,What
is p
2
1=(1 +r),What is m? m
1
+m
2
=(1 +r).
(c) If a =,2,solve for Molly’s demand functions for consumption in
each period as a function of m
1
,m
2
,andr,Her demand function for
consumption in period 1 is c
1
=,2m
1
+,2m
2
=(1 + r),Her
demand function for consumption in period 2 is c
2
=,8(1+r)m
1
+
:8m
2
.
(d) An increase in the interest rate will decrease her period-1
consumption,It will increase her period-2 consumption and
increase her savings in period 1.
10.3 (0) Nickleby has an income of $2,000 this year,and he expects an
income of $1,100 next year,He can borrow and lend money at an interest
rate of 10%,Consumption goods cost $1 per unit this year and there is
no inflation.
134 INTERTEMPORAL CHOICE (Ch,10)
01234
1
2
3
Consumption this year in 1,000s
Consumption next year in 1,000s
4
e
a
Squiggly
line
Red line
Blue
line
(a) What is the present value of Nickleby’s endowment? $3,000.
What is the future value of his endowment? $3,300,With blue
ink,show the combinations of consumption this year and consumption
next year that he can a ord,Label Nickelby’s endowment with the letter
E.
(b) Suppose that Nickleby has the utility function U(C
1;C
2
)=C
1
C
2
.
Write an expression for Nickleby’s marginal rate of substitution between
consumption this year and consumption next year,(Your answer will be
a function of the variables C
1;C
2
.) MRS =?C
2
=C
1
.
(c) What is the slope of Nickleby’s budget line1:1,Write an
equation that states that the slope of Nickleby’s indi erence curve is equal
to the slope of his budget line when the interest rate is 10%,1:1=
C
2
=C
1
,Also write down Nickleby’s budget equation,C
1
+
C
2
=1:1=3;000.
(d) Solve these two equations,Nickleby will consume 1,500 units
in period 1 and 1,650 units in period 2,Label this point A on your
diagram.
NAME 135
(e) Will he borrow or save in the rst period? Save,How much?
500.
(f) On your graph use red ink to show what Nickleby’s budget line would
be if the interest rate rose to 20%,Knowing that Nickleby chose the
point A at a 10% interest rate,even without knowing his utility function,
you can determine that his new choice cannot be on certain parts of his
new budget line,Draw a squiggly mark over the part of his new budget
line where that choice can not be,(Hint,Close your eyes and think of
WARP.)
(g) Solve for Nickleby’s optimal choice when the interest rate is 20%.
Nickleby will consume 1,458.3 units in period 1 and 1,750
units in period 2.
(h) Will he borrow or save in the rst period? Save,How much?
541.7.
10.4 (0) Decide whether each of the following statements is true or
false,Then explain why your answer is correct,based on the Slutsky
decomposition into income and substitution e ects.
(a) \If both current and future consumption are normal goods,an increase
in the interest rate will necessarily make a saver save more." False.
Substitution effect makes him consume less
in period 1 and save more,For a saver,
income effect works in opposite direction.
Either effect could dominate.
(b) \If both current and future consumption are normal goods,an in-
crease in the interest rate will necessarily make a saver choose more
consumption in the second period." True,The income
and substitution effects both lead to more
consumption in the second period.
10.5 (1) Laertes has an endowment of $20 each period,He can borrow
money at an interest rate of 200%,and he can lend money at a rate of
0%,(Note,If the interest rate is 0%,for every dollar that you save,you
get back $1 in the next period,If the interest rate is 200%,then for every
dollar you borrow,you have to pay back $3 in the next period.)
136 INTERTEMPORAL CHOICE (Ch,10)
(a) Use blue ink to illustrate his budget set in the graph below,(Hint:
The boundary of the budget set is not a single straight line.)
010203040
10
20
30
C1
C2
40
Red line
Blue line
Black line
(b) Laertes could invest in a project that would leave him with m
1
=30
and m
2
= 15,Besides investing in the project,he can still borrow at 200%
interest or lend at 0% interest,Use red ink to draw the new budget set
in the graph above,Would Laertes be better o or worse o by investing
in this project given his possibilities for borrowing or lending? Or can’t
one tell without knowing something about his preferences? Explain.
Better off,If he invests in the project,
he can borrow or lend to get any bundle he
could afford without investing.
(c) Consider an alternative project that would leave Laertes with the
endowment m
1
= 15,m
2
= 30,Again suppose he can borrow and lend
as above,But if he chooses this project,he can’t do the rst project.
Use pencil or black ink to draw the budget set available to Laertes if he
chooses this project,Is Laertes better o or worse o by choosing this
project than if he didn’t choose either project? Or can’t one tell without
knowing more about his preferences? Explain,Can’t tell,He
can afford some things he couldn’t afford
originally,But some things he could afford
before,he can’t afford if he invests in
this project.
10.6 (0) The table below reports the inflation rate and the annual rate
of return on treasury bills in several countries for the years 1984 and 1985.
NAME 137
Inflation Rate and Interest Rate for Selected Countries
% Inflation % Inflation % Interest % Interest
Country Rate,1984 Rate,1985 Rate,1984 Rate,1985
United States 3.6 1.9 9.6 7.5
Israel 304.6 48.1 217.3 210.1
Switzerland 3.1 0.8 3.6 4.1
W,Germany 2.2?0:2 5.3 4.2
Italy 9.2 5.8 15.3 13.9
Argentina 90.0 672.2 NA NA
Japan 0.6 2.0 NA NA
(a) In the table below,use the formula that your textbook gives for the
exact real rate of interest to compute the exact real rates of interest.
(b) What would the nominal rate of return on a bond in Argentina have
to be to give a real rate of return of 5% in 1985? 710:8%,What
would the nominal rate of return on a bond in Japan have to be to give
a real rate of return of 5% in 1985? 7.1%.
(c) Subtracting the inflation rate from the nominal rate of return gives
a good approximation to the real rate for countries with a low rate of
inflation,For the United States in 1984,the approximation gives you
6% while the more exact method suggested by the text gives you
5.79%,But for countries with very high inflation this is a poor
approximation,The approximation gives you?87:3% for Israel
in 1984,while the more exact formula gives you?21:57%,For
Argentina in 1985,the approximation would tell us that a bond yielding
a nominal rate of 677.7% would yield a real interest rate of 5%,This
contrasts with the answer 710.8% that you found above.
138 INTERTEMPORAL CHOICE (Ch,10)
Real Rates of Interest in 1984 and 1985
Country 1984 1985
United States 5.7 5.5
Israel?21:57 109.4
Switzerland 0.5 3.33
W,Germany 3.0 4.4
Italy 5.6 7.6
10.7 (0) We return to the planet Mungo,On Mungo,macroeconomists
and bankers are jolly,clever creatures,and there are two kinds of money,
red money and blue money,Recall that to buy something in Mungo you
have to pay for it twice,once with blue money and once with red money.
Everything has a blue-money price and a red-money price,and nobody
is ever allowed to trade one kind of money for the other,There is a blue-
money bank where you can borrow and lend blue money at a 50% annual
interest rate,There is a red-money bank where you can borrow and lend
red money at a 25% annual interest rate.
A Mungoan named Jane consumes only one commodity,ambrosia,
but it must decide how to allocate its consumption between this year and
next year,Jane’s income this year is 100 blue currency units and no red
currency units,Next year,its income will be 100 red currency units and
no blue currency units,The blue currency price of ambrosia is one b.c.u.
per flagon this year and will be two b.c.u.’s per flagon next year,The red
currency price of ambrosia is one r.c.u,per flagon this year and will be
the same next year.
(a) If Jane spent all of its blue income in the rst period,it would be
enough to pay the blue price for 100 flagons of ambrosia,If Jane
saved all of this year’s blue income at the blue-money bank,it would
have 150 b.c.u.’s next year,This would give it enough blue currency
to pay the blue price for 75 flagons of ambrosia,On the graph
below,draw Jane’s blue budget line,depicting all of those combinations
of current and next period’s consumption that it has enough blue income
to buy.
NAME 139
025 75100
25
50
75
Ambrosia this period
Ambrosia next period
100
50
(b) If Jane planned to spend no red income in the next period and to
borrow as much red currency as it can pay back with interest with next
period’s red income,how much red currency could it borrow? 80.
(c) The (exact) real rate of interest on blue money is?25%,The
real rate of interest on red money is 25%.
(d) On the axes below,draw Jane’s blue budget line and its red budget
line,Shade in all of those combinations of current and future ambrosia
consumption that Jane can a ord given that it has to pay with both
currencies.
140 INTERTEMPORAL CHOICE (Ch,10)
025 75100
25
50
75
Ambrosia this period
Ambrosia next period
100
50
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
Blue
line
Red line
c
(e) It turns out that Jane nds it optimal to operate on its blue budget
line and beneath its red budget line,Find such a point on your graph and
mark it with a C.
(f) On the following graph,show what happens to Jane’s original budget
set if the blue interest rate rises and the red interest rate does not change.
On your graph,shade in the part of the new budget line where Jane’s
new demand could possibly be,(Hint,Apply the principle of revealed
preference,Think about what bundles were available but rejected when
Jane chose to consume at C before the change in blue interest rates.)
NAME 141
025 75100
25
50
75
Ambrosia this period
Ambrosia next period
100
50
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
Blue
line
Shaded region
c
New blue
line
Red
line
10.8 (0) Mr,O,B,Kandle will only live for two periods,In the rst
period he will earn $50,000,In the second period he will retire and live
on his savings,His utility function is U(c
1;c
2
)=c
1
c
2
,wherec
1
is con-
sumption in period 1 and c
2
is consumption in period 2,He can borrow
and lend at the interest rate r =,10.
(a) If the interest rate rises,will his period-1 consumption increase,de-
crease,or stay the same? Stay the same,His demand
for c
1
is,5(m
1
+m
2
=(1 +r)) and m
2
=0.
(b) Would an increase in the interest rate make him consume more or
less in the second period? More,He saves the same
amount,but with higher interest rates,he
gets more back next period.
(c) If Mr,Kandle’s income is zero in period 1,and $ 55,000 in period 2,
would an increase in the interest rate make him consume more,less,or
thesameamountinperiod1? Less.
10.9 (1) Harvey Habit’s utility function is U(c
1;c
2
)=minfc
1;c
2
g,where
c
1
is his consumption of bread in period 1 and c
2
is his consumption of
bread in period 2,The price of bread is $1 per loaf in period 1,The
interest rate is 21%,Harvey earns $2,000 in period 1 and he will earn
$1,100 in period 2.
142 INTERTEMPORAL CHOICE (Ch,10)
(a) Write Harvey’s budget constraint in terms of future value,assuming
no inflation,1:21c
1
+c
2
=3;520.
(b) How much bread does Harvey consume in the rst period and how
much money does he save? (The answer is not necessarily an integer.)
He picks c
1
= c
2
,Substitute into the budget
to find c
1
=3;520=2:21 = 1;592:8,He saves
2;000?3;520=2:21 = 407:2.
(c) Suppose that Harvey’s money income in both periods is the same as
before,the interest rate is still 21%,but there is a 10% inflation rate.
Then in period 2,a loaf of bread will cost $ 1.10,Write down Har-
vey’s budget equation for period-1 and period-2 bread,given this new
information,1:21c
1
+1:1c
2
=3;520.
10.10 (2) In an isolated mountain village,the only crop is corn,Good
harvests alternate with bad harvests,This year the harvest will be 1,000
bushels,Next year it will be 150 bushels,There is no trade with the
outside world,Corn can be stored from one year to the next,but rats
will eat 25% of what is stored in a year,The villagers have Cobb-Douglas
utility functions,U(c
1;c
2
)=c
1
c
2
where c
1
is consumption this year,and
c
2
is consumption next year.
(a) Use red ink to draw a \budget line," showing consumption possibilities
for the village,with this year’s consumption on the horizontal axis and
next year’s consumption on the vertical axis,Put numbers on your graph
to show where the budget line hits the axes.
Next year's consumption
This year's consumption
150
1250
1000
900
1150
1136
1111
Red line
Black line
Blue line
NAME 143
(b) How much corn will the villagers consume this year? 600
bushels,How much will the rats eat? 100 bushels,How
much corn will the villagers consume next year? 450 bushels.
(c) Suppose that a road is built to the village so that now the village is
able to trade with the rest of the world,Now the villagers are able to buy
and sell corn at the world price,which is $1 per bushel,They are also
able to borrow and lend money at an interest rate of 10%,On your graph,
use blue ink to draw the new budget line for the villagers,Solve for the
amount they would now consume in the rst period 568 bushels
and the second period 624 bushels.
(d) Suppose that all is as in the last part of the question except that there
is a transportation cost of $.10 per bushel for every bushel of grain hauled
into or out of the village,On your graph,use black ink or pencil to draw
the budget line for the village under these circumstances.
10.11 (0) The table below records percentage interest rates and inflation
rates for the United States in some recent years,Complete this table.
Inflation and Interest in the United States,1965-1985
Year 1965 1970 1975 1978 1980 1985
CPI,Start of Year 38.3 47.1 66.3 79.2 100.0 130.0
CPI,End of Year 39.4 49.2 69.1 88.1 110.4 133
% Inflation Rate 2.9 4.3 4.2 11.3 10.4 2.3
Nominal Int,Rate 4.0 6.4 5.8 7.2 11.6 7.5
Real Int,Rate 1.1 2.1 1.6?3.7 1.09 5.07
(a) People complained a great deal about the high interest rates in
the late 70s,In fact,interest rates had never reached such heights
in modern times,Explain why such complaints are misleading.
Nominal interest rates were high,but so
was inflation,Real interest rates were
not high,(They were negative in 1978.)
144 INTERTEMPORAL CHOICE (Ch,10)
(b) If you gave up a unit of consumption goods at the beginning of 1985
and saved your money at interest,you could use the proceeds of your
saving to buy 1.05 units of consumption goods at the beginning of
1986,If you gave up a unit of consumption goods at the beginning of
1978 and saved your money at interest,you would be able to use the
proceeds of your saving to buy,96 units of consumption goods at the
beginning of 1979.
10.12 (1) Marsha Mellow doesn’t care whether she consumes in period
1 or in period 2,Her utility function is simply U(c
1;c
2
)=c
1
+ c
2
.Her
initial endowment is $20 in period 1 and $40 in period 2,In an antique
shop,she discovers a cookie jar that is for sale for $12 in period 1 and that
she is certain she can sell for $20 in period 2,She derives no consumption
bene ts from the cookie jar,and it costs her nothing to store it for one
period.
(a) On the graph below,label her initial endowment,E,and use blue ink
to draw the budget line showing combinations of period-1 and period-2
consumption that she can a ord if she doesn’t buy the cookie jar,On the
same graph,label the consumption bundle,A,that she would have if she
did not borrow or lend any money but bought the cookie jar in period 1,
sold it in period 2,and used the proceeds to buy period-2 consumption.
If she cannot borrow or lend,should Marsha invest in the cookie jar?
Yes.
(b) Suppose that Marsha can borrow and lend at an interest rate of 50%.
On the graph where you labelled her initial endowment,draw the budget
line showing all of the bundles she can a ord if she invests in the cookie
jar and borrows or lends at the interest rate of 50%,On the same graph
use red ink to draw one or two of Marsha’s indi erence curves.
020406080
20
40
60
Period-1 consumption
Period-2 consumption
80
,
e
a
Blue
line
Red
curves
NAME 145
(c) Suppose that instead of consumption in the two periods being per-
fect substitutes,they are perfect complements,so that Marsha’s utility
function is minfc
1;c
2
g,If she cannot borrow or lend,should she buy the
cookie jar? No,If she can borrow and lend at an interest rate of 50%,
should she invest in the cookie jar? Yes,If she can borrow or lend as
much at an interest rate of 100%,should she invest in the cookie jar?
No.
146 INTERTEMPORAL CHOICE (Ch,10)
Chapter 11 NAME
Asset Markets
Introduction,The fundamental equilibrium condition for asset markets
is that in equilibrium the rate of return on all assets must be the same.
Thus if you know the rate of interest and the cash flow generated by an
asset,you can predict what its market equilibrium price will be,This
condition has many interesting implications for the pricing of durable
assets,Here you will explore several of these implications.
Example,A drug manufacturing rm owns the patent for a new medicine.
The patent will expire on January 1,1996,at which time anyone can pro-
duce the drug,Whoever owns the patent will make a pro t of $1,000,000
per year until the patent expires,For simplicity,let us suppose that prof-
its for any year are all collected on December 31,The interest rate is
5%,Let us gure out what the selling price of the patent rights will be
on January 1,1993,On January 1,1993,potential buyers realize that
owning the patent will give them $1,000,000 every year starting 1 year
from now and continuing for 3 years,The present value of this cash flow
is
$
1;000;000
(1:05)
+
1;000;000
(1:05)
2
+
1;000;000
(1:05)
3
$2;723;248:
Nobody would pay more than this amount for the patent since if you put
$2,723,248 at 5% interest,you could collect $1,000,000 a year from the
bank for 3 years,starting 1 year from now,The patent wouldn’t sell for
less than $2,723,248,since if it sold for less,one would get a higher rate
of return by investing in this patent than one could get from investing in
anything else,What will the price of the patent be on January 1,1994?
At that time,the patent is equivalent to a cash flow of $1,000,000 in 1
year and another $1,000,000 in 2 years,The present value of this flow,
viewed from the standpoint of January 1,1994,will be
$
1;000;000
(1:05)
+
1;000;000
(1:05)
2
$1;859;310:
A slightly more di cult problem is one where the cash flow from an
asset depends on how the asset is used,To nd the price of such an asset,
one must ask what will be the present value of the cash flow that the asset
yields if it is managed in such a way as to maximize its present value.
Example,People will be willing to pay $15 a bottle to drink a certain wine
this year,Next year they would be willing to pay $25,and the year after
that they would be willing to pay $26,After that,it starts to deteriorate
and the amount people are willing to pay to drink it falls,The interest
rate is 5%,We can determine not only what the wine will sell for but
also when it will be drunk,If the wine is drunk in the rst year,it would
have to sell for $15,But no rational investor is going to sell the wine for
148 ASSET MARKETS (Ch,11)
$15 in the rst year,because it will sell for $25 one year later,This is a
66:66% rate of return,which is better than the rate of interest,When the
interest rate is 5%,investors are willing to pay at least $25=1:05 = $23:81
for the wine,So investors must outbid drinkers,and none will be drunk
this year,Will investors want to hold onto the wine for 2 years? In 2
years,the wine will be worth $26,so the present value of buying the wine
and storing it for 2 years is $26=(1:05)
2
= $23:58,This is less than the
present value of holding the wine for 1 year and selling it for $25,So,we
conclude that the wine will be drunk after 1 year,Its current selling price
will be $23:81,and 1 year from now,it will sell for $25.
11.0 Warm Up Exercise,Here are a few problems on present val-
ues,In all of the following examples,assume that you can both borrow
and lend at an annual interest rate of r andthattheinterestratewill
remain the same forever.
(a) You would be indi erent between getting $1 now and 1+r dollars,
one year from now,because if you put the dollar in the bank,then one
year from now you could get back 1+r dollars from the bank.
(b) You would be indi erent between getting 1 dollar(s) one
year from now and getting $1=(1 +r) dollars now,because 1=(1 +r)
deposited in the bank right now would enable you to withdraw principal
and interest worth $1.
(c) For any X>0,you would be indi erent between getting X=(1 +
r) dollars right now and $X one year from now,The present value of
$X received one year from now is X=(1 +r) dollars.
(d) The present value of an obligation to pay $X one year from now is
X=(1 +r) dollars.
(e) The present value of $X,to be received 2 years from now,is
X=(1 +r)
2
dollars.
(f) The present value of an asset that pays X
t
dollars t years from now
is X
t
=(1 +r)
t
dollars.
NAME 149
(g) The present value of an asset that pays $X
1
one year from now,$X
2
in
two years,and $X
10
ten years from now is X
1
=(1+r)+X
2
=(1+
r)
2
+X
10
=(1 +r)
10
dollars.
(h) Thepresentvalueofanassetthatpaysaconstantamount,$X per
year forever can be computed in two di erent ways,One way is to gure
out the amount of money you need in the bank so that the bank would
give you $X per year,forever,without ever exhausting your principal.
The annual interest received on a bank account of X=r dollars will
be $X,Therefore having X=r dollars right now is just as good as
getting $X a year forever.
(i) Another way to calculate the present value of $X a year forever is to
evaluate the in nite series
P
1
i=1
X=(1+r)
i
,This series is known
as a geometric series,Whenever r>0,this sum is well de ned
and is equal to X=r.
(j) If the interest rate is 10%,the present value of receiving $1,000 one
year from now will be,to the nearest dollar,$909,The present
value of receiving $1,000 a year forever,will be,to the nearest dollar,
$10,000.
(k) If the interest rate is 10%,what is the present value of an asset that
requires you to pay out $550 one year from now and will pay you back
$1,210 two years from now550=(1:1) + 1;210=(1:1)
2
=
500 dollars.
11.1 (0) An area of land has been planted with Christmas trees,On
December 1,ten years from now,the trees will be ready for harvest,At
that time,the standing Christmas trees can be sold for $1,000 per acre.
The land,after the trees have been removed,will be worth $200 per acre.
There are no taxes or operating expenses,but also no revenue from this
land until the trees are harvested,The interest rate is 10%.
(a) What can we expect the market price of the land to be?
$1;200=(1:1)
10
$463 per acre.
150 ASSET MARKETS (Ch,11)
(b) Suppose that the Christmas trees do not have to be sold after 10
years,but could be sold in any year,Their value if they are cut before
they are 10 years old is zero,After the trees are 10 years old,an acre of
trees is worth $1,000 and its value will increase by $100 per year for the
next 20 years,After the trees are cut,the land on which the trees stood
can always be sold for $200 an acre,When should the trees be cut to
maximize the present value of the payments received for trees and land?
After 10 years,What will be the market price of an acre of
land? Still $463.
11.2 (0) Publicity agents for the Detroit Felines announce the signing
of a phenomenal new quarterback,Archie Parabola,They say that the
contract is worth $1,000,000 and will be paid in 20 installments of $50,000
per year starting one year from now and with one new installment each
year for next 20 years,The contract contains a clause that guarantees he
will get all of the money even if he is injured and cannot play a single game.
Sports writers declare that Archie has become an \instant millionaire."
(a) Archie’s brother,Fenwick,who majored in economics,explains to
Archie that he is not a millionaire,In fact,his contract is worth less than
half a million dollars,Explain in words why this is so.
The present value of $50,000 a year for 20
years is less than $1,000,000,since the
present value of a dollar received in the
future is less than $1.
Archie’s college course on \Sports Management" didn’t cover present
values,So his brother tried to reason out the calculation for him,Here
is how it goes:
(b) Suppose that the interest rate is 10% and is expected to remain at
10% forever,How much would it cost the team to buy Archie a perpetuity
that would pay him and his heirs $1 per year forever,startingin1year?
$10.
(c) How much would it cost to buy a perpetuity that paid $50,000 a year
forever,starting in one year? $500,000.
In the last part,you found the present value of Archie’s contract
if he were going to get $50,000 a year forever,But Archie is not going
to get $50;000 a year forever,The payments stop after 20 years,The
present value of Archie’s actual contract is the same as the present value
of a contract that pays him $50,000 a year forever,but makes him pay
back $50,000 each year,forever,starting 21 years from now,Therefore
you can nd the present value of Archie’s contract by subtracting the
NAME 151
present value of $50,000 a year forever,starting 21 years from now from
the present value of $50,000 a year forever.
(d) If the interest rate is and will remain at 10%,a stream of payments
of $50,000 a year,starting 21 years from now has the same present value
as a lump sum of $ 500,000 to be received all at once,exactly 20
years from now.
(e) If the interest rate is and will remain at 10%,what is the present value
of $50,000 per year forever,starting 21 years from now? $75,000.
(Hint,The present value of $1 to be paid in 20 years is 1=(1+r)
20
=,15.)
(f) Now calculate the present value of Archie’s contract,8:50
50;000 = $425;000.
11.3 (0) Professor Thesis is puzzling over the formula for the present
value of a stream of payments of $1 a year,starting 1 year from now and
continuing forever,He knows that the value of this stream is expressed
by the in nite series
S =
1
1+r
+
1
(1 +r)
2
+
1
(1 +r)
3
+:::;
but he can’t remember the simpli ed formula for this sum,All he knows
is that if the rst payment were to arrive today,rather than a year from
now,the present value of the sum would be $1 higher,So he knows that
S +1=1+
1
(1 +r)
+
1
(1 +r)
2
+
1
(1 +r)
3
+::::
Professor Antithesis su ers from a similar memory lapse,He can’t
remember the formula for S either,But,he knows that the present value
of $1 a year forever,starting right now has to be 1 + r times as large as
the present value of $1 a year,starting a year from now,(This is true
because if you advance any income stream by a year,you multiply its
present value by 1+r.) That is,
1+
1
(1 +r)
+
1
(1 +r)
2
+
1
(1 +r)
3
+:::=(1+r)S:
(a) If Professor Thesis and Professor Antithesis put their knowledge to-
gether,they can express a simple equation involving only the variable S.
This equation is S +1= (1 +r)S,Solving this equation,they nd
that S = 1=r.
152 ASSET MARKETS (Ch,11)
(b) The two professors have also forgotten the formula for the present
value of a stream of $1 per year starting next year and continuing for K
years,They agree to call this number S(K) and they see that
S(K)=
1
(1 +r)
+
1
(1 +r)
2
+:::+
1
(1 +r)
K
:
Professor Thesis notices that if each of the payments came 1 year earlier,
the present value of the resulting stream of payments would be
1+
1
(1 +r)
+
1
(1 +r)
2
+:::+
1
(1 +r)
K?1
= S(K)+1?
1
(1 +r)
K
:
Professor Antithesis points out that speeding up any stream of payments
by a year is also equivalent to multiplying its present value by (1 + r).
Putting their two observations together,the two professors noticed an
equation that could be solved for S(K),This equation is S(K)+1?
1
(1+r)
K
= S(K)(1 +r),Solving this equation for S(K),they nd
that the formula for S(K)is S(K)=(1?
1
(1+r)
K
)=r.
Calculus 11.4 (0) You are the business manager of P,Bunyan Forests,Inc.,and
are trying to decide when you should cut your trees,The market value of
the lumber that you will get if you let your trees reach the age of t years
is given by the function W(t)=e
:20t?:001t
2
,Mr,Bunyan can earn an
interest rate of 5% per year on money in the bank.
The rate of growth of the market value of the trees will be greater
than 5% until the trees reach 75 years of age,(Hint,It follows
from elementary calculus that if F(t)=e
g(t)
,thenF
0
(t)=F(t)=g
0
(t).)
(a) If he is only interested in the trees as an investment,how old should
Mr,Bunyan let the trees get? 75 years.
(b) At what age do the trees have the greatest market value? 100
years.
11.5 (0) You expect the price of a certain painting to rise by 8% per
year forever,The market interest rate for borrowing and lending is 10%.
Assume there are no brokerage costs in purchasing or selling.
(a) If you pay a price of $x for the painting now and sell it in a year,how
much has it cost you to hold the painting rather than to have loaned the
$x at the market interest rate? It has cost,02x.
NAME 153
(b) You would be willing to pay $100 a year to have the painting on your
walls,Write an equation that you can solve for the price x at which you
would be just willing to buy the painting,02x = 100.
(c) How much should you be willing to pay to buy the painting?
$5,000.
11.6 (2) Ashley is thinking of buying a truckload of wine for investment
purposes,He can borrow and lend as much as he likes at an annual
interest rate of 10%,He is looking at three kinds of wine,To keep our
calculations simple,let us assume that handling and storage costs are
negligible.
Wine drinkers would pay exactly $175 a case to drink Wine A today.
But if Wine A is allowed to mature for one year,it will improve,In fact
wine drinkers will be willing to pay $220 a case to drink this wine one
year from today,After that,the wine gradually deteriorates and becomes
less valuable every year.
From now until one year from now,Wine B is indistinguishable
from Wine A,But instead of deteriorating after one year,Wine B will
improve,In fact the amount that wine drinkers would be willing to pay
to drink Wine B will be $220 a case in one year and will rise by $10 per
case per year for the next 30 years.
Wine drinkers would be willing to pay $100 per case to drink Wine
C right now,But one year from now,they will be willing to pay $250
per case to drink it and the amount they will be willing to pay to drink
it will rise by $50 per case per year for the next 20 years.
(a) What is the most Ashley would be willing to pay per case for Wine
A? $200.
(b) What is the most Ashley would be willing to pay per case for Wine
B? $200,(Hint,When will Wine B be drunk?)
(c) How old will Wine C be when it rst becomes worthwhile for investors
to sell o their holdings and for drinkers to drink it? 6 years.
(Hint,When does the rate of return on holding wine get to 10%?)
(d) What will the price of Wine C beatthetimeitis rstdrunk?
$500 per case.
154 ASSET MARKETS (Ch,11)
(e) What is the most that Ashley would be willing to pay today for a case
of Wine C? (Hint,What is the present value of his investment if he sells
it to a drinker at the optimal time?) Express your answer in exponential
notation without calculating it out,$500=1:1
6
.
11.7 (0) Fisher Brown is taxed at 40% on his income from ordinary
bonds,Ordinary bonds pay 10% interest,Interest on municipal bonds is
not taxed at all.
(a) If the interest rate on municipal bonds is 7%,should he buy municipal
bonds or ordinary bonds? Brown should buy municipal
bonds.
(b) Hunter Black makes less money than Fisher Brown and is taxed at
only 25% on his income from ordinary bonds,Which kind of bonds should
he buy? Black should buy ordinary bonds.
(c) If Fisher has $1,000,000 in bonds and Hunter has $10,000 in bonds,
how much tax does Fisher pay on his interest from bonds? 0.
How much tax does Hunter pay on his interest from bonds? $250.
(d) The government is considering a new tax plan under which no interest
income will be taxed,If the interest rates on the two types of bonds do
not change,and Fisher and Hunter are allowed to adjust their portfolios,
how much will Fisher’s after-tax income be increased? $30,000.
How much will Hunter’s after-tax income be increased? $250.
(e) What would the change in the tax law do to the demand for municipal
bonds if the interest rates did not change? It would reduce
it to zero.
(f) What interest rate will new issues of municipal bonds have to pay
in order to attract purchasers? They will have to pay
10%.
NAME 155
(g) What do you think will happen to the market price of the old mu-
nicipal bonds,which had a 7% yield originally? The price of
the old bonds will fall until their yield
equals 10%.
11.8 (0) In the text we discussed the market for oil assuming zero
production costs,but now suppose that it is costly to get the oil out of
the ground,Suppose that it costs $5 dollars per barrel to extract oil from
the ground,Let the price in period t be denoted by p
t
and let r be the
interest rate.
(a) If a rm extracts a barrel of oil in period t,howmuchpro tdoesit
make in period t? p
t
5.
(b) If a rm extracts a barrel of oil in period t+1,how muchpro tdoes
it make in period t+1? p
t+1
5.
(c) What is the present value of the pro ts from extracting a barrel of oil
in period t+1? (p
t+1
5)=(1+r)
t+1
,What is the present value of
pro t from extracting a barrel of oil in periodt? (p
t
5)=(1+r)
t
.
(d) If the rm is willing to supply oil in each of the two periods,what
must be true about the relation between the present value of pro ts
from sale of a barrel of oil in the two periods? The present
values must be equal,Express this relation as an equation.
p
t+1
5
(1+r)
t+1
=
p
t
5
(1+r)
t
.
(e) Solve the equation in the above part for p
t+1
as a function of p
t
and
r,p
t+1
=(1+r)p
t
5r.
(f) Is the percentage rate of price increase between periods larger or
smaller than the interest rate? The percent change in
price is smaller.
11.9 (0) Dr,No owns a bond,serial number 007,issued by the James
Company,The bond pays $200 for each of the next three years,at which
time the bond is retired and pays its face value of $2,000.
156 ASSET MARKETS (Ch,11)
(a) How much is the James bond 007 worth to Dr,No at an interest rate
of 10%? 200=1:1+200=1:1
2
+200=1:1
3
+2;000=1:1
3
=
2;000.
(b) How valuable is James bond 007 at an interest rate of 5%?
200=1:05 + 200=1:05
2
+ 200=1:05
3
+2;000=1:05
3
=
2;272:32.
(c) Ms,Yes o ers Dr,No $2,200 for the James bond 007,Should Dr,No
say yes or no to Ms,Yes if the interest rate is 10%? Yes,What if
the interest rate is 5%? No.
(d) In order to destroy the world,Dr,No hires Professor Know to develop
a nasty zap beam,In order to lure Professor Know from his university
position,Dr,No will have to pay the professor $200 a year,The nasty
zap beam will take three years to develop,at the end of which it can be
built for $2,000,If the interest rate is 5%,how much money will Dr,No
need today to nance this dastardly program? $2,272.32,
which is the present value calculated in
the first part of the problem,If the interest rate
were 10%,would the world be in more or less danger from Dr,No?
More danger,since the dastardly plan is
now cheaper.
11.10 (0) Chillingsworth owns a large,poorly insulated home,His
annual fuel bill for home heating averages $300 per year,An insulation
contractor suggests to him the following options.
Plan A,Insulate just the attic,If he does this,he will permanently
reduce his fuel consumption by 15%,Total cost of insulating the attic is
$300.
Plan B,Insulate the attic and the walls,If he does this,he will perma-
nently reduce his fuel consumption by 20%,Total cost of insulating the
attic and the walls is $500.
Plan C,Insulate the attic and the walls,and install a solar heating unit.
If he does this,he will permanently reduce his fuel costs to zero,Total cost
of this option is $7,000 for the solar heater and $500 for the insulating.
NAME 157
(a) Assume for simplicity of calculations that the house and the insulation
will last forever,Calculate the present value of the dollars saved on fuel
from each of the three options if the interest rate is 10%,The present
values are,Plan A? $450,Plan B? $600,Plan C? $3,000.
(b) Each plan requires an expenditure of money to undertake,The di er-
ence between the present value and the present cost of each plan is,Plan
A? 450?300 = 150,Plan B? 600?500 = 100,Plan
C? 3;000?7;500 =?4;500.
(c) If the price of fuel is expected to remain constant,which option should
he choose if he can borrow and lend at an annual interest rate of 10%?
A.
(d) Which option should he choose if he can borrow and lend at an annual
rate of 5%? B.
(e) Suppose that the government o ers to pay half of the cost of any
insulation or solar heating device,Which option would he now choose at
interest rates 10%? B,5%? C.
(f) Suppose that there is no government subsidy but that fuel prices are
expected to rise by 5% per year,What is the present value of fuel savings
from each of the three proposals if interest rates are 10%? (Hint,If
a stream of income is growing at x% and being discounted at y%,its
present value should be the same as that of a constant stream of income
discounted at (y?x)%.) Plan A? $900,Plan B? $1,200.
Plan C? $6,000,Which proposal should Chillingsworth choose if
interest rates are 10%? B,5%? C.
11.11 (1) Have you ever wondered if a college education is nancially
worthwhile? The U.S,Census Bureau collects data on income and educa-
tion that throws some light on this question,A recent census publication
(Current Population Reports,Series P-70,No,11) reports the average an-
nual wage income in 1984 of persons aged 35{44 by the level of schooling
achieved,The average wage income of high school graduates was $13,000
per year,The average wage income of persons with bachelor’s degrees
was $24,000 per year,The average wage income of persons with master’s
degrees was $28,000 per year,The average wage income of persons with
Ph.D.’s was $40,000 per year,These income di erences probably over-
state the return to education itself,because it is likely that those people
who get more education tend to be more able than those who get less.
158 ASSET MARKETS (Ch,11)
Some of the income di erence is,therefore,a return to ability rather than
to education,But just to get a rough idea of returns to education,let us
see what would be the return if the reported wage di erences are all due
to education.
(a) Suppose that you have just graduated from high school at age 18,You
want to estimate the present value of your lifetime earnings if you do not
go to college but take a job immediately,To do this,you have to make
some assumptions,Assume that you would work for 47 years,until you
are 65 and then retire,Assume also that you would make $13,000 a year
for the rest of your life,(If you were going to do this more carefully,you
would want to take into account that people’s wages vary with their age,
but let’s keep things simple for this problem.) Assume that the interest
rate is 5%,Find the present value of your lifetime earnings,(Hint,First
nd out the present value of $13,000 a year forever,Subtract from this
the present value of $13,000 a year forever,starting 47 years from now.)
$233,753.
(b) Again,supposing you have just graduated from high school at age 18,
and you want to estimate the present value of your life time earnings if
you go to college for 4 years and do not earn any wages until you graduate
from college,Assume that after graduating from college,you would work
for 43 years at $24,000 per year,What would be the present value of your
lifetime earnings? $346,441.
(c) Now calculate the present value of your lifetime earnings if you get a
master’s degree,Assume that if you get a master’s,you have no earnings
for 6 years and then you work for 41 years at $28,000 per year,What
would be the present value of your lifetime income? $361,349.
(d) Finally calculate the present value of your lifetime earnings if you get
a Ph.D,Assume that if you get a Ph.D.,you will have no earnings for 8
years and then you work for 39 years at $40,000 per year,What would
be the present value of your lifetime income? $460,712.
(e) Consider the case of someone who married right after nishing high
school and stopped her education at that point,Suppose that she is now
45 years old,Her children are nearly adults,and she is thinking about
going back to work or going to college,Assuming she would earn the
average wage for her educational level and would retire at age 65,what
would be the present value of her lifetime earnings if she does not go to
college? $162,000.
NAME 159
(f) What would be the present value of her lifetime earnings if she goes to
college for 4 years and then takes a job until she is 65? $213,990.
(g) If college tuition is $5,000 per year,is it nancially worthwhile
for her to go to college? Explain,Yes,the gain in
the present value of her income exceeds the
present value of tuition.
11.12 (0) As you may have noticed,economics is a di cult major,Are
their any rewards for all this e ort? The U.S,census publication discussed
in the last problem suggests that there might be,There are tables report-
ing wage income by the eld in which one gets a degree,For bachelor’s
degrees,the most lucrative majors are economics and engineering,The
average wage incomes for economists are about $28,000 per year and for
engineers are about $27,000,Psychology majors average about $15,000 a
year and English majors about $14,000 per year.
(a) Can you think of any explanation for these di erences? Some
might say that economics,like accounting
or mortuary science,is so boring the
pay has to be high to get you to do
it,Others would suggest that the ability
to do well in economics is scarce and
is valued by the marketplace,Perhaps
the English majors and psychology majors
include disproportionately many persons
who are not full-time participants in the
labor force,No doubt there are several
other good partial explanations.
(b) The same table shows that the average person with an advanced degree
in business earns $38,000 per year and the average person with a degree
in medicine earns $45,000 per year,Suppose that an advanced degree
in business takes 2 years after one spends 4 years getting a bachelor’s
degree and that a medical degree takes 4 years after getting a bachelor’s
160 ASSET MARKETS (Ch,11)
degree,Suppose that you are 22 years old and have just nished college,If
r =,05,nd the present value of lifetime earnings for a graduating senior
who will get an advanced degree in business and earn the average wage
rate for someone with this degree until retiring at 65,$596,000.
Make a similar calculation for medicine,$630,000.
11.13 (0) On the planet Stinko,the principal industry is turnip growing.
For centuries the turnip elds have been fertilized by guano which was
deposited by the now-extinct giant scissor-billed kiki-bird,It costs $5 per
ton to mine kiki-bird guano and deliver it to the elds,Unfortunately,the
country’s stock of kiki-bird guano is about to be exhausted,Fortunately
the scientists on Stinko have devised a way of synthesizing kiki-guano from
political science textbooks and swamp water,This method of production
makes it possible to produce a product indistinguishable from kiki-guano
and to deliver it to the turnip elds at a cost of $30 per ton,The interest
rate on Stinko is 10%,There are perfectly competitive markets for all
commodities.
(a) Given the current price and the demand function for kiki-guano,the
last of the deposits on Stinko will be exhausted exactly one year from
now,Next year,the price of kiki-guano delivered to the elds will have
to be $30,so that the synthetic kiki-guano industry will just break even.
The owners of the guano deposits know that next year,they would get a
net return of $25 a ton for any guano they have left to sell,In equilibrium,
what must be the current price of kiki-guano delivered to the turnip elds?
The price of guano delivered to the field
must be the $5 + the present value of $25.
This is 5+25=1:1=27:73,(Hint,In equilibrium,sellers
must be indi erent between selling their kiki-guano right now or at any
other time before the total supply is exhausted,But we know that they
must be willing to sell it right up until the day,one year from now,when
the supply will be exhausted and the price will be $30,the cost of synthetic
guano.)
(b) Suppose that everything is as we have said previously except that the
deposits of kiki-guano will be exhausted 10 years from now,What must
be the current price of kiki-guano? (Hint,1:1
10
=2:59.)
5+25=(1:1)
10
=14:65.
Chapter 12 NAME
Uncertainty
Introduction,In Chapter 11,you learned some tricks that allow you to
use techniques you already know for studying intertemporal choice,Here
you will learn some similar tricks,so that you can use the same methods
to study risk taking,insurance,and gambling.
One of these new tricks is similar to the trick of treating commodi-
ties at di erent dates as di erent commodities,This time,we invent
new commodities,which we call contingent commodities.Ifeitheroftwo
events A or B could happen,then we de ne one contingent commodity
as consumption if A happens and another contingent commodity as con-
sumption if B happens,The second trick is to nd a budget constraint
that correctly speci es the set of contingent commodity bundles that a
consumer can a ord.
This chapter presents one other new idea,and that is the notion
of von Neumann-Morgenstern utility,A consumer’s willingness to take
various gambles and his willingness to buy insurance will be determined
by how he feels about various combinations of contingent commodities.
Often it is reasonable to assume that these preferences can be expressed
by a utility function that takes the special form known as von Neumann-
Morgenstern utility,The assumption that utility takes this form is called
the expected utility hypothesis,If there are two events,1 and 2 with
probabilities
1
and
2
,and if the contingent consumptions are c
1
and
c
2
,then the von Neumann-Morgenstern utility function has the special
functional form,U(c
1;c
2
)=
1
u(c
1
)+
2
u(c
2
),The consumer’s behavior
is determined by maximizing this utility function subject to his budget
constraint.
Example,You are thinking of betting on whether the Cincinnati Reds
will make it to the World Series this year,A local gambler will bet with
you at odds of 10 to 1 against the Reds,You think the probability that
the Reds will make it to the World Series is =,2,If you don’t bet,
you are certain to have $1,000 to spend on consumption goods,Your
behavior satis es the expected utility hypothesis and your von Neumann-
Morgenstern utility function is
1
p
c
1
+
2
p
c
2
.
The contingent commodities are dollars if the Reds make the World
Series and dollars if the Reds don’t make the World Series.Letc
W
be
your consumption contingent on the Reds making the World Series and
c
NW
be your consumption contingent on their not making the Series.
Betting on the Reds at odds of 10 to 1 means that if you bet $x on the
Reds,then if the Reds make it to the Series,you make a net gain of $10x,
but if they don’t,you have a net loss of $x,Since you had $1,000 before
betting,if you bet $x on the Reds and they made it to the Series,you
would have c
W
=1;000 + 10x to spend on consumption,If you bet $x
on the Reds and they didn’t make it to the Series,you would lose $x,
162 UNCERTAINTY (Ch,12)
and you would have c
NW
=1;000?x,By increasing the amount $x that
you bet,you can make c
W
larger and c
NW
smaller,(You could also bet
against the Reds at the same odds,If you bet $x against the Reds and
they fail to make it to the Series,you make a net gain of,1x and if they
make it to the Series,you lose $x,If you work through the rest of this
discussion for the case where you bet against the Reds,you will see that
the same equations apply,with x being a negative number.) We can use
the above two equations to solve for a budget equation,From the second
equation,we have x =1;000?c
NW
,Substitute this expression for x into
the rst equation and rearrange terms to nd c
W
+10c
NW
=11;000,or
equivalently,:1c
W
+ c
NW
=1;100,(The same budget equation can be
written in many equivalent ways by multiplying both sides by a positive
constant.)
Then you will choose your contingent consumption bundle (c
W;c
NW
)
to maximize U(c
W;c
NW
)=:2
p
c
W
+,8
p
c
NW
subject to the budget
constraint,:1c
W
+c
NW
=1;100,Using techniques that are now familiar,
you can solve this consumer problem,From the budget constraint,you
see that consumption contingent on the Reds making the World Series
costs 1=10 as much as consumption contingent on their not making it,If
you set the marginal rate of substitution between c
W
and c
NW
equal to
the price ratio and simplify the resulting expression,you will nd that
c
NW
=,16c
W
,This equation,together with the budget equation implies
that c
W
=$4;230:77 and c
NW
= $676:92,You achieve this bundle by
betting $323:08 on the Reds,If the Reds make it to the Series,you will
have $1;000 + 10 323:08 = $4;230:80,If not,you will have $676:92.
(We rounded the solutions to the nearest penny.)
12.1 (0) In the next few weeks,Congress is going to decide whether
or not to develop an expensive new weapons system,If the system is
approved,it will be very pro table for the defense contractor,General
Statics,Indeed,if the new system is approved,the value of stock in
General Statics will rise from $10 per share to $15 a share,and if the
project is not approved,the value of the stock will fall to $5 a share,In
his capacity as a messenger for Congressman Kickback,Buzz Condor has
discovered that the weapons system is much more likely to be approved
than is generally thought,On the basis of what he knows,Condor has
decided that the probability that the system will be approved is 3/4 and
the probability that it will not be approved is 1/4,Let c
A
be Condor’s
consumption if the system is approved and c
NA
be his consumption if
the system is not approved,Condor’s von Neumann-Morgenstern utility
function is U(c
A;c
NA
)=:75 lnc
A
+,25 lnc
NA
,Condor’s total wealth is
$50,000,all of which is invested in perfectly safe assets,Condor is about
to buy stock in General Statics.
(a) If Condor buys x shares of stock,and if the weapons system is ap-
proved,he will make a pro t of $5 per share,Thus the amount he can
consume,contingent on the system being approved,is c
A
= $50;000+5x.
If Condor buys x shares of stock,and if the weapons system is not ap-
proved,then he will make a loss of $ 5 per share,Thus the
NAME 163
amount he can consume,contingent on the system not being approved,is
c
NA
= 50;000?5x.
(b) You can solve for Condor’s budget constraint on contingent commod-
ity bundles (c
A;c
NA
) by eliminating x from these two equations,His bud-
get constraint can be written as,5 c
A
+,5 c
NA
=50;000.
(c) Buzz Condor has no moral qualms about trading on inside informa-
tion,nor does he have any concern that he will be caught and punished.
To decide how much stock to buy,he simply maximizes his von Neumann-
Morgenstern utility function subject to his budget,If he sets his marginal
rate of substitution between the two contingent commodities equal to
their relative prices and simpli es the equation,he nds that c
A
=c
NA
=
3,(Reminder,Where a is any constant,the derivative of alnx
with respect to x is a=x.)
(d) Condor nds that his optimal contingent commodity bundle is
(c
A;c
NA
)= (75,000,25,000),To acquire this contingent com-
modity bundle,he must buy 5,000 shares of stock in General Statics.
12.2 (0) Willy owns a small chocolate factory,located close to a river
that occasionally floods in the spring,with disastrous consequences,Next
summer,Willy plans to sell the factory and retire,The only income he
will have is the proceeds of the sale of his factory,If there is no flood,
the factory will be worth $500,000,If there is a flood,then what is left
of the factory will be worth only $50,000,Willy can buy flood insurance
at a cost of $.10 for each $1 worth of coverage,Willy thinks that the
probability that there will be a flood this spring is 1/10,Let c
F
denote the
contingent commodity dollars if there is a flood and c
NF
denote dollars
if there is no flood,Willy’s von Neumann-Morgenstern utility function is
U(c
F;c
NF
)=:1
p
c
F
+:9
p
c
NF
.
(a) If he buys no insurance,then in each contingency,Willy’s consumption
will equal the value of his factory,so Willy’s contingent commodity bundle
will be (c
F;c
NF
)= (50;000;500;000).
(b) To buy insurance that pays him $x in case of a flood,Willy must
pay an insurance premium of,1x,(The insurance premium must be
paid whether or not there is a flood.) If Willy insures for $x,thenif
there is a flood,he gets $x in insurance bene ts,Suppose that Willy has
contracted for insurance that pays him $x in the event of a flood,Then
after paying his insurance premium,he will be able to consume c
F
=
50;000 +:9x,If Willy has this amount of insurance and there is
no flood,then he will be able to consume c
NF
= 500;000?:1x.
164 UNCERTAINTY (Ch,12)
(c) You can eliminate x from the two equations for c
F
and c
NF
that
you found above,This gives you a budget equation for Willy,Of course
there are many equivalent ways of writing the same budget equation,
since multiplying both sides of a budget equation by a positive constant
yields an equivalent budget equation,The form of the budget equation in
which the \price" of c
NF
is 1 can be written as,9c
NF
+,1 c
F
=
455,000.
(d) Willy’s marginal rate of substitution between the two contingent com-
modities,dollars if there is no flood and dollars if there is a flood,is
MRS(c
NF;c
F
)=?
:9
p
c
F
:1
p
c
NF
,To nd his optimal bundle of contingent
commodities,you must set this marginal rate of substitution equal to
the number =?9,Solving this equation,you nd that Willy will
choose to consume the two contingent commodities in the ratio
c
NF
=c
F
=1.
(e) Since you know the ratio in which he will consume c
NF
and c
F
,and
you know his budget equation,you can solve for his optimal consumption
bundle,which is (c
NF;c
F
)= (455;000; 455;000),Willy will
buy an insurance policy that will pay him $450,000 if there is a
flood,The amount of insurance premium that he will have to pay is
$45,000.
12.3 (0) Clarence Bunsen is an expected utility maximizer,His pref-
erences among contingent commodity bundles are represented by the ex-
pected utility function
u(c
1;c
2;
1;
2
)=
1
p
c
1
+
2
p
c
2
:
Clarence’s friend,Hjalmer Ingqvist,has o ered to bet him $1,000 on the
outcome of the toss of a coin,That is,if the coin comes up heads,Clarence
must pay Hjalmer $1,000 and if the coin comes up tails,Hjalmer must
pay Clarence $1,000,The coin is a fair coin,so that the probability of
heads and the probability of tails are both 1/2,If he doesn’t accept the
bet,Clarence will have $10,000 with certainty,In the privacy of his car
dealership o ce over at Bunsen Motors,Clarence is making his decision.
(Clarence uses the pocket calculator that his son,Elmer,gave him last
Christmas,You will nd that it will be helpful for you to use a calculator
too.) Let Event 1 be \coin comes up heads" and let Event 2 be \coin
comes up tails."
NAME 165
(a) If Clarence accepts the bet,then in Event 1,he will have 9,000
dollars and in Event 2,he will have 11,000 dollars.
(b) Since the probability of each event is 1/2,Clarence’s expected utility
for a gamble in which he gets c
1
in Event 1 and c
2
in Event 2 can be
described by the formula
1
2
p
c
1
+
1
2
p
c
2
,Therefore Clarence’s
expected utility if he accepts the bet with Hjalmer will be 99.8746.
(Use that calculator.)
(c) If Clarence decides not to bet,then in Event 1,he will have
10,000 dollars and in Event 2,he will have 10,000 dollars.
Therefore if he doesn’t bet,his expected utility will be 100.
(d) Having calculated his expected utility if he bets and if he does not bet,
Clarence determines which is higher and makes his decision accordingly.
Does Clarence take the bet? No.
12.4 (0) It is a slow day at Bunsen Motors,so since he has his calcu-
lator warmed up,Clarence Bunsen (whose preferences toward risk were
described in the last problem) decides to study his expected utility func-
tion more closely.
(a) Clarence rst thinks about really big gambles,What if he bet his
entire $10,000 on the toss of a coin,where he loses if heads and wins if
tails? Then if the coin came up heads,he would have 0 dollars and if it
came up tails,he would have $20,000,His expected utility if he took the
bet would be 70.71,while his expected utility if he didn’t take the
bet would be 100,Thereforeheconcludesthathewouldnottake
such a bet.
(b) Clarence then thinks,\Well,of course,I wouldn’t want to take a
chance on losing all of my money on just an ordinary bet,But,what
if somebody o ered me a really good deal,Suppose I had a chance to
bet where if a fair coin came up heads,I lost my $10,000,but if it came
up tails,I would win $50,000,Would I take the bet? If I took the bet,
my expected utility would be 122.5,If I didn’t take the bet,my
expected utility would be 100,Therefore I should take the bet."
166 UNCERTAINTY (Ch,12)
(c) Clarence later asks himself,\If I make a bet where I lose my $10,000
if the coin comes up heads,what is the smallest amount that I would have
to win in the event of tails in order to make the bet a good one for me
to take?" After some trial and error,Clarence found the answer,You,
too,might want to nd the answer by trial and error,but it is easier to
nd the answer by solving an equation,On the left side of your equation,
you would write down Clarence’s utility if he doesn’t bet,On the right
side of the equation,you write down an expression for Clarence’s utility
if he makes a bet such that he is left with zero consumption in Event 1
and x in Event 2,Solve this equation for x,The answer to Clarence’s
question is where x =10;000,The equation that you should write is
100 =
1
2
p
x,The solution is x = 40;000.
(d) Your answer to the last part gives you two points on Clarence’s in-
di erence curve between the contingent commodities,money in Event 1
and money in Event 2,(Poor Clarence has never heard of indi erence
curves or contingent commodities,so you will have to work this part for
him,while he heads over to the Chatterbox Cafe for morning co ee.) One
of these points is where money in both events is $10,000,On the graph
below,label this point A,The other is where money in Event 1 is zero
and money in Event 2 is 40,000,On the graph below,label this
point B.
010203040
10
20
30
Money in Event 1 (x 1,000)
Money in Event 2 (x 1,000)
40
a
b
c
d
(e) You can quickly nd a third point on this indi erence curve,The
coin is a fair coin,and Clarence cares whether heads or tails turn up only
because that determines his prize,Therefore Clarence will be indi erent
between two gambles that are the same except that the assignment of
prizes to outcomes are reversed,In this example,Clarence will be indif-
ferent between point B on the graph and a point in which he gets zero if
Event 2 happens and 40,000 if Event 1 happens,Find this point
on the Figure above and label it C.
NAME 167
(f) Another gamble that is on the same indi erence curve for Clarence
as not gambling at all is the gamble where he loses $5,000 if heads turn
up and where he wins 6,715.73 dollars if tails turn up,(Hint,To
solve this problem,put the utility of not betting on the left side of an
equation and on the right side of the equation,put the utility of having
$10;000?$5;000 in Event 1 and $10;000 +x in Event 2,Then solve the
resulting equation for x.) On the axes above,plot this point and label it
D,Now sketch in the entire indi erence curve through the points that
you have labeled.
12.5 (0) Hjalmer Ingqvist’s son-in-law,Earl,has not worked out very
well,It turns out that Earl likes to gamble,His preferences over contin-
gent commodity bundles are represented by the expected utility function
u(c
1;c
2;
1;
2
)=
1
c
2
1
+
2
c
2
2
:
(a) Just the other day,some of the boys were down at Skoog’s tavern
when Earl stopped in,They got to talking about just how bad a bet they
could get him to take,At the time,Earl had $100,Kenny Olson shu ed
a deck of cards and o ered to bet Earl $20 that Earl would not cut a spade
from the deck,Assuming that Earl believed that Kenny wouldn’t cheat,
the probability that Earl would win the bet was 1/4 and the probability
that Earl would lose the bet was 3/4,If he won the bet,Earl would
have 120 dollars and if he lost the bet,he would have 80
dollars,Earl’s expected utility if he took the bet would be 8,400,
and his expected utility if he did not take the bet would be 10,000.
Therefore he refused the bet.
(b) Just when they started to think Earl might have changed his ways,
Kenny o ered to make the same bet with Earl except that they would
bet $100 instead of $20,What is Earl’s expected utility if he takes that
bet? 10,000,Would Earl be willing to take this bet? He is
just indifferent about taking it or not.
(c) Let Event 1 be the event that a card drawn from a fair deck of cards is
a spade,Let Event 2 be the event that the card is not a spade,Earl’s pref-
erences between income contingent on Event 1,c
1
,and income contingent
on Event 2,c
2
,can be represented by the equation u =
1
4
c
2
1
+
3
4
c
2
2
.
Use blue ink on the graph below to sketch Earl’s indi erence curve passing
through the point (100;100).
168 UNCERTAINTY (Ch,12)
0 50 100 150 200
50
100
150
Money in Event 1
Money in Event 2
200
Blue curve
Red curves
(d) On the same graph,let us draw Hjalmer’s son-in-law Earl’s indif-
ference curves between contingent commodities where the probabilities
are di erent,Suppose that a card is drawn from a fair deck of cards.
Let Event 1 be the event that the card is black,Let event 2 be the event
that the card drawn is red,Suppose each event has probability 1/2,Then
Earl’s preferences between income contingent on Event 1 and income con-
tingent on Event 2 are represented by the formula u =
1
2
c
2
1
+
1
2
c
2
2
.
On the graph,use red ink to show two of Earl’s indi erence curves,in-
cluding the one that passes through (100;100).
12.6 (1) Sidewalk Sam makes his living selling sunglasses at the board-
walk in Atlantic City,If the sun shines Sam makes $30,and if it rains
Sam only makes $10,For simplicity,we will suppose that there are only
two kinds of days,sunny ones and rainy ones.
(a) One of the casinos in Atlantic City has a new gimmick,It is accepting
bets on whether it will be sunny or rainy the next day,The casino sells
dated \rain coupons" for $1 each,If it rains the next day,the casino will
give you $2 for every rain coupon you bought on the previous day,If it
doesn’t rain,your rain coupon is worthless,In the graph below,mark
Sam’s \endowment" of contingent consumption if he makes no bets with
the casino,and label it E.
NAME 169
010203040
10
20
30
Cs
Cr
40
e
a
Blue
line
Red
line
(b) On the same graph,mark the combination of consumption contingent
on rain and consumption contingent on sun that he could achieve by
buying 10 rain coupons from the casino,Label it A.
(c) On the same graph,use blue ink to draw the budget line representing
all of the other patterns of consumption that Sam can achieve by buying
rain coupons,(Assume that he can buy fractional coupons,but not neg-
ative amounts of them.) What is the slope of Sam’s budget line at points
above and to the left of his initial endowment? The slope is
1.
(d) Suppose that the casino also sells sunshine coupons,These tickets
also cost $1,With these tickets,the casino gives you $2 if it doesn’t rain
and nothing if it does,On the graph above,use red ink to sketch in the
budget line of contingent consumption bundles that Sam can achieve by
buying sunshine tickets.
(e) If the price of a dollar’s worth of consumption when it rains is set equal
to 1,what is the price of a dollar’s worth of consumption if it shines?
The price is 1.
12.7 (0) Sidewalk Sam,from the previous problem,has the utility func-
tion for consumption in the two states of nature
u(c
s;c
r; )=c
1?
s
c
r;
where c
s
is the dollar value of his consumption if it shines,c
r
is the dollar
value of his consumption if it rains,and is the probability that it will
rain,The probability that it will rain is =,5.
170 UNCERTAINTY (Ch,12)
(a) How many units of consumption is it optimal for Sam to consume
conditional on rain? 20 units.
(b) How many rain coupons is it optimal for Sam to buy? 10.
12.8 (0) Sidewalk Sam’s brother Morgan von Neumanstern is an ex-
pected utility maximizer,His von Neumann-Morgenstern utility function
for wealth is u(c)=lnc,Sam’s brother also sells sunglasses on another
beach in Atlantic City and makes exactly the same income as Sam does.
He can make exactly the same deal with the casino as Sam can.
(a) If Morgan believes that there is a 50% chance of rain and a 50% chance
of sun every day,what would his expected utility of consuming (c
s;c
r
)
be? u =
1
2
lnc
s
+
1
2
lnc
r
.
(b) How does Morgan’s utility function compare to Sam’s? Is one a
monotonic transformation of the other? Morgan’s utility
function is just the natural log of Sam’s,
so the answer is yes.
(c) What will Morgan’s optimal pattern of consumption be? Answer:
Morgan will consume 20 on the sunny days and 20 on
the rainy days,How does this compare to Sam’s consumption? This
is the same as Sam’s consumption.
12.9 (0) Billy John Pigskin of Mule Shoe,Texas,has a von Neumann-
Morgenstern utility function of the form u(c)=
p
c:Billy John also weighs
about 300 pounds and can outrun jackrabbits and pizza delivery trucks.
Billy John is beginning his senior year of college football,If he is not
seriously injured,he will receive a $1,000,000 contract for playing pro-
fessional football,If an injury ends his football career,he will receive a
$10,000 contract as a refuse removal facilitator in his home town,There
is a 10% chance that Billy John will be injured badly enough to end his
career.
(a) What is Billy John’s expected utility? We calculate
:1
p
10;000 +:9
p
1;000;000 = 910.
NAME 171
(b) If Billy John pays $p for an insurance policy that would give him
$1,000,000 if he su ered a career-ending injury while in college,then he
would be sure to have an income of $1;000;000?p no matter what hap-
pened to him,Write an equation that can be solved to nd the largest
price that Billy John would be willing to pay for such an insurance policy.
The equation is 910 =
q
1;000;000?p.
(c) Solve this equation for p,p = 171;900.
12.10 (1) You have $200 and are thinking about betting on the Big
Game next Saturday,Your team,the Golden Boars,are scheduled to
play their traditional rivals the Robber Barons,It appears that the going
odds are 2 to 1 against the Golden Boars,That is to say if you want
to bet $10 on the Boars,you can nd someone who will agree to pay
you $20 if the Boars win in return for your promise to pay him $10 if
the Robber Barons win,Similarly if you want to bet $10 on the Robber
Barons,you can nd someone who will pay you $10 if the Robber Barons
win,in return for your promise to pay him $20 if the Robber Barons lose.
Suppose that you are able to make as large a bet as you like,either on
the Boars or on the Robber Barons so long as your gambling losses do
not exceed $200,(To avoid tedium,let us ignore the possibility of ties.)
(a) If you do not bet at all,you will have $200 whether or not the Boars
win,If you bet $50 on the Boars,then after all gambling obligations are
settled,you will have a total of 300 dollars if the Boars win and
150 dollars if they lose,On the graph below,use blue ink to draw a
line that represents all of the combinations of \money if the Boars win"
and \money if the Robber Barons win" that you could have by betting
from your initial $200 at these odds.
172 UNCERTAINTY (Ch,12)
0 100 200 300 400
100
200
300
Money if the Boars win
Money if the Boars lose
400
e
c
d
Red line
Blue line
(b) Label the point on this graph where you would be if you did not bet
at all with an E.
(c) After careful thought you decide to bet $50 on the Boars,Label the
point you have chosen on the graph with a C,Suppose that after you have
made this bet,it is announced that the star Robber Baron quarterback
su ered a sprained thumb during a tough economics midterm examination
and will miss the game,The market odds shift from 2 to 1 against the
Boars to \even money" or 1 to 1,That is,you can now bet on either
team and the amount you would win if you bet on the winning team is
the same as the amount that you would lose if you bet on the losing team.
You cannot cancel your original bet,but you can make new bets at the
new odds,Suppose that you keep your rst bet,but you now also bet
$50 on the Robber Barons at the new odds,If the Boars win,then after
you collect your winnings from one bet and your losses from the other,
how much money will you have left? $250,If the Robber Barons
win,how much money will you have left after collecting your winnings
and paying o your losses? $200.
(d) Use red ink to draw a line on the diagram you made above,showing
the combinations of \money if the Boars win" and \money if the Robber
Barons win" that you could arrange for yourself by adding possible bets
at the new odds to the bet you made before the news of the quarterback’s
misfortune,On this graph,label the point D that you reached by making
the two bets discussed above.
12.11 (2) The certainty equivalent of a lottery is the amount of money
you would have to be given with certainty to be just as well-o with that
lottery,Suppose that your von Neumann-Morgenstern utility function
NAME 173
over lotteries that give you an amount x if Event 1 happens and y if
Event 1 does not happen is U(x;y; )=
p
x+(1? )
p
y,where is the
probability that Event 1 happens and 1? is the probability that Event
1 does not happen.
(a) If =,5,calculate the utility of a lottery that gives you $10,000
if Event 1 happens and $100 if Event 1 does not happen,55 =
:5 100 +:5 10:
(b) If you were sure to receive $4,900,what would your utility be? 70.
(Hint,If you receive $4,900 with certainty,then you receive $4,900 in
both events.)
(c) Given this utility function and =,5,write a general formula for the
certainty equivalent of a lottery that gives you $x if Event 1 happens and
$y if Event 1 does not happen,(:5x
1=2
+:5y
1=2
)
2
.
(d) Calculate the certainty equivalent of receiving $10,000 if Event 1 hap-
pens and $100 if Event 1 does not happen,$3,025.
12.12 (0) Dan Partridge is a risk averter who tries to maximize the
expected value of
p
c,wherec is his wealth,Dan has $50,000 in safe
assets and he also owns a house that is located in an area where there
are lots of forest res,If his house burns down,the remains of his house
and the lot it is built on would be worth only $40,000,giving him a total
wealth of $90,000,If his home doesn’t burn,it will be worth $200,000
and his total wealth will be $250,000,The probability that his home will
burn down is,01.
(a) Calculate his expected utility if he doesn’t buy re insurance.
$498.
(b) Calculate the certainty equivalent of the lottery he faces if he doesn’t
buy re insurance,$248,004.
(c) Suppose that he can buy insurance at a price of $1 per $100 of in-
surance,For example if he buys $100,000 worth of insurance,he will pay
$1,000 to the company no matter what happens,but if his house burns,
he will also receive $100,000 from the company,If Dan buys $160,000
worth of insurance,he will be fully insured in the sense that no matter
what happens his after-tax wealth will be $248,400.
174 UNCERTAINTY (Ch,12)
(d) Therefore if he buys full insurance,the certainty equivalent of his
wealth is $248,400,and his expected utility is
p
248;800.
12.13 (0) Portia has been waiting a long time for her ship to come in
and has concluded that there is a 25% chance that it will arrive today,If
it does come in today,she will receive $1,600,If it does not come in today,
it will never come and her wealth will be zero,Portia has a von Neumann-
Morgenstern utility such that she wants to maximize the expected value
of
p
c,wherec is total income,What is the minimum price at which she
will sell the rights to her ship? $100.
Chapter 13 NAME
Risky Assets
Introduction,Here you will solve the problems of consumers who wish
to divide their wealth optimally between a risky asset and a safe asset.
The expected rate of return on a portfolio is just a weighted average of
the rate of return on the safe asset and the expected rate of return on
the risky asset,where the weights are the fractions of the consumer’s
wealth held in each,The standard deviation of the portfolio return is
just the standard deviation of the return on the risky asset times the
fraction of the consumer’s wealth held in the risky asset,Sometimes
you will look at the problem of a consumer who has preferences over
the expected return and the risk of her portfolio and who faces a budget
constraint,Since a consumer can always put all of her wealth in the
safe asset,one point on this budget constraint will be the combination
of the safe rate of return and no risk (zero standard deviation),Now
as the consumer puts x percent of her wealth into the risky asset,she
gains on that amount the di erence between the expected rate of return
for the risky asset and the rate of return on the safe asset,But she also
absorbs some risk,So the slope of the budget line will be the di erence
between the two returns divided by the standard deviation of the portfolio
that has x percent of the consumer’s wealth invested in the risky asset.
You can then apply the usual indi erence curve{budget line analysis to
nd the consumer’s optimal choice of risk and expected return given her
preferences,(Remember that if the standard deviation is plotted on the
horizontal axis and if less risk is preferred to more,the better bundles will
lie to the northwest.) You will also be asked to apply the result from the
Capital Asset Pricing Model that the expected rate of return on any asset
is equal to the sum of the risk-free rate of return plus the risk adjustment.
Remember too that the expected rate of return on an asset is its expected
change in price divided by its current price.
13.1 (3) Ms,Lynch has a choice of two assets,The rst is a risk-free
assetthato ersarateofreturnofr
f
,and the second is a risky asset (a
china shop that caters to large mammals) that has an expected rate of
return of r
m
and a standard deviation of
m
.
(a) If x is the percent of wealth Ms,Lynch invests in the risky asset,
what is the equation for the expected rate of return on the portfolio?
r
x
= xr
m
+(1?x)r
f
,What is the equation for the standard
deviation of the portfolio?
x
= x
m
.
176 RISKY ASSETS (Ch,13)
(b) By solving the second equation above for x and substituting the result
into the rst equation,derive an expression for the rate of return on the
portfolio in terms of the portfolio’s riskiness,r
x
=
r
m
r
f
m
x
+r
f
.
(c) Suppose that Ms,Lynch can borrow money at the interest rate r
f
and invest it in the risky asset,If r
m
= 20,r
f
= 10,and
m
= 10,what
will be Ms,Lynch’s expected return if she borrows an amount equal to
100% of her initial wealth and invests it in the risky asset? (Hint,This
is just like investing 200% of her wealth in the risky asset.) Apply
the formula r
x
= xr
m
+(1?x)r
f
with x =2 to
get r
x
=2 20?1 10 = 30.
(d) Suppose that Ms,Lynch can borrow or lend at the risk-free rate,If
r
f
is 10%,r
m
is 20%,and
m
is 10%,what is the formula for the \budget
line" Ms,Lynch faces? r
x
=
x
+10,Plot this budget line in the
graph below.
010203040
10
20
30
Standard deviation
Expected return
40
Budget line
U=0
U=5
U=10
(e) Which of the following risky assets would Ms,Lynch prefer to her
present risky asset,assuming she can only invest in one risky asset at a
time and that she can invest a fraction of her wealth in whichever risky
asset she chooses? Write the word \better," \worse," or \same" after
each of the assets.
Asset A with r
a
=17% and
a
=5%,Better.
Asset B with r
b
=30% and
b
= 25%,Worse.
NAME 177
Asset C with r
c
=11% and
c
=1%,Same.
Asset D with r
d
=25% and
d
= 14%,Better.
(f) Suppose Ms,Lynch’s utility function has the formu(r
x;
x
)=r
x
2
x
.
How much of her portfolio will she invest in the original risky asset?
(You might want to graph a few of Ms,Lynch’s indi erence curves be-
fore answering; e.g.,graph the combinations of r
x
and
x
that imply
u(r
x;
x
)=0;1;:::),She will not invest anything
in the risky asset.
13.2 (3) Fenner Smith is contemplating dividing his portfolio between
two assets,a risky asset that has an expected return of 30% and a standard
deviation of 10%,and a safe asset that has an expected return of 10%
and a standard deviation of 0%.
(a) If Mr,Smith invests x percent of his wealth in the risky asset,what
will be his expected return? r
x
=30x+ 10(1?x).
(b) If Mr,Smith invests x percent of his wealth in the risky asset,what
will be the standard deviation of his wealth?
x
=10x.
(c) Solve the above two equations for the expected return on Mr,Smith’s
wealth as a function of the standard deviation he accepts,The
budget line is r
x
=2
x
+10.
(d) Plot this \budget line" on the graph below.
0 5 10 15 20
10
20
30
Standard deviation
Expected return
40
Budget line
Indifference
curves
Optimal choice
178 RISKY ASSETS (Ch,13)
(e) If Mr,Smith’s utility function is u(r
x;
x
)=minfr
x;30?2
x
g,then
Mr,Smith’s optimal value of r
x
is 20,and his optimal value of
x
is 5,(Hint,You will need to solve two equations in two unknowns.
One of the equations is the budget constraint.)
(f) Plot Mr,Smith’s optimal choice and an indi erence curve through it
in the graph.
(g) What fraction of his wealth should Mr,Smith invest in the risky asset?
Using the answer to Part (a),we find an x
that solves 20 = r
x
=30x + 10(1?x),The
answer is x =,5.
13.3 (2) Assuming that the Capital Asset Pricing Model is valid,com-
plete the following table,In this table p
0
is the current price of asset i
and Ep
1
is the expected price of asset i in the next period.
r
f
r
m
r
i
i
p
0
Ep
1
10 20 10 0 100 110
10 20 25 1.5 100 125
10 15 20 2 200 240
0 30 20 2=3 40 48
10 22 10 0 80 88
13.4 (2) Farmer Alf Alpha has a pasture located on a sandy hill,The
return to him from this pasture is a random variable depending on how
much rain there is,In rainy years the yield is good; in dry years the yield
is poor,The market value of this pasture is $5,000,The expected return
from this pasture is $500 with a standard deviation of $100,Every inch
of rain above average means an extra $100 in pro t and every inch of rain
below average means another $100 less pro t than average,Farmer Alf
has another $5,000 that he wants to invest in a second pasture,There are
two possible pastures that he can buy.
(a) One is located on low land that never floods,This pasture yields
an expected return of $500 per year no matter what the weather is like.
What is Alf Alpha’s expected rate of return on his total investment if he
buys this pasture for his second pasture? 10%,What is the standard
deviation of his rate of return in this case? 10%.
NAME 179
(b) Another pasture that he could buy is located on the very edge of the
river,This gives very good yields in dry years but in wet years it floods.
This pasture also costs $5,000,The expected return from this pasture is
$500 and the standard deviation is $100,Every inch of rain below average
means an extra $100 in pro t and every inch of rain above average means
another $100 less pro t than average,If Alf buys this pasture and keeps
his original pasture on the sandy hill,what is his expected rate of return
on his total investment? 10%,What is the standard deviation of the
rate of return on his total investment in this case? 0%.
(c) If Alf is a risk averter,which of these two pastures should he buy
and why? He should choose the second pasture
since it has the same expected return and
lower risk.
180 RISKY ASSETS (Ch,13)
Chapter 14 NAME
Consumer’s Surplus
Introduction,In this chapter you will study ways to measure a con-
sumer’s valuation of a good given the consumer’s demand curve for it.
The basic logic is as follows,The height of the demand curve measures
how much the consumer is willing to pay for the last unit of the good
purchased|the willingness to pay for the marginal unit,Therefore the
sum of the willingnesses-to-pay for each unit gives us the total willingness
to pay for the consumption of the good.
In geometric terms,the total willingness to pay to consume some
amount of the good is just the area under the demand curve up to that
amount,This area is called gross consumer’s surplus or total bene t
of the consumption of the good,If the consumer has to pay some amount
in order to purchase the good,then we must subtract this expenditure in
order to calculate the (net) consumer’s surplus.
When the utility function takes the quasilinear form,u(x)+m,the
area under the demand curve measures u(x),and the area under the
demand curve minus the expenditure on the other good measures u(x)+
m,Thus in this case,consumer’s surplus serves as an exact measure of
utility,and the change in consumer’s surplus is a monetary measure of a
change in utility.
If the utility function has a di erent form,consumer’s surplus will not
be an exact measure of utility,but it will often be a good approximation.
However,if we want more exact measures,we can use the ideas of the
compensating variation and the equivalent variation.
Recall that the compensating variation is the amount of extra income
that the consumer would need at the new prices to be as well o as she
was facing the old prices; the equivalent variation is the amount of money
that it would be necessary to take away from the consumer at the old
prices to make her as well o as she would be,facing the new prices.
Although di erent in general,the change in consumer’s surplus and the
compensating and equivalent variations will be the same if preferences are
quasilinear.
In this chapter you will practice:
Calculating consumer’s surplus and the change in consumer’s surplus
Calculating compensating and equivalent variations
Example,Suppose that the inverse demand curve is given by P(q)=
100?10q and that the consumer currently has 5 units of the good,How
much money would you have to pay him to compensate him for reducing
his consumption of the good to zero?
Answer,The inverse demand curve has a height of 100 when q =0
and a height of 50 when q = 5,The area under the demand curve is a
trapezoid with a base of 5 and heights of 100 and 50,We can calculate
182 CONSUMER’S SURPLUS (Ch,14)
the area of this trapezoid by applying the formula
Area of a trapezoid = base
1
2
(height
1
+height
2
):
In this case we have A =5
1
2
(100 + 50) = $375.
Example,Suppose now that the consumer is purchasing the 5 units at a
price of $50 per unit,If you require him to reduce his purchases to zero,
how much money would be necessary to compensate him?
In this case,we saw above that his gross bene ts decline by $375.
On the other hand,he has to spend 5 50 = $250 less,The decline in
net surplus is therefore $125.
Example,Suppose that a consumer has a utility function u(x
1;x
2
)=
x
1
+ x
2
,Initially the consumer faces prices (1;2) and has income 10.
If the prices change to (4;2),calculate the compensating and equivalent
variations.
Answer,Since the two goods are perfect substitutes,the consumer
will initially consume the bundle (10;0) and get a utility of 10,After the
prices change,she will consume the bundle (0;5) and get a utility of 5.
After the price change she would need $20 to get a utility of 10; therefore
the compensating variation is 20?10 = 10,Before the price change,she
would need an income of 5 to get a utility of 5,Therefore the equivalent
variation is 10?5=5.
14.1 (0) Sir Plus consumes mead,and his demand function for tankards
of mead is given by D(p) = 100?p,wherep is the price of mead in
shillings.
(a) If the price of mead is 50 shillings per tankard,how many tankards of
mead will he consume? 50.
(b) How much gross consumer’s surplus does he get from this consump-
tion? 3,750.
(c) How much money does he spend on mead? 2,500.
(d) What is his net consumer’s surplus from mead consumption?
1,250.
14.2 (0) Here is the table of reservation prices for apartments taken
from Chapter 1:
Person=ABCDEFGH
Price = 40 25 30 35 10 18 15 5
NAME 183
(a) If the equilibrium rent for an apartment turns out to be $20,which
consumers will get apartments? A,B,C,D.
(b) If the equilibrium rent for an apartment turns out to be $20,what
is the consumer’s (net) surplus generated in this market for person A?
20,For person B? 5.
(c) If the equilibrium rent is $20,what is the total net consumers’ surplus
generated in the market? 50.
(d) If the equilibrium rent is $20,what is the total gross consumers’
surplus in the market? 130.
(e) If the rent declines to $19,how much does the gross surplus increase?
0.
(f) If the rent declines to $19,how much does the net surplus increase?
4.
Calculus 14.3 (0) Quasimodo consumes earplugs and other things,His utility
function for earplugs x and money to spend on other goods y is given by
u(x;y) = 100x?
x
2
2
+y:
(a) What kind of utility function does Quasimodo have? Quasilinear.
(b) What is his inverse demand curve for earplugs? p = 100?x.
(c) If the price of earplugs is $50,how many earplugs will he consume?
50.
(d) If the price of earplugs is $80,how many earplugs will he consume?
20.
(e) Suppose that Quasimodo has $4,000 in total to spend a month,What
is his total utility for earplugs and money to spend on other things if the
price of earplugs is $50? $5,250.
184 CONSUMER’S SURPLUS (Ch,14)
(f) What is his total utility for earplugs and other things if the price of
earplugs is $80? $4,200.
(g) Utility decreases by 1,050 when the price changes from $50 to
$80.
(h) What is the change in (net) consumer’s surplus when the price changes
from $50 to $80? 1,050.
14.4 (2) In the graph below,you see a representation of Sarah Gamp’s
indi erence curves between cucumbers and other goods,Suppose that
the reference price of cucumbers and the reference price of \other goods"
are both 1.
Cucumbers
Other goods
0
40
30
20
10
10 20 30 40
B
A
(a) What is the minimum amount of money that Sarah would need in
order to purchase a bundle that is indi erent to A? 20.
(b) What is the minimum amount of money that Sarah would need in
order to purchase a bundle that is indi erent to B? 30.
(c) Suppose that the reference price for cucumbers is 2 and the reference
price for other goods is 1,How much money does she need in order to
purchase a bundle that is indi erent to bundle A? 30.
(d) What is the minimum amount of money that Sarah would need to
purchase a bundle that is indi erent to B using these new prices? 40.
NAME 185
(e) No matter what prices Sarah faces,the amount of money she needs
to purchase a bundle indi erent to A must be (higher,lower) than the
amount she needs to purchase a bundle indi erent to B,lower.
14.5 (2) Bernice’s preferences can be represented by u(x;y)=minfx;yg,
where x is pairs of earrings and y is dollars to spend on other things,She
faces prices (p
x;p
y
)=(2;1) and her income is 12.
(a) Draw in pencil on the graph below some of Bernice’s indi erence
curves and her budget constraint,Her optimal bundle is 4 pairs
of earrings and 4 dollars to spend on other things.
0481216
4
8
12
Pairs of earrings
Dollars for other things
16
Black line
Pencil lines
Red
line
Blue lines
(b) The price of a pair of earrings rises to $3 and Bernice’s income stays
the same,Using blue ink,draw her new budget constraint on the graph
above,Her new optimal bundle is 3 pairs of earrings and
3 dollars to spend on other things.
(c) What bundle would Bernice choose if she faced the original prices and
had just enough income to reach the new indi erence curve? (3;3).
Draw with red ink the budget line that passes through this bundle at
the original prices,How much income would Bernice need at the original
prices to have this (red) budget line? $9.
186 CONSUMER’S SURPLUS (Ch,14)
(d) The maximum amount that Bernice would pay to avoid the price
increase is $3,This is the (compensating,equivalent) variation in
income,Equivalent.
(e) What bundle would Bernice choose if she faced the new prices and had
just enough income to reach her original indi erence curve? (4;4).
Draw with black ink the budget line that passes through this bundle at
the new prices,How much income would Bernice have with this budget?
$16.
(f) In order to be as well-o as she was with her original bundle,Bernice’s
original income would have to rise by $4,This is the (compensating,
equivalent) variation in income,Compensating.
Calculus 14.6 (0) Ulrich likes video games and sausages,In fact,his preferences
can be represented by u(x;y)=ln(x +1)+y where x is the number of
video games he plays and y is the number of dollars that he spends on
sausages,Let p
x
be the price of a video game and m be his income.
(a) Write an expression that says that Ulrich’s marginal rate of substi-
tution equals the price ratio,( Hint,Remember Donald Fribble from
Chapter 6?) 1=(x+1)=p
x
.
(b) Since Ulrich has quasilinear preferences,you can solve this
equation alone to get his demand function for video games,which is
x =1=p
x
1,His demand function for the dollars to spend on
sausages is y = m?1+p.
(c) Video games cost $:25 and Ulrich’s income is $10,Then Ulrich de-
mands 3 video games and 9.25 dollars’ worth of sausages.
His utility from this bundle is 10.64,(Round o to two decimal
places.)
(d) If we took away all of Ulrich’s video games,how much money would
he need to have to spend on sausages to be just as well-o as before?
$10.64.
NAME 187
(e) Now an amusement tax of $.25 is put on video games and is passed
on in full to consumers,With the tax in place,Ulrich demands 1
video game and 9.5 dollars’ worth of sausages,His utility from this
bundle is 10.19,(Round o to two decimal places.)
(f) Now if we took away all of Ulrich’s video games,how much money
would he have to have to spend on sausages to be just as well-o as with
the bundle he purchased after the tax was in place? $10.19.
(g) What is the change in Ulrich’s consumer surplus due to the tax?
:45 How much money did the government collect from Ulrich by
means of the tax? $.25.
Calculus 14.7 (1) Lolita,an intelligent and charming Holstein cow,consumes
only two goods,cow feed (made of ground corn and oats) and hay,Her
preferences are represented by the utility function U(x;y)=x?x
2
=2+y,
where x is her consumption of cow feed and y is her consumption of hay.
Lolita has been instructed in the mysteries of budgets and optimization
and always maximizes her utility subject to her budget constraint,Lolita
has an income of $m that she is allowed to spend as she wishes on cow
feed and hay,The price of hay is always $1,and the price of cow feed will
be denoted by p,where0<p 1.
(a) Write Lolita’s inverse demand function for cow feed,(Hint,Lolita’s
utility function is quasilinear,When y is the numeraire and the price of
x is p,the inverse demand function for someone with quasilinear utility
f(x)+y is found by simply setting p = f
0
(x).) p =1?x.
(b) If the price of cow feed is p and her income is m,howmuchhaydoes
Lolita choose? (Hint,The money that she doesn’t spend on feed is used
to buy hay.) m?p(1?p).
(c) Plug these numbers into her utility function to nd out the utility level
that she enjoys at this price and this income,u = m+(1?p)
2
=2.
(d) Suppose that Lolita’s daily income is $3 and that the price of feed is
$:50,What bundle does she buy? (1=2;11=4),What bundle would
she buy if the price of cow feed rose to $1? (0;3).
188 CONSUMER’S SURPLUS (Ch,14)
(e) How much money would Lolita be willing to pay to avoid having the
price of cow feed rise to $1? 1=8,This amount is known as the
equivalent variation.
(f) Suppose that the price of cow feed rose to $1,How much extra money
would you have to pay Lolita to make her as well-o as she was at the
old prices? 1=8,This amount is known as the compensating
variation,Which is bigger,the compensating or the equivalent variation,
or are they the same? Same.
(g) At the price $.50 and income $3,how much (net) consumer’s surplus
is Lolita getting? 1=8.
14.8 (2) F,Flintstone has quasilinear preferences and his inverse demand
function for Brontosaurus Burgers is P(b)=30?2b,Mr,Flintstone is
currently consuming 10 burgers at a price of 10 dollars.
(a) How much money would he be willing to pay to have this amount
rather than no burgers at all? $200,What is his level of (net)
consumer’s surplus? $100.
(b) The town of Bedrock,the only supplier of Brontosaurus Burgers,
decides to raise the price from $10 a burger to $14 a burger,What
is Mr,Flintstone’s change in consumer’s surplus? At price
$10,consumer’s surplus is $100,At $14,
he demands 8 burgers,for net consumer’s
surplus of
1
2
(16 8) = 64,The change in
consumer’s surplus is?$36.
14.9 (1) Karl Kapitalist is willing to produce p=2?20 chairs at every
price,p>40,At prices below 40,he will produce nothing,If the price
of chairs is $100,Karl will produce 30 chairs,At this price,how
much is his producer’s surplus?
1
2
(60 30) = 900.
14.10 (2) Ms,Q,Moto loves to ring the church bells for up to 10
hours a day,Where m is expenditure on other goods,and x is hours of
bell ringing,her utility is u(m;x)=m +3x for x 10,If x>10,she
develops painful blisters and is worse o than if she didn’t ring the bells.
NAME 189
Her income is equal to $100 and the sexton allows her to ring the bell for
10 hours.
(a) Due to complaints from the villagers,the sexton has decided to restrict
Ms,Moto to 5 hours of bell ringing per day,This is bad news for Ms.
Moto,In fact she regards it as just as bad as losing $15 dollars of
income.
(b) The sexton relents and o ers to let her ring the bells as much as she
likes so long as she pays $2 per hour for the privilege,How much ringing
does she do now? 10 hours,This tax on her activities is as bad
as a loss of how much income? $20.
(c) The villagers continue to complain,The sexton raises the price of
bell ringing to $4 an hour,How much ringing does she do now? 0
hours,This tax,as compared to the situation in which she could
ring the bells for free,is as bad as a loss of how much income? $30.
190 CONSUMER’S SURPLUS (Ch,14)
Chapter 15 NAME
Market Demand
Introduction,Some problems in this chapter will ask you to construct
the market demand curve from individual demand curves,The market
demand at any given price is simply the sum of the individual demands at
that price,The key thing to remember in going from individual demands
to the market demand is to add quantities,Graphically,you sum the
individual demands horizontally to get the market demand,The market
demand curve will have a kink in it whenever the market price is high
enough that some individual demand becomes zero.
Sometimes you will need to nd a consumer’s reservation price for
a good,Recall that the reservation price is the price that makes the
consumer indi erent between having the good at that price and not hav-
ing the good at all,Mathematically,the reservation price p
satis es
u(0;m)=u(1;m?p
),where m is income and the quantity of the other
good is measured in dollars.
Finally,some of the problems ask you to calculate price and/or in-
come elasticities of demand,These problems are especially easy if you
know a little calculus,If the demand function is D(p),and you want to
calculate the price elasticity of demand when the price is p,you only need
to calculate dD(p)=dp and multiply it by p=q.
15.0 Warm Up Exercise,(Calculating elasticities.) Here are
some drills on price elasticities,For each demand function,nd an ex-
pression for the price elasticity of demand,The answer will typically be
a function of the price,p,As an example,consider the linear demand
curve,D(p)=30?6p.ThendD(p)=dp =?6andp=q = p=(30?6p),so
the price elasticity of demand is?6p=(30?6p).
(a) D(p)=60?p,?p=(60?p).
(b) D(p)=a?bp,?bp=(a?bp).
(c) D(p)=40p
2
,?2.
(d) D(p)=Ap
b
,?b.
(e) D(p)=(p+3)
2
,?2p=(p+3).
192 MARKET DEMAND (Ch,15)
(f) D(p)=(p+a)
b
,?bp=(p+a).
15.1 (0) In Gas Pump,South Dakota,there are two kinds of consumers,
Buick owners and Dodge owners,Every Buick owner has a demand func-
tion for gasoline D
B
(p)=20?5p for p 4andD
B
(p)=0ifp>4.
Every Dodge owner has a demand function D
D
(p)=15?3p for p 5
and D
D
(p)=0forp>5,(Quantities are measured in gallons per week
and price is measured in dollars.) Suppose that Gas Pump has 150 con-
sumers,100 Buick owners,and 50 Dodge owners.
(a) If the price is $3,what is the total amount demanded by each indi-
vidual Buick Owner? 5,And by each individual Dodge owner?
6.
(b) What is the total amount demanded by all Buick owners? 500.
What is the total amount demanded by all Dodge owners? 300.
(c) What is the total amount demanded by all consumers in Gas Pump
at a price of 3? 800.
(d) On the graph below,use blue ink to draw the demand curve repre-
senting the total demand by Buick owners,Use black ink to draw the
demand curve representing total demand by Dodge owners,Use red ink
to draw the market demand curve for the whole town.
(e) At what prices does the market demand curve have kinks? At
p =4 and p =5.
(f) When the price of gasoline is $1 per gallon,how much does weekly
demand fall when price rises by 10 cents? 65 gallons.
(g) When the price of gasoline is $4.50 per gallon,how much does weekly
demand fall when price rises by 10 cents? 15 gallons.
(h) When the price of gasoline is $10 per gallon,how much does weekly
demand fall when price rises by 10 cents? Remains at zero.
NAME 193
0 1500 2000 2500 3000
1
2
3
4
5
6
500
Dollars per gallon
1000
Gallons per week
Blue line
Black
line
Red line
15.2 (0) For each of the following demand curves,compute the inverse
demand curve.
(a) D(p)=maxf10?2p;0g,p(q)=5?q=2 if q<10.
(b) D(p) = 100=
p
p,p(q)=10;000=q
2
.
(c) lnD(p)=10?4p,p(q)=(10?lnq)=4.
(d) lnD(p)=ln20?2lnp,p(q)=
q
20=q.
15.3 (0) The demand function of dog breeders for electric dog polishers
is q
b
=maxf200?p;0g,and the demand function of pet owners for electric
dog polishers is q
o
=maxf90?4p;0g.
(a) At price p,what is the price elasticity of dog breeders’ demand for
electric dog polishersp=(200?p),What is the price elasticity
of pet owners’ demand4p=(90?4p).
194 MARKET DEMAND (Ch,15)
(b) At what price is the dog breeders’ elasticity equal to?1? $100.
At what price is the pet owners’ elasticity equal to?1? $11.25.
(c) On the graph below,draw the dog breeders’ demand curve in blue
ink,the pet owners’ demand curve in red ink,and the market demand
curve in pencil.
(d) Find a nonzero price at which there is positive total demand for dog
polishers and at which there is a kink in the demand curve,$22.50.
What is the market demand function for prices below the kink? 290?
5p,What is the market demand function for prices above the kink?
200?p.
(e) Where on the market demand curve is the price elasticity equal to
1? $100,At what price will the revenue from the sale of electric
dog polishers be maximized? $100,If the goal of the sellers is to
maximize revenue,will electric dog polishers be sold to breeders only,to
pet owners only,or to both? Breeders only.
NAME 195
0 150 200 250 300
50
100
150
200
250
300
50
Price
100
Quantity
Blue line
Red
line
Pencil line
22.5
90 290
Calculus 15.4 (0) The demand for kitty litter,in pounds,is lnD(p)=1;000?
p+lnm,wherep is the price of kitty litter and m is income.
(a) What is the price elasticity of demand for kitty litter when p =2and
m = 5002,When p =3andm = 5003,When p =4and
m =1;5004.
(b) What is the income elasticity of demand for kitty litter when p =2
and m = 500? 1,When p =2andm =1;000? 1.
When p =3andm =1;500? 1.
196 MARKET DEMAND (Ch,15)
(c) What is the price elasticity of demand when price is p and income is
mp,The income elasticity of demand? 1.
Calculus 15.5 (0) The demand function for drangles is q(p)=(p +1)
2
.
(a) What is the price elasticity of demand at price p2p=(p+1).
(b) At what price is the price elasticity of demand for drangles equal to
1? When the price equals 1.
(c) Write an expression for total revenue from the sale of drangles as
a function of their price,R(p)=pq = p=(p +1)
2
,Use
calculus to nd the revenue-maximizing price,Don’t forget to check the
second-order condition,Differentiating and solving
gives p =1.
(d) Suppose that the demand function for drangles takes the more general
form q(p)=(p+a)
b
where a>0andb>1,Calculate an expression for
the price elasticity of demand at price p,?bp=(p+a),At what
price is the price elasticity of demand equal to?1? p = a=(b?1).
15.6 (0) Ken’s utility function is u
K
(x
1;x
2
)=x
1
+ x
2
and Barbie’s
utility function is u
B
(x
1;x
2
)=(x
1
+1)(x
2
+ 1),A person can buy 1
unit of good 1 or 0 units of good 1,It is impossible for anybody to buy
fractional units or to buy more than 1 unit,Either person can buy any
quantity of good 2 that he or she can a ord at a price of $1 per unit.
(a) Where m is Barbie’s wealth and p
1
is the price of good 1,write an
equation that can be solved to nd Barbie’s reservation price for good 1.
(m?p
1
+1)2=m +1,What is Barbie’s reservation price
for good 1? p =(m+1)=2,What is Ken’s reservation price for
good 1? $1.
(b) If Ken and Barbie each have a wealth of 3,plot the market demand
curve for good 1.
NAME 197
01234
1
2
3
4
Price
Quantity
15.7 (0) The demand function for yo-yos is D(p;M)=4?2p +
1
100
M,
where p is the price of yo-yos and M is income,If M is 100 and p is 1,
(a) What is the income elasticity of demand for yo-yos? 1=3.
(b) What is the price elasticity of demand for yo-yos2=3.
15.8 (0) If the demand function for zarfs is P =10?Q,
(a) At what price will total revenue realized from their sale be at a max-
imum? P =5.
(b) How many zarfs will be sold at that price? Q =5.
15.9 (0) The demand function for football tickets for a typical game at a
large midwestern university is D(p) = 200;000?10;000p,The university
has a clever and avaricious athletic director who sets his ticket prices so
as to maximize revenue,The university’s football stadium holds 100,000
spectators.
(a) Write down the inverse demand function,p(q)=20?
q=10;000.
198 MARKET DEMAND (Ch,15)
(b) Write expressions for total revenue R(q)=20q?q
2
=10;000
and marginal revenue MR =20?q=5;000 as a function of the
number of tickets sold.
(c) On the graph below,use blue ink to draw the inverse demand function
and use red ink to draw the marginal revenue function,On your graph,
also draw a vertical blue line representing the capacity of the stadium.
0 20 40 60 80 100 120 140 160
5
10
15
20
25
30
Price
Quantity x 1000
Red line
Red line
Black line
Blue line
Stadium capacity
(d) What price will generate the maximum revenue? $10,What
quantity will be sold at this price? 100,000.
(e) At this quantity,what is marginal revenue? 0,At this quantity,
what is the price elasticity of demand1,Will the stadium be full?
Yes.
(f) A series of winning seasons caused the demand curve for football
tickets to shift upward,The new demand function is q(p) = 300;000?
10;000p,What is the new inverse demand function? p(q)=30?
q=10;000.
NAME 199
(g) Write an expression for marginal revenue as a function of output.
MR(q)= 30?q=5;000,Use red ink to draw the new demand
function and use black ink to draw the new marginal revenue function.
(h) Ignoring stadium capacity,what price would generate maximum
revenue? $15,What quantity would be sold at this price?
150,000.
(i) As you noticed above,the quantity that would maximize total revenue
given the new higher demand curve is greater than the capacity of the
stadium,Clever though the athletic director is,he cannot sell seats he
hasn’t got,He notices that his marginal revenue is positive for any number
of seats that he sells up to the capacity of the stadium,Therefore,in order
to maximize his revenue,he should sell 100,000 tickets at a price
of $20.
(j) When he does this,his marginal revenue from selling an extra seat
is 10,The elasticity of demand for tickets at this price quantity
combination is =?2.
15.10 (0) The athletic director discussed in the last problem is consid-
ering the extra revenue he would gain from three proposals to expand the
size of the football stadium,Recall that the demand function he is now
facing is given by q(p) = 300;000?10;000p.
(a) How much could the athletic director increase the total revenue per
game from ticket sales if he added 1,000 new seats to the stadium’s capac-
ity and adjusted the ticket price to maximize his revenue? 9,900.
(b) How much could he increase the revenue per game by adding 50,000
new seats? $250,000,60,000 new seats? (Hint,The athletic
director still wants to maximize revenue.) $250,000.
(c) A zealous alumnus o ers to build as large a stadium as the athletic
director would like and donate it to the university,There is only one hitch.
The athletic director must price his tickets so as to keep the stadium full.
If the athletic director wants to maximize his revenue from ticket sales,
how large a stadium should he choose? 150,000 seats.
200 MARKET DEMAND (Ch,15)
Chapter 16 NAME
Equilibrium
Introduction,Supply and demand problems are bread and butter for
economists,In the problems below,you will typically want to solve for
equilibrium prices and quantities by writing an equation that sets supply
equal to demand,Where the price received by suppliers is the same as the
price paid by demanders,one writes supply and demand as functions of
the same price variable,p,and solves for the price that equalizes supply
and demand,But if,as happens with taxes and subsidies,suppliers face
di erent prices from demanders,it is a good idea to denote these two
prices by separate variables,p
s
and p
d
,Then one can solve for equilibrium
by solving a system of two equations in the two unknowns p
s
and p
d
.The
two equations are the equation that sets supply equal to demand and
the equation that relates the price paid by demanders to the net price
received by suppliers.
Example,The demand function for commodity x is q =1;000?10p
d
,
where p
d
is the price paid by consumers,The supply function for x is
q = 100 + 20p
s
,wherep
s
is the price received by suppliers,For each unit
sold,the government collects a tax equal to half of the price paid by con-
sumers,Let us nd the equilibrium prices and quantities,In equilibrium,
supply must equal demand,so that 1;000?10p
d
= 100 + 20p
s
,Since the
government collects a tax equal to half of the price paid by consumers,
it must be that the sellers only get half of the price paid by consumers,
so it must be that p
s
= p
d
=2,Now we have two equations in the two
unknowns,p
s
and p
d
,Substitute the expression p
d
=2forp
s
in the rst
equation,and you have 1;000?10p
d
= 100 + 10p
d
,Solve this equation
to nd p
d
= 45,Then p
s
=22:5andq = 550.
16.1 (0) The demand for yak butter is given by 120?4p
d
and the
supply is 2p
s
30,where p
d
is the price paid by demanders and p
s
is
the price received by suppliers,measured in dollars per hundred pounds.
Quantities demanded and supplied are measured in hundred-pound units.
(a) On the axes below,draw the demand curve (with blue ink) and the
supply curve (with red ink) for yak butter.
202 EQUILIBRIUM (Ch,16)
0 40 60 80 100
Yak butter
20
40
60
80
Price
20 120
Blue line
Red line
p1
q1q2
p2
(b) Write down the equation that you would solve to nd the equilibrium
price,Solve 120?4p =2p?30.
(c) What is the equilibrium price of yak butter? $25,What is the
equilibrium quantity? 20,Locate the equilibrium price and quantity
on the graph,and label them p
1
and q
1
.
(d) A terrible drought strikes the central Ohio steppes,traditional home-
land of the yaks,The supply schedule shifts to 2p
s
60,The demand
schedule remains as before,Draw the new supply schedule,Write down
the equation that you would solve to nd the new equilibrium price of
yak butter,120?4p =2p?60.
(e) The new equilibrium price is 30 and the quantity is 0.
Locate the new equilibrium price and quantity on the graph and label
them p
2
and q
2
.
(f) The government decides to relieve stricken yak butter consumers and
producers by paying a subsidy of $5 per hundred pounds of yak butter
to producers,If p
d
is the price paid by demanders for yak butter,what
is the total amount received by producers for each unit they produce?
p
d
+5,When the price paid by consumers is p
d
,how much yak butter
is produced? 2p
d
50.
NAME 203
(g) Write down an equation that can be solved for the equilibrium price
paid by consumers,given the subsidy program,2p
d
50 =
120? 4p
d
,What are the equilibrium price paid by consumers
and the equilibrium quantity of yak butter now? p
d
= 170=6,
q = 170=3?50 = 20=3.
(h) Suppose the government had paid the subsidy to consumers rather
than producers,What would be the equilibrium net price paid by con-
sumers? 170=6,The equilibrium quantity would be 20=3.
16.2 (0) Here are the supply and demand equations for throstles,where
p is the price in dollars:
D(p)=40?p
S(p)=10+p:
On the axes below,draw the demand and supply curves for throstles,
using blue ink.
010203040
10
20
30
40
Price
Throstles
Demand
Supply
Deadweight
loss
(a) The equilibrium price of throstles is 15 and the equilibrium
quantity is 25.
(b) Suppose that the government decides to restrict the industry to selling
only 20 throstles,At what price would 20 throstles be demanded? 20.
How many throstles would suppliers supply at that price? 30,At what
price would the suppliers supply only 20 units? $10.
204 EQUILIBRIUM (Ch,16)
(c) The government wants to make sure that only 20 throstles are bought,
but it doesn’t want the rms in the industry to receive more than the
minimum price that it would take to have them supply 20 throstles,One
way to do this is for the government to issue 20 ration coupons,Then
in order to buy a throstle,a consumer would need to present a ration
coupon along with the necessary amount of money to pay for the good.
If the ration coupons were freely bought and sold on the open market,
what would be the equilibrium price of these coupons? $10.
(d) On the graph above,shade in the area that represents the deadweight
loss from restricting the supply of throstles to 20,How much is this ex-
pressed in dollars? (Hint,What is the formula for the area of a triangle?)
$25.
16.3 (0) The demand curve for ski lessons is given by D(p
D
) = 100?2p
D
and the supply curve is given by S(p
S
)=3p
S
.
(a) What is the equilibrium price? $20,What is the equilibrium
quantity? 60.
(b) A tax of $10 per ski lesson is imposed on consumers,Write an equation
that relates the price paid by demanders to the price received by suppliers.
p
D
= p
S
+10,Write an equation that states that supply equals
demand,100?2p
D
=3p
S
.
(c) Solve these two equations for the two unknowns p
S
and p
D
.With
the $10 tax,the equilibrium price p
D
paid by consumers would be $26
per lesson,The total number of lessons given would be 48.
(d) A senator from a mountainous state suggests that although ski lesson
consumers are rich and deserve to be taxed,ski instructors are poor and
deserve a subsidy,He proposes a $6 subsidy on production while main-
taining the $10 tax on consumption of ski lessons,Would this policy have
any di erent e ects for suppliers or for demanders than a tax of $4 per
lesson? No.
16.4 (0) The demand curve for salted cod sh is D(P) = 200?5P and
the supply curve S(P)=5P.
NAME 205
(a) On the graph below,use blue ink to draw the demand curve and the
supply curve,The equilibrium market price is $20 and the equilibrium
quantity sold is 100.
0 50 100 150 200
10
20
30
40
Price
Quantity of codfish
Demand
Blue Supply
Deadweight
loss
Red
supply
(b) A quantity tax of $2 per unit sold is placed on salted cod sh,Use red
ink to draw the new supply curve,where the price on the vertical axis
remains the price per unit paid by demanders,The new equilibrium price
paid by the demanders will be $21 and the new price received by the
suppliers will be $19,The equilibrium quantity sold will be 95.
(c) The deadweight loss due to this tax will be 5=2 5=2,On
your graph,shade in the area that represents the deadweight loss.
16.5 (0) The demand function for merino ewes is D(P) = 100=P,and
the supply function is S(P)=P.
(a) What is the equilibrium price? $10.
206 EQUILIBRIUM (Ch,16)
(b) What is the equilibrium quantity? 10.
(c) An ad valorem tax of 300% is imposed on merino ewes so that the
price paid by demanders is four times the price received by suppliers.
What is the equilibrium price paid by the demanders for merino ewes
now? $20,What is the equilibrium price received by the suppliers
for merino ewes? $5,What is the equilibrium quantity? 5.
16.6 (0) Schrecklich and LaMerde are two justi ably obscure nineteenth-
century impressionist painters,The world’s total stock of paintings by
Schrecklich is 100,and the world’s stock of paintings by LaMerde is 150.
The two painters are regarded by connoisseurs as being very similar in
style,Therefore the demand for either painter’s work depends both on its
own price and the price of the other painter’s work,The demand function
for Schrecklichs is D
S
(P) = 200?4P
S
2P
L
,and the demand function for
LaMerdes is D
L
(P) = 200?3P
L
P
S
,whereP
S
and P
L
are respectively
the price in dollars of a Schrecklich painting and a LaMerde painting.
(a) Write down two simultaneous equations that state the equilibrium
condition that the demand for each painter’s work equals supply.
The equations are 200?4P
S
2P
L
= 100 and
200?3P
L
P
S
= 150.
(b) Solving these two equations,one nds that the equilibrium price of
Schrecklichs is 20 and the equilibrium price of LaMerdes is 10.
(c) On the diagram below,draw a line that represents all combinations of
prices for Schrecklichs and LaMerdes such that the supply of Schrecklichs
equals the demand for Schrecklichs,Draw a second line that represents
those price combinations at which the demand for LaMerdes equals the
supply of LaMerdes,Label the unique price combination at which both
markets clear with the letter E.
NAME 207
010203040
10
20
30
40
Pl
Ps
e
Schrecklich
La Mendes
Red line
e'
(d) A re in a bowling alley in Hamtramck,Michigan,destroyed one of
the world’s largest collections of works by Schrecklich,The re destroyed
a total of 10 Schrecklichs,After the re,the equilibrium price of Schreck-
lichs was 23 and the equilibrium price of LaMerdes was 9.
(e) On the diagram you drew above,use red ink to draw a line that shows
the locus of price combinations at which the demand for Schrecklichs
equals the supply of Schrecklichs after the re,On your diagram,label
the new equilibrium combination of prices E
0
.
16.7 (0) The price elasticity of demand for oatmeal is constant and
equal to?1,When the price of oatmeal is $10 per unit,the total amount
demanded is 6,000 units.
(a) Write an equation for the demand function,q =60;000=p.
Graph this demand function below with blue ink,(Hint,If the demand
curve has a constant price elasticity equal to,thenD(p)=ap
for some
constant a,You have to use the data of the problem to solve for the
constants a and that apply in this particular case.)
208 EQUILIBRIUM (Ch,16)
046810
Quantity (thousands)
5
10
15
20
Price
2 12
e
Red lines
Blue lines
(b) If the supply is perfectly inelastic at 5,000 units,what is the equilib-
rium price? $12,Show the supply curve on your graph and label the
equilibrium with an E.
(c) Suppose that the demand curve shifts outward by 10%,Write down
the new equation for the demand function,q =66;000=p,Sup-
pose that the supply curve remains vertical but shifts to the right by 5%.
Solve for the new equilibrium price 12:51 and quantity 5;250.
(d) By what percentage approximately did the equilibrium price rise?
It rose by about 5 percent,Use red ink to draw the
new demand curve and the new supply curve on your graph.
(e) Suppose that in the above problem the demand curve shifts outward
by x% and the supply curve shifts right by y%,By approximately what
percentage will the equilibrium price rise? By about (x?y)
percent.
16.8 (0) An economic historian* reports that econometric studies in-
dicate for the pre{Civil War period,1820{1860,the price elasticity of
demand for cotton from the American South was approximately?1,Due
to the rapid expansion of the British textile industry,the demand curve
for American cotton is estimated to have shifted outward by about 5%
per year during this entire period.
* Gavin Wright,The Political Economy of the Cotton South,W.W.
Norton,1978.
NAME 209
(a) If during this period,cotton production in the United States grew by
3% per year,what (approximately) must be the rate of change of the price
of cotton during this period? It would rise by about 2%
a year.
(b) Assuming a constant price elasticity of?1,and assuming that when
the price is $20,the quantity is also 20,graph the demand curve for
cotton,What is the total revenue when the price is $20? 400,What
is the total revenue when the price is $10? 400.
010203040
10
20
30
40
Price of cotton
Quantity of cotton
(c) If the change in the quantity of cotton supplied by the United States is
to be interpreted as a movement along an upward-sloping long-run supply
curve,what would the elasticity of supply have to be? (Hint,From 1820
to 1860 quantity rose by about 3% per year and price rose by 2 %
per year,[See your earlier answer.] If the quantity change is a movement
along the long-run supply curve,then the long-run price elasticity must
be what?) 1.5 %.
(d) The American Civil War,beginning in 1861,had a devastating e ect
on cotton production in the South,Production fell by about 50% and
remained at that level throughout the war,What would you predict
would be the e ect on the price of cotton? It would double
if demand didn’t change.
210 EQUILIBRIUM (Ch,16)
(e) What would be the e ect on total revenue of cotton farmers in the
South? Since the demand has elasticity of
1,the revenue would stay the same.
(f) The expansion of the British textile industry ended in the 1860s,
and for the remainder of the nineteenth century,the demand curve for
American cotton remained approximately unchanged,By about 1900,
the South approximately regained its prewar output level,What do you
think happened to cotton prices then? They would recover
to their old levels.
16.9 (0) The number of bottles of chardonnay demanded per year is
$1;000;000?60;000P,whereP is the price per bottle (in U.S,dollars).
The number of bottles supplied is 40;000P.
(a) What is the equilibrium price? $10,What is the equilibrium
quantity? 400;000.
(b) Suppose that the government introduces a new tax such that the wine
maker must pay a tax of $5 per bottle for every bottle that he produces.
What is the new equilibrium price paid by consumers? $12,What is
the new price received by suppliers? $7,What is the new equilibrium
quantity? 280,000.
16.10 (0) The inverse demand function for bananas is P
d
=18?3Q
d
and the inverse supply function is P
s
=6+Q
s
,where prices are measured
in cents.
(a) If there are no taxes or subsidies,what is the equilibrium quantity?
3,What is the equilibrium market price? 9 cents.
(b) If a subsidy of 2 cents per pound is paid to banana growers,then
in equilibrium it still must be that the quantity demanded equals the
quantity supplied,but now the price received by sellers is 2 cents higher
than the price paid by consumers,What is the new equilibrium quantity?
3.5,What is the new equilibrium price received by suppliers? 9.5
cents,What is the new equilibrium price paid by demanders? 7.5
cents.
NAME 211
(c) Express the change in price as a percentage of the original price.
-16.66%,If the cross-elasticity of demand between bananas and
apples is +.5,what will happen to the quantity of apples demanded as a
consequence of the banana subsidy,if the price of apples stays constant?
(State your answer in terms of percentage change.) -8.33%.
16.11 (1) King Kanuta rules a small tropical island,Nutting Atoll,
whose primary crop is coconuts,If the price of coconuts is P,thenKing
Kanuta’s subjects will demand D(P)=1;200?100P coconuts per week
for their own use,The number of coconuts that will be supplied per week
by the island’s coconut growers is S(p) = 100P.
(a) The equilibrium price of coconuts will be 6 and the equilib-
rium quantity supplied will be 600.
(b) One day,King Kanuta decided to tax his subjects in order to collect
coconuts for the Royal Larder,The king required that every subject
who consumed a coconut would have to pay a coconut to the king as a
tax,Thus,if a subject wanted 5 coconuts for himself,he would have
to purchase 10 coconuts and give 5 to the king,When the price that
is received by the sellers is p
S
,how much does it cost one of the king’s
subjects to get an extra coconut for himself? 2p
S
.
(c) When the price paid to suppliers is p
S
,how many coconuts will the
king’s subjects demand for their own consumption? (Hint,Express p
D
in terms of p
S
and substitute into the demand function.) Since
p
D
=2p
S
,they consume 1;200?200p
S
.
(d) Since the king consumes a coconut for every coconut consumed by
the subjects,the total amount demanded by the king and his subjects is
twice the amount demanded by the subjects,Therefore,when the price
received by suppliers is p
S
,the total number of coconuts demanded per
week by Kanuta and his subjects is 2;400?400p
S
.
(e) Solve for the equilibrium value of p
S
24/5,the equilibrium total
number of coconuts produced 480,and the equilibrium total number
of coconuts consumed by Kanuta’s subjects,240.
212 EQUILIBRIUM (Ch,16)
(f) King Kanuta’s subjects resented paying the extra coconuts to the
king,and whispers of revolution spread through the palace,Worried by
the hostile atmosphere,the king changed the coconut tax,Now,the
shopkeepers who sold the coconuts would be responsible for paying the
tax,For every coconut sold to a consumer,the shopkeeper would have to
pay one coconut to the king,This plan resulted in 480=2 = 240
coconuts being sold to the consumers,The shopkeepers got 24=5 per
coconut after paying their tax to the king,and the consumers paid a price
of 48=5 per coconut.
Chapter 17 NAME
Auctions
Introduction,An auction is described by a set of rules,The rules
specify bidding procedures for participants and the way in which the
array of bids made determines who gets the object being sold and how
much each bidder pays,Those who are trying to sell an object by auction
typically do not know the willingness to pay of potential buyers but have
some probabilistic expectations,Sellers are interested in nding rules that
maximize their expected revenue from selling the object.
Social planners are often interested not only in the revenue generated
from an auction method,but also in its e ciency,In the absence of
externalities,an auction for a single object will be e cient only if the
object is sold to the buyer who values it most highly.
17.1 (1) At Toivo’s auction house in Ishpemming,Michigan,a beautiful
stu ed moosehead is being sold by auction,There are 5 bidders in atten-
dance,Aino,Erkki,Hannu,Juha,and Matti,The moosehead is worth
$100 to Aino,$20 to Erkki,and $5 to each of the others,The bidders do
not collude and they don’t know each others’ valuations.
(a) If the auctioneer sells it in an English auction,who would get the
moosehead and approximately how much would the buyer pay? Aino
would get it for $20.
(b) If the auctioneer sells it in a sealed-bid,second-price auction and if
no bidder knows the others’ values for the moosehead,how much should
Aino bid in order to maximize his expected gain? $100 How much
should Erkki bid? $20 How much would each of the others bid?
$5 Who would get the moosehead and how much would he pay?
Aino would get it for $20.
17.2 (2) Charlie Plopp sells used construction equipment in a quiet
Oklahoma town,He has run short of cash and needs to raise money
quickly by selling an old bulldozer,If he doesn’t sell his bulldozer to a
customer today,he will have to sell it to a wholesaler for $1,000.
Two kinds of people are interested in buying bulldozers,These are
professional bulldozer operators and people who use bulldozers only for
recreational purposes on weekends,Charlie knows that a professional
bulldozer operator would be willing to pay $6,000 for his bulldozer but no
214 AUCTIONS (Ch,17)
more,while a weekend recreational user would be willing to pay $4;500
but no more,Charlie puts a sign in his window,\Bulldozer Sale Today."
Charlie is disappointed to discover that only two potential buyers
have come to his auction,These two buyers evidently don’t know each
other,Charlie believes that the probability that either is a professional
bulldozer operator is independent of the other’s type and he believes that
each of them has a probability of 1/2 of being a professional bulldozer
operator and a probability of 1/2 of being a recreational user.
Charlie considers the following three ways of selling the bulldozer:
Method 1,Post a price of $6,000 and if nobody takes the bulldozer
at that price,sell it to the wholesaler.
Method 2,Post a price equal to a recreational bulldozer user’s buyer
value and sell it to anyone who o ers that price.
Method 3,Run a sealed-bid auction and sell the bulldozer to the
high bidder at the second highest bid (if there is a tie,choose one of
the high bidders at random and sell the bulldozer to this bidder at
the price bid by both bidders.)
(a) What is the probability that both potential buyers are professional
bulldozer operators? 1/4,What is the probability that both are recre-
ational bulldozer users? 1/4,What is the probability that one of them
is of each type? 1/2.
(b) If Charlie sells by method 1,what is the probability that he will be
able to sell the bulldozer to one of the two buyers? 3/4,What is
the probability that he will have to sell the bulldozer to the wholesaler?
1/4,What is his expected revenue? $(3=4) $6;000 +
(1=4) $1;000 = $4;750:
(c) If Charlie sells by method 2,how much will he receive for his bulldozer?
$4,500.
(d) Suppose that Charlie sells by method 3 and that both potential
buyers bid rationally,If both bidders are professional bulldozer oper-
ators,how much will each bid? $6,000,How much will Char-
lie receive for his bulldozer? $6,000,If one bidder is a profes-
sional bulldozer operator and one is a recreational user,what bids will
Charlie receive? Professional bids $6,000.
Recreational user bids $4,500,Who will get
NAME 215
the bulldozer? The professional,How much money will
Charlie get for his bulldozer? $4,500,If both bidders are recre-
ational bulldozer users,how much will each bid? $4,500,How
much will Charlie receive for his bulldozer? $4,500,What will be
Charlie’s expected revenue from selling the bulldozer by method 3?
$(1=4) $6;000 + (3=4) $4;500 = $4;875.
(e) Which of the three methods will give Charlie the highest expected
revenue? Method 3.
17.3 (2) We revisit our nancially a icted friend,Charlie Plopp,This
time we will look at a slightly generalized version of the same problem,All
else is as before,but the willingness to pay of recreational bulldozers is an
amount C<$6;000 which is known to Charlie,In the previous problem
we dealt with the special case where C =$4;500,Now we want to explore
the way in which the sales method that gives Charlie the highest expected
revenue depends on the size of C.
(a) What will Charlie’s expected revenue be if he posts a price equal to
the reservation price of professional bulldozer operators? $(3=4)
$6;000 + (1=4) $1;000 = $4;750:
(b) If Charlie posts a price equal to the reservation price C of recreational
bulldozer operators,what is his expected revenue? $C.
(c) If Charlie sells his bulldozer by method 3,the second-price sealed-bid
auction,what is his expected revenue? (The answer is a function of C.)
$(1=4) $6;000 + (3=4) $C =$1;500 + (3=4)C.
(d) Show that selling by method 3 will give Charlie a higher expected pay-
o than selling by method 2 if C<$6;000,With method 3,
each bidder will bid his true valuation.
If both bidders have valuations of
$6,000,he will get $6,000,Otherwise,he
will get $C,His expected payoff is then
216 AUCTIONS (Ch,17)
$1;500+(3=4)C,With method 2 he gets $C.
But $1;500 + (3=4)C>Cwhenever C<$6;000.
(e) For what values of C is Charlie better o selling by method 2 than by
method 1? C>$(3=4)6;000 + (1=4)1;000 = 4;759.
(f) For what values of C is Charlie better o selling by method 1 than by
method 3? This happens when 4;750 > 1;500+
3
4C
,
which is the case whenever C<4;333:33.
17.4 (3) Yet again we tread the dusty streets of Charlie Plopp’s home
town,Everything is as in the previous problem,Professional bulldozer
operators are willing to pay $6,000 for a bulldozer and recreational users
are willing to pay C,Charlie is just about to sell his bulldozer when a
third potential buyer appears,Charlie believes that this buyer,like the
other two,is equally likely to be a professional bulldozer operator as a
recreational bulldozer operator and that this probability is independent
of the types of the other two.
(a) With three buyers,Charlie’s expected revenue from using method 1
is 5375,his expected revenue from using method 2 is C,and
his expected revenue from using method 3 is $3;000 + (C=2).
(b) At which values of C would method 1 give Charlie a higher expected
revenue than either of the other two methods of selling proposed above?
C<$4;750.
(c) At which values of C (if any) would method 2 give Charlie a higher
expected revenue than either of the other two methods of selling proposed
above? None.
(d) At which values of C would method 3 give Charlie a higher expected
revenue than either of the other two methods of selling proposed above?
C>$4;750
17.5 (2) General Scooters has decided to replace its old assembly line
with a new one that makes extensive use of robots,There are two con-
tractors who would be able to build the new assembly line,General
Scooters’s industrial spies and engineers have done some exploratory re-
search of their own on the costs of building the new assembly line for each
NAME 217
of the two contractors,They have discovered that for each rm,this cost
will take one of three possible values H,M,andL,whereH>M>L.
Unfortunately,General Scooters has not been able to determine whether
the costs of either of the rms are H,M,orL,The best information that
General Scooters’s investigators have been able to give it is that for each
contractor the probability is 1/3 that the cost is H,1/3 that the cost is
M,and 1/3 that the cost is L and that the probability distribution of
costs is independent between the two contractors,Each contractor knows
its own costs but thinks that the other’s costs are equally likely to be
H,M,orL,General Scooters is con dent that the contractors will not
collude.
(a) Accountants at General Scooters suggested that General Scoooters
accept sealed bids from the two contractors for constructing the assembly
line and that it announce that it will award the contract to the low bidder
but will pay the low bidder the amount bid by the other contractor,(If
there is a tie for low bidder,one of the bidders will be selected at random
to get the contract.) If this is done,what bidding strategy should each
of the contractors use (assuming that they cannot collude) in order to
maximize their expected pro ts? Each would bid his
true valuation.
(b) Suppose that General Scooters uses the bidding mechanism suggested
by the accountants,What is the probability that it will have to pay H
to get the job done? 5/9 What is the probability that it will have
to pay M? 1/3 What is the probability that it will have to pay L?
1/9 Write an expression in terms of the variables H,M,andL for the
expected cost of the project to General Scooters,H
5
9
+M
3
9
+L
1
9
(c) When the distinguished-looking,silver-haired chairman of General
Scooters was told of the accountants’ suggested bidding scheme,he was
outraged,\What a stupid bidding system! Any fool can see that it is
more pro table for us to pay the lower of the two bids,Why on earth
would you ever want to pay the higher bid rather than the lower one?"
he roared.
A timid-looking accountant summoned up his courage and answered
the chairman’s question,What answer would you suggest that he
make? The amount that contractors will bid
depends on the rules of the auction,If
you contract to the low bidder at the low
218 AUCTIONS (Ch,17)
bidder’s bid,then all bidders will bid
a higher amount than they would if you
contract at the second lowest bid.
(d) The chairman ignored the accountants and proposed the following
plan,\Let us award the contract by means of sealed bids,but let us do it
wisely,Since we know that the contractors’ costs are either H,M,orL,
we will accept only bids of H,M,orL,and we will award the contract
to the low bidder at the price he himself bids,(If there is a tie,we will
randomly select one of the bidders and award it to him at his bid.)"
If the chairman’s scheme is adopted,would it ever be worthwhile for
a contractor with costs of L to bid L? No,If he bids L,
he is sure to make zero profits whether
or not he gets the contract,If he bids
higher than L there is a chance that he
might get the contract and make a profit.
(e) Suppose that the chairman’s bidding scheme is adopted and that both
contractors use the strategy of padding their bids in the following way,A
contractor will bid M if her costs are L,and she will bid H if her costs are
H or M,If contractors use this strategy,what is the expected cost of the
project to General Scooters? H
2
3
+ M
1
3
Which of the two schemes
will result in a lower expected cost for General Scooters,the accountants’
scheme or the chairman’s scheme?* The accountants’
scheme.
(f) We have not yet demonstrated that the bid-padding strategies pro-
posed above are equilibrium strategies for bidders,Here we will show that
this is the case for some (but not all) values of H,M,andL,Suppose
that you are one of the two contractors,You believe that the other con-
tractor is equally likely to have costs of H,M,orL andthathewillbid
* The chairman’s scheme might not have worked out so badly for Gen-
eral Scooters if he had not insisted that the only acceptable bids are H,
M,andL,If bidders had been allowed to bid any number between L
and H,then the only equilibrium in bidding strategies would involve the
use of mixed strategies,and if the contractors used these strategies,the
expected cost of the project to General Scooters would be the same as it
is with the second-bidder auction proposed by the accountants.
NAME 219
H when his costs are M or H and he will bid M when his costs are L.
Obviously if your costs are H,you can do no better than to bid H.If
your costs are M,your expected pro ts will be positive if you bid H and
negative or zero if you bid L or M,What if your costs are L? For what
values of H,M,andL will the best strategy available to you be to bid
H? 5M?4H>L
17.6 (3) Late in the day at an antique rug auction there are only two
bidders left,April and Bart,The last rug is brought out and each bidder
takes a look at it,The seller says that she will accept sealed bids from
each bidder and will sell the rug to the highest bidder at the highest
bidder’s bid.
Each bidder believes that the other is equally likely to value the
rug at any amount between 0 and $1,000,Therefore for any number X
between 0 and 1,000,each bidder believes that the probability that the
other bidder values the rug at less than X is X=1;000,The rug is actually
worth $800 to April,If she gets the rug,her pro t will be the di erence
between $800 and what she pays for it,and if she doesn’t get the rug,
her pro t will be zero,She wants to make her bid in such a way as to
maximize her expected pro t.
(a) Suppose that April thinks that Bart will bid exactly what the rug is
worth to him,If she bids $700 for the rug,what is the probability that
she will get the rug? 7/10,If she gets the rug for $700,what is her
pro t? $100,What is her expected pro t if she bids $700? $70.
(b) Suppose that Bart will pay exactly what the rug is worth to him.
If April bids $600 for the rug,what is the probability that she will get
the rug? 6/10,What is her pro t if she gets the rug for $600?
$200,What is her expected pro t if she bids $600? $120.
(c) Again suppose that Bart will bid exactly what the rug is worth to
him,If April bids $x for the rug (where x is a number between 0 and
1,000) what is the probability that she will get the rug? x=1;000
What is her pro t if she gets the rug? $800-x Write a formula for
her expected pro t if she bids $x,$(800?x)(x=1;000),Find
the bid x that maximizes her expected pro t,(Hint,Take a derivative.)
x = 400.
220 AUCTIONS (Ch,17)
(d) Now let us go a little further toward nding a general answer,Suppose
that the value of the rug to April is $V and she believes that Bart will
bid exactly what the rug is worth to him,Write a formula that expresses
her expected pro t in terms of the variables V and x if she bids $x.
$(V?x)(x=1;000) Now calculate the bid $x that will maximize
her expected pro t,(Same hint,Take a derivative.) x = V=2.
17.7 (3) If you did the previous problem correctly,you found that if
April believes that Bart will bid exactly as much as the rug is worth to
him,then she will bid only half as much as the rug is worth to her,If
this is the case,it doesn’t seem reasonable for April to believe that Bart
will bid his full value,Let’s see what would the best thing for April to do
if she believed that Bart would bid only half as much as the rug is worth
to him.
(a) If Bart always bids half of what the rug is worth to him,what is
the highest amount that Bart would ever bid? $500,Why would it
never pay for April to bid more than $500.01? She can get it
for sure by bidding just over $500,since
Bart will never bid more than $500.
(b) Suppose that the the rug is worth $800 to April and she bids $300 for
it,April will only get the rug if the value of the rug to Bart is less than
$600 What is the probability that she will get the rug if she bids $300
for it? 6/10,What is her pro t if she bids $300 and gets the rug?
$500,What is her expected pro t if she bids $300? $300.
(c) Suppose that the rug is worth $800 to April,What is the probability
that she will get it if she bids $x where $x<$500? 2x=1;000,Write
a formula for her expected pro t as a function of her bid $x when the rug
is worth $800 to her,$(800?x)2x=1;000,What bid maximizes
her expected pro t in this case? $400.
NAME 221
(d) Suppose that April values the rug at $V and she believes that Bart
will bid half of his true value,Show that the best thing for April is to
bidhalfofherowntruevalue,Maximize (V?x)2x=1;000:
The derivative with respect to x is 0
when x = V=2.
(e) Suppose that April believes that Bart will bid half of his actual value
and Bart believes that April will bid half of her actual value,Suppose also
that they both act to maximize their expected pro t given these beliefs.
Will these beliefs be self-con rming in the sense that given these beliefs,
each will take the action that the other expects? Yes.
17.8 (2) Rod’s Auction House in Bent Crankshaft,Oregon,holds sealed-
bid used-car auctions every Tuesday,Each used car is sold to the highest
bidder at the second-highest bidder’s bid,On average,half of the cars
that are sold at Rod’s Auction House are lemons and half are good used
cars,A good used car is worth $1,000 to any buyer and a lemon is worth
only $100 to any buyer,Buyers are allowed to look over the used cars for
a few minutes before they are auctioned,Almost all of the buyers who
attend the auctions can do no better than random choice at picking good
cars from among the lemons,The only exception is Al Crankcase,Al can
sometimes,but not always,detect a lemon by licking the oil o of the
dipstick,A good car will never fail Al’s taste test,but 1/3 of the lemons
fail his test,Al attends every auction,licks every dipstick,and taking
into account the results of his taste test,bids his expected value for every
car.
(a) This auction environment is an example of a (common,private)
common value auction.
(b) If a car passes Al’s taste test,what is the probability that it is a good
used car? 3/4
(c) If a car fails Al’s taste test,what is the probability that it is a good
used car? 0
(d) How much will Al bid for a car that passes his taste test? 3=5
1;000 + 2=5 100 = $640 How much will he bid for a car
that fails his taste test? $100
222 AUCTIONS (Ch,17)
(e) Suppose that for each car,a naive bidder at Rod’s Auction House bid
his expected value for a randomly selected car from among those available.
How much would he bid? $550
(f) Given that Al bids his expected value for every used car and the naive
bidders bid the expected value of a randomly selected car,will a naive
bidder ever get a car that passed Al’s taste test? No
(g) What is the expected value of cars that naive bidders get if they always
bid their expected values for a randomly selected car? $100 Will naive
bidders make money,lose money,or break even if they follow this policy?
Lose money.
(h) If the bidders other than Al bid their expected value for a car,given
that it has failed Al’s taste test,how much will they bid? $100
(i) If bidders other than Al bid their expected values for cars that fail Al’s
taste test,and Al bids his expected value for all cars,given the results
of the test,who will get the good cars and at what price? (Recall that
cars are sold to the highest bidder at the second-highest bid.) Al
will get all of the good cars and he will
pay $100 for them.
(j) What will Al’s expected pro t be on a car that passes his test?
$540
17.9 (3) Steve and Leroy buy antique paintings at an art gallery in
Fresno,California,Eighty percent of the paintings that are sold at the
gallery are fakes,and the rest are genuine,After a painting is purchased,
it will be carefully analyzed,and then everybody will know for certain
whether it is genuine or a fake,A genuine antique is worth $1,000,A
fake is worthless,Before they place their bids,buyers are allowed to
inspect the paintings briefly and then must place their bids,Because
they are allowed only a brief inspection,Steve and Leroy each try to
guess whether the paintings are fakes by smelling them,Steve nds that
if a painting fails his sni test,then it is certainly a fake,However,he
cannot detect all fakes,In fact the probability that a fake passes Steve’s
sni test is 1/2,Leroy detects fakes in the same way as Steve,Half of
the fakes fail his sni test and half of them pass his sni test,Genuine
paintings are sure to pass Leroy’s sni test,For any fake,the probability
that Steve recognizes it as a fake is independent of the probability that
Leroy recognizes it as a fake.
NAME 223
The auction house posts a price for each painting,Potential buyers
can submit a written o er to buy at the posted price on the day of the
sale,If more than one person o ers to buy the painting,the auction house
will select one of them at random and sell to that person at the posted
price.
(a) One day,as the auction house is about to close,Steve arrives and
discovers that neither Leroy nor any other bidders have appeared,He
sni s a painting,and it passes his test,Given that it has passed his test,
what is the probability that it is a good painting? (Hint,Since fakes are
much more common than good paintings,the number of fakes that pass
Steve’s test will exceed the number of genuine antiques that pass his test.)
1/3 Steve realizes that he can buy the painting for the posted price
if he wants it,What is the highest posted price at which he would be
willing to buy the painting? $333.33.
(b) On another day,Steve and Leroy see each other at the auction,sni ng
all of the paintings,No other customers have appeared at the auction
house,In deciding how much to bid for a painting that passes his sni
test,Steve considers the following,If a painting is selected at random and
sni ed by both Steve and Leroy,there are ve possible outcomes,Fill in
the blanks for the probability of each.
A,Genuine and passes both dealers’ tests,Probability,.2
B,Fake and passes both dealers’ tests,Probability,.2
C,Fake and passes Steve’s test but fails Leroy’s,Probability,.2
D,Fake and passes Leroy’s test but fails Steve’s,Probability:
.2
E,Fake and fails both dealers’ tests,Probability,.2
(c) On the day when Steve and Leroy are the only customers,the auction
house sets a reserve price of $300,Suppose that Steve believes that Leroy
will o er to buy any painting that passes his sni test,Recall that if Steve
and Leroy both bid on a painting,the probability that Steve gets it is only
1/2,If Steve decides to bid on every painting that passes his own sni
test,what is the probability that a randomly selected painting is genuine
and that Steve is able to buy it?,1 What is the probability that
a randomly selected painting is a fake and that Steve will bid on it and
get it?,3 If Steve o ers to pay $300 for every painting that
passes his sni test,will his expected pro t be positive or negative?
negative Suppose that Steve knows that Leroy is willing to pay the
224 AUCTIONS (Ch,17)
reserve price for any painting that passes Leroy’s sni test,What is the
highest reserve price that Steve should be willing to pay for a painting
that passes his own sni test? $250
17.10 (2) Every day the Repo nance company holds a sealed-bid,
second-price auction in which it sells a repossessed automobile,There are
only three bidders who bid on these cars,Arnie,Barney,and Carny,Each
of these bidders is a used-car dealer whose willingness to pay for another
used car fluctuates randomly from day to day in response to variation in
demand at his car lot,The value of one of these used cars to any dealer,
on any given day is a random variable which takes a high value $H with
probability 1=2andalowvalue$L with probability 1=2,The value that
each dealer places on a car on a given day is independent of the values
placed by the other dealers.
Each day the used-car dealers submit written bids for the used car
being auctioned,The Repo nance company will sell the car to the dealer
with the highest bid at the price bid by the second-highest bidder,If there
is a tie for the highest bid,then the second-highest bid is equal to the
highest bid and so that day’s car will be sold to a randomly selected top
bidder at the price bid by all top bidders.
(a) How much should a dealer bid for a used car on a day when he places
a value of $H on a used car? $H How much should a dealer bid for a
used car on a day when he places a value of $L on a used car? $L
(b) If the dealers do not collude,how much will Repo get for a used car
on days when two or three dealers value the car at $H? $H How much
will Repo get for a used car on days when fewer than two dealers value
the car at $H? $L
(c) On any given day,what is the probability that Repo receives $H for
that day’s used car? 1/2 What is the probability that Repo receives
$L for that day’s used car? 1/2 What is Repo’s expected revenue from
the sale? $(H +L)=2
(d) If there is no collusion and every dealer bids his actual valuation for
every used car,what is the probability on any given day that Arnie gets
a car for a lower price than the value he places on it? (Hint,This will
happen only if the car is worth $H to Arnie and $L to the other dealers.)
1/8 Suppose that we measure a car dealer’s pro t by the di erence
NAME 225
between what a car is worth to him and what he pays for it,On a
randomly selected day,what is Arnie’s expected pro t? (H?L)=8
(e) The expected total pro t of all participants in the market is the sum
of the expected pro ts of the three car dealers and the expected revenue
realized by Repo,Used cars are sold by a sealed-bid,second-price auction
and the dealers do not collude,What is the sum of the expected pro ts of
all participants in the market? (3(H?L)=8)+((H+L)=2) =
(7=8)H +(1=8)L
17.11 (3) This problem (and the two that follow) concerns collusion
among bidders in sealed-bid auctions,Many writers have found evidence
that collusive bidding occurs,The common name for a group that prac-
tices collusive bidding is a \bidding ring."*
Arnie,Barney,and Carny of the previous problem happened to meet
at a church social and got to talking about the high prices they were
paying for used cars and the low pro ts they were making,Carny com-
plained,\About half the time the used cars go for $H,and when that
happens,none of us makes any money." Arnie got a thoughtful look and
then whispered,\Why don’t we agree to always bid $L in Repo’s used-car
auctions?" Barney said,\I’m not so sure that’s a good idea,If we all bid
$L,then we will save some money,but the trouble is,when we all bid the
same,we are just as likely to get the car if we have a low value as we are
to get it if we have a high value,When we bid what we think its worth,
then it always goes to one of the people who value it most."
(a) If Arnie,Barney,and Carny agree to always bid $L,thenonanygiven
day,what is the probability that Barney gets the car for $L when it is
actually worth $H to him? 1/6 What is Barney’s expected pro t per
day? $(H?L)=6
(b) Do the three dealers make higher expected pro ts with this collusive
agreement than they would if they did not collude? Explain,Yes.
(H?L)=6 > (H?L)=8
* Our discussion draws extensively on a paper,\Collusive Bidder Be-
havior at Single-Object,Second-price,and English Auctions" by Daniel
Graham and Robert Marshall in the Journal of Political Economy,1987.
226 AUCTIONS (Ch,17)
(c) Calculate the expected total pro ts of all participants in the market
(including Repo as well as the three dealers) in the case where the dealers
collude,3(H?L)=6+L =(H+L)=2 Are these expected total
pro ts larger or smaller than they are when the dealers do not collude?
Smaller
(d) The cars are said to be allocated e ciently if a car never winds up
in the hands of a dealer who values it less than some other dealer values
it,With a sealed-bid,second-price auction,if there is no collusion,are
the cars allocated e ciently? Yes,If the dealers collude as in this
problem,are the cars allocated e ciently? No.
17.12 (2) Arnie,Barney,and Carny happily practiced the strategy of
\always bid low" for several weeks,until one day Arnie had another idea.
Arnie proposed to the others,\When we all bid $L,it sometimes happens
that the one who gets the week’s car values it at only $L although it is
worth $H to somebody else,I’ve thought of a scheme that will increase
pro ts for all of us." Here is Arnie’s scheme,Every day,before Repo holds
its auction,Arnie,Barney and Carny will hold a sealed-bid,second-price
preauction auction among themselves in which they bid for the right to
be the only high bidder in that day’s auction,The dealer who wins this
preauction bidding can bid anything he likes,while the other two bidders
must bid $L,A preauction auction like this is known is a \knockout."
The revenue that is collected from the \knockout" auction is divided
equally among Arnie,Barney,and Carny,For this problem,assume that
in the knockout auction,each bidder bids his actual value of winning the
knockout auction.*
(a) If the winner of the knockout auction values the day’s used car at
$H,then he knows that he can bid $H for this car in Repo’s second-price
sealed-bid auction and he will get it for a price of $L,Therefore the value
of winning the knockout auction to someone who values a used car at $H
must be $H?L,The value of winning the knockout auction to
someone who values a used car at $L is 0
* It is not necessarily the case that this is the best strategy in the
knockout auction,since one’s bids a ect the revenue redistributed from
the auction as well as who gets the right to bid,Graham and Marshall
present a variation on this mechanism that ensures \honest" bidding in
the knockout auction.
NAME 227
(b) On a day when one dealer values the used car at $H and the other
two value it at $L,the dealer with value $H will bid $H?L in
the knockout auction and the other two dealers will bid 0 In this
case,in the knockout auction,the dealer pays 0 for the right to
be the only high bidder in Repo’s auction,In this case,the day’s used
car will go to the only dealer with value $H and he pays Repo $L for
it,On this day,the dealer with the high buyer value makes a total pro t
of $H?L
(c) We continue to assume that in the knockout auction,dealers bid
their actual values of winning the knockout,On days when two or more
buyers value the used car at $H,the winner of the knockout auction pays
H?L for the right to be the only high bidder in Repo’s auction.
(d) If Arnie’s scheme is adopted,what is the expected total pro t of each
of the three car dealers? (Remember to include each dealer’s share of the
revenue from the knockout auction.) 7( H-L)/8
17.13 (2) After the passage of several weeks during which Repo never got
more than one high bid for a car,the Repo folks guessed that something
was amiss,Some members of the board of directors proposed hiring a hit
man to punish Arnie,Barney,and Carny,but cooler heads prevailed and
they decided instead to hire an economist who had studied Intermediate
Microeconomics,The economist suggested,\Why don’t you set a reserve
price $R which is just a little bit lower than $H (but of course much
larger than $L)? If you get at least one bid of $R,sellitfor$R to one
of these bidders,and if you don’t get a bid as large as your $R,then just
dump that day’s car into the river,(Sadly,the environmental protection
authorities in Repo’s hometown are less than vigilant.) \But what a
waste," said a Repo o cial,\Just do the math," replied the economist.
(a) The economist continued,\If Repo sticks to its guns and refuses to
sell at any price below $R,then even if Arnie,Barney,and Carny collude,
the best they can do is for each to bid $R when they value a car at $H
and to bid nothing when they value it at $L." If they follow this strategy,
the probability that Repo can sell a given car for $R is 7/8,soRepo’s
expected pro t will be $(7=8)R.
(b) Setting a reserve price that is just slightly below $H and destroying
cars for which it gets no bid will be more pro table for Repo than setting
no reservation price if the ratio H=L is greater than 7/8 and less
pro table if H=L is less than 7/8
228 AUCTIONS (Ch,17)
Chapter 18 NAME
Technology
Introduction,In this chapter you work with production functions,re-
lating output of a rm to the inputs it uses,This theory will look familiar
to you,because it closely parallels the theory of utility functions,In utility
theory,an indi erence curve is a locus of commodity bundles,all of which
give a consumer the same utility,In production theory,an isoquant is a lo-
cus of input combinations,all of which give the same output,In consumer
theory,you found that the slope of an indi erence curve at the bundle
(x
1;x
2
) is the ratio of marginal utilities,MU
1
(x
1;x
2
)=MU
2
(x
1;x
2
),In
production theory,the slope of an isoquant at the input combination
(x
1;x
2
) is the ratio of the marginal products,MP
1
(x
1;x
2
)=MP
2
(x
1;x
2
).
Most of the functions that we gave as examples of utility functions can
also be used as examples of production functions.
There is one important di erence between production functions and
utility functions,Remember that utility functions were only \unique up to
monotonic transformations." In contrast,two di erent production func-
tions that are monotonic transformations of each other describe di erent
technologies.
Example,If the utility function U(x
1;x
2
)=x
1
+x
2
represents a person’s
preferences,then so would the utility function U
(x
1;x
2
)=(x
1
+ x
2
)
2
.
A person who had the utility function U
(x
1;x
2
)wouldhavethesame
indi erence curves as a person with the utility function U(x
1;x
2
)and
would make the same choices from every budget,But suppose that one
rm has the production function f(x
1;x
2
)=x
1
+x
2
,and another has the
production function f
(x
1;x
2
)=(x
1
+x
2
)
2
.Itistruethatthetwo rms
will have the same isoquants,but they certainly do not have the same
technology,If both rms have the input combination (x
1;x
2
)=(1;1),
then the rst rm will have an output of 2 and the second rm will have
an output of 4.
Now we investigate \returns to scale." Here we are concerned with
the change in output if the amount of every input is multiplied by a
number t>1,If multiplying inputs by t multiplies output by more than
t,then there are increasing returns to scale,If output is multiplied by
exactly t,there are constant returns to scale,If output is multiplied by
less than t,then there are decreasing returns to scale.
Example,Consider the production function f(x
1;x
2
)=x
1=2
1
x
3=4
2
.Ifwe
multiply the amount of each input by t,then output will be f(tx
1;tx
2
)=
(tx
1
)
1=2
(tx
2
)
3=4
.Tocomparef(tx
1;tx
2
)tof(x
1;x
2
),factor out the
expressions involving t from the last equation,You get f(tx
1;tx
2
)=
t
5=4
x
1=2
1
x
3=4
2
= t
5=4
f(x
1;x
2
),Therefore when you multiply the amounts
of all inputs by t,you multiply the amount of output by t
5=4
,This means
there are increasing returns to scale.
230 TECHNOLOGY (Ch,18)
Example,Let the production function be f(x
1;x
2
)=minfx
1;x
2
g.Then
f(tx
1;tx
2
)=minftx
1;tx
2
g=mintfx
1;x
2
g= tminfx
1;x
2
g= tf(x
1;x
2
):
Therefore when all inputs are multiplied by t,output is also multiplied by
t,It follows that this production function has constant returns to scale.
You will also be asked to determine whether the marginal product
of each single factor of production increases or decreases as you increase
the amount of that factor without changing the amount of other factors.
Those of you who know calculus will recognize that the marginal product
of a factor is the rst derivative of output with respect to the amount
of that factor,Therefore the marginal product of a factor will decrease,
increase,or stay constant as the amount of the factor increases depending
on whether the second derivative of the production function with respect
to the amount of that factor is negative,positive,or zero.
Example,Consider the production function f(x
1;x
2
)=x
1=2
1
x
3=4
2
.The
marginal product of factor 1 is
1
2
x
1=2
1
x
3=4
2
,This is a decreasing function
of x
1
,as you can verify by taking the derivative of the marginal product
with respect to x
1
,Similarly,you can show that the marginal product of
x
2
decreases as x
2
increases.
18.0 Warm Up Exercise,The rst part of this exercise is to cal-
culate marginal products and technical rates of substitution for several
frequently encountered production functions,As an example,consider
the production function f(x
1;x
2
)=2x
1
+
p
x
2
,The marginal product of
x
1
is the derivative of f(x
1;x
2
) with respect to x
1
,holding x
2
xed,This
is just 2,The marginal product of x
2
is the derivative of f(x
1;x
2
)with
respect to x
2
,holding x
1
xed,which in this case is
1
2
p
x
2
.TheTRS is
MP
1
=MP
2
=?4
p
x
2
,Those of you who do not know calculus should
ll in this table from the answers in the back,The table will be a useful
reference for later problems.
NAME 231
Marginal Products and Technical Rates of Substitution
f(x
1;x
2
) MP
1
(x
1;x
2
) MP
2
(x
1;x
2
) TRS(x
1;x
2
)
x
1
+2x
2
1 2?1=2
ax
1
+bx
2
a b?a=b
50x
1
x
2
50x
2
50x
1
x
2
x
1
x
1=4
1
x
3=4
2
1
4
x
3=4
1
x
3=4
2
3
4
x
1=4
1
x
1=4
2
x
2
3x
1
Cx
a
1
x
b
2
Cax
a?1
1
x
b
2
Cbx
a
1
x
b?1
2
ax
2
bx
1
(x
1
+2)(x
2
+1) x
2
+1 x
1
+2?
x
2
+1
x
1
+2
(x
1
+a)(x
2
+b) x
2
+b x
1
+a?
x
2
+b
x
1
+a
ax
1
+b
p
x
2
a
b
2
p
x
2
2a
p
x
2
b
x
a
1
+x
a
2
ax
a?1
1
ax
a?1
2
x
1
x
2
a?1
(x
a
1
+x
a
2
)
b
bax
a?1
1
(x
a
1
+x
a
2
)
b?1
bax
a?1
2
(x
a
1
+x
a
2
)
b?1
x
1
x
2
a?1
232 TECHNOLOGY (Ch,18)
Returns to Scale and Changes in Marginal Products
For each production function in the table below,put an I,C,orD in
the rst column if the production function has increasing,constant,or
decreasing returns to scale,Put an I,C,orD in the second (third)
column,depending on whether the marginal product of factor 1 (factor
2) is increasing,constant,or decreasing,as the amount of that factor
alone is varied.
f(x
1;x
2
) Scale MP
1
MP
2
x
1
+2x
2
C C C
p
x
1
+2x
2
D D D
:2x
1
x
2
2
I C I
x
1=4
1
x
3=4
2
C D D
x
1
+
p
x
2
D C D
(x
1
+1)
:5
(x
2
)
:5
D D D
x
1=3
1
+x
1=3
2
3
C D D
18.1 (0) Prunella raises peaches,Where L is the number of units of
labor she uses and T is the number of units of land she uses,her output
is f(L;T)=L
1
2
T
1
2
bushels of peaches.
(a) On the graph below,plot some input combinations that give her an
output of 4 bushels,Sketch a production isoquant that runs through these
points,The points on the isoquant that gives her an output of 4 bushels
all satisfy the equation T = 16=L.
NAME 233
0481216
2
4
6
L
T
8
(b) This production function exhibits (constant,increasing,decreasing)
returns to scale,Constant returns to scale.
(c) In the short run,Prunella cannot vary the amount of land she uses.
On the graph below,use blue ink to draw a curve showing Prunella’s
output as a function of labor input if she has 1 unit of land,Locate the
points on your graph at which the amount of labor is 0,1,4,9,and
16 and label them,The slope of this curve is known as the marginal
product of labor,Is this curve getting steeper or flatter
as the amount of labor increase? Flatter.
0481216
2
4
6
Labour
Output
8
Blue line
Red line
Red MPL line
234 TECHNOLOGY (Ch,18)
(d) Assuming she has 1 unit of land,how much extra output does she
get from adding an extra unit of labor when she previously used 1 unit of
labor?
p
2?1,41,4 units of labor?
p
5?2,24,If
you know calculus,compute the marginal product of labor at the input
combination (1;1) and compare it with the result from the unit increase
in labor output found above,Derivative is 1=2
p
L,so
the MP is,5 when L =1 and,25 when L =4.
(e) In the long run,Prunella can change her input of land as well as
of labor,Suppose that she increases the size of her orchard to 4 units
of land,Use red ink to draw a new curve on the graph above showing
output as a function of labor input,Also use red ink to draw a curve
showing marginal product of labor as a function of labor input when the
amount of land is xed at 4.
18.2 (0) Supposex
1
and x
2
areusedin xedproportionsandf(x
1;x
2
)=
minfx
1;x
2
g.
(a) Suppose that x
1
<x
2
,The marginal product for x
1
is 1
and (increases,remains constant,decreases) remains constant
for small increases in x
1
.Forx
2
the marginal product is 0,
and (increases,remains constant,decreases) remains constant
for small increases in x
2
,The technical rate of substitution between x
2
and x
1
is infinity,This technology demonstrates (increasing,
constant,decreasing) constant returns to scale.
(b) Suppose that f(x
1;x
2
)=minfx
1;x
2
g and x
1
= x
2
= 20,What is
the marginal product of a small increase in x
1
0,What is the
marginal product of a small increase in x
2
0,The marginal
product of x
1
will (increase,decrease,stay constant) increase if
the amount of x
2
is increased by a little bit.
Calculus 18.3 (0) Suppose the production function is Cobb-Douglas and
f(x
1;x
2
)=x
1=2
1
x
3=2
2
.
(a) Write an expression for the marginal product of x
1
at the point
(x
1;x
2
).
1
2
x
1=2
1
x
3=2
2
.
NAME 235
(b) The marginal product of x
1
(increases,decreases,remains constant)
decreases for small increases in x
1
,holding x
2
xed.
(c) The marginal product of factor 2 is 3=2x
1=2
1
x
1=2
2
,and it (in-
creases,remains constant,decreases) increases for small increases
in x
2
.
(d) An increase in the amount of x
2
(increases,leaves unchanged,de-
creases) increases the marginal product of x
1
.
(e) The technical rate of substitution between x
2
and x
1
is?x
2
=3x
1
.
(f) Does this technology have diminishing technical rate of substitution?
Yes.
(g) This technology demonstrates (increasing,constant,decreasing)
increasing returns to scale.
18.4 (0) The production function for fragles is f(K;L)=L=2+
p
K,
where L is the amount of labor used and K the amount of capital used.
(a) There are (constant,increasing,decreasing) decreasing re-
turns to scale,The marginal product of labor is constant (con-
stant,increasing,decreasing).
(b) In the short run,capital is xed at 4 units,Labor is variable,On the
graph below,use blue ink to draw output as a function of labor input in
the short run,Use red ink to draw the marginal product of labor as a
function of labor input in the short run,The average product of labor is
de ned as total output divided by the amount of labor input,Use black
ink to draw the average product of labor as a function of labor input in
the short run.
236 TECHNOLOGY (Ch,18)
0481216
2
4
6
Labour
Fragles
8
Black line
Blue
line
Red line
18.5 (0) General Monsters Corporation has two plants for producing
juggernauts,one in Flint and one in Inkster,The Flint plant produces
according to f
F
(x
1;x
2
)=minfx
1;2x
2
g and the Inkster plant produces
according to f
I
(x
1;x
2
)=minf2x
1;x
2
g,wherex
1
and x
2
are the inputs.
(a) On the graph below,use blue ink to draw the isoquant for 40 jugger-
nauts at the Flint plant,Use red ink to draw the isoquant for producing
40 juggernauts at the Inkster plant.
NAME 237
020406080
20
40
60
X2
80
,
a
b
c
Blue isoquant
Red
isoquant
Black isoquant
X1
(b) Suppose that the rm wishes to produce 20 juggernauts at each plant.
How much of each input will the rm need to produce 20 juggernauts
at the Flint plant? x
1
=20;x
2
=10,How much of each
input will the rm need to produce 20 juggernauts at the Inkster plant?
x
1
=10;x
2
=20,Label with an a on the graph,the point
representing the total amount of each of the two inputs that the rm
needs to produce a total of 40 juggernauts,20 at the Flint plant and 20
at the Inkster plant.
(c) Label with a b on your graph the point that shows how much of each
of the two inputs is needed in toto if the rm is to produce 10 juggernauts
in the Flint plant and 30 juggernauts in the Inkster plant,Label with a
c the point that shows how much of each of the two inputs that the rm
needs in toto if it is to produce 30 juggernauts in the Flint plant and
10 juggernauts in the Inkster plant,Use a black pen to draw the rm’s
isoquant for producing 40 units of output if it can split production in any
manner between the two plants,Is the technology available to this rm
convex? Yes.
18.6 (0) You manage a crew of 160 workers who could be assigned to
make either of two products,Product A requires 2 workers per unit of
output,Product B requires 4 workers per unit of output.
(a) Write an equation to express the combinations of products A and
B that could be produced using exactly 160 workers,2A +4B =
160,On the diagram below,use blue ink to shade in the area depicting
238 TECHNOLOGY (Ch,18)
the combinations of A and B that could be produced with 160 workers.
(Assume that it is also possible for some workers to do nothing at all.)
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,
,
,
,
,
,
,
,
,
,
,
,
,
,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
020406080
20
40
60
B
80
,
A
Red
shading
Blue
shading
Black
shading
a
(b) Suppose now that every unit of product A that is produced requires
the use of 4 shovels as well as 2 workers and that every unit of product B
produced requires 2 shovels and 4 workers,On the graph you have just
drawn,use red ink to shade in the area depicting combinations of A and
B that could be produced with 180 shovels if there were no worries about
the labor supply,Write down an equation for the set of combinations of
A and B that require exactly 180 shovels,4A+2B = 180.
(c) On the same diagram,use black ink to shade the area that repre-
sents possible output combinations when one takes into account both the
limited supply of labor and the limited supply of shovels.
(d) On your diagram locate the feasible combination of inputs that use up
all of the labor and all of the shovels,If you didn’t have the graph,what
equations would you solve to determine this point? 2A +4B =
160 and 4A+2B = 180.
(e) If you have 160 workers and 180 shovels,what is the largest amount of
product A that you could produce? 45 units,If you produce this
amount,you will not use your entire supply of one of the inputs,Which
one? Workers,How many will be left unused? 70.
18.7 (0) A rm has the production function f(x;y)=minf2x;x + yg.
On the graph below,use red ink to sketch a couple of production isoquants
for this rm,A second rm has the production function f(x;y)=x +
minfx;yg,Do either or both of these rms have constant returns to scale?
NAME 239
Both do,On the same graph,use black ink to draw a couple of
isoquants for the second rm.
010203040
10
20
30
40
y
x
Black
isoquants
Red
isoquants
18.8 (0) Suppose the production function has the form
f(x
1;x
2;x
3
)=Ax
a
1
x
b
2
x
c
3;
where a+b+c>1.Provethatthereareincreasingreturnstoscale.
For any t>1,f(tx
1;tx
2;tx
3
)=A(tx
1
)
a
(tx
2
)
b
(tx
3
)
c
=
t
a+b+c
f(x
1;x
2;x
3
) >tf(x
1;x
2;x
3
).
18.9 (0) Suppose that the production function is f(x
1;x
2
)=Cx
a
1
x
b
2
,
where a,b,andC are positive constants.
(a) For what positive values of a,b,andC are there decreasing returns
to scale? All C>0 and a + b<1,constant returns to
scale? All C>0 and a + b =1,increasing returns to
scale? All C>0 and a+b>1.
(b) For what positive values of a,b,andC is there decreasing marginal
product for factor 1? All C>0 and b>0 and a<1.
240 TECHNOLOGY (Ch,18)
(c) For what positive values of a,b,andC is there diminishing technical
rate of substitution? For all positive values.
18.10 (0) Suppose that the production function is f(x
1;x
2
)=
(x
a
1
+x
a
2
)
b
,wherea and b are positive constants.
(a) For what positive values of a and b are there decreasing returns to
scale? ab< 1,Constant returns to scale? ab =1,Increasing
returns to scale? ab> 1.
18.11 (0) Suppose that a rm has the production function f(x
1;x
2
)=
p
x
1
+x
2
2
.
(a) The marginal product of factor 1 (increases,decreases,stays constant)
decreases as the amount of factor 1 increases,The marginal
product of factor 2 (increases,decreases,stays constant) increases
as the amount of factor 2 increases.
(b) This production function does not satisfy the de nition of increasing
returns to scale,constant returns to scale,or decreasing returns to scale.
How can this be? Returns to scale are different
depending on the ratio in which the factors
are used,Find a combination of inputs such that doubling the
amount of both inputs will more than double the amount of output.
x
1
=1,x
2
=4,for example,Find a combination of
inputs such that doubling the amount of both inputs will less than double
output,x
1
=4,x
2
=0,for example.
Chapter 19 NAME
Profit Maximization
Introduction,A rm in a competitive industry cannot charge more than
the market price for its output,If it also must compete for its inputs,then
it has to pay the market price for inputs as well,Suppose that a pro t-
maximizing competitive rm can vary the amount of only one factor and
that the marginal product of this factor decreases as its quantity increases.
Then the rm will maximize its pro ts by hiring enough of the variable
factor so that the value of its marginal product is equal to the wage,Even
if a rm uses several factors,only some of them may be variable in the
short run.
Example,A rm has the production function f(x
1;x
2
)=x
1=2
1
x
1=2
2
,Sup-
pose that this rm is using 16 units of factor 2 and is unable to vary this
quantity in the short run,In the short run,the only thing that is left for
the rm to choose is the amount of factor 1,Let the price of the rm’s
output be p,and let the price it pays per unit of factor 1 be w
1
.We
want to nd the amount of x
1
that the rm will use and the amount of
output it will produce,Since the amount of factor 2 used in the short run
must be 16,we have output equal to f(x
1;16) = 4x
1=2
1
.Themarginal
product of x
1
is calculated by taking the derivative of output with respect
to x
1
,This marginal product is equal to 2x
1=2
1
,Setting the value of the
marginal product of factor 1 equal to its wage,we have p2x
1=2
1
= w
1
.
Now we can solve this for x
1
,We nd x
1
=(2p=w
1
)
2
,Plugging this
into the production function,we see that the rm will choose to produce
4x
1=2
1
=8p=w
1
units of output.
In the long run,a rm is able to vary all of its inputs,Consider
the case of a competitive rm that uses two inputs,Then if the rm is
maximizing its pro ts,it must be that the value of the marginal product
of each of the two factors is equal to its wage,This gives two equations in
the two unknown factor quantities,If there are decreasing returns to scale,
these two equations are enough to determine the two factor quantities,If
there are constant returns to scale,it turns out that these two equations
are only su cient to determine the ratio in which the factors are used.
In the problems on the weak axiom of pro t maximization,you are
asked to determine whether the observed behavior of rms is consistent
with pro t-maximizing behavior,To do this you will need to plot some of
the rm’s isopro t lines,An isopro t line relates all of the input-output
combinations that yield the same amount of pro t for some given input
and output prices,To get the equation for an isopro t line,just write
down an equation for the rm’s pro ts at the given input and output
prices,Then solve it for the amount of output produced as a function
of the amount of the input chosen,Graphically,you know that a rm’s
behavior is consistent with pro t maximization if its input-output choice
242 PROFIT MAXIMIZATION (Ch,19)
in each period lies below the isopro t lines of the other periods.
19.1 (0) The short-run production function of a competitive rm is
given by f(L)=6L
2=3
,whereL istheamountoflaborituses,(For
those who do not know calculus|if total output is aL
b
,wherea and b
are constants,and where L is the amount of some factor of production,
then the marginal product of L is given by the formula abL
b?1
.) The cost
per unit of labor is w = 6 and the price per unit of output is p =3.
(a) Plot a few points on the graph of this rm’s production function and
sketch the graph of the production function,using blue ink,Use black
ink to draw the isopro t line that passes through the point (0;12),the
isopro t line that passes through (0;8),and the isopro t line that passes
through the point (0;4),What is the slope of each of the isopro t lines?
They all have slope 2,How many points on the isopro t
line through (0;12) consist of input-output points that are actually pos-
sible? None,Make a squiggly line over the part of the isopro t line
through (0;4) that consists of outputs that are actually possible.
(b) How many units of labor will the rm hire? 8,How much
output will it produce? 24,If the rm has no other costs,how much
will its total pro ts be? 24.
0 8 12 16 20
Labour input
12
24
36
48
Output
424
8
4
Black lines
Blue curve
Squiggly line
13.3
Red line
NAME 243
(c) Suppose that the wage of labor falls to 4,and the price of output
remains at p,On the graph,use red ink to draw the new isopro t line
for the rm that passes through its old choice of input and output,Will
the rm increase its output at the new price? Yes,Explain why,
referring to your diagram,As the diagram shows,the
firm can reach a higher isoprofit line by
increasing output.
Calculus 19.2 (0) A Los Angeles rm uses a single input to produce a recreational
commodity according to a production function f(x)=4
p
x,wherex is
the number of units of input,The commodity sells for $100 per unit,The
input costs $50 per unit.
(a) Write down a function that states the rm’s pro t as a function of
the amount of input,= 400
p
x?50x.
(b) What is the pro t-maximizing amount of input? 16,of output?
16,How much pro ts does it make when it maximizes pro ts?
$800.
(c) Suppose that the rm is taxed $20 per unit of its output and the price
of its input is subsidized by $10,What is its new input level? 16.
What is its new output level? 16,How much pro t does it make now?
$640,(Hint,A good way to solve this is to write an expression for the
rm’s pro t as a function of its input and solve for the pro t-maximizing
amount of input.)
(d) Suppose that instead of these taxes and subsidies,the rm is taxed
at 50% of its pro ts,Write down its after-tax pro ts as a function of the
amount of input,=,50 (400
p
x?50x),What is the
pro t-maximizing amount of output? 16,How much pro t does it
make after taxes? $400.
19.3 (0) Brother Jed takes heathens and reforms them into righteous
individuals,There are two inputs needed in this process,heathens (who
are widely available) and preaching,The production function has the
following form,r
p
=minfh;pg,wherer
p
is the number of righteous
244 PROFIT MAXIMIZATION (Ch,19)
persons produced,h is the number of heathens who attend Jed’s sermons,
and p is the number of hours of preaching,For every person converted,
Jed receives a payment of s from the grateful convert,Sad to say,heathens
do not flock to Jed’s sermons of their own accord,Jed must o er heathens
apaymentofw to attract them to his sermons,Suppose the amount of
preaching is xed at p and that Jed is a pro t-maximizing prophet.
(a) If h< p,what is the marginal product of heathens? 1,What
is the value of the marginal product of an additional heathen? s.
(b) If h> p,what is the marginal product of heathens? 0,What
is the value of the marginal product of an additional heathen in this case?
0.
(c) Sketch the shape of this production function in the graph below,Label
the axes,and indicate the amount of the input where h = p.
r
hp
p
_
(d) If w<s,how many heathens will be converted? p,If w>s,
how many heathens will be converted? 0.
19.4 (0) Allie’s Apples,Inc,purchases apples in bulk and sells two prod-
ucts,boxes of apples and jugs of cider,Allie’s has capacity limitations of
three kinds,warehouse space,crating facilities,and pressing facilities,A
box of apples requires 6 units of warehouse space,2 units of crating facili-
ties,and no pressing facilities,A jug of cider requires 3 units of warehouse
space,2 units of crating facilities,and 1 unit of pressing facilities,The
total amounts available each day are,1,200 units of warehouse space,600
units of crating facilities,and 250 units of pressing facilities.
(a) If the only capacity limitations were on warehouse facilities,and if all
warehouse space were used for the production of apples,how many boxes
of apples could be produced in one day? 200,How many jugs of cider
could be produced each day if,instead,all warehouse space were used in
NAME 245
the production of cider and there were no other capacity constraints?
400,Draw a blue line in the following graph to represent the warehouse
space constraint on production combinations.
(b) Following the same reasoning,draw a red line to represent the con-
straints on output to limitations on crating capacity,How many boxes of
apples could Allie produce if he only had to worry about crating capacity?
300,Howmanyjugsofcider? 300.
(c) Finally draw a black line to represent constraints on output combina-
tions due to limitations on pressing facilities,How many boxes of apples
could Allie produce if he only had to worry about the pressing capacity
and no other constraints? An infinite number,How many
jugs of cider? 250.
(d) Now shade the area that represents feasible combinations of daily
production of apples and cider for Allie’s Apples.
0 300 400 500
100
200
300
400
500
600
100
Cider
200
Apples
600
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
Blue line
Black revenue line
Red line
Black line
(e) Allie’s can sell apples for $5 per box of apples and cider for $2 per
jug,Draw a black line to show the combinations of sales of apples and
cider that would generate a revenue of $1,000 per day,At the pro t-
maximizing production plan,Allie’s is producing 200 boxes of apples
and 0 jugs of cider,Total revenues are $1,000.
246 PROFIT MAXIMIZATION (Ch,19)
19.5 (0) A pro t-maximizing rm produces one output,y,and uses one
input,x,to produce it,The price per unit of the factor is denoted by
w and the price of the output is denoted by p,You observe the rm’s
behavior over three periods and nd the following:
Period y x w p
1 1 1 1 1
2 2.5 3,5 1
3 4 8,25 1
(a) Write an equation that gives the rm’s pro ts,,as a function of the
amount of inputxit uses,the amount of outputy it produces,the per-unit
cost of the input w,and the price of output p,= py?wx.
(b) In the diagram below,draw an isopro t line for each of the three
periods,showing combinations of input and output that would yield the
same pro ts that period as the combination actually chosen,What are
the equations for these three lines? y = x,y =1+:5x,
y =2+:25x,Using the theory of revealed pro tability,shade in
the region on the graph that represents input-output combinations that
could be feasible as far as one can tell from the evidence that is available.
How would you describe this region in words? The region that
is below all 3 isoprofit lines.
06810
2
4
6
8
10
12
2
Output
4
Input
12
Period 3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Period 2
Period 1
NAME 247
19.6 (0) T-bone Pickens is a corporate raider,This means that he looks
for companies that are not maximizing pro ts,buys them,and then tries
to operate them at higher pro ts,T-bone is examining the nancial
records of two re neries that he might buy,the Shill Oil Company and
the Golf Oil Company,Each of these companies buys oil and produces
gasoline,During the time period covered by these records,the price of
gasoline fluctuated signi cantly,while the cost of oil remained constant
at $10 a barrel,For simplicity,we assume that oil is the only input to
gasoline production.
Shill Oil produced 1 million barrels of gasoline using 1 million barrels
of oil when the price of gasoline was $10 a barrel,When the price of
gasoline was $20 a barrel,Shill produced 3 million barrels of gasoline
using 4 million barrels of oil,Finally,when the price of gasoline was $40
a barrel,Shill used 10 million barrels of oil to produce 5 million barrels
of gasoline.
Golf Oil (which is managed by Martin E,Lunch III) did exactly the
same when the price of gasoline was $10 and $20,but when the price
of gasoline hit $40,Golf produced 3.5 million barrels of gasoline using 8
million barrels of oil.
(a) Using black ink,plot Shill Oil’s isopro t lines and choices for the three
di erent periods,Label them 10,20,and 40,Using red ink draw Golf
Oil’s isopro t line and production choice,Label it with a 40 in red ink.
06810
2
4
6
8
10
12
2
Million barrels of gasoline
4
Million barrels of oil
12
10
20
40
Red 40
248 PROFIT MAXIMIZATION (Ch,19)
(b) How much pro ts could Golf Oil have made when the price of gasoline
was $40 a barrel if it had chosen to produce the same amount that it did
when the price was $20 a barrel? $80 million,What pro ts
did Golf actually make when the price of gasoline was $40? $60
million.
(c) Is there any evidence that Shill Oil is not maximizing pro ts? Explain.
No,The data satisfy WAPM.
(d) Is there any evidence that Golf Oil is not maximizing pro ts? Explain.
Yes,When price of gas was $40,Golf could
have made more money by acting as it did
when price of gas was $20.
19.7 (0) After carefully studying Shill Oil,T-bone Pickens decides that
it has probably been maximizing its pro ts,But he still is very interested
in buying Shill Oil,He wants to use the gasoline they produce to fuel his
delivery fleet for his chicken farms,Capon Truckin’,In order to do this
Shill Oil would have to be able to produce 5 million barrels of gasoline
from 8 million barrels of oil,Mark this point on your graph,Assuming
that Shill always maximizes pro ts,would it be technologically feasible
for it to produce this input-output combination? Why or why not?
No,If it could,then it would have made
more profits by choosing this combination
than what it chose when price of oil was
$40.
19.8 (0) Suppose that rms operate in a competitive market,attempt to
maximize pro ts,and only use one factor of production,Then we know
that for any changes in the input and output price,the input choice and
the output choice must obey the Weak Axiom of Pro t Maximization,
p y? w x 0.
Which of the following propositions can be proven by the Weak Ax-
iom of Pro t Maximizing Behavior (WAPM)? Respond yes or no,and
give a short argument.
NAME 249
(a) If the price of the input does not change,then a decrease in the price
of the output will imply that the rm will produce the same amount or
less output,Yes,If price of input doesn’t
change,w =0,so WAPM says p y 0.
(b) If the price of the output remains constant,then a decrease in the
input price will imply that the rm will use the same amount or more
of the input,Yes,If price of output doesn’t
change,p =0,so WAPM says? w x 0.
(c) If both the price of the output and the input increase and the rm
produces less output,then the rm will use more of the input,No.
Sign pattern is (+)(?)?(+)(+) 0,which
cannot happen.
19.9 (1) Farmer Hoglund has discovered that on his farm,he can get
30 bushels of corn per acre if he applies no fertilizer,When he applies N
pounds of fertilizer to an acre of land,the marginal product of fertilizer is
1?N=200 bushels of corn per pound of fertilizer.
(a) If the price of corn is $3 a bushel and the price of fertilizer is $p per
pound (where p<3),how many pounds of fertilizer should he use per
acre in order to maximize pro ts? 200?66:66p.
(b) (Only for those who remember a bit of easy integral calculus.) Write
down a function that states Farmer Hoglund’s yield per acre as a function
of the amount of fertilizer he uses,30 +N?N
2
=400.
(c) Hoglund’s neighbor,Skoglund,has better land than Hoglund,In fact,
for any amount of fertilizer that he applies,he gets exactly twice as much
corn per acre as Hoglund would get with the same amount of fertilizer.
How much fertilizer will Skoglund use per acre when the price of corn is
$3 a bushel and the price of fertilizer is $p a pound? 200?33:33p.
(Hint,Start by writing down Skoglund’s marginal product of fertilizer as
a function of N.)
250 PROFIT MAXIMIZATION (Ch,19)
(d) When Hoglund and Skoglund are both maximizing pro ts,will
Skoglund’s output be more than twice as much,less than twice as much
or exactly twice as much as Hoglund’s? Explain,More than
twice as much,S,would produce twice as
much as H,if they used equal amounts of
fertilizer,but S,uses more fertilizer
than H,does.
(e) Explain how someone who looked at Hoglund’s and Skoglund’s corn
yields and their fertilizer inputs but couldn’t observe the quality of
their land,would get a misleading idea of the productivity of fertil-
izer,Fertilizer did not cause the entire
difference in yield,The best land got the
most fertilizer.
19.10 (0) A rm has two variable factors and a production function,
f(x
1;x
2
)=x
1=2
1
x
1=4
2
,The price of its output is 4,Factor 1 receives a
wage of w
1
and factor 2 receives a wage of w
2
.
(a) Write an equation that says that the value of the marginal product
of factor 1 is equal to the wage of factor 1 2x
1=2
1
x
1=4
2
= w
1
and
an equation that says that the value of the marginal product of factor
2 is equal to the wage of factor 2,x
1=2
1
x
3=4
2
= w
2
,Solve two
equations in the two unknowns,x
1
and x
2
,to give the amounts of factors
1 and 2 that maximize the rm’s pro ts as a function of w
1
and w
2
.This
gives x
1
= 8=(w
3
1
w
2
) and x
2
= 4=(w
2
1
w
2
2
),(Hint,You could
use the rst equation to solve for x
1
as a function of x
2
and of the factor
wages,Then substitute the answer into the second equation and solve for
x
2
as a function of the two wage rates,Finally use your solution for x
2
to nd the solution for x
1
.)
(b) If the wage of factor 1 is 2,and the wage of factor 2 is 1,how many
units of factor 1 will the rm demand? 1,How many units of
factor 2 will it demand? 1,How much output will it produce?
1,How much pro t will it make? 1.
19.11 (0) A rm has two variable factors and a production function
f(x
1;x
2
)=x
1=2
1
x
1=2
2
,The price of its output is 4,the price of factor 1 is
w
1
,and the price of factor 2 is w
2
.
NAME 251
(a) Write the two equations that say that the value of the marginal prod-
uct of each factor is equal to its wage,2x
1=2
1
x
1=2
2
= w
1
and
2x
1=2
1
x
1=2
2
= w
2
,If w
1
=2w
2
,these two equations imply that
x
1
=x
2
= 1/2.
(b) For this production function,is it possible to solve the two marginal
productivity equations uniquely for x
1
and x
2
No.
19.12 (1) A rm has two variable factors and a production function
f(x
1;x
2
)=
p
2x
1
+4x
2
,On the graph below,draw production isoquants
corresponding to an ouput of 3 and to an output of 4.
(a) If the price of the output good is 4,the price of factor 1 is 2,and
the price of factor 2 is 3,nd the pro t-maximizing amount of factor 1
0,the pro t-maximizing amount of factor 2 16/9,andthe
pro t-maximizing output 8/3.
0481216
4
8
12
Factor 1
Factor 2
16
9
_
4
252 PROFIT MAXIMIZATION (Ch,19)
Chapter 20 NAME
Cost Minimization
Introduction,In the chapter on consumer choice,you studied a con-
sumer who tries to maximize his utility subject to the constraint that he
has a xed amount of money to spend,In this chapter you study the
behavior of a rm that is trying to produce a xed amount of output
in the cheapest possible way,In both theories,you look for a point of
tangency between a curved line and a straight line,In consumer theory,
there is an \indi erence curve" and a \budget line." In producer theory,
there is a \production isoquant" and an \isocost line." As you recall,
in consumer theory,nding a tangency gives you only one of the two
equations you need to locate the consumer’s chosen point,The second
equation you used was the budget equation,In cost-minimization theory,
again the tangency condition gives you one equation,This time you don’t
know in advance how much the producer is spending; instead you are told
how much output he wants to produce and must nd the cheapest way
to produce it,So your second equation is the equation that tells you that
the desired amount is being produced.
Example,A rm has the production function f(x
1;x
2
)=(
p
x
1
+
3
p
x
2
)
2
,The price of factor 1 is w
1
= 1 and the price of factor 2
is w
2
= 1,Let us nd the cheapest way to produce 16 units of out-
put,We will be looking for a point where the technical rate of sub-
stitution equals?w
1
=w
2
,If you calculate the technical rate of sub-
stitution (or look it up from the warm up exercise in Chapter 18),
you nd TRS(x
1;x
2
)=?(1=3)(x
2
=x
1
)
1=2
,Therefore we must have
(1=3)(x
2
=x
1
)
1=2
=?w
1
=w
2
=?1,This equation can be simpli ed
to x
2
=9x
1
,So we know that the combination of inputs chosen has to
lie somewhere on the line x
2
=9x
1
,We are looking for the cheapest way
to produce 16 units of output,So the point we are looking for must sat-
isfy the equation (
p
x
1
+3
p
x
2
)
2
= 16,or equivalently
p
x
1
+3
p
x
2
=4.
Since x
2
=9x
1
,we can substitute for x
2
in the previous equation to get
p
x
1
+3
p
9x
1
= 4,This equation simpli es further to 10
p
x
1
=4,Solving
this for x
1
,wehavex
1
=16=100,Then x
2
=9x
1
= 144=100.
The amounts x
1
and x
2
that we solved for in the previous para-
graph are known as the conditional factor demands for factors 1 and 2,
conditional on the wages w
1
=1,w
2
= 1,and output y = 16,We ex-
press this by saying x
1
(1;1;16) = 16=100 and x
2
(1;1;16) = 144=100.
Since we know the amount of each factor that will be used to pro-
duce 16 units of output and since we know the price of each factor,
we can now calculate the cost of producing 16 units,This cost is
c(w
1;w
2;16) = w
1
x
1
(w
1;w
2;16)+w
2
x
2
(w
1;w
2;16),In this instance since
w
1
= w
2
=1,wehavec(1;1;16) = x
1
(1;1;16) +x
2
(1;1;16) = 160=100.
In consumer theory,you also dealt with cases where the consumer’s
indi erence \curves" were straight lines and with cases where there were
254 COST MINIMIZATION (Ch,20)
kinks in the indi erence curves,Then you found that the consumer’s
choice might occur at a boundary or at a kink,Usually a careful look
at the diagram would tell you what is going on,The story with kinks
and boundary solutions is almost exactly the same in the case of cost-
minimizing rms,You will nd some exercises that show how this works.
20.1 (0) Nadine sells user-friendly software,Her rm’s production func-
tion is f(x
1;x
2
)=x
1
+2x
2
,wherex
1
is the amount of unskilled labor
and x
2
is the amount of skilled labor that she employs.
(a) In the graph below,draw a production isoquant representing input
combinations that will produce 20 units of output,Draw another isoquant
representing input combinations that will produce 40 units of output.
010203040
10
20
30
40
x2
x1
20 units
40 units
(b) Does this production function exhibit increasing,decreasing,or con-
stant returns to scale? Constant.
(c) If Nadine uses only unskilled labor,how much unskilled labor would
she need in order to produce y units of output? y.
(d) If Nadine uses only skilled labor to produce output,how much skilled
labor would she need in order to produce y units of output?
y
2
.
(e) If Nadine faces factor prices (1;1),what is the cheapest way for her
to produce 20 units of output? x
1
= 0,x
2
= 10.
NAME 255
(f) If Nadine faces factor prices (1;3),what is the cheapest way for her
to produce 20 units of output? x
1
= 20,x
2
= 0.
(g) If Nadine faces factor prices (w
1;w
2
),what will be the minimal cost
of producing 20 units of output? c =minf20w
1;10w
2
g =
10 minf2w
1;w
2
g.
(h) If Nadine faces factor prices (w
1;w
2
),what will be the mini-
mal cost of producing y units of output? c(w
1;w
2;y)=
minfw
1;w
2
=2gy.
20.2 (0) The Ontario Brassworks produces brazen e ronteries,As you
know brass is an alloy of copper and zinc,used in xed proportions,The
production function is given by,f(x
1;x
2
)=minfx
1;2x
2
g,wherex
1
is
theamountofcopperitusesandx
2
istheamountofzincthatitusesin
production.
(a) Illustrate a typical isoquant for this production function in the graph
below.
010203040
10
20
30
40
x2
x1
x
2
=
1_
2
x
1
(b) Does this production function exhibit increasing,decreasing,or con-
stant returns to scale? Constant.
(c) If the rm wanted to produce 10 e ronteries,how much copper would
it need? 10 units,How much zinc would it need? 5 units.
256 COST MINIMIZATION (Ch,20)
(d) If the rm faces factor prices (1;1),what is the cheapest way for it
to produce 10 e ronteries? How much will this cost? It can
only produce 10 units of output by using the
bundle (10;5),so this is the cheapest way.
It will cost $15.
(e) If the rm faces factor prices (w
1;w
2
),what is the cheapest cost to
produce 10 e ronteries? c(w
1;w
2;10) = 10w
1
+5w
2
.
(f) If the rm faces factor prices (w
1;w
2
),what will be the minimal cost
of producing y e ronteries? (w
1
+w
2
=2)y.
Calculus 20.3 (0) A rm uses labor and machines to produce output according to
the production function f(L;M)=4L
1=2
M
1=2
,whereL is the number of
units of labor used and M is the number of machines,The cost of labor
is $40 per unit and the cost of using a machine is $10.
(a) On the graph below,draw an isocost line for this rm,showing com-
binations of machines and labor that cost $400 and another isocost line
showing combinations that cost $200,What is the slope of these isocost
lines? -4.
(b) Suppose that the rm wants to produce its output in the cheapest
possible way,Find the number of machines it would use per worker.
(Hint,The rm will produce at a point where the slope of the production
isoquant equals the slope of the isocost line.) 4.
(c) On the graph,sketch the production isoquant corresponding to an
output of 40,Calculate the amount of labor 5 units and the
number of machines 20 that are used to produce 40 units of output
in the cheapest possible way,given the above factor prices,Calculate the
cost of producing 40 units at these factor prices,c(40;10;40) = 400.
(d) How many units of labor y/8 and how many machines y/2
would the rm use to produce y units in the cheapest possible way? How
much would this cost? 10y,(Hint,Notice that there are constant
returns to scale.)
NAME 257
010203040
10
20
30
40
Machines
Labour
$400 isocost line
$200 isocost line
20.4 (0) Earl sells lemonade in a competitive market on a busy street
corner in Philadelphia,His production function is f(x
1;x
2
)=x
1=3
1
x
1=3
2
,
where output is measured in gallons,x
1
is the number of pounds of lemons
he uses,and x
2
is the number of labor-hours spent squeezing them.
(a) Does Earl have constant returns to scale,decreasing returns to scale,
or increasing returns to scale? Decreasing.
(b) Where w
1
is the cost of a pound of lemons and w
2
is the wage rate
for lemon-squeezers,the cheapest way for Earl to produce lemonade is to
use w
1
=w
2
hours of labor per pound of lemons,(Hint,Set the slope
of his isoquant equal to the slope of his isocost line.)
(c) If he is going to produce y units in the cheapest way possible,
then the number of pounds of lemons he will use is x
1
(w
1;w
2;y)=
w
1=2
2
y
3=2
=w
1=2
1
and the number of hours of labor that he will use
is x
2
(w
1;w
2;y)= w
1=2
1
y
3=2
=w
1=2
2
,(Hint,Use the production func-
tion and the equation you found in the last part of the answer to solve
for the input quantities.)
(d) The cost to Earl of producing y units at factor prices w
1
and w
2
is
c(w
1;w
2;y)=w
1
x
1
(w
1;w
2;y)+w
2
x
2
(w
1;w
2;y)= 2w
1=2
1
w
1=2
2
y
3=2
.
20.5 (0) The prices of inputs (x
1;x
2;x
3;x
4
)are(4;1;3;2).
258 COST MINIMIZATION (Ch,20)
(a) If the production function is given by f(x
1;x
2
)=minfx
1;x
2
g,what
is the minimum cost of producing one unit of output? $5.
(b) If the production function is given by f(x
3;x
4
)=x
3
+x
4
,what is the
minimum cost of producing one unit of output? $2.
(c) If the production function is given by f(x
1;x
2;x
3;x
4
)=minfx
1
+
x
2;x
3
+x
4
g,what is the minimum cost of producing one unit of output?
$3.
(d) If the production function is given by f(x
1;x
2
)=minfx
1;x
2
g +
minfx
3;x
4
g,what is the minimum cost of producing one unit of output?
$5.
20.6 (0) Joe Grow,an avid indoor gardener,has found that the number
of happy plants,h,depends on the amount of light,l,and water,w.In
fact,Joe noticed that plants require twice as much light as water,and any
more or less is wasted,Thus,Joe’s production function is h =minfl;2wg.
(a) Suppose Joe is using 1 unit of light,what is the least amount of
water he can use and still produce a happy plant? 1=2 unit of
water.
(b) If Suppose Joe wants to produce 4 happy plants,what are the mini-
mum amounts of light and water required? (4;2).
(c) Joe’s conditional factor demand function for light is l(w
1;w
2;h)=
h and his conditional factor demand function for water is
w(w
1;w
2;h)= h=2.
(d) If each unit of light costs w
1
and each unit of water costs w
2
,Joe’s
cost function is c(w
1;w
2;h)= w
1
h+
w
2
2
h.
20.7 (1) Joe’s sister,Flo Grow,is a university administrator,She uses
an alternative method of gardening,Flo has found that happy plants
only need fertilizer and talk,(Warning,Frivolous observations about
university administrators’ talk being a perfect substitute for fertilizer is
in extremely poor taste.) Where f is the number of bags of fertilizer used
and t is the number of hours she talks to her plants,the number of happy
plants produced is exactly h = t+2f,Suppose fertilizer costs w
f
per bag
and talk costs w
t
per hour.
NAME 259
(a) If Flo uses no fertilizer,how many hours of talk must she devote if she
wants one happy plant? 1 hour,If she doesn’t talk to her plants
at all,how many bags of fertilizer will she need for one happy plant?
1=2 bag.
(b) If w
t
<w
f
=2,would it be cheaper for Flo to use fertilizer or talk to
raise one happy plant? It would be cheaper to talk.
(c) Flo’s cost function is c(w
f;w
t;h)= minf
w
f
2;w
t
gh.
(d) Her conditional factor demand for talk is t(w
f;w
t;h)= h if
w
t
<w
f
=2and 0 if w
t
>w
f
=2.
20.8 (0) Remember T-bone Pickens,the corporate raider? Now he’s con-
cerned about his chicken farms,Pickens’s Chickens,He feeds his chickens
on a mixture of soybeans and corn,depending on the prices of each,Ac-
cording to the data submitted by his managers,when the price of soybeans
was $10 a bushel and the price of corn was $10 a bushel,they used 50
bushels of corn and 150 bushels of soybeans for each coop of chickens.
When the price of soybeans was $20 a bushel and the price of corn was
$10 a bushel,they used 300 bushels of corn and no soybeans per coop
of chickens,When the price of corn was $20 a bushel and the price of
soybeans was $10 a bushel,they used 250 bushels of soybeans and no corn
for each coop of chickens.
(a) Graph these three input combinations and isocost lines in the following
diagram.
0 100 200 300 400
100
200
300
400
Corn
Soybeans
125
260 COST MINIMIZATION (Ch,20)
(b) How much money did Pickens’ managers spend per coop of chickens
when the prices were (10;10)? $2,000,When the prices were
(10;20)? $2,500,When the prices were (20;10)? $3,000.
(c) Is there any evidence that Pickens’s managers were not minimizing
costs? Why or why not?
There is no such evidence,since the data
satisfy WACM.
(d) Pickens wonders whether there are any prices of corn and soybeans at
which his managers will use 150 bushels of corn and 50 bushels of soybeans
to produce a coop of chickens,How much would this production method
cost per coop of chickens if the prices were p
s
=10andp
c
= 10?
$2,000,if the prices were p
s
= 10,p
c
= 20? $3,500,if the
prices were p
s
= 20,p
c
= 10? $2,500.
(e) If Pickens’s managers were always minimizing costs,can it be pos-
sible to produce a coop of chickens using 150 bushels and 50 bushels of
soybeans? No,At prices (20;10),this bundle
costs less than the bundle actually used
at prices (20;10),If it produced as much
as that bundle,the chosen bundle wouldn’t
have been chosen.
20.9 (0) A genealogical rm called Roots produces its output using only
one input,Its production function is f(x)=
p
x.
(a) Does the rm have increasing,constant,or decreasing returns to scale?
Decreasing.
(b) How many units of input does it take to produce 10 units of output?
100 units,If the input costs w per unit,what does it cost to
produce 10 units of output? 100w.
NAME 261
(c) How many units of input does it take to produce y units of output?
y
2
,If the input costs w per unit,what does it cost to produce y units
of output? y
2
w.
(d) If the input costs w per unit,what is the average cost of producing y
units? AC(w;y)= yw.
20.10 (0) A university cafeteria produces square meals,using only one
input and a rather remarkable production process,We are not allowed to
say what that ingredient is,but an authoritative kitchen source says that
\fungus is involved." The cafeteria’s production function is f(x)=x
2
,
where x is the amount of input and f(x) is the number of square meals
produced.
(a) Does the cafeteria have increasing,constant,or decreasing returns to
scale? Increasing.
(b) How many units of input does it take to produce 144 square meals?
12,If the input costs w per unit,what does it cost to produce 144
square meals? 12w.
(c) How many units of input does it take to produce y square meals?
p
y,If the input costs w per unit,what does it cost to produce y
square meals? w
p
y.
(d) If the input costs w per unit,what is the average cost of producing y
square meals? AC(w;y)= w=
p
y.
20.11 (0) Irma’s Handicrafts produces plastic deer for lawn ornaments.
\It’s hard work," says Irma,\but anything to make a buck." Her produc-
tion function is given by f(x
1;x
2
)=(minfx
1;2x
2
g)
1=2
,wherex
1
is the
amount of plastic used,x
2
is the amount of labor used,and f(x
1;x
2
)is
the number of deer produced.
(a) In the graph below,draw a production isoquant representing input
combinations that will produce 4 deer,Draw another production isoquant
representing input combinations that will produce 5 deer.
262 COST MINIMIZATION (Ch,20)
010203040
10
20
30
40
x2
x1
x
2
=
1_
2
x
1
Output
of 5
deer
Output
of 4
deer
(b) Does this production function exhibit increasing,decreasing,or con-
stant returns to scale? Decreasing returns to scale.
(c) If Irma faces factor prices (1;1),what is the cheapest way for her to
produce 4 deer? Use (16,8),How much does this cost? $24.
(d) At the factor prices (1;1),what is the cheapest way to produce 5 deer?
Use (25,12.5),How much does this cost? $37.50.
(e) At the factor prices (1;1),the cost of producing y deer with this
technology is c(1;1;y)= 3y
2
=2.
(f) At the factor prices (w
1;w
2
),the cost of producing y deer with this
technology is c(w
1;w
2;y)= (w
1
+w
2
=2)y
2
.
20.12 (0) Al Deardwarf also makes plastic deer for lawn ornaments.
Al has found a way to automate the production process completely,He
doesn’t use any labor{only wood and plastic,Al says he likes the business
\because I need the doe." Al’s production function is given by f(x
1;x
2
)=
(2x
1
+ x
2
)
1=2
,wherex
1
is the amount of plastic used,x
2
is the amount
of wood used,and f(x
1;x
2
) is the number of deer produced.
NAME 263
(a) In the graph below,draw a production isoquant representing input
combinations that will produce 4 deer,Draw another production isoquant
representing input combinations that will produce 6 deer.
010203040
10
20
30
40
x2
x1
Output
of 4
deer
Output
of 6
deer
36
16
8 18
(b) Does this production function exhibit increasing,decreasing,or con-
stant returns to scale? Decreasing returns to scale.
(c) If Al faces factor prices (1;1),what is the cheapest way for him to
produce 4 deer? (8;0),How much does this cost? $8.
(d) At the factor prices (1;1),what is the cheapest way to produce 6
deer? (18;0),How much does this cost? $18.
(e) At the factor prices (1;1),the cost of producing y deer with this
technology is c(1;1;y)= y
2
=2.
(f) At the factor prices (3;1),the cost of producing y deer with this
technology is c(3;1;y)= y
2
.
20.13 (0) Suppose that Al Deardwarf from the last problem cannot vary
the amount of wood that he uses in the short run and is stuck with using
20 units of wood,Suppose that he can change the amount of plastic that
he uses,even in the short run.
(a) How much plastic would Al need in order to make 100 deer? 4,990
units.
264 COST MINIMIZATION (Ch,20)
(b) If the cost of plastic is $1 per unit and the cost of wood is $1 per unit,
how much would it cost Al to make 100 deer? $5,010.
(c) Write down Al’s short-run cost function at these factor prices.
c(1;1;y)=20+(y
2
20)=2.
Chapter 21 NAME
Cost Curves
Introduction,Here you continue to work on cost functions,Total cost
can be divided into xed cost,the part that doesn’t change as output
changes,and variable cost,To get the average (total) cost,average xed
cost,and average variable cost,just divide the appropriate cost function
by y,the level of output,The marginal cost function is the derivative of
the total cost function with respect to output|or the rate of increase in
cost as output increases,if you don’t know calculus.
Remember that the marginal cost curve intersects both the average
cost curve and the average variable cost curve at their minimum points.
So to nd the minimum point on the average cost curve,you simply set
marginal cost equal to average cost and similarly for the minimum of
average variable cost.
Example,A rm has the total cost function C(y) = 100 + 10y.Letus
nd the equations for its various cost curves,Total xed costs are 100,so
the equation of the average xed cost curve is 100=y,Total variable costs
are 10y,so average variable costs are 10y=y = 10 for all y,Marginal cost
is 10 for all y,Average total costs are (100 + 10y)=y =10+10=y.Notice
that for this rm,average total cost decreases as y increases,Notice also
that marginal cost is less than average total cost for all y.
21.1 (0) Mr,Otto Carr,owner of Otto’s Autos,sells cars,Otto buys
autos for $c each and has no other costs.
(a) What is his total cost if he sells 10 cars? 10c,What if he sells 20
cars? 20c,Write down the equation for Otto’s total costs assuming
he sells y cars,TC(y)= cy.
(b) What is Otto’s average cost function? AC(y)= c,For every
additional auto Otto sells,by how much do his costs increase? c.
Write down Otto’s marginal cost function,MC(y)= c.
(c) In the graph below draw Otto’s average and marginal cost curves if
c = 20.
266 COST CURVES (Ch,21)
010203040
10
20
30
40
AC,MC
Red line
AC=MC=20
Output
(d) Suppose Otto has to pay $b a year to produce obnoxious television
commercials,Otto’s total cost curve is now TC(y)= cy + b,his
average cost curve is now AC(y)= c + b=y,and his marginal cost
curve is MC(y)= c.
(e) If b = $100,use red ink to draw Otto’s average cost curve on the
graph above.
21.2 (0) Otto’s brother,Dent Carr,is in the auto repair business,Dent
recently had little else to do and decided to calculate his cost conditions.
He found that the total cost of repairing s cars is TC(s)=2s
2
+ 10,But
Dent’s attention was diverted to other things,:,and that’s where you
come in,Please complete the following:
Dent’s Total Variable Costs,2s
2
.
Total Fixed Costs,10.
Average Variable Costs,2s.
Average Fixed Costs,10=s.
Average Total Costs,2s+10=s.
Marginal Costs,4s.
NAME 267
21.3 (0) A third brother,Rex Carr,owns a junk yard,Rex can use one
of two methods to destroy cars,The rst involves purchasing a hydraulic
car smasher that costs $200 a year to own and then spending $1 for every
car smashed into oblivion; the second method involves purchasing a shovel
that will last one year and costs $10 and paying the last Carr brother,
Scoop,to bury the cars at a cost of $5 each.
(a) Write down the total cost functions for the two methods,where y is
output per year,TC
1
(y)= y + 200,TC
2
(y)= 5y +10.
(b) The rst method has an average cost function 1 + 200=y and a
marginal cost function 1,For the second method these costs are
5+10=y and 5.
(c) If Rex wrecks 40 cars per year,which method should he use?
Method 2,If Rex wrecks 50 cars per year,which method should
he use? Method 1,What is the smallest number of cars per year
for which it would pay him to buy the hydraulic smasher? 48 cars
per year.
21.4 (0) Mary Magnolia wants to open a flower shop,the Petal Pusher,
in a new mall,She has her choice of three di erent floor sizes,200 square
feet,500 square feet,or 1,000 square feet,The monthly rent will be $1 a
square foot,Mary estimates that if she has F square feet of floor space
and sells y bouquets a month,her variable costs will be c
v
(y)=y
2
=F per
month.
(a) If she has 200 square feet of floor space,write down her marginal cost
function,MC =
y
100
and her average cost function,AC =
200
y
+
y
200
,At what amount of output is average cost minimized?
200,At this level of output,how much is average cost? $2.
(b) If she has 500 square feet,write down her marginal cost function:
MC = y=250 and her average cost function,AC =
(500=y)+y=500,At what amount of output is average cost min-
268 COST CURVES (Ch,21)
imized? 500,At this level of output,how much is average cost?
$2.
(c) If she has 1,000 square feet of floor space,write down her marginal
cost function,MC = y=500 and her average cost function:
AC =(1;000=y)+y=1;000,At what amount of output is
average cost minimized? 1,000,At this level of output,how much
is average cost? $2.
(d) Use red ink to show Mary’s average cost curve and her marginal cost
curves if she has 200 square feet,Use blue ink to show her average cost
curve and her marginal cost curve if she has 500 square feet,Use black
ink to show her average cost curve and her marginal cost curve if she has
1,000 square feet,Label the average cost curves AC and the marginal
cost curves MC.
0 400 600 800 1000
Bouquents
1
2
3
4
Dollars
200 1200
mc
ac
mc
ac
mc
ac
Red
lines
Blue
lines
Black
lines
LRMC=LRAC (yellow line)
(e) Use yellow marker to show Mary’s long-run average cost curve and
her long-run marginal cost curve in your graph,Label them LRAC and
LRMC.
21.5 (0) Touchie MacFeelie publishes comic books,The only inputs he
needs are old jokes and cartoonists,His production function is
Q =,1J
1
2
L
3=4;
NAME 269
whereJ is the number of old jokes used,L the number of hours of cartoon-
ists’ labor used as inputs,and Q is the number of comic books produced.
(a) Does this production process exhibit increasing,decreasing,or con-
stant returns to scale? Explain your answer,It exhibits
increasing returns to scale since f(tJ;tL)=
t
5=4
f(J;L) >tf(J;L).
(b) If the number of old jokes used is 100,write an expression for the
marginal product of cartoonists’ labor as a function of L,MP =
3
4L
1=4
Is the marginal product of labor decreasing or increasing as the
amount of labor increases? Decreasing.
21.6 (0) Touchie MacFeelie’s irascible business manager,Gander Mac-
Grope,announces that old jokes can be purchased for $1 each and that
the wage rate of cartoonists’ labor is $2.
(a) Suppose that in the short run,Touchie is stuck with exactly 100 old
jokes (for which he paid $1 each) but is able to hire as much labor as he
wishes,How much labor would he have to hire in order produce Q comic
books? Q
4=3
.
(b) Write down Touchie’s short-run total cost as a function of his output
2Q
4=3
+ 100.
(c) His short-run marginal cost function is 8Q
1=3
=3.
(d) His short-run average cost function is 2Q
1=3
+ 100=Q.
Calculus 21.7 (1) Touchie asks his brother,Sir Francis MacFeelie,to study the
long-run picture,Sir Francis,who has carefully studied the appendix to
Chapter 19 in your text,prepared the following report.
(a) If all inputs are variable,and if old jokes cost $1 each and car-
toonist labor costs $2 per hour,the cheapest way to produce exactly
one comic book is to use 10
4=5
(4=3)
3=5
7:4 jokes and
10
4=5
(3=4)
2=5
5:6 hours of labor,(Fractional jokes are cer-
tainly allowable.)
270 COST CURVES (Ch,21)
(b) This would cost 18.7 dollars.
(c) Given our production function,the cheapest proportions in which to
use jokes and labor are the same no matter how many comic books we
print,But when we double the amount of both inputs,the number of
comic books produced is multiplied by 2
5=4
.
21.8 (0) Consider the cost function c(y)=4y
2
+ 16.
(a) The average cost function is AC =4y +
16
y
.
(b) The marginal cost function is MC =8y.
(c) The level of output that yields the minimum average cost of production
is y =2.
(d) The average variable cost function is AVC =4y.
(e) At what level of output does average variable cost equal marginal
cost? At y =0.
21.9 (0) A competitive rm has a production function of the form
Y =2L +5K.Ifw =$2andr = $3,what will be the minimum cost of
producing 10 units of output? $6.
Chapter 22 NAME
Firm Supply
Introduction,The short-run supply curve of a competitive rm is the
portion of its short-run marginal cost curve that is upward sloping and
lies above its average variable cost curve,The long-run supply curve of a
competitive rm is the portion of its short-run marginal cost curve that
is upward-sloping and lies above its long-run average cost curve.
Example,A rm has the long-run cost function c(y)=2y
2
+ 200 for
y>0andc(0) = 0,Let us nd its long-run supply curve,The rm’s
marginal cost when its output is y is MC(y)=4y,If we graph output on
the horizontal axis and dollars on the vertical axis,then we nd that the
long-run marginal cost curve is an upward-sloping straight line through
the origin with slope 4,The long-run supply curve is the portion of this
curve that lies above the long-run average cost curve,When output is y,
long-run average costs of this rm are AC(y)=2y + 200=y.ThisisaU-
shaped curve,As y gets close to zero,AC(y) becomes very large because
200=y becomes very large,When y is very large,AC(y) becomes very
large because 2y is very large,When is it true that AC(y) <MC(y)?
This happens when 2y+ 200=y < 4y,Simplify this inequality to nd that
AC(y) <MC(y)wheny>10,Therefore the long-run supply curve is
the piece of the long-run marginal cost curve for which y>10,So the
long-run supply curve has the equation p =4y for y>10,If we want to
nd quantity supplied as a function of price,we just solve this expression
for y as a function of p.Thenwehavey = p=4 whenever p>40.
Suppose that p<40,For example,what if p = 20,how much will
the rm supply? At a price of 20,if the rm produces where price equals
long-run marginal cost,it will produce 5 = 20=4 units of output,When
the rm produces only 5 units,its average costs are 2 5 + 200=5 = 50.
Therefore when the price is 20,the best the rm can do if it produces a
positive amount is to produce 5 units,But then it will have total costs of
5 50 = 250 and total revenue of 5 20 = 100,It will be losing money,It
would be better o producing nothing at all,In fact,for any price p<40,
the rm will choose to produce zero output.
22.1 (0) Remember Otto’s brother Dent Carr,who is in the auto repair
business? Dent found that the total cost of repairing s cars is c(s)=
2s
2
+ 100.
(a) This implies that Dent’s average cost is equal to 2s + 100=s,
his average variable cost is equal to 2s,and his marginal cost is
equal to 4s,On the graph below,plot the above curves,and also plot
Dent’s supply curve.
272 FIRM SUPPLY (Ch,22)
0 5 10 15 20
20
40
60
Output
Dollars
80
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
Supply
mc
ac
avc
Revenue
Costs
Profit
(b) If the market price is $20,how many cars will Dent be willing to
repair? 5,If the market price is $40,how many cars will Dent
repair? 10.
(c) Suppose the market price is $40 and Dent maximizes his pro ts,On
the above graph,shade in and label the following areas,total costs,total
revenue,and total pro ts.
Calculus 22.2 (0) A competitive rm has the following short-run cost function:
c(y)=y
3
8y
2
+30y +5.
(a) The rm’s marginal cost function is MC(y)= 3y
2
16y+30.
(b) The rm’s average variable cost function is AVC(y)= y
2
8y+
30,(Hint,Notice that total variable costs equal c(y)?c(0).)
(c) On the axes below,sketch and label a graph of the marginal cost
function and of the average variable cost function.
(d) Average variable cost is falling as output rises if output is less than
4 and rising as output rises if output is greater than 4.
(e) Marginal cost equals average variable cost when output is 4.
NAME 273
(f) The rm will supply zero output if the price is less than 14.
(g) The smallest positive amount that the rm will ever supply at any
price is 4,At what price would the rm supply exactly 6 units
of output? 42.
02468
10
20
30
y
Costs
40
mc
avc
Calculus 22.3 (0) Mr,McGregor owns a 5-acre cabbage patch,He forces his
wife,Flopsy,and his son,Peter,to work in the cabbage patch without
wages,Assume for the time being that the land can be used for nothing
other than cabbages and that Flopsy and Peter can nd no alternative
employment,The only input that Mr,McGregor pays for is fertilizer,If
he uses x sacks of fertilizer,the amount of cabbages that he gets is 10
p
x.
Fertilizer costs $1 per sack.
(a) What is the total cost of the fertilizer needed to produce 100 cabbages?
$100,What is the total cost of the amount of fertilizer needed to
produce y cabbages? y
2
=100.
(b) If the only way that Mr,McGregor can vary his output is by varying
the amount of fertilizer applied to his cabbage patch,write an expression
for his marginal cost,as a function of y,MC(y)= y=50.
(c) If the price of cabbages is $2 each,how many cabbages will Mr,Mc-
Gregor produce? 100,How many sacks of fertilizer will he buy?
100,How much pro t will he make? $100.
274 FIRM SUPPLY (Ch,22)
(d) The price of fertilizer and of cabbages remain as before,but Mr,Mc-
Gregor learns that he could nd summer jobs for Flopsy and Peter in
a local sweatshop,Flopsy and Peter would together earn $300 for the
summer,which Mr,McGregor could pocket,but they would have no time
to work in the cabbage patch,Without their labor,he would get no cab-
bages,Now what is Mr,McGregor’s total cost of producing y cabbages?
c(y) = 300 + (y=10)
2
.
(e) Should he continue to grow cabbages or should he put Flopsy and
Peter to work in the sweatshop? Sweatshop.
22.4 (0) Severin,the herbalist,is famous for his hepatica,His total cost
function is c(y)=y
2
+10 fory>0andc(0) = 0,(That is,his cost of
producing zero units of output is zero.)
(a) What is his marginal cost function? 2y,What is his average cost
function? y +10=y.
(b) At what quantity is his marginal cost equal to his average cost?
p
10,At what quantity is his average cost minimized?
p
10.
(c) In a competitive market,what is the lowest price at which he will
supply a positive quantity in long-run equilibrium? 2
p
10,How
much would he supply at that price?
p
10.
22.5 (1) Stanley Ford makes mountains out of molehills,He can do this
with almost no e ort,so for the purposes of this problem,let us assume
that molehills are the only input used in the production of mountains.
Suppose mountains are produced at constant returns to scale and that
it takes 100 molehills to make 1 mountain,The current market price of
molehills is $20 each,A few years ago,Stan bought an \option" that
permits him to buy up to 2,000 molehills at $10 each,His option contract
explicitly says that he can buy fewer than 2,000 molehills if he wishes,but
he can not resell the molehills that he buys under this contract,In or-
der to get governmental permission to produce mountains from molehills,
Stanley would have to pay $10,000 for a molehill-masher’s license.
(a) The marginal cost of producing a mountain for Stanley is $1,000
if he produces fewer than 20 mountains,The marginal cost of producing
a mountain is $2,000 if he produces more than 20 mountains.
NAME 275
(b) On the graph below,show Stanley Ford’s marginal cost curve (in blue
ink) and his average cost curve (in red ink).
010203040
1000
2000
3000
Output
Dollars
4000
Blue mc curve
Red ac
curve
Pencil
mc
curve
(c) If the price of mountains is $1,600,how many mountains will Stanley
produce? 20 mountains.
(d) The government is considering raising the price of a molehill-masher’s
license to $11,000,Stanley claims that if it does so he will have to go out
of business,Is Stanley telling the truth? No,What is the highest
fee for a license that the government could charge without driving him
out of business? The maximum they could charge
is the amount of his profits excluding the
license fee,$12,000.
(e) Stanley’s lawyer,Eliot Sleaze,has discovered a clause in Stanley’s
option contract that allows him to resell the molehills that he purchased
under the option contract at the market price,On the graph above,
use a pencil to draw Stanley’s new marginal cost curve,If the price of
mountains remains $1,600,how many mountains will Stanley produce
now? He will sell all of his molehills and
produce zero mountains.
22.6 (1) Lady Wellesleigh makes silk purses out of sows’ ears,She is
the only person in the world who knows how to do so,It takes one sow’s
ear and 1 hour of her labor to make a silk purse,She can buy as many
276 FIRM SUPPLY (Ch,22)
sows’ ears as she likes for $1 each,Lady Wellesleigh has no other source
of income than her labor,Her utility function is a Cobb-Douglas function
U(c;r)=c
1=3
r
2=3
,wherec is the amount of money per day that she has
to spend on consumption goods and r is the amount of leisure that she
has,Lady Wellesleigh has 24 hours a day that she can devote either to
leisure or to working.
(a) Lady Wellesleigh can either make silk purses or she can earn $5 an
hour as a seamstress in a sweatshop,If she worked in the sweat shop,how
many hours would she work? 8,(Hint,To solve for this amount,
write down Lady Wellesleigh’s budget constraint and recall how to nd
the demand function for someone with a Cobb-Douglas utility function.)
(b) If she could earn a wage of $w an hour as a seamstress,how much
would she work? 8 hours.
(c) If the price of silk purses is $p,how much money will Lady Wellesleigh
earn per purse after she pays for the sows’ ears that she uses? p?1.
(d) If she can earn $5 an hour as a seamstress,what is the lowest price
at which she will make any silk purses? $6.
(e) What is the supply function for silk purses? (Hint,The price of silk
purses determines the \wage rate" that Lady W,can earn by making silk
purses,This determines the number of hours she will choose to work and
hence the supply of silk purses.) S(p)=8for p>6,0
otherwise.
Calculus 22.7 (0) Remember Earl,who sells lemonade in Philadelphia? You
met him in the chapter on cost functions,Earl’s production function is
f(x
1;x
2
)=x
1=3
1
x
1=3
2
,wherex
1
is the number of pounds of lemons he
uses and x
2
is the number of hours he spends squeezing them,As you
found out,his cost function is c(w
1;w
2;y)=2w
1=2
1
w
1=2
2
y
3=2
,wherey is
the number of units of lemonade produced.
(a) If lemons cost $1 per pound,the wage rate is $1 per hour,and the
price of lemonade is p,Earl’s marginal cost function is MC(y)= 3y
1=2
and his supply function is S(p)= p
2
=9,If lemons cost $4 per pound
and the wage rate is $9 per hour,his supply function will be S(p)=
p
2
=324.
NAME 277
(b) In general,Earl’s marginal cost depends on the price of lemons and
the wage rate,At prices w
1
for lemons and w
2
for labor,his mar-
ginal cost when he is producing y units of lemonade is MC(w
1;w
2;y)=
3w
1=2
1
w
1=2
2
y
1=2
,The amount that Earl will supply depends on the
three variables,p,w
1
,w
2
,As a function of these three variables,Earl’s
supply is S(p;w
1;w
2
)= p
2
=9w
1
w
2
.
Calculus 22.8 (0) As you may recall from the chapter on cost functions,Irma’s
handicrafts has the production function f(x
1;x
2
)=(minfx
1;2x
2
g)
1=2
,
where x
1
is the amount of plastic used,x
2
is the amount of labor used,
and f(x
1;x
2
) is the number of lawn ornaments produced,Let w
1
be the
price per unit of plastic and w
2
be the wage per unit of labor.
(a) Irma’s cost function is c(w
1;w
2;y)= (w
1
+w
2
=2)y
2
.
(b) If w
1
= w
2
= 1,then Irma’s marginal cost of producing y units of
output is MC(y)= 3y,The number of units of output that she would
supply at price p is S(p)= p=3,At these factor prices,her average
cost per unit of output would be AC(y)= 3y=2.
(c) If the competitive price of the lawn ornaments she sells is p = 48,and
w
1
= w
2
= 1,how many will she produce? 16,How much pro t will
she make? 384.
(d) More generally,at factor prices w
1
and w
2
,her marginal cost is a
function MC(w
1;w
2;y)= (2w
1
+w
2
)y,At these factor prices and
an output price of p,the number of units she will choose to supply is
S(p;w
1;w
2
)= p=(2w
1
+w
2
).
22.9 (0) Jack Benny can get blood from a stone,If he has x stones,the
number of pints of blood he can extract from them is f(x)=2x
1
3
.Stones
cost Jack $w each,Jack can sell each pint of blood for $p.
(a) How many stones does Jack need to extract y pintsofblood?
y
3
=8.
(b) What is the cost of extracting y pints of blood? wy
3
=8.
278 FIRM SUPPLY (Ch,22)
(c) What is Jack’s supply function when stones cost $8 each? y =
(p=3)
1=2
,When stones cost $w each? y =(8p=3w)
1=2
.
(d) If Jack has 19 relatives who can also get blood from a stone in the
same way,what is the aggregate supply function for blood when stones
cost $w each? Y = 20(8p=3w)
1=2
.
22.10 (1) The Miss Manners Re nery in Dry Rock,Oklahoma,converts
crude oil into gasoline,It takes 1 barrel of crude oil to produce 1 barrel of
gasoline,In addition to the cost of oil there are some other costs involved
in re ning gasoline,Total costs of producing y barrels of gasoline are
described by the cost function c(y)=y
2
=2+p
o
y,wherep
o
is the price of
a barrel of crude oil.
(a) Express the marginal cost of producing gasoline as a function of p
o
and y,y +p
o
.
(b) Suppose that the re nery can buy 50 barrels of crude oil for $5 a
barrel but must pay $15 a barrel for any more that it buys beyond 50
barrels,The marginal cost curve for gasoline will be y +5 up to 50
barrels of gasoline and y +15 thereafter.
(c) Plot Miss Manners’ supply curve in the diagram below using blue ink.
0255075100
20
40
60
Barrels of gasoline
Price of gasoline
80
30
Red line
Black line Blue lines
NAME 279
(d) Suppose that Miss Manners faces a horizontal demand curve for gaso-
line at a price of $30 per barrel,Plot this demand curve on the graph
above using red ink,How much gasoline will she supply? 25
barrels.
(e) If Miss Manners could no longer get the rst 50 barrels of crude for
$5,but had to pay $15 a barrel for all crude oil,how would her output
change? It would decrease to 15 barrels.
(f) Now suppose that an entitlement program is introduced that permits
re neries to buy one barrel of oil at $5 for each barrel of oil that they
buy for $15,What will Miss Manners’ supply curve be now? S(p)=
p?10,Assume that it can buy fractions of a barrel in the same
manner,Plot this supply curve on the graph above using black ink,If
the demand curve is horizontal at $30 a barrel,how much gasoline will
Miss Manners supply now? 20 barrels.
22.11 (2) Suppose that a farmer’s cost of growing y bushels of corn is
given by the cost function c(y)=(y
2
=20) +y.
(a) If the price of corn is $5 a bushel,how much corn will this farmer
grow? 40 bushels.
(b) What is the farmer’s supply curve of corn as a function of the price
of corn? S(p)= 10p?10.
(c) The government now introduces a Payment in Kind (PIK) program,If
the farmer decides to grow y bushels of corn,he will get (40?y)=2 bushels
from the government stockpiles,Write an expression for the farmer’s
pro ts as a function of his output and the market price of corn,taking
into account the value of payments in kind received,py?c(y)+
p(40?y)=2=py?y
2
=20?y +p(40?y)=2.
(d) At the market price p,what will be the farmer’s pro t-maximizing
output of corn? S(p)=5p?10,Plot a supply curve for corn in
the graph below.
280 FIRM SUPPLY (Ch,22)
030450
1
2
3
4
5
6
10
Price
20
Bushels of corn
60
Red line
(e) If p = $2,how many bushels of corn will he produce? 0,How
many bushels will he get from the government stockpiles? 20.
(f) If p = $5,how much corn will he supply? 15 bushels,How
many bushels of corn will he get from the government stockpiles,assuming
he chooses to be in the PIK program? $12.50.
(g) At any price between p =$2andp = $5,write a formula for the
size of the PIK payment,His supply curve is S(p)=
5p?10,and his payment is (40?y)=2.So
he gets 25?2:5p.
(h) How much corn will he supply to the market,counting both pro-
duction and PIK payment,as a function of the market price p?
Sum supply curve and PIK payment to get
TS(p)=2:5p+15.
(i) Use red ink to illustrate the total supply curve of corn (including the
corn from the PIK payment) in your graph above.
Chapter 23 NAME
Industry Supply
Introduction,To nd the industry supply of output,just add up the
supply of output coming from each individual rm,Remember to add
quantities,not prices,The industry supply curve will have a kink in it
where the market price becomes low enough that some rm reduces its
quantity supplied to zero.
The last three questions of this chapter apply supply and demand
analysis to some problems in the economics of illegal activities,In these
examples,you will make use of your knowledge of where supply functions
come from.
23.0 Warm Up Exercise,Here are some drills for you on nding
market supply functions from linear rm supply functions,The trick here
is to remember that the market supply function may have kinks in it,For
example,if the rm supply functions are s
1
(p)=p and s
2
(p)=p?2,
then the market supply function is S(p)=p for p 2andS(p)=2p?2
for p>2; that is,only the rst rm supplies a positive output at prices
below $2,and both rms supply output at prices above $2,Now try to
construct the market supply function in each of the following cases.
(a) s
1
(p)=p;s
2
(p)=2p;s
3
(p)=3p,S(p)=6p.
(b) s
1
(p)=2p;s
2
(p)=p?1,S(p)=2p for p 1;S(p)=
3p?1 for p>1.
(c) 200 rms each have a supply function s
1
(p)=2p?8 and 100 rms
each have a supply function s
2
(p)=p?3,S(p)=0for
p<3,S(p) = 100p?300 for 3 p 4,S(p)=
500p?1;900 for p>4.
(d) s
1
(p)=3p?12;s
2
(p)=2p?8;s
3
(p)=p?4,S(p)=6p?24
for p>4.
23.1 (1) Al Deardwarf’s cousin,Zwerg,makes plaster garden gnomes.
The technology in the garden gnome business is as follows,You need a
gnome mold,plaster,and labor,A gnome mold is a piece of equipment
that costs $1,000 and will last exactly one year,After a year,a gnome
282 INDUSTRY SUPPLY (Ch,23)
mold is completely worn out and has no scrap value,With a gnome
mold,you can make 500 gnomes per year,For every gnome that you
make,you also have to use a total of $7 worth of plaster and labor,The
total amounts of plaster and labor used are variable in the short run,If
you want to produce only 100 gnomes a year with a gnome mold,you
spend only $700 a year on plaster and labor,and so on,The number
of gnome molds in the industry cannot be changed in the short run,To
get a newly built one,you have to special-order it from the gnome-mold
factory,The gnome-mold factory only takes orders on January 1 of any
given year,and it takes one whole year from the time a gnome mold is
ordered until it is delivered on the next January 1,When a gnome mold
is installed in your plant,it is stuck there,To move it would destroy it.
Gnome molds are useless for anything other than making garden gnomes.
For many years,the demand function facing the garden-gnome in-
dustry has been D(p)=60;000?5;000p,whereD(p) is the total number
of garden gnomes sold per year and p is the price,Prices of inputs have
been constant for many years and the technology has not changed,No-
body expects any changes in the future,and the industry is in long-run
equilibrium,The interest rate is 10%,When you buy a new gnome mold,
you have to pay for it when it is delivered,For simplicity of calculations,
we will assume that all of the gnomes that you build during the one-year
life of the gnome mold are sold at Christmas and that the employees and
plaster suppliers are paid only at Christmas for the work they have done
during the past year,Also for simplicity of calculations,let us approxi-
mate the date of Christmas by December 31.
(a) If you invested $1,000 in the bank on January 1,how much money
could you expect to get out of the bank one year later? $1,100,If
you received delivery of a gnome mold on January 1 and paid for it at that
time,by how much would your revenue have to exceed the costs of plaster
and labor if it is to be worthwhile to buy the machine? (Remember that
the machine will be worn out and worthless at the end of the year.)
$1,100.
(b) Suppose that you have exactly one newly installed gnome mold in
your plant; what is your short-run marginal cost of production if you
produce up to 500 gnomes? $7,What is your average variable cost
for producing up to 500 gnomes? $7,With this equipment,is it
possible in the short run to produce more than 500 gnomes? No.
(c) If you have exactly one newly installed gnome mold,you would pro-
duce 500 gnomes if the price of gnomes is above 7 dollars,You
would produce no gnomes if the price of gnomes is below 7 dol-
NAME 283
lars,You would be indi erent between producing any number of gnomes
between 0 and 500 if the price of gnomes is 7 dollars.
(d) If you could sell as many gnomes as you liked for $10 each and none
at a higher price,what rate of return would you make on your $1,000 by
investing in a gnome mold? 50%,Is this higher than the return from
putting your money in the bank? Yes,What is the lowest price for
gnomes at which investing in a gnome mold gives the same rate of return
as you get from the bank? $9.20,Could the long-run equilibrium
price be lower than this? No.
(e) At the price you found in the last section,how many gnomes would
be demanded each year? 14,000,How many molds would be
purchased each year? 28,Is this a long-run equilibrium price?
Yes.
23.2 (1) We continue our study of the garden-gnome industry,Suppose
that initially everything was as described in the previous problem,To
the complete surprise of everyone in the industry,on January 1,1993,the
invention of a new kind of plaster was announced,This new plaster made
it possible to produce garden gnomes using the same molds,but it reduced
the cost of the plaster and labor needed to produce a gnome from $7 to $5
per gnome,Assume that consumers’ demand function for gnomes in 1993
was not changed by this news,The announcement came early enough in
the day for everybody to change his order for gnome molds to be delivered
on January 1,1994,but of course,the number of molds available to be
used in 1993 is already determined from orders made one year ago,The
manufacturer of garden gnome molds contracted to sell them for $1,000
a year ago,so it can’t change the price it charges on delivery.
(a) In 1993,what will be the equilibrium total output of garden gnomes?
14,000,What will be the equilibrium price of garden gnomes?
$9.20,Cousin Zwerg bought a gnome mold that was delivered on
January 1,1993,and,as had been agreed,he paid $1,000 for it on that
day,On January 1,1994,when he sold the gnomes he had made during
the year and when he paid the workers and the suppliers of plaster,he
received a net cash flow of $ 2,100,Did he make more than a 10%
rate of return on his investment in the gnome mold? Yes,What rate
of return did he make? 110%.
284 INDUSTRY SUPPLY (Ch,23)
(b) Zwerg’s neighbor,Munchkin,also makes garden gnomes,and he has
a gnome mold that is to be delivered on January 1,1993,On this day,
Zwerg,who is looking for a way to invest some more money,is considering
buying Munchkin’s new mold from Munchkin and installing it in his own
plant,If Munchkin keeps his mold,he will get a net cash flow of $
2,100 in one year,If the interest rate that Munchkin faces,both
for borrowing and lending is 10%,then should he be willing to sell his
mold for $1,000? No,What is the lowest price that he would be
willing to sell it for? $1,909,If the best rate of return that Zwerg
can make on alternative investments of additional funds is 10%,what is
the most that Zwerg would be willing to pay for Munchkin’s new mold?
$1,909.
(c) What do you think will happen to the number of garden gnomes or-
dered for delivery on January 1,1994? Will it be larger,smaller,or the
same as the number ordered the previous year? Larger,After the
passage of su cient time,the industry will reach a new long-run equilib-
rium,What will be the new equilibrium price of gnomes? $7.20.
23.3 (1) On January 1,1993,there were no changes in technology or
demand functions from that in our original description of the industry,
but the government astonished the garden gnome industry by introducing
a tax on the production of garden gnomes,For every garden gnome
produced,the manufacturer must pay a $1 tax,The announcement came
early enough in the day so that there was time for gnome producers to
change their orders of gnome molds for 1994,Of course the gnome molds
to be used in 1993 had been already ordered a year ago,Gnome makers
had signed contracts promising to pay $1,000 for each gnome mold that
they ordered,and they couldn’t back out of these promises.
(a) Recalling from previous problems the number of gnome molds ordered
for delivery on January 1,1993,we see that if gnome makers produce up
to capacity in 1993,they will produce 14,000 gnomes,Given the
demand function,we see that the market price would then have to be
$9.20.
(b) If you have a garden gnome mold,the marginal cost of producing a
garden gnome,including the tax,is $8,Therefore all gnome molds
(will,will not) will be used up to capacity in 1993.
NAME 285
(c) In 1993,what will be the total output of garden gnomes?
14,000,What will be the price of garden gnomes? $9.20.
What rate of return will Deardwarf’s cousin Zwerg make on his invest-
ment in a garden gnome mold that he ordered a year ago and paid $1,000
foratthattime40%.
(d) Remember that Zwerg’s neighbor,Munchkin,also has a gnome mold
that is to be delivered on January 1,1993,Knowing about the tax makes
Munchkin’s mold a less attractive investment than it was without the
tax,but still Zwerg would buy it if he can get it cheap enough so that he
makes a 10% rate of return on his investment,How much should he be
willing to pay for Munchkin’s new mold? $545.45.
(e) What do you think will happen to the number of gnome molds ordered
for delivery on January 1,1994? Will it be larger,smaller,or the same
as the number ordered the previous year? Smaller.
(f) The tax on garden gnomes was left in place for many years,and no-
body expected any further changes in the tax or in demand or supply con-
ditions,After the passage of su cient time,the industry reached a new
long-run equilibrium,What was the new equilibrium price of gnomes?
$10.20.
(g) In the short run,who would end up paying the tax on garden gnomes,
the producers or the consumers? Producers,In the long run,did
the price of gnomes go up by more,less,or the same amount as the tax
per gnome? Same amount.
(h) Suppose that early in the morning of January 1,1993,the government
had announced that there would be a $1 tax on garden gnomes,but
that the tax would not go into e ect until January 1,1994,Would the
producers of garden gnomes necessarily be worse o than if there were
no tax? Why or why not? No,The producers would
anticipate the tax increase and restrict
supply,thereby raising prices.
286 INDUSTRY SUPPLY (Ch,23)
(i) Is it reasonable to suppose that the government could introduce \sur-
prise" taxes without making rms suspicious that there would be similar
\surprises" in the future? Suppose that the introduction of the tax in Jan-
uary 1993 makes gnome makers suspicious that there will be more taxes
introduced in later years,Will this a ect equilibrium prices and supplies?
How? If a surprise tax makes gnome makers
expect similar ‘‘surprises’’ in future,it
will take a higher current price to get
them to enter the industry,This will raise
the price paid by consumers.
23.4 (0) Consider a competitive industry with a large number of rms,
all of which have identical cost functions c(y)=y
2
+1 fory>0and
c(0) = 0,Suppose that initially the demand curve for this industry is
given by D(p)=52?p,(The output of a rm does not have to be an
integer number,but the number of rms does have to be an integer.)
(a) What is the supply curve of an individual rm? S(p)= p=2,If
there are n rms in the industry,what will be the industry supply curve?
Y = np=2.
(b) What is the smallest price at which the product can be sold? p
=
2.
(c) What will be the equilibrium number of rms in the industry? (Hint:
Take a guess at what the industry price will be and see if it works.)
Guess at p
=2,This gives D(p)=52?2=
n2=2,which says n
=50.
(d) What will be the equilibrium price? p
=2,What will be the
equilibrium output of each rm? y
=1.
(e) What will be the equilibrium output of the industry? Y
=50.
NAME 287
(f) Now suppose that the demand curve shifts to D(p)=52:5?p.
What will be the equilibrium number of rms? (Hint,Can a new rm
enter the market and make nonnegative pro ts?) If a new
firm entered,there would be 51 firms,The
supply-demand equation would be 52:5?p =
51p=2,Solve for p
= 105=53 < 2,A new firm
would lose money,Therefore in equilibrium
there would be 50 firms.
(g) What will be the equilibrium price? Solve 52:5?p =
50p=2 to get p
=2:02,What will be the equilibrium
output of each rm? y
=1:01,What will be the equilibrium
pro ts of each rm? Around,02.
(h) Now suppose that the demand curve shifts to D(p)=53?p,What will
be the equilibrium number of rms? 51,What will be the equilibrium
price? 2.
(i) What will be the equilibrium output of each rm? y =1,What
will be the equilibrium pro ts of each rm? Zero.
23.5 (3) In 1990,the town of Ham Harbor had a more-or-less free market
in taxi services,Any respectable rm could provide taxi service as long
as the drivers and cabs satis ed certain safety standards.
Let us suppose that the constant marginal cost per trip of a taxi ride
is $5,and that the average taxi has a capacity of 20 trips per day,Let
the demand function for taxi rides be given by D(p)=1;200?20p,where
demand is measured in rides per day,and price is measured in dollars.
Assume that the industry is perfectly competitive.
(a) What is the competitive equilibrium price per ride? (Hint,In com-
petitive equilibrium,price must equal marginal cost.) 5,What
is the equilibrium number of rides per day? 1,100,How many
taxicabs will there be in equilibrium? 55.
288 INDUSTRY SUPPLY (Ch,23)
(b) In 1990 the city council of Ham Harbor created a taxicab licensing
board and issued a license to each of the existing cabs,The board stated
that it would continue to adjust the taxicab fares so that the demand for
rides equals the supply of rides,but no new licenses will be issued in the
future,In 1995 costs had not changed,but the demand curve for taxicab
rides had become D(p)=1;220?20p,What was the equilibrium price
of a ride in 1995? $6.
(c) What was the pro t per ride in 1995,neglecting any costs associated
with acquiring a taxicab license? $1,What was the pro t per taxicab
license per day? 20,If the taxi operated every day,what was the
pro t per taxicab license per year? $7,300.
(d) If the interest rate was 10% and costs,demand,and the number of
licenses were expected to remain constant forever,what would be the
market price of a taxicab license? $73,000.
(e) Suppose that the commission decided in 1995 to issue enough new
licenses to reduce the taxicab price per ride to $5,How many more
licenses would this take? 1.
(f) Assuming that demand in Ham Harbor is not going to grow any
more,how much would a taxicab license be worth at this new fare?
Nothing.
(g) How much money would each current taxicab owner be willing to
pay to prevent any new licenses from being issued? $73,000
each,What is the total amount that all taxicab owners together would
be willing to pay to prevent any new licences from ever being issued?
$4,015,000,The total amount that consumers would be willing
to pay to have another taxicab license issued would be (more than,less
than,the same as) more than this amount.
23.6 (2) In this problem,we will determine the equilibrium pattern
of agricultural land use surrounding a city,Think of the city as being
located in the middle of a large featureless plain,The price of wheat at
the market at the center of town is $10 a bushel,and it only costs $5 a
bushel to grow wheat,However,it costs 10 cents a mile to transport a
bushel of wheat to the center of town.
NAME 289
(a) If a farm is located t miles from the center of town,write down
a formula for its pro t per bushel of wheat transported to market.
Profit per bushel =5?:10t.
(b) Suppose you can grow 1,000 bushels on an acre of land,How much
will an acre of land located t miles from the market rent for? Rent =
5;000?100t.
(c) How far away from the market do you have to be for land to be worth
zero? 50 miles.
23.7 (1) Consider an industry with three rms,Suppose the rms have
the following supply functions,S
1
(p)=p,S
2
(p)=p?5,and S
3
(p)=2p
respectively,On the graph below plot each of the three supply curves and
the resulting industry supply curve.
010203040
5
10
15
Quantity
Price
20
S
2
S
1
S
3
Industry
supply
(a) If the market demand curve has the form D(p) = 15,what is the
resulting market price? 5,Output? 15,What is the output
level for rm 1 at this price? 5,Firm 2? 0,Firm 3?
10.
23.8 (0) Suppose all rms in a given industry have the same supply
curve given by S
i
(p)=p=2,Plot and label the four industry supply
curves generated by these rms if there are 1,2,3,or 4 rms operating
in the industry.
290 INDUSTRY SUPPLY (Ch,23)
010203040
5
10
15
Quantity
Price
20
S
2
S
1
S
3
S
4
(a) If all of the rms had a cost structure such that if the price was below
$3,they would be losing money,what would be the equilibrium price and
output in the industry if the market demand was equal to D(p)=3:5?
Answer,price = $3.50,quantity= 3.5,How many rms would
exist in such a market? 2.
(b) What if the identical conditions as above held except that the market
demand was equal to D(p)=8?p? Now,what would be the equilibrium
price and output? $3.20 and 4.8,How many rms would
operate in such a market? 3.
23.9 (0) There is free entry into the pollicle industry,Anybody can
enter this industry and have the same U-shaped average cost curve as all
of the other rms in the industry.
(a) On the diagram below,draw a representative rm’s average and mar-
ginal cost curves using blue ink,Also,indicate the long-run equilibrium
level of the market price.
NAME 291
010203040
5
10
15
Quantity
Price
20
P
P+t
P+l
Blue
mc
Blue ac
Red ac
Red mc
Black ac
(b) Suppose the government imposes a tax,t,on every unit of output sold
by the industry,Use red ink to draw the new conditions on the above
graph,After the industry has adjusted to the imposition of the tax,the
competitive model would predict the following,the market price would
(increase,decrease) increase by amount t,there would
be (more,the same,fewer) fewer rms operating in the industry,and
the output level for each rm operating in the industry would Stay
the same,(increase,stay the same,decrease).
(c) What if the government imposes a tax,l,onevery rm in the in-
dustry,Draw the new cost conditions on the above graph using black
ink,After the industry has adjusted to the imposition of the tax the
competitive model would predict the following,the market price would
(increase,decrease) increase,there would be (more,the same,
fewer) fewer rms operating in the industry,and the output level
for each rm operating in the industry would increase (increase,
stay the same,decrease).
23.10 (0) In many communities,a restaurant that sells alcoholic bev-
erages is required to have a license,Suppose that the number of licenses
is limited and that they may be easily transferred to other restaurant
owners,Suppose that the conditions of this industry closely approximate
perfect competition,If the average restaurant’s revenue is $100,000 a
year,and if a liquor license can be leased for a year for $85,000 from an
existing restaurant,what is the average variable cost in the industry?
$15,000.
292 INDUSTRY SUPPLY (Ch,23)
23.11 (2) In order to protect the wild populations of cockatoos,the
Australian authorities have outlawed the export of these large parrots.
An illegal market in cockatoos has developed,The cost of capturing an
Australian cockatoo and shipping him to the United States is about $40
per bird,Smuggled parrots are drugged and shipped in suitcases,This is
extremely traumatic for the birds and about 50% of the cockatoos shipped
die in transit,Each smuggled cockatoo has a 10% chance of being discov-
ered,in which case the bird is con scated and a ne of $500 is charged.
Con scated cockatoos that are alive are returned to the wild,Con scated
cockatoos that are found dead are donated to university cafeterias.
(a) The probability that a smuggled parrot will reach the buyer alive and
uncon scated is,45,Therefore when the price of smuggled parrots is
p,what is the expected gross revenue to a parrot-smuggler from shipping
a parrot?,45p.
(b) What is the expected cost,including expected nes and the cost of
capturing and shipping,per parrot? $:10 500 + 40 = $90.
(c) The supply schedule for smuggled parrots will be a horizontal line at
the market price $200,(Hint,At what price does a parrot-smuggler
just break even?)
(d) The demand function for smuggled cockatoos in the United States is
D(p)=7;200?20p per year,How many smuggled cockatoos will be sold
in the United States per year at the equilibrium price? 3,200,How
many cockatoos must be caught in Australia in order that this number of
live birds reaches U.S,buyers? 3;200=:45 = 7;111.
(e) Suppose that instead of returning live con scated cockatoos to the
wild,the customs authorities sold them in the American market,The
pro ts from smuggling a cockatoo do not change from this policy change.
Since the supply curve is horizontal,it must be that the equilibrium price
of smuggled cockatoos will have to be the same as the equilibrium price
when the con scated cockatoos were returned to nature,How many live
cockatoos will be sold in the United States in equilibrium? 3,200.
How many cockatoos will be permanently removed from the Australian
wild? 6,400.
The story behind this problem is based on actual fact,but the num-
bers we use are just made up for illustration,It would be very interesting
to have some good estimates of the actual demand functions and cost
functions.
NAME 293
(f) Suppose that the trade in cockatoos is legalized,Suppose that it
costs about $40 to capture and ship a cockatoo to the United States
in a comfortable cage and that the number of deaths in transit by this
method is negligible,What would be the equilibrium price of cockatoos
in the United States? $40,How many cockatoos would be sold in
the United States? 6,400,How many cockatoos would have to be
caught in Australia for the U.S,market? 6,400.
23.12 (0) The horn of the rhinoceros is prized in Japan and China for its
alleged aphrodisiac properties,This has proved to be most unfortunate for
the rhinoceroses of East Africa,Although it is illegal to kill rhinoceroses
in the game parks of Kenya,the rhinoceros population of these parks has
been almost totally depleted by poachers,The price of rhinoceros horns
in recent years has risen so high that a poacher can earn half a year’s
wages by simply killing one rhinoceros,Such high rewards for poaching
have made laws against poaching almost impossible to enforce in East
Africa,There are also large game parks with rhinoceros populations in
South Africa,Game wardens there were able to prevent poaching almost
completely and the rhinoceros population of South Africa has prospered.
In a recent program from the television series Nova,a South African game
warden explained that some rhinoceroses even have to be \harvested" in
order to prevent overpopulation of rhinoceroses,\What then," asked the
interviewer,\do you do with the horns from the animals that are harvested
or that die of natural causes?" The South African game warden proudly
explained that since international trade in rhinoceros horns was illegal,
South Africa did not contribute to international crime by selling these
horns,Instead the horns were either destroyed or stored in a warehouse.
(a) Suppose that all of the rhinoceros horns produced in South Africa
are destroyed,Label the axes below and draw world supply and demand
curves for rhinoceros horns with blue ink,Label the equilibrium price
and quantity.
294 INDUSTRY SUPPLY (Ch,23)
Price
Quantity
P
P
a
b
Q
a
Q
b
D (Blue)
S (Blue) S (Red)
(b) If South Africa were to sell its rhinoceros horns on the world mar-
ket,which of the curves in your diagram would shift and in what di-
rection? Supply curve to the right,Use red ink to
illustrate the shifted curve or curves,If South Africa were to do this,
would world consumption of rhinoceros horns be increased or decreased?
Increased,Would the world price of rhinoceros horns be increased
or decreased? Decreased,Would the amount of rhinoceros poach-
ing be increased or decreased? Decreased.
23.13 (1) The sale of rhinoceros horns is not prohibited because of con-
cern about the wicked pleasures of aphrodisiac imbibers,but because the
supply activity is bad for rhinoceroses,Similarly,the Australian reason
for restricting the exportation of cockatoos to the United States is not be-
cause having a cockatoo is bad for you,Indeed it is legal for Australians
to have cockatoos as pets,The motive for the restriction is simply to
protect the wild populations from being overexploited,In the case of
other commodities,it appears that society has no particular interest in
restricting the supply activities but wishes to restrict consumption,A
good example is illicit drugs,The growing of marijuana,for example,is a
simple pastoral activity,which in itself is no more harmful than growing
sweet corn or brussels sprouts,It is the consumption of marijuana to
which society objects.
Suppose that there is a constant marginal cost of $5 per ounce for
growing marijuana and delivering it to buyers,But whenever the mari-
juana authorities nd marijuana growing or in the hands of dealers,they
seize the marijuana and ne the supplier,Suppose that the probability
NAME 295
that marijuana is seized is,3 and that the ne if you are caught is $10
per ounce.
(a) If the \street price" is $p per ounce,what is the expected revenue net
of nes to a dealer from selling an ounce of marijuana?,7p?3.
What then would be the equilibrium price of marijuana? $11.4.
(b) Suppose that the demand function for marijuana has the equation
Q = A?Bp,If all con scated marijuana is destroyed,what will be the
equilibrium consumption of marijuana? A?11:4B,Suppose that
con scated marijuana is not destroyed but sold on the open market,What
will be the equilibrium consumption of marijuana? A?11:4B.
(c) The price of marijuana will (increase,decrease,stay the same)
Stay the same.
(d) If there were increasing rather than constant marginal cost in mar-
ijuana production,do you think that consumption would be greater
if con scated marijuana were sold than if it were destroyed? Ex-
plain,Consumption will increase because
the supply curve will shift to the right,
lowering the price.
296 INDUSTRY SUPPLY (Ch,23)
Chapter 24 NAME
Monopoly
Introduction,The pro t-maximizing output of a monopolist is found by
solving for the output at which marginal revenue is equal to marginal cost.
Having solved for this output,you nd the monopolist’s price by plugging
the pro t-maximizing output into the demand function,In general,the
marginal revenue function can be found by taking the derivative of the
total revenue function with respect to the quantity,But in the special case
of linear demand,it is easy to nd the marginal revenue curve graphically.
With a linear inverse demand curve,p(y)=a?by,the marginal revenue
curve always takes the form MR(y)=a?2by.
24.1 (0) Professor Bong has just written the rst textbook in Punk
Economics,It is called Up Your Isoquant,Market research suggests that
the demand curve for this book will be Q =2;000?100P,whereP is
its price,It will cost $1,000 to set the book in type,This setup cost is
necessary before any copies can be printed,In addition to the setup cost,
there is a marginal cost of $4 per book for every book printed.
(a) The total revenue function for Professor Bong’s book is R(Q)=
20Q?Q
2
=100.
(b) The total cost function for producing Professor Bong’s book is C(Q)=
1;000 + 4Q.
(c) The marginal revenue function is MR(Q)= 20?Q=50 and
the marginal cost function is MC(Q)= 4,The pro t-maximizing
quantity of books for professor Bong to sell is Q
= 800.
24.2 (0) Peter Morgan sells pigeon pies from a pushcart in Central Park.
Morgan is the only supplier of this delicacy in Central Park,His costs are
zero due to the abundant supplies of raw materials available in the park.
(a) When he rst started his business,the inverse demand curve for pigeon
pies was p(y) = 100?y,where the price is measured in cents and y
measures the number of pies sold,Use black ink to plot this curve in
the graph below,On the same graph,use red ink to plot the marginal
revenue curve.
298 MONOPOLY (Ch,24)
0 50 75 100 125
Pigeon pies
25
50
75
100
Cents
25 150
Black
lines
Blue line
Red line
(b) What level of output will maximize Peter’s pro ts? 50,What
price will Peter charge per pie? 50 cents.
(c) After Peter had been in business for several months,he noticed that
the demand curve had shifted to p(y)=75?y=2,Useblueinktoplot
this curve in the graph above,Plot the new marginal revenue curve on
the same graph with black ink.
(d) What is his pro t-maximizing output at this new price? 75,What
is the new pro t-maximizing price? 37.5 cents per pie.
24.3 (0) Suppose that the demand function for Japanese cars in the
United States is such that annual sales of cars (in thousands of cars) will
be 250?2P,whereP is the price of Japanese cars in thousands of dollars.
(a) If the supply schedule is horizontal at a price of $5,000 what will
be the equilibrium number of Japanese cars sold in the United States?
240 thousand,How much money will Americans spend in total on
Japanese cars? 1.2 billion dollars.
(b) Suppose that in response to pressure from American car manufactur-
ers,the United States imposes an import duty on Japanese cars in such a
way that for every car exported to the United States the Japanese man-
ufacturers must pay a tax to the U.S,government of $2,000,How many
Japanese automobiles will now be sold in the United States? 236
thousand,At what price will they be sold? 7 thousand dollars.
NAME 299
(c) How much revenue will the U.S,government collect with this tari?
472 million dollars.
(d) On the graph below,the price paid by American consumers is mea-
sured on the vertical axis,Use blue ink to show the demand and supply
schedules before the import duty is imposed,After the import duty is
imposed,the supply schedule shifts and the demand schedule stays as
before,Use red ink to draw the new supply schedule.
0 100 150 200 250
Japanese autos (thousands)
2
4
6
8
Price (thousands)
50 300
7
5
Blue
lines
Red line
Demand
Supply
Supply with duty
(e) Suppose that instead of imposing an import duty,the U.S,government
persuades the Japanese government to impose \voluntary export restric-
tions" on their exports of cars to the United States,Suppose that the
Japanese agree to restrain their exports by requiring that every car ex-
ported to the United States must have an export license,Suppose further
that the Japanese government agrees to issue only 236,000 export licenses
and sells these licenses to the Japanese rms,If the Japanese rms know
the American demand curve and if they know that only 236,000 Japanese
cars will be sold in America,what price will they be able to charge in
America for their cars? 7 thousand dollars.
(f) How much will a Japanese rm be willing to pay the Japanese govern-
ment for an export license? 2 thousand dollars,(Hint,Think
about what it costs to produce a car and how much it can be sold for if
youhaveanexportlicense.)
(g) How much will be the Japanese government’s total revenue from the
sale of export licenses? 472 million dollars.
300 MONOPOLY (Ch,24)
(h) How much money will Americans spend on Japanese cars? 1.652
billion dollars.
(i) Why might the Japanese \voluntarily" submit to export controls?
Total revenue of Japanese companies and
government is greater with export controls
than without them,Since there is less
output,costs are lower,Higher revenue,
lower costs imply more profit.
24.4 (0) A monopolist has an inverse demand curve given by p(y)=
12?y and a cost curve given by c(y)=y
2
.
(a) What will be its pro t-maximizing level of output? 3.
(b) Suppose the government decides to put a tax on this monopolist so
that for each unit it sells it has to pay the government $2,What will be
its output under this form of taxation? 2.5.
(c) Suppose now that the government puts a lump sum tax of $10 on the
pro ts of the monopolist,What will be its output? 3.
24.5 (1) In Gomorrah,New Jersey,there is only one newspaper,the
Daily Calumny,The demand for the paper depends on the price and the
amount of scandal reported,The demand function is Q =15S
1=2
P
3
,
where Q is the number of issues sold per day,S is the number of column
inches of scandal reported in the paper,and P is the price,Scandals
are not a scarce commodity in Gomorrah,However,it takes resources to
write,edit,and print stories of scandal,The cost of reporting S units
of scandal is $10S,These costs are independent of the number of papers
sold,In addition it costs money to print and deliver the paper,These
cost $:10 per copy and the cost per unit is independent of the amount
of scandal reported in the paper,Therefore the total cost of printing Q
copies of the paper with S column inches of scandal is $10S +:10Q.
(a) Calculate the price elasticity of demand for the Daily Calumny.
3,Does the price elasticity depend on the amount of scandal re-
ported? No,Is the price elasticity constant over all prices? Yes.
NAME 301
(b) Remember that MR = P(1 +
1
),To maximize pro ts,the Daily
Calumny will set marginal revenue equal to marginal cost,Solve for
the pro t-maximizing price for the Calumny to charge per newspaper.
$.15,When the newspaper charges this price,the di erence between
the price and the marginal cost of printing and delivering each newspaper
is $.05.
(c) If the Daily Calumny charges the pro t-maximizing price and prints
100 column inches of scandal,how many copies would it sell? (Round
to the nearest integer.) 44,444,Write a general expression
for the number of copies sold as a function of S,Q(S)= Q =
15S
1=2
(:15)
3
=4;444:44S
1=2
.
(d) Assuming that the paper charges the pro t-maximizing price,write
an expression for pro ts as a function of Q and S,Profits=
:15Q?:10Q?10S,Using the solution for Q(S) that you found
in the last section,substitute Q(S)forQ to write an expression for pro ts
as a function of S alone,Profits =:05(4;444:44S
1=2
)?
10S = 222:22S
1=2
10S.
(e) If the Daily Calumny charges its pro t-maximizing price,and prints
the pro t-maximizing amount of scandal,how many column inches of
scandal should it print? 123.456 inches,How many copies
are sold 49,383 and what is the amount of pro t for the Daily
Calumny if it maximizes its pro ts? 1,234.5.
24.6 (0) In the graph below,use black ink to draw the inverse demand
curve,p
1
(y) = 200?y.
(a) If the monopolist has zero costs,where on this curve will it choose to
operate? At y = 100,p = 100.
(b) Now draw another demand curve that passes through the pro t-
maximizing point and is flatter than the original demand curve,Use
a red pen to mark the part of this new demand curve on which the mo-
nopolist would choose to operate,(Hint,Remember the idea of revealed
preference?)
302 MONOPOLY (Ch,24)
(c) The monopolist would have (larger,smaller) pro ts at the new demand
curve than it had at the original demand curve,Larger.
0 50 100 150 200
50
100
150
Quantity
Price
200
Red
Line
Black Line
Chapter 25 NAME
Monopoly Behavior
Introduction,Problems in this chapter explore the possibilities of price
discrimination by monopolists,There are also problems related to spatial
markets,where transportation costs are accounted for and we show that
lessons learned about spatial models give us a useful way of thinking about
competition under product di erentiation in economics and in politics.
Remember that a price discriminator wants the marginal revenue in
each market to be equal to the marginal cost of production,Since he
produces all of his output in one place,his marginal cost of production
is the same for both markets and depends on his total output,The trick
for solving these problems is to write marginal revenue in each market as
a function of quantity sold in that market and to write marginal cost as
a function of the sum of quantities sold in the two markets,The pro t-
maximizing conditions then become two equations that you can solve
for the two unknown quantities sold in the two markets,Of course,if
marginal cost is constant,your job is even easier,since all you have to do
is nd the quantities in each market for which marginal revenue equals
the constant marginal cost.
Example,A monopolist sells in two markets,The inverse demand curve
in market 1 is p
1
= 200?q
1
,The inverse demand curve in market 2 is
p
2
= 300?q
2
,The rm’s total cost function is C(q
1
+q
2
)=(q
1
+q
2
)
2
.The
rm is able to price discriminate between the two markets,Let us nd the
prices that it will charge in each market,In market 1,the rm’s marginal
revenue is 200?2q
1
,In market 2,marginal revenue is 300?2q
2
.The
rm’s marginal costs are 2(q
1
+q
2
),To maximize its pro ts,the rm sets
marginal revenue in each market equal to marginal cost,This gives us the
two equations 200?2q
1
=2(q
1
+q
2
) and 300?2q
2
=2(q
1
+q
2
),Solving
these two equations in two unknowns for q
1
and q
2
,we nd q
1
=16:67
and q
2
=66:67,We can nd the price charged in each market by plugging
these quantities into the demand functions,The price charged in market
1 will be 183.33,The price charged in market 2 will be 233.33.
25.1 (0) Ferdinand Sludge has just written a disgusting new book,Orgy
in the Piggery,His publisher,Graw McSwill,estimates that the demand
for this book in the United States is Q
1
=50;000? 2;000P
1
,where
P
1
is the price in America measured in U.S,dollars,The demand for
Sludge’s opus in England is Q
2
=10;000?500P
2
,whereP
2
is its price
in England measured in U,S,dollars,His publisher has a cost function
C(Q) = $50;000 + $2Q,whereQ is the total number of copies of Orgy
that it produces.
(a) If McSwill must charge the same price in both countries,how many
copies should it sell 27,500,and what price should it charge
304 MONOPOLY BEHAVIOR (Ch,25)
$13 to maximize its pro ts,and how much will those pro ts be?
$252,500.
(b) If McSwill can charge a di erent price in each country,and wants to
maximize pro ts,how many copies should it sell in the United States?
23,000,What price should it charge in the United States?
$13.50,How many copies should it sell in England? 4,500.
What price should it charge in England? $11,How much will its
total pro ts be? $255,000.
25.2 (0) A monopoly faces an inverse demand curve,p(y) = 100?2y,
and has constant marginal costs of 20.
(a) What is its pro t-maximizing level of output? 20.
(b) What is its pro t-maximizing price? $60.
(c) What is the socially optimal price for this rm? $20.
(d) What is the socially optimal level of output for this rm? 40.
(e) What is the deadweight loss due to the monopolistic behavior of this
rm? 400.
(f) Suppose this monopolist could operate as a perfectly discriminating
monopolist and sell each unit of output at the highest price it would fetch.
The deadweight loss in this case would be 0.
Calculus 25.3 (1) Banana Computer Company sells Banana computers both in
the domestic and foreign markets,Because of di erences in the power
supplies,a Banana purchased in one market cannot be used in the other
market,The demand and marginal revenue curves associated with the
two markets are as follows:
P
d
=20;000?20QP
f
=25;000?50Q
MR
d
=20;000?40QMR
f
=25;000?100Q:
Banana’s production process exhibits constant returns to scale and it
takes $1,000,000 to produce 100 computers.
NAME 305
(a) Banana’s long-run average cost function is AC(Q)= $10,000
and its long-run marginal cost function is MC(Q)= $10,000.
(Hint,If there are constant returns to scale,does long-run average cost
change as output changes?) Draw the average and marginal cost curves
on the graph.
(b) Draw the demand curve for the domestic market in black ink and
the marginal revenue curve for the domestic market in pencil,Draw the
demand curve for the foreign market in red ink and the marginal revenue
curve for the foreign market in blue ink.
0 100 200 300 400 500 600 700 800
10
20
30
40
50
60
Dollars (1,000s)
Red line
Blue line
Black line
Pencil line
LRAC
LRMC
Banana Computers
(c) If Banana is maximizing its pro ts,it will sell 250 computers in
the domestic market at 15,000 dollars each and 150 computers
in the foreign market at 17,500 dollars each,What are Banana’s
total pro ts? $2,375,000.
306 MONOPOLY BEHAVIOR (Ch,25)
(d) At the pro t-maximizing price and quantity,what is the price elas-
ticity of demand in the domestic market3,What is the price
elasticity of demand in the foreign market2:33,Is demand more
or less elastic in the market where the higher price is charged? Less
elastic.
(e) Suppose that somebody gures out a wiring trick that allows a Banana
computer built for either market to be costlessly converted to work in the
other,(Ignore transportation costs.) On the graph below,draw the new
inverse demand curve (with blue ink) and marginal revenue curve (with
black ink) facing Banana.
0 100 200 300 400 500 600 700 800
10
20
30
40
Dollars (1,000s)
Blue line
LRAC
LRMC
Banana Computers
Black line
(f) Given that costs haven’t changed,how many Banana computers
should Banana sell? 400,What price will it charge? $15,714.
How will Banana’s pro ts change now that it can no longer practice price
discrimination? Decrease by $89,284.
25.4 (0) A monopolist has a cost function given by c(y)=y
2
and faces
a demand curve given by P(y) = 120?y.
(a) What is his pro t-maximizing level of output? 30,What price
will the monopolist charge? $90.
NAME 307
(b) If you put a lump sum tax of $100 on this monopolist,what would its
output be? 30.
(c) If you wanted to choose a price ceiling for this monopolist so as to
maximize consumer plus producer surplus,what price ceiling should you
choose? $80.
(d) How much output will the monopolist produce at this price ceiling?
40.
(e) Suppose that you put a speci c tax on the monopolist of $20 per unit
output,What would its pro t-maximizing level of output be? 25.
25.5 (1) The Grand Theater is a movie house in a medium-sized college
town,This theater shows unusual lms and treats early-arriving movie
goers to live organ music and Bugs Bunny cartoons,If the theater is
open,the owners have to pay a xed nightly amount of $500 for lms,
ushers,and so on,regardless of how many people come to the movie.
For simplicity,assume that if the theater is closed,its costs are zero,The
nightly demand for Grand Theater movies by students is Q
S
= 220?40P
S
,
where Q
S
is the number of movie tickets demanded by students at price
P
S
,The nightly demand for nonstudent moviegoers is Q
N
= 140?20P
N
.
(a) If the Grand Theater charges a single price,P
T
,toeverybody,then
at prices between 0 and $5.50,the aggregate demand function for movie
tickets is Q
T
(P
T
)= 360?60P
T
,Over this range of prices,the
inverse demand function is then P
T
(Q
T
)= 6?Q
T
=60.
(b) What is the pro t-maximizing number of tickets for the Grand The-
ater to sell if it charges one price to everybody? 180,At what price
would this number of tickets be sold? $3,How much pro ts would
the Grand make? $40,How many tickets would be sold to students?
100,To nonstudents? 80.
(c) Suppose that the cashier can accurately separate the students from
the nonstudents at the door by making students show their school ID
cards,Students cannot resell their tickets and nonstudents do not have
access to student ID cards,Then the Grand can increase its pro ts by
charging students and nonstudents di erent prices,What price will be
charged to students? $2.75,How many student tickets will be sold?
308 MONOPOLY BEHAVIOR (Ch,25)
110,What price will be charged to nonstudents? $3.50,How
many nonstudent tickets will be sold? 70,How much pro t will the
Grand Theater make? $47.50.
(d) If you know calculus,see if you can do this part,Suppose that
the Grand Theater can hold only 150 people and that the manager
wants to maximize pro ts by charging separate prices to students and
to nonstudents,If the capacity of the theater is 150 seats and Q
S
tickets are sold to students,what is the maximum number of tickets
that can be sold to nonstudents? Q
N
= 150?Q
S
,Write
an expression for the price of nonstudent tickets as a function of the
number of student tickets sold,(Hint,First nd the inverse nonstu-
dent demand function.) P
N
=?1=2+Q
S
=20,Write
an expression for Grand Theater pro ts as a function of the number
Q
S
only,(Hint,Make substitutions using your previous answers.)
Q
S
(11=2?Q
S
=40) + (?1=2+20=Q
S
)(150?Q
S
)?
500 =?3Q
2
S
=40 + 27Q
S
=2?575,How many student
tickets should the Grand sell to maximize pro ts? 90,What price
is charged to students? $3.25,How many nonstudent tickets are
sold? 60,What price is charged to nonstudents? $4,How much
pro t does the Grand make under this arrangement? $32.50.
25.6 (2) The Mall Street Journal is considering o ering a new service
which will send news articles to readers by email,Their market research
indicates that there are two types of potential users,impecunious under-
graduates studying microeconomics and high-level executives,Let x be
the number of articles that a user requests per year,The executives have
an inverse demand function P
E
(x) = 100?x and the undergraduates
have an inverse demand function P
U
(x)=80?x,(Prices are measured
in cents.) The Journal has a zero marginal cost of sending articles via
email,Please draw these demand functions in the graph below and label
them.
NAME 309
20 40 60 80 100 120
20
40
60
80
100
120
Quantity
Price
0
P (X) = 100 - X
E
P (X) = 80 - X
U
(a) Suppose that the Journal can identify which of the users are under-
graduates and which are executives,It decides to o er a plan where users
can buy a xed number of articles per year for a xed price per year.
If it wants to maximize total pro ts it will o er 100 articles to the
executives and 80 articles per year to the students.
(b) It will charge $50 per year to the executives and $32 per year
to the students.
(c) Suppose that the Journal cannot identify which users are executives
and which are undergraduates,In this case it simply o ers two packages,
and lets the users self-select the one that is optimal for them,Suppose
that it o ers two packages,one that allows up to 80 articles per year the
other that allows up to 100 articles per year,What’s the highest price
that the undergraduates will pay for the 80-article subscription? $32.
(d) What (gross) consumer surplus would the executives get if they con-
sumed 80 articles per year? $48.
(e) What is the the maximum price that the Journal can charge for 100
articles per year if it o ers 80 a year at the highest price the undergradu-
ates are willing to pay? Solve 50?p =48?32 to find
p = $34.
310 MONOPOLY BEHAVIOR (Ch,25)
(f) Suppose that the Mall Street Journal decides to include only 60 articles
in the student package,What is the most it could charge and still get
student to buy this package? $30.
(g) If the Mall Street Journal o ers a \student package" of 60 articles
at this price,how much net consumer surplus would executives get from
buying the student package? $12.
(h) What is the most that the Mall Street Journal could charge for 100
article package and expect executives to buy this package rather than the
student package? $38.
(i) If the number of executives in the population equals the number of
students,would the Mall Street Journal make higher pro ts by o ering a
student package of 80 articles or a student package of 60 articles? 60.
25.7 (2) Bill Barriers,CEO of MightySoft software,is contemplating
a new marketing strategy,bundling their best-selling wordprocessor and
their spreadsheet together and selling the pair of software products for
one price.
From the viewpoint of the company,bundling software and selling it
at a discounted price has two e ects on sales,1) revenues go up due to
to additional sales of the bundle; and 2) revenues go down since there is
less of a demand for the individual components of the bundle.
The pro tability of bundling depends on which of these two e ects
dominates,Suppose that MightySoft sells the wordprocessor for $200 and
the spreadsheet for $250,A marketing survey of 100 people who purchased
either of these packages in the last year turned up the following facts:
1) 20 people bought both.
2) 40 people bought only the wordprocessor,They would be willing to
spend up to $120 more for the spreadsheet.
3) 40 people bought only the spreadsheet,They would be willing to
spend up to $100 more for the wordprocessor.
In answering the following questions you may assume the following:
1) New purchasers of MightySoft products will have the same charac-
teristics as this group.
2) There is a zero marginal cost to producing extra copies of either
software package.
3) There is a zero marginal cost to creating a bundle.
(a) Let us assume that MightySoft also o ers the products separately
as well as bundled,In order to determine how to price the bundle,Bill
Barriers asks himself the following questions,In order to sell the bundle
to the wordprocessor purchasers,the price would have to be less than
200 + 120 = 320.
NAME 311
(b) In order to sell to the spreadsheet users,the price would have to be
less than 250 + 100 = 350.
(c) What would MightySoft’s pro ts be on a group of 100 users if it priced
the bundle at $320? Everyone buys the bundle so
profits are 100 320 = $32;000.
(d) What would MightySoft’s pro ts be on a group of 100 users if it
priced the bundle at $350? 20 people would buy both
anyway,40 people bought spreadsheet only
and would be willing to buy the bundle,
40 people buy the wordprocessor,but not
the spreadsheet,Total profits are 20
350 + 40 350 + 40 200 = 29;000.
(e) If MightySoft o ers the bundle,what price should it set? $320
is the more profitable price.
(f) What would pro ts be without o ering the bundle? Without
the bundle,profits would be 20 (200+250)+
40 200 + 40 250 = 27;000.
(g) What would be the pro ts with the bundle? 100 320 =
32;000
(h) Is it more pro table to bundle or not bundle? bundle.
(i) Suppose that MightySoft worries about the reliability of their market
survey and decides that they believe that without bundling t of the 100
people will buy both products,and (100?t)=2 will buy the wordprocessor
only and (100?t)=2 will buy the spreadsheet only,Calculate pro ts as a
function of t if there is no bundling,225 (100?t)+450 t.
312 MONOPOLY BEHAVIOR (Ch,25)
(j) What are pro ts with the bundle? $32000.
(k) At what values of t would it be unpro table to o er the bundle?
Solve for the t that equates the two
profits to find t =42:22,So if more than
42 of the 100 new purchasers would buy both
products anyway,it is not profitable to
bundle them.
(l) This analysis so far has been concerned only with customers who
would purchase at least one of the programs at the original set of prices.
Is there any additional source of demand for the bundle? What does
this say about the calculations we have made about the pro tability of
bundling? Yes,it may be that there are
some consumers who were not willing to pay
$200 for the wordprocessor or $250 for
the spreadsheet,but would be willing to
pay $320 for the bundle,This means that
bundling would be even more profitable
than the calculations above indicate.
25.8 (0) Col,Tom Barker is about to open his newest amusement park,
Elvis World,Elvis World features a number of exciting attractions,you
can ride the rapids in the Blue Suede Chutes,climb the Jailhouse Rock
and eat dinner in the Heartburn Hotel,Col,Tom gures that Elvis World
will attract 1,000 people per day,and each person will take x =50?50p
rides,where p is the price of a ride,Everyone who visits Elvis World is
pretty much the same and negative rides are not allowed,The marginal
cost of a ride is essentially zero.
(a) What is each person’s inverse demand function for rides? p(x)=
1?x=50.
(b) If Col,Tom sets the price to maximize pro t,how many rides will be
taken per day by a typical visitor? 25.
NAME 313
(c) What will the price of a ride be? 50 cents.
(d) What will Col,Tom’s pro ts be per person? $12.50
(e) What is the Pareto e cient price of a ride? Zero.
(f) If Col,Tom charged the Pareto e cient price for a ride,how many
rides would be purchased? 50.
(g) How much consumers’ surplus would be generated at this price and
quantity? 25.
(h) If Col,Tom decided to use a two-part tari,he would set an admission
fee of $25 and charge a price per ride of 0.
25.9 (1) The city of String Valley is squeezed between two mountains
and is 36 miles long,running from north to south,and only about 1
block wide,Within the town,the population has a uniform density of
100 people per mile,Because of the rocky terrain,nobody lives outside
the city limits on either the north or the south edge of town,Because of
strict zoning regulations,the city has only three bowling alleys,One of
these is located at the city limits on the north edge of town,one of them is
located at the city limits on the south edge of town,and one is located at
the exact center of town,Travel costs including time and gasoline are $1
per mile,All of the citizens of the town have the same preferences,They
are willing to bowl once a week if the cost of bowling including travel
costs and the price charged by the bowling alley does not exceed $15.
(a) Consider one of the bowling alleys at either edge of town,If it charges
$10 for a night of bowling,how far will a citizen of String Valley be willing
to travel to bowl there? Up to 5 miles,How many customers
would this bowling alley have per week if it charged $10 per night of
bowling? 500.
(b) Write a formula for the number of customers that a bowling alley
at the edge of town will have if it charges $p per night of bowling.
100 (15?p).
(c) Write a formula for this bowling alley’s inverse demand function.
p =15?q=100.
314 MONOPOLY BEHAVIOR (Ch,25)
(d) Suppose that the bowling alleys at the end of town have a marginal
cost of $3 per customer and set their prices to maximize pro ts,(For
the time being assume that these bowling alleys face no competition from
the other bowling alleys in town.) How many customers will they have?
600,What price will they charge? $9,How far away from the edge
of town does their most distant customer live? 6 miles.
(e) Now consider the bowling alley in the center of town,If it charges a
price of $p,how many customers will it have per week? 2*(15-p).
(f) If the bowling alley in the center of town also has marginal costs
of $3 per customer and maximizes its pro ts,what price will it charge?
$9,How many customers will it have per week? 1,200,How far
away from the center of town will its most distant customers live? 6
miles.
(g) Suppose that the city relaxes its zoning restrictions on where the
bowling alleys can locate,but continues to issue operating licenses to
only 3 bowling alleys,Both of the bowling alleys at the end of town
are about to lose their leases and can locate anywhere in town that they
like at about the same cost,The bowling alley in the center of town is
committed to stay where it is,Would either of the alleys at the edge of
town improve its pro ts by locating next to the existing bowling alley in
the center of town? No,What would be a pro t-maximizing location
for each of these two bowling alleys? One would be located
12 miles north of the town center and one
12 miles south.
25.10 (1) In a congressional district somewhere in the U.S,West a
new representative is being elected,The voters all have one-dimensional
political views that can be neatly arrayed on a left-right spectrum,We
can de ne the \location" of a citizen’s political views in the following way.
The citizen with the most extreme left-wing views is said to be at point
0 and the citizen with the most estreme right-wing views is said to be at
point 1,If a citizen has views that are to the right of the views of the
fraction x of the state’s population,that citizen’s views are said to be
located at the point x,Candidates for o ce are forced to publically state
their own political position on the zero-one left-right scale,Voters always
vote for the candidate whose stated position is nearest to their own views.
NAME 315
(If there is a tie for nearest candidate,voters flip a coin to decide which
to vote for.)
(a) There are two candidates for the congressional seat,Suppose that
each candidate cares only about getting as many votes as possible,Is
there an equilibrium in which each candidate chooses the best position
given the position of the other candidate? If so,describe this equilibrium.
The only equilibrium is one in which both
candidates choose the same position,and
that position is at the point 1/2.
25.11 (2) In the congressional district described by the previous problem,
let us investigate what will happen if the two candidates do not care
about the number of votes that they get but only about the amount
of campaign contributions that they receive,Therefore each candidate
chooses his ideological location in such a way as to maximize the amount
of campaign contributions he receives,given the position of the other.*
Let us de ne a left-wing extremist as a voter whose political views
lie to the left of the leftmost candidate,a right-wing extremist as a voter
whose political views lie to the right of the rightmost candidate,and a
moderate voter as one whose political views lie between the positions
of the two candidates,Assume that each extremist voter contributes to
the candidate whose position is closest to his or her own views and that
moderate voters make no campaign contributions,The number of dol-
lars that an extremist voter contributes to his or her favorite candidate
is proportional to the distance between the two candidates,Speci cally,
we assume that there is some constant C such that if the left-wing can-
didate is located at x and the right-wing candidate is located at y,then
total campaign contributions received by the left-wing candidate will be
$Cx(y?x) and total campaign contributions received by the right-wing
candidate will be $C(1?y)(y?x).
(a) If the right-wing candidate is located at y,the contribution-
maximizing position for the left-wing candidate is x = y=2 If the
left-wing candidate is located at x,the contribution-maximizing position
for the right-wing candidate is y = ((1 + x)=2 (Hint,Take a
derivative and set it equal to zero.)
(b) Solve for the unique pair of ideological positions for the two can-
didates such that each takes the position that maximizes his campaign
contributions given the position of the other,x =1=3,y =2=3
* This assumption is a bit extreme,Candidates typically spend at least
some of their campaign contributions on advertising for votes,and this
advertising a ects the voting outcomes.
316 MONOPOLY BEHAVIOR (Ch,25)
(c) Suppose that in addition to collecting contributions from extremists
on his side,candidates can also collect campaign contributions from mod-
erates whose views are closer to their position than to that of their rival’s
position,Suppose that moderates,like extremists,contribute to their
preferred candidate and that they contribute in proportion to the dif-
ference between their own ideological distance from their less-preferred
candidate and their ideological distance from their more-preferred can-
didate,Show that in this case the unique positions in which the left-
and right-wing candidates are each maximizing their campaign contribu-
tions,given the position of the other candidate,occurs where x =1=4
and y =3=4,Total contributions received
by the left wing candidate will be
C
parenleftbig
x(y?x)+(y?x)
2
=4
Total contributions
received by the right-wing candidate
will be C
parenleftbig
(1?y)(y?x)+(y?x)
2
=4
.
Differentiating the former expression with
respect to x and the latter with respect
to y and solving the resulting simultaneous
equations yields x =1=4 and y =3=4.
Chapter 26 NAME
Factor Markets
Introduction,In this chapter you will examine the factor demand de-
cision of a monopolist,If a rm is a monopolist in some industry,it
will produce less output than if the industry were competitively orga-
nized,Therefore it will in general want to use less inputs than does a
competitive rm,The value marginal product is just the value of the ex-
tra output produced by hiring an extra unit of the factor,The ordinary
logic of competitive pro t maximization implies that a competitive rm
will hire a factor up until the point where the value marginal product
equals the price of the factor.
The marginal revenue product is the extra revenue produced by
hiring an extra unit of a factor,For a competitive rm,the marginal
revenue product is the same as the value of the marginal product,but
they di er for monopolist,A monopolist has to take account of the fact
that increasing its production will force the price down,so the marginal
revenue product of an extra unit of a factor will be less than the value
marginal product.
Another thing we study in this chapters is monopsony,whichisthe
case of a market dominated by a single buyer of some good,The case of
monopsony is very similar to the case of a monopoly,The monopsonist
hires less of a factor than a similar competitive rm because the monop-
sony recognizes that the price it has to pay for the factor depends on how
much it buys.
Finally,we consider an interesting example of factor supply,in which
a monopolist produces a good that is used by another monopolist.
Example,Suppose a monopolist faces a demand curve for output of the
form p(y) = 100?2y,The production function takes the simple form
y =2x,and the factor costs $4 per unit,How much of the factor of
production will the monopolist want to employ? How much of the factor
would a competitive industry employ if all the rms in the industry had
the same production function?
Answer,The monopolist will employ the factor up to the point where
the marginal revenue product equals the price of the factor,Revenue as
a function of output is R(y)=p(y)y = (100?2y)y,To nd revenue as a
function of the input,we substitute y =2x:
R(x) = (100?4x)2x = (200?8x)x:
The marginal revenue product function will have the form MRP
x
= 200?
16x,Setting marginal revenue product equal to factor price gives us the
equation
200?16x =4:
Solving this equation gives us x
=12:25:
318 FACTOR MARKETS (Ch,26)
If the industry were competitive,then the industry would employ the
factor up to the point where the value of the marginal product was equal
to 4,This gives us the equation
p2=4;
so p
= 2,How much output would be demanded at this price? We plug
this into the demand function to get the equation 2 = 100?2y,which
implies y
= 49,Since the production function is y =2x,wecansolve
for x
= y
=2=24:5:
26.1 (0) Gargantuan Enterprises has a monopoly in the production of
antimacassars,Its factory is located in the town of Pantagruel,There is
no other industry in Pantagruel,and the labor supply equation there is
W =10+:1L,whereW is the daily wage and L is the number of person-
days of work performed,Antimacassars are produced with a production
function,Q =10L,whereL is daily labor supply and Q is daily output.
The demand curve for antimacassars is P =41?
Q
1;000
,whereP is the
price and Q is the number of sales per day.
(a) Find the pro t-maximizing output for Gargantuan,(Hint,Use the
production function to nd the labor input requirements for any level of
output,Make substitutions so you can write the rm’s total costs as a
function of its output and then its pro t as a function of output,Solve
for the pro t{maximizing output.) 10,000.
(b) How much labor does it use? 1,000,What is the wage rate that
it pays? $110.
(c) What is the price of antimacassars? $31,How much pro t is
made? $200,000.
26.2 (0) The residents of Seltzer Springs,Michigan,consume bottles of
mineral water according to the demand function D(p)=1;000?p.Here
D(p) is the demand per year for bottles of mineral water if the price per
bottle is p.
The sole distributor of mineral water in Seltzer Springs,Bubble Up,
purchases mineral water at c per bottle from their supplier Perry Air.
Perry Air is the only supplier of mineral water in the area and behaves
as a pro t-maximizing monopolist,For simplicity we suppose that it has
zero costs of production.
(a) What is the equilibrium price charged by the distributor Bubble Up?
p
=
1;000+c
2
.
NAME 319
(b) What is the equilibrium quantity sold by Bubble Up? D(p
)=
1;000?c
2
.
(c) What is the equilibrium price charged by the producer Perry Air?
c
= 500.
(d) What is the equilibrium quantity sold by Perry Air? D(c
)=
250.
(e) What are the pro ts of Bubble Up?
b
= (500?250)(750?
500) = 250
2
.
(f) What are the pro ts of Perry Air?
p
= 500 250.
(g) How much consumer’s surplus is generated in this market? CS
e
=
250
2
=2.
(h) Suppose that this situation is expected to persist forever and that
the interest rate is expected to be constant at 10% per year,What is the
minimum lump sum payment that Perry Air would need to pay to Bubble
Up to buy it out? 10 250
2
.
(i) Suppose that Perry Air does this,What will be the new price and
quantity for mineral water? p
= 500 and D(p
) = 500.
(j) What are the pro ts of the new merged rm?
p
= 500
2
.
(k) What is the total amount of consumers’ surplus generated? How does
this compare with the previous level of consumers’ surplus? CS
i
=
500
2
=2 >CS
e
.
Calculus 26.3 (0) Upper Peninsula Underground Recordings (UPUR) has a mon-
opoly on the recordings of the famous rock group Moosecake,Moosecake’s
music is only provided on digital tape,and blank digital tapes cost them
c per tape,There are no other manufacturing or distribution costs,Let
p(x) be the inverse demand function for Moosecake’s music as a function
of x,the number of tapes sold.
320 FACTOR MARKETS (Ch,26)
(a) What is the rst-order condition for pro t maximization? For future
reference,let x
be the pro t-maximizing amount produced and p
be the
price at which it sells,(In this part,assume that tapes cannot be copied.)
p(x
)+p
0
(x
)x
= c.
Now a new kind of consumer digital tape recorder becomes widely
available that allows the user to make 1 and only 1 copy of a prerecorded
digital tape,The copies are a perfect substitute in consumption value for
the original prerecorded tape,and there are no barriers to their use or
sale,However,everyone can see the di erence between the copies and the
orginals and recognizes that the copies cannot be used to make further
copies,Blank tapes cost the consumers c per tape,the same price the
monopolist pays.
(b) All Moosecake fans take advantage of the opportunity to make a single
copy of the tape and sell it on the secondary market,How is the price of an
original tape related to the price of a copy? Derive the inverse demand
curve for original tapes facing UPUR,(Hint,There are two sources of
demand for a new tape,the pleasure of listening to it,and the pro ts
from selling a copy.) If UPUR produces x tapes,2x
tapes reach the market,so UPUR can sell
a single tape for p(2x)+[p(2x)?c],The
first term is the willingness-to-pay for
listening; the second term is profit from
selling a copy.
(c) Write an expression for UPUR’s pro ts if it produces x tapes.
[p(2x)+p(2x)?c]x?cx =2p(2x)x?2cx.
(d) Let x
be the pro t-maximizing level of production by UPUR,How
does it compare to the former pro t-maximizing level of production?
From the two profit functions,one sees
that 2x
= x
,so x
= x
=2.
(e) How does the price of a copy of a Moosecake tape compare to the
price determined in Part (a)? The prices are the same.
(f) If p
is the price of a copy of a Moosecake tape,how much will a new
Moosecake tape sell for? 2p
c.
Chapter 27 NAME
Oligopoly
Introduction,In this chapter you will solve problems for rm and indus-
try outcomes when the rms engage in Cournot competition,Stackelberg
competition,and other sorts of oligopoly behavior,In Cournot competi-
tion,each rm chooses its own output to maximize its pro ts given the
output that it expects the other rm to produce,The industry price de-
pends on the industry output,say,q
A
+q
B
,where A and B are the rms.
To maximize pro ts,rm A sets its marginal revenue (which depends on
the output of rm A and the expected output of rm B since the expected
industry price depends on the sum of these outputs) equal to its marginal
cost,Solving this equation for rm A’s output as a function of rm B’s
expected output gives you one reaction function; analogous steps give you
rm B’s reaction function,Solve these two equations simultaneously to
get the Cournot equilibrium outputs of the two rms.
Example,In Heifer’s Breath,Wisconsin,there are two bakers,Anderson
and Carlson,Anderson’s bread tastes just like Carlson’s|nobody can
tell the di erence,Anderson has constant marginal costs of $1 per loaf of
bread,Carlson has constant marginal costs of $2 per loaf,Fixed costs are
zero for both of them,The inverse demand function for bread in Heifer’s
Breath is p(q)=6?:01q,whereq is the total number of loaves sold per
day.
Let us nd Anderson’s Cournot reaction function,If Carlson bakes
q
C
loaves,then if Anderson bakes q
A
loaves,total output will be q
A
+
q
C
and price will be 6?:01(q
A
+ q
C
),For Anderson,the total cost of
producing q
A
units of bread is just q
A
,so his pro ts are
pq
A
q
A
=(6?:01q
A
:01q
C
)q
A
q
A
=6q
A
:01q
2
A
:01q
C
q
A
q
A
:
Therefore if Carlson is going to bake q
C
units,then Anderson will choose
q
A
to maximize 6q
A
:01q
2
A
:01q
C
q
A
q
A
,This expression is maximized
when 6?:02q
A
:01q
C
= 1,(You can nd this out either by setting
A’s marginal revenue equal to his marginal cost or directly by setting
the derivative of pro ts with respect to q
A
equal to zero.) Anderson’s
reaction function,R
A
(q
C
) tells us Anderson’s best output if he knows
that Carlson is going to bake q
C
,We solve from the previous equation to
nd R
A
(q
C
)=(5?:01q
C
)=:02 = 250?:5q
C
.
We can nd Carlson’s reaction function in the same way,If Carlson
knows that Anderson is going to produce q
A
units,then Carlson’s pro ts
will be p(q
A
+q
C
)?2q
C
=(6?:01q
A
:01q
C
)q
C
2q
C
=6q
C
:01q
A
q
C
:01q
2
C
2q
C
,Carlson’s pro ts will be maximized if he chooses q
C
to satisfy
the equation 6?:01q
A
:02q
C
= 2,Therefore Carlson’s reaction function
is R
C
(q
A
)=(4?:01q
A
)=:02 = 200?:5q
A
.
322 OLIGOPOLY (Ch,27)
Let us denote the Cournot equilibrium quantities by q
A
and q
C
.The
Cournot equilibrium conditions are that q
A
= R
A
( q
C
)and q
C
= R
C
( q
A
).
Solving these two equations in two unknowns we nd that q
A
= 200 and
q
C
= 100,Now we can also solve for the Cournot equilibrium price and for
the pro ts of each baker,The Cournot equilibrium price is 6?:01(200 +
100) = $3,Then in Cournot equilibrium,Anderson makes a pro t of $2
on each of 200 loaves and Carlson makes $1 on each of 100 loaves.
In Stackelberg competition,the follower’s pro t-maximizing output
choice depends on the amount of output that he expects the leader to
produce,His reaction function,R
F
(q
L
),is constructed in the same way
as for a Cournot competitor,The leader knows the reaction function of
the follower and gets to choose her own output,q
L
,rst,So the leader
knows that the industry price depends on the sum of her own output and
the follower’s output,that is,on q
L
+ R
F
(q
L
),Since the industry price
can be expressed as a function of q
L
only,so can the leader’s marginal
revenue,So once you get the follower’s reaction function and substitute it
into the inverse demand function,you can write down an expression that
depends on just q
L
and that says marginal revenue equals marginal cost
for the leader,You can solve this expression for the leader’s Stackelberg
output and plug in to the follower’s reaction function to get the follower’s
Stackelberg output.
Example,Suppose that one of the bakers of Heifer’s Breath plays the role
of Stackelberg leader,Perhaps this is because Carlson always gets up an
hour earlier than Anderson and has his bread in the oven before Anderson
gets started,If Anderson always nds out how much bread Carlson has
in his oven and if Carlson knows that Anderson knows this,then Carlson
can act like a Stackelberg leader,Carlson knows that Anderson’s reaction
function is R
A
(q
C
) = 250?:5q
c
,Therefore Carlson knows that if he bakes
q
C
loaves of bread,then the total amount of bread that will be baked in
Heifer’s Breath will be q
C
+R
A
(q
C
)=q
C
+250?:5q
C
= 250+:5q
C
.Since
Carlson’s production decision determines total production and hence the
price of bread,we can write Carlson’s pro t simply as a function of his
own output,Carlson will choose the quantity that maximizes this pro t.
If Carlson bakes q
C
loaves,the price will be p =6?:01(250 +,5q
C
)=
3:5?:005q
C
,Then Carlson’s pro ts will be pq
C
2q
C
=(3:5?:005q
C
)q
C
2q
C
=1:5q
C
:005q
2
C
,His pro ts are maximized when q
C
= 150,(Find
this either by setting marginal revenue equal to marginal cost or directly
by setting the derivative of pro ts to zero and solving for q
C
.) If Carlson
produces 150 loaves,then Anderson will produce 250?:5 150 = 175
loaves,The price of bread will be 6?:01(175 + 150) = 2:75,Carlson will
now make $.75 per loaf on each of 150 loaves and Anderson will make
$1.75 on each of 175 loaves.
27.1 (0) Carl and Simon are two rival pumpkin growers who sell their
pumpkins at the Farmers’ Market in Lake Witchisit,Minnesota,They are
the only sellers of pumpkins at the market,where the demand function
for pumpkins is q =3;200?1;600p,The total number of pumpkins sold
at the market is q = q
C
+ q
S
,whereq
C
is the number that Carl sells
NAME 323
and q
S
is the number that Simon sells,The cost of producing pumpkins
for either farmer is $.50 per pumpkin no matter how many pumpkins he
produces.
(a) The inverse demand function for pumpkins at the Farmers’ Market is
p = a?b(q
C
+ q
S
),where a = 2 and b = 1=1;600,The
marginal cost of producing a pumpkin for either farmer is $.50.
(b) Every spring,each of the farmers decides how many pumpkins to
grow,They both know the local demand function and they each know
how many pumpkins were sold by the other farmer last year,In fact,
each farmer assumes that the other farmer will sell the same number this
year as he sold last year,So,for example,if Simon sold 400 pumpkins
last year,Carl believes that Simon will sell 400 pumpkins again this year.
If Simon sold 400 pumpkins last year,what does Carl think the price of
pumpkins will be if Carl sells 1,200 pumpkins this year? 1,If
Simon sold q
t?1
S
pumpkins in year t?1,then in the spring of year t,Carl
thinks that if he,Carl,sells q
t
C
pumpkins this year,the price of pumpkins
this year will be 2?(q
t?1
S
+q
t
C
)=1;600.
(c) If Simon sold 400 pumpkins last year,Carl believes that if he sells
q
t
C
pumpkins this year then the inverse demand function that he faces is
p =2?400=1;600?q
t
C
=1;600 = 1:75?q
t
C
=1;600,Therefore if Simon
sold 400 pumpkins last year,Carl’s marginal revenue this year will be
1:75?q
t
C
=800,More generally,if Simon sold q
t?1
S
pumpkins last year,
then Carl believes that if he,himself,sells q
t
C
pumpkins this year,his
marginal revenue this year will be 2?q
t?1
S
=1;600?q
t
C
=800.
(d) Carl believes that Simon will never change the amount of pumpkins
that he produces from the amount q
t?1
S
that he sold last year,Therefore
Carl plants enough pumpkins this year so that he can sell the amount
that maximizes his pro ts this year,To maximize this pro t,he chooses
the output this year that sets his marginal revenue this year equal to
his marginal cost,This means that to nd Carl’s output this year when
Simon’s output last year was q
t?1
S
,Carl solves the following equation.
2?q
t?1
S
=1;600?q
t
C
=800 =,5.
(e) Carl’s Cournot reaction function,R
t
C
(q
t?1
S
),is a function that tells us
what Carl’s pro t-maximizing output this year would be as a function of
Simon’s output last year,Use the equation you wrote in the last answer to
nd Carl’s reaction function,R
t
C
(q
t?1
S
)= 1;200?q
t?1
S
=2,(Hint:
This is a linear expression of the form a?bq
t?1
S
,You have to nd the
constants a and b.)
324 OLIGOPOLY (Ch,27)
(f) Suppose that Simon makes his decisions in the same way that Carl
does,Notice that the problem is completely symmetric in the roles played
by Carl and Simon,Therefore without even calculating it,we can guess
that Simon’s reaction function is R
t
S
(q
t?1
C
)= 1;200?q
t?1
C
=2,(Of
course,if you don’t like to guess,you could work this out by following
similar steps to the ones you used to nd Carl’s reaction function.)
(g) Suppose that in year 1,Carl produced 200 pumpkins and Simon pro-
duced 1,000 pumpkins,In year 2,how many would Carl produce?
700,How many would Simon produce? 1,100,In year 3,how
many would Carl produce? 650,How many would Simon produce?
850,Use a calculator or pen and paper to work out several more
terms in this series,To what level of output does Carl’s output appear
to be converging? 800 How about Simon’s? 800.
(h) Write down two simultaneous equations that could be solved to nd
outputs q
S
and q
C
such that,if Carl is producing q
C
and Simon is produc-
ing q
S
,then they will both want to produce the same amount in the next
period,(Hint,Use the reaction functions.) q
s
=1;200?q
C
=2
and q
C
=1;200?q
S
=2.
(i) Solve the two equations you wrote down in the last part for an equi-
librium output for each farmer,Each farmer,in Cournot equilibrium,
produces 800 units of output,The total amount of pumpkins brought
to the Farmers’ Market in Lake Witchisit is 1,600,The price of
pumpkins in that market is $1,How much pro t does each farmer
make? $400.
27.2 (0) Suppose that the pumpkin market in Lake Witchisit is as
we described it in the last problem except for one detail,Every spring,
the snow thaws o of Carl’s pumpkin eld a week before it thaws o of
Simon’s,Therefore Carl can plant his pumpkins one week earlier than
Simon can,Now Simon lives just down the road from Carl,and he can
tell by looking at Carl’s elds how many pumpkins Carl planted and how
many Carl will harvest in the fall,(Suppose also that Carl will sell every
pumpkin that he produces.) Therefore instead of assuming that Carl will
sell the same amount of pumpkins that he did last year,Simon sees how
many Carl is actually going to sell this year,Simon has this information
before he makes his own decision about how many to plant.
NAME 325
(a) If Carl plants enough pumpkins to yield q
t
C
this year,then Simon
knows that the pro t-maximizing amount to produce this year is q
t
S
=
Hint,Remember the reaction functions you found in the last problem.
1;200?q
t
C
=2.
(b) When Carl plants his pumpkins,he understands how Simon will make
his decision,Therefore Carl knows that the amount that Simon will
produce this year will be determined by the amount that Carl produces.
In particular,if Carl’s output is q
t
C
,then Simon will produce and sell
1;200?q
t
C
=2 and the total output of the two producers will be
1;200 +q
t
C
=2,Therefore Carl knows that if his own output is q
C
,
the price of pumpkins in the market will be 1:25?q
t
C
=3;200.
(c) In the last part of the problem,you found how the price of pumpkins
this year in the Farmers’ Market is related to the number of pumpkins
that Carl produces this year,Now write an expression for Carl’s total
revenue in year t as a function of his own output,q
t
C
,1:25q
t
C
(q
t
C
)
2
=3;200,Write an expression for Carl’s marginal revenue in
year t as a function of q
t
C
,1:25?q
t
C
=1;600.
(d) Find the pro t-maximizing output for Carl,1,200,Find the
pro t-maximizing output for Simon,600,Find the equilibrium price
of pumpkins in the Lake Witchisit Farmers’ Market,$7/8,How
much pro t does Carl make? $450,How much pro t does Simon
make? $225,An equilibrium of the type we discuss here is known
as a Stackleberg equilibrium.
(e) If he wanted to,it would be possible for Carl to delay his plant-
ing until the same time that Simon planted so that neither of them
would know the other’s plans for this year when he planted,Would
it be in Carl’s interest to do this? Explain,(Hint,What are Carl’s
pro ts in the equilibrium above? How do they compare with his prof-
its in Cournot equilibrium?) No,Carl’s profits in
Stackleberg equilibrium are larger than
in Cournot equilibrium,So if the output
326 OLIGOPOLY (Ch,27)
when neither knows the other’s output this
year until after planting time is a Cournot
equilibrium,Carl will want Simon to know
his output.
27.3 (0) Suppose that Carl and Simon sign a marketing agreement.
They decide to determine their total output jointly and to each produce
the same number of pumpkins,To maximize their joint pro ts,how many
pumpkins should they produce in toto? 1,200,How much does each
one of them produce? 600,How much pro t does each one of them
make? 450.
27.4 (0) The inverse market demand curve for bean sprouts is given by
P(Y) = 100?2Y,and the total cost function for any rm in the industry
is given by TC(y)=4y.
(a) The marginal cost for any rm in the industry is equal to $4,The
change in price for a one-unit increase in output is equal to $?2.
(b) If the bean-sprout industry were perfectly competitive,the industry
output would be 48,and the industry price would be $4.
(c) Suppose that two Cournot rms operated in the market,The reaction
function for Firm 1 would be y
1
=24?y
2
=2,(Reminder,Unlike
the example in your textbook,the marginal cost is not zero here.) The
reaction function of Firm 2 would be y
2
=24?y
1
=2,If the rms
were operating at the Cournot equilibrium point,industry output would
be 32,each rm would produce 16,and the market price
would be $36.
(d) For the Cournot case,draw the two reaction curves and indicate the
equilibrium point on the graph below.
NAME 327
0 6 12 18 24
6
12
18
y1
y2
24
e
Firm 1's reaction
function
Firm 2's
reaction
function
(e) If the two rms decided to collude,industry output would be 24
and the market price would equal $52.
(f) Suppose both of the colluding rms are producing equal amounts of
output,If one of the colluding rms assumes that the other rm would
not react to a change in industry output,what would happen to a rm’s
own pro ts if it increased its output by one unit? Profits would
increase by $22.
(g) Suppose one rm acts as a Stackleberg leader and the other rm
behaves as a follower,The maximization problem for the leader can be
written as max
y
1
[100?2(y
1
+24?y
1
=2)]y
1
4y
1
.
Solving this problem results in the leader producing an output of
24 and the follower producing 12,This implies an industry
output of 36 and price of $28.
27.5 (0) Grinch is the sole owner of a mineral water spring that costlessly
burbles forth as much mineral water as Grinch cares to bottle,It costs
Grinch $2 per gallon to bottle this water,The inverse demand curve for
Grinch’s mineral water is p = $20?:20q,wherep is the price per gallon
and q is the number of gallons sold.
328 OLIGOPOLY (Ch,27)
(a) Write down an expression for pro ts as a function of q,(q)=
(20?:20q)q?2q,Find the pro t-maximizing choice of q for
Grinch,45.
(b) What price does Grinch get per gallon of mineral water if he produces
the pro t-maximizing quantity? $11,How much pro t does he make?
$405.
(c) Suppose,now,that Grinch’s neighbor,Grubb nds a mineral spring
that produces mineral water that is just as good as Grinch’s water,but
that it costs Grubb $6 a bottle to get his water out of the ground and
bottle it,Total market demand for mineral water remains as before.
Suppose that Grinch and Grubb each believe that the other’s quantity
decision is independent of his own,What is the Cournot equilibrium out-
put for Grubb? 50=3,What is the price in the Cournot equilibrium?
$9.33.
27.6 (1) Albatross Airlines has a monopoly on air travel between Peoria
and Dubuque,If Albatross makes one trip in each direction per day,the
demand schedule for round trips is q = 160?2p,whereq is the number of
passengers per day,(Assume that nobody makes one-way trips.) There
is an \overhead" xed cost of $2,000 per day that is necessary to fly the
airplane regardless of the number of passengers,In addition,there is a
marginal cost of $10 per passenger,Thus,total daily costs are $2;000+10q
if the plane flies at all.
(a) On the graph below,sketch and label the marginal revenue curve,and
the average and marginal cost curves.
020406080
20
40
60
Q
MR,MC
80
mc
mr
ac
NAME 329
(b) Calculate the pro t-maximizing price and quantity and total daily
pro ts for Albatross Airlines,p = 45,q = 70,=
$450 per day.
(c) If the interest rate is 10% per year,how much would someone be will-
ing to pay to own Albatross Airlines’s monopoly on the Dubuque-Peoria
route,(Assuming that demand and cost conditions remain unchanged
forever.) About $1.6 million.
(d) If another rm with the same costs as Albatross Airlines were to enter
the Dubuque-Peoria market and if the industry then became a Cournot
duopoly,would the new entrant make a pro t? No; losses
would be about $900 per day.
(e) Suppose that the throbbing night life in Peoria and Dubuque becomes
widely known and in consequence the population of both places doubles.
As a result,the demand for airplane trips between the two places dou-
bles to become q = 320?4p,Suppose that the original airplane had a
capacity of 80 passengers,If AA must stick with this single plane and if
no other airline enters the market,what price should it charge to maxi-
mize its output and how much pro t would it make? p = $60,=
$2,000.
(f) Let us assume that the overhead costs per plane are constant regardless
of the number of planes,If AA added a second plane with the same costs
and capacity as the rst plane,what price would it charge? $45.
How many tickets would it sell? 140,How much would its pro ts
be? $900,If AA could prevent entry by another competitor,would
it choose to add a second plane? No.
(g) Suppose that AA stuck with one plane and another rm entered the
market with a plane of its own,If the second rm has the same cost
function as the rst and if the two rms act as Cournot oligopolists,what
will be the price,$40,quantities,80,and pro ts? $400.
27.7 (0) Alex and Anna are the only sellers of kangaroos in Sydney,
Australia,Anna chooses her pro t-maximizing number of kangaroos to
sell,q
1
,based on the number of kangaroos that she expects Alex to sell.
Alex knows how Anna will react and chooses the number of kangaroos that
330 OLIGOPOLY (Ch,27)
she herself will sell,q
2
,after taking this information into account,The
inverse demand function for kangaroos is P(q
1
+q
2
)=2;000?2(q
1
+q
2
).
It costs $400 to raise a kangaroo to sell.
(a) Alex and Anna are Stackelberg competitors,Alex is the leader
and Anna is the follower.
(b) If Anna expects Alex to sell q
2
kangaroos,what will her own marginal
revenue be if she herself sells q
1
kangaroos? MR(q
1
+ q
2
)=
2;000?4q
1
2q
2
.
(c) What is Anna’s reaction function,R(q
2
)? R(q
2
) = 400?
1=2q
2
.
(d) Now if Alex sells q
2
kangaroos,what is the total number of kangaroos
that will be sold? 400 + 1=2q
2
,What will be the market price as
a function of q
2
only? P(q
2
)=1;200?q
2
.
(e) What is Alex’s marginal revenue as a function of q
2
only?
MR(q
2
)=1;200? 2q
2
,How many kangaroos will Alex
sell? 400,How many kangaroos will Anna sell? 200,What will
the industry price be? $800.
27.8 (0) Consider an industry with the following structure,There are
50 rms that behave in a competitive manner and have identical cost
functions given by c(y)=y
2
=2,There is one monopolist that has 0
marginal costs,The demand curve for the product is given by
D(p)=1;000?50p:
(a) What is the supply curve of one of the competitive rms? y = p.
The total supply from the competitive sector at price p is S(p)= 50p.
(b) If the monopolist sets a price p,the amount that it can sell is D
m
(p)=
1;000?100p.
NAME 331
(c) The monopolist’s pro t-maximizing output is y
m
= 500,What
is the monopolist’s pro t-maximizing price? p =5.
(d) How much output will the competitive sector provide at this price?
50 5 = 250,What will be the total amount of output sold in
this industry? y
m
+y
c
= 750.
27.9 (0) Consider a market with one large rm and many small rms.
The supply curve of the small rms taken together is
S(p) = 100 +p:
The demand curve for the product is
D(p) = 200?p:
The cost function for the one large rm is
c(y)=25y:
(a) Suppose that the large rm is forced to operate at a zero level of
output,What will be the equilibrium price? 50,What will be the
equilibrium quantity? 150.
(b) Suppose now that the large rm attempts to exploit its market power
and set a pro t-maximizing price,In order to model this we assume that
customers always go rst to the competitive rms and buy as much as
they are able to and then go to the large rm,In this situation,the
equilibrium price will be $37.50,The quantity supplied by the
large rm will be 25,and the equilibrium quantity supplied by the
competitive rms will be 137.5.
(c) What will be the large rm’s pro ts? $312.50.
(d) Finally suppose that the large rm could force the competitive rms
out of the business and behave as a real monopolist,What will be the
equilibrium price? 225=2,What will be the equilibrium quantity?
175=2,What will be the large rm’s pro ts? (175=2)
2
.
332 OLIGOPOLY (Ch,27)
Calculus 27.10 (2) In a remote area of the American Midwest before the railroads
arrived,cast iron cookstoves were much desired,but people lived far apart,
roads were poor,and heavy stoves were expensive to transport,Stoves
could be shipped by river boat to the town of Bouncing Springs,Missouri.
Ben Kinmore was the only stove dealer in Bouncing Springs,He could
buy as many stoves as he wished for $20 each,delivered to his store.
The only farmers who traded in Bouncing Springs lived along a road that
ran east and west through town,Along that road,there was one farm
every mile and the cost of hauling a stove was $1 per mile,There were
no other stove dealers on the road in either direction,The owners of
every farm along the road had a reservation price of $120 for a cast iron
cookstove,That is,any of them would be willing to pay up to $120 to
have a stove rather than to not have one,Nobody had use for more than
one stove,Ben Kinmore charged a base price of $p for stoves and added
to the price the cost of delivery,For example,if the base price of stoves
was $40 and you lived 45 miles west of Bouncing Springs,you would have
to pay $85 to get a stove,$40 base price plus a hauling charge of $45.
Since the reservation price of every farmer was $120,it follows that if the
base price were $40,any farmer who lived within 80 miles of Bouncing
Springs would be willing to pay $40 plus the price of delivery to have a
cookstove,Therefore at a base price of $40,Ben could sell 80 cookstoves
to the farmers living west of him,Similarly,if his base price is $40,he
could sell 80 cookstoves to the farmers living within 80 miles to his east,
for a total of 160 cookstoves.
(a) If Ben set a base price of $p for cookstoves where p<120,and if he
charged $1 a mile for delivering them,what would be the total number of
cookstoves he could sell? 2(120?p),(Remember to count the ones
he could sell to his east as well as to his west.) Assume that Ben has no
other costs than buying the stoves and delivering them,Then Ben would
make a pro t of p?20 per stove,Write Ben’s total pro t as a function
of the base price,$p,that he charges,2(120?p)(p?20) =
2(140p?p
2
2;400).
(b) Ben’s pro t-maximizing base price is $70,(Hint,You just wrote
pro ts as a function of prices,Now di erentiate this expression for pro ts
with respect to p.) Ben’s most distant customer would be located at a
distance of 50 miles from him,Ben would sell 100 cookstoves
and make a total pro t of $5,000.
(c) Suppose that instead of setting a single base price and making all
buyers pay for the cost of transportation,Ben o ers free delivery of cook-
stoves,He sets a price $p and promises to deliver for free to any farmer
who lives within p?20 miles of him,(He won’t deliver to anyone who lives
NAME 333
further than that,because it then costs him more than $p to buy a stove
and deliver it.) If he is going to price in this way,how high should he set
p? $120,How many cookstoves would Ben deliver? 200,How
much would his total revenue be? $24,000 How much would his
total costs be,including the cost of deliveries and the cost of buying the
stoves? $14,000,(Hint,What is the average distance that he has
to haul a cookstove?) How much pro t would he make? $10,000.
Can you explain why it is more pro table for Ben to use this pricing
scheme where he pays the cost of delivery himself rather than the scheme
where the farmers pay for their own deliveries? If Ben pays
for delivery,he can price-discriminate
between nearby farmers and faraway ones.
He charges a higher price,net of transport
cost,to nearby farmers and a lower net
price to faraway farmers,who are willing
to pay less net of transport cost.
Calculus 27.11 (2) Perhaps you wondered what Ben Kinmore,who lives o in
the woods quietly collecting his monopoly pro ts,is doing in this chapter
on oligopoly,Well,unfortunately for Ben,before he got around to selling
any stoves,the railroad built a track to the town of Deep Furrow,just 40
miles down the road,west of Bouncing Springs,The storekeeper in Deep
Furrow,Huey Sunshine,was also able to get cookstoves delivered by train
to his store for $20 each,Huey and Ben were the only stove dealers on
the road,Let us concentrate our attention on how they would compete
for the customers who lived between them,We can do this,because Ben
can charge di erent base prices for the cookstoves he ships east and the
cookstoves he ships west,So can Huey.
Suppose that Ben sets a base price,p
B
,for stoves he sends west
and adds a charge of $1 per mile for delivery,Suppose that Huey sets
a base price,p
H
,for stoves he sends east and adds a charge of $1 per
mile for delivery,Farmers who live between Ben and Huey would buy
from the seller who is willing to deliver most cheaply to them (so long as
the delivered price does not exceed $120),If Ben’s base price is p
B
and
Huey’s base price is p
H
,somebody who lives x miles west of Ben would
have to pay a total of p
B
+ x to have a stove delivered from Ben and
p
H
+(40?x) to have a stove delivered by Huey.
(a) If Ben’s base price is p
B
and Huey’s is p
H
,write down an equation that
could be solved for the distance x
to the west of Bouncing Springs that
334 OLIGOPOLY (Ch,27)
Ben’s market extends,p
B
+x
= p
H
+(40?x
),If Ben’s base
price is p
B
and Huey’s is p
H
,then Ben will sell 20 + (p
H
p
B
)=2
cookstoves and Huey will sell 20 + (p
B
p
H
)=2 cookstoves.
(b) Recalling that Ben makes a pro t of p
B
20 on every cookstove that
he sells,Ben’s pro ts can be expressed as the following function of p
B
and p
H
,(20 + (p
H
p
B
)=2)(p
B
20).
(c) If Ben thinks that Huey’s price will stay at p
H
,no matter what price
Ben chooses,what choice of p
B
will maximize Ben’s pro ts? p
B
=
30 + p
H
=2,(Hint,Set the derivative of Ben’s pro ts with respect
to his price equal to zero.) Suppose that Huey thinks that Ben’s price
will stay at p
B
,no matter what price Huey chooses,what choice of p
H
will maximize Huey’s pro ts? p
H
=30+p
B
=2,(Hint,Use the
symmetry of the problem and the answer to the last question.)
(d) Can you nd a base price for Ben and a base price for Huey such that
each is a pro t-maximizing choice given what the other guy is doing?
(Hint,Find prices p
B
and p
H
that simultaneously solve the last two
equations.) p
B
= p
H
=60,How many cookstoves does Ben sell
to farmers living west of him? 20,How much pro t does he make on
these sales? $800.
(e) Suppose that Ben and Huey decided to compete for the customers
who live between them by price discriminating,Suppose that Ben o ers
to deliver a stove to a farmer who lives x miles west of him for a price
equal to the maximum of Ben’s total cost of delivering a stove to that
farmer and Huey’s total cost of delivering to the same farmer less 1 penny.
Suppose that Huey o ers to deliver a stove to a farmer who lives x miles
west of Ben for a price equal to the maximum of Huey’s own total cost of
delivering to this farmer and Ben’s total cost of delivering to him less a
penny,For example,if a farmer lives 10 miles west of Ben,Ben’s total cost
of delivering to him is $30,$20 to get the stove and $10 for hauling it 10
miles west,Huey’s total cost of delivering it to him is $50,$20 to get the
stove and $30 to haul it 30 miles east,Ben will charge the maximum of
his own cost,which is $30,and Huey’s cost less a penny,which is $49.99.
The maximum of these two numbers is $49.99,Huey will charge the
maximum of his own total cost of delivering to this farmer,which is $50,
and Ben’s cost less a penny,which is $29.99,Therefore Huey will charge
$50.00 to deliver to this farmer,This farmer will buy from Ben
NAME 335
whose price to him is cheaper by one penny,When the two merchants
have this pricing policy,all farmers who live within 20 miles of
Ben will buy from Ben and all farmers who live within 20 miles
of Huey will buy from Huey,A farmer who lives x miles west of Ben
and buys from Ben must pay 59:99?x dollars to have a cookstove
delivered to him,A farmer who lives x miles east of Huey and buys from
Huey must pay 59:99?x for delivery of a stove,On the graph
below,use blue ink to graph the cost to Ben of delivering to a farmer who
lives x miles west of him,Use red ink to graph the total cost to Huey
of delivering a cookstove to a farmer who lives x miles west of Ben,Use
pencil to mark the lowest price available to a farmer as a function of how
far west he lives from Ben.
010203040
20
40
60
Miles west of Ben
Dollars
80
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
Blue line
Red line
Pencil line
Ben's profit
Huey's profit
(f) With the pricing policies you just graphed,which farmers get stoves
delivered most cheaply,those who live closest to the merchants or those
who live midway between them? Those who live midway
between them,On the graph you made,shade in the area rep-
resenting each merchant’s pro ts,How much pro ts does each merchant
make? $400,If Ben and Huey are pricing in this way,is there any
way for either of them to increase his pro ts by changing the price he
charges to some farmers? No.
336 OLIGOPOLY (Ch,27)
Chapter 28 NAME
Game Theory
Introduction,In this introduction we o er three examples of two-person
games,The rst game has a dominant strategy equilibrium,The second
has a Nash equilibrium in pure strategies that is not a dominant strategy
equilibrium,The third has no pure strategy Nash equilibrium,but it does
have a mixed strategy equilibrium.
Example,Albert and Victoria are roommates,Each of them prefers a
clean room to a dirty room,but neither likes to clean the room,If both
clean the room,they each get a payo of 5,If one cleans and the other
doesn’t clean the room,the person who does the cleaning has a utility of
0,and the person who doesn’t clean the room has a utility of 8,If neither
cleans the room,the room stays a mess and each has a utility of 1,The
payo s from the strategies \Clean" and \Don’t Clean" are shown in the
box below.
Clean Room{Dirty Room
Albert
Victoria
Clean Don’t Clean
Clean 5;5 0;8
Don’t Clean 8;0 1;1
In this game,notice that if Victoria chooses to clean,then Albert
will be better o not cleaning than he would be if he chose to clean.
Likewise if Victoria chooses not to clean,Albert is better o not clean-
ing than cleaning,Therefore \Don’t Clean" is a dominant strategy for
Albert,Similar reasoning shows that no matter what Albert chooses to
do,Victoria is better o if she chooses \Don’t Clean." Therefore the out-
come where both roommates choose \Don’t Clean" is a dominant strategy
equilibrium,It is interesting to notice that this is true,even though both
persons would be better o if they both chose the strategy \Clean."
Example,This game is set in the South Paci c in 1943,Admiral Imamura
must transport Japanese troops from the port of Rabaul in New Britain,
across the Bismarck Sea to New Guinea,The Japanese fleet could either
travel north of New Britain,where it is likely to be foggy,or south of
New Britain,where the weather is likely to be clear,U.S,Admiral Ken-
ney hopes to bomb the troop ships,Kenney has to choose whether to
338 GAME THEORY (Ch,28)
concentrate his reconnaissance aircraft on the Northern or the Southern
route,Once he nds the convoy,he can bomb it until its arrival in New
Guinea,Kenney’s sta has estimated the number of days of bombing
time for each of the outcomes,The payo s to Kenney and Imamura from
each outcome are shown in the box below,The game is modeled as a
\zero-sum game." For each outcome,Imamura’s payo is the negative of
Kenney’s payo,
TheBattleoftheBismarckSea
Kenney
Imamura
North South
North 2;?2 2;?2
South 1;?1 3;?3
This game does not have a dominant strategy equilibrium,since there
is no dominant strategy for Kenney,His best choice depends on what Ima-
mura does,The only Nash equilibrium for this game is where Imamura
chooses the northern route and Kenney concentrates his search on the
northern route,To check this,notice that if Imamura goes North,then
Kenney gets an expected two days of bombing if he (Kenney) chooses
North and only one day if he (Kenney) chooses South,Furthermore,if
Kenney concentrates on the north,Imamura is indi erent between go-
ing north or south,since he can be expected to be bombed for two days
either way,Therefore if both choose \North," then neither has an incen-
tive to act di erently,You can verify that for any other combination of
choices,one admiral or the other would want to change,As things actually
worked out,Imamura chose the Northern route and Kenney concentrated
his search on the North,After about a day’s search the Americans found
the Japanese fleet and inflicted heavy damage on it.
Some two-player games do not have a \Nash equilibrium in pure
strategies." But every two-player game of the kind we look at has a
Nash equilibrium in mixed strategies,If a player is indi erent between
two strategies,then he is also willing to choose randomly between them.
Sometimes this is just what is needed to give an equilibrium.
Example,A soccer player has been awarded a free kick,The only player
allowed to defend against his kick is the opposing team’s goalie,The
kicker has two possible strategies,He can try to kick the ball into the
right side of the goal or he can try to kick the ball into the left side of the
This example is discussed in Luce and Rai a’s Games and Decisions,
John Wiley,1957 or Dover,1989,We recommend this book to anyone
interested in reading more about game theory.
NAME 339
goal,There is not time for the goalie to determine where the ball is going
before he must commit himself by jumping either to the left or to the
right side of the net,Let us suppose that if the goalie guesses correctly
where the kicker is going to kick,then the goalie always stops the ball.
The kicker has a very accurate shot to the right side of the net,but is not
so good at shooting left,If he kicks to the right side of the net and the
goalie jumps left,the kicker will always score,But the kicker kicks to the
left side of the net and the goalie jumps to the right,then the kicker will
score only half of the time,This story leads us to the following payo
matrix,where if the kicker makes the goal,the kicker gets a payo of 1
and the goalie a payo of 0 and if the kicker does not make the goal,the
goalie gets a payo of 1 and the kicker a payo of 0.
The Free Kick
Goalie
Kicker
Kick Left Kick Right
Jump Left 1;0 0;1
Jump Right,5;:5 1;0
This game has no Nash equilibrium in pure strategies,There is no
combination of actions taken with certainty such that each is making the
best response to the other’s action,The goalie always wants to be where
the kicker is kicking and the kicker always wants to kick where the goalie
isn’t,What we can nd is a pair of equilibrium mixed strategies.
In this mixed strategy equilibrium each player’s strategy is chosen at
random,The kicker will be willing to choose a random strategy only if
the expected payo is the same from kicking to either side,The payo s
from kicking to the right and to the left depend on what the goalie is
doing,Let
G
be the probability that the goalie will jump left and 1?
G
be the probability that he will jump right,The kicker realizes that if he
kicks to the right,he will score when the goalie goes left and he will not
score when the goalie goes right,The expected payo to the kicker if he
kicks to the right is therefore just
G
,If the kicker kicks to the left,then
the only way that he can score is if the goalie jumps right,This happens
with probability 1?
G
,Even then he will only score half the time,So
the expected payo to the kicker from kicking left is,5(1?
G
),These
two expected payo s are equalized when
G
=,5(1?
G
),If we solve
this equation,we nd
G
=1=3,This has to be the probability that the
goalie goes left in a mixed strategy equilibrium.
Now let us nd the probability that the kicker kicks left in a mixed
strategy equilibrium,In equilibrium,the kicker’s probability
K
of kick-
ing left must be such that the goalie gets the same expected payo from
jumping left as from jumping right,The expected payo to the goalie is
340 GAME THEORY (Ch,28)
the probability that the kicker does not score,If the goalie jumps left,
then the kicker will not score if he kicks left and will score if he kicks
right,so the expected payo to the goalie from going left is
K
.Ifthe
goalie jumps right,then with probability (1?
K
),the kicker will kick
right and the goalie will stop the ball,When the kicker is kicking to the
undefended left side of the net,he only makes it half the time,so if the
goalie jumps right,the probability that the kicker kicks left and makes
the kick is only,5
K
,Therefore the expected payo to the goalie from
jumping right is (1?
K
)+:5
K
=1?:5
K
,Equalizing the payo to the
goalie from jumping left or jumping right requires
K
=1?:5
K
.Solving
this equation we nd that in the equilibrium mixed strategy,
K
=2=3.
28.1 (0) Perhaps you have wondered what it could mean that \the meek
shall inherit the earth." While we don’t claim this is always the case,here
is an example where it is true,In a famous experiment,two psychologists
put two pigs|a little one and a big one|into a pen that had a lever at
one end and a trough at the other end,When the lever was pressed,a
serving of pigfeed would appear in a trough at the other end of the pen.
If the little pig would press the lever,then the big pig would eat all of
the pigfeed and keep the little pig from getting any,If the big pig pressed
the lever,there would be time for the little pig to get some of the pigfeed
before the big pig was able to run to the trough and push him away.
Let us represent this situation by a game,in which each pig has two
possible strategies,One strategy is Press the Lever,The other strategy
is Wait at the Trough,If both pigs wait at the trough,neither gets any
feed,If both pigs press the lever,the big pig gets all of the feed and the
little pig gets a poke in the ribs,If the little pig presses the lever and
the big pig waits at the trough,the big pig gets all of the feed and the
little pig has to watch in frustration,If the big pig presses the lever and
the little pig waits at the trough,then the little pig is able to eat 2=3
of the feed before the big pig is able to push him away,The payo s are
as follows,(These numbers are just made up,but their relative sizes are
consistent with the payo s in the Baldwin-Meese experiment.)
Big Pig{Little Pig
Little Pig
Big Pig
Press Wait
Press?1;9?1;10
Wait 6;4 0;0
Baldwin and Meese (1979),\Social Behavior in Pigs Studied by
Means of Operant Conditioning," Animal Behavior
NAME 341
(a) Is there a dominant strategy for the little pig? Yes,Wait,Is
there a dominant strategy for the big pig? No.
(b) Find a Nash equilibrium for this game,Does the game have more than
one Nash equilibrium? The only Nash equilibrium is
where little pig waits and big pig presses.
(Incidentally,while Baldwin and Meese did not interpret this experiment
as a game,the result they observed was the result that would be predicted
by Nash equilibrium.)
(c) Which pig gets more feed in Nash equilibrium? Little pig.
28.2 (0) Consider the following game matrix.
A Game Matrix
Player A
Player B
Left Right
Top a;b c;d
Bottom e;f g;h
(a) If (top,left) is a dominant strategy equilibrium,then we know that
a> e,b> d,c >g,and f >h.
(b) If (top,left) is a Nash equilibrium,then which of the above inequalities
must be satis ed? a>e; b>d.
(c) If (top,left) is a dominant strategy equilibrium must it be a Nash
equilibrium? Why? Yes,A dominant strategy
equilibrium is always a Nash equilibrium.
28.3 (1) This problem is based on an example developed by the biologist
John Maynard Smith to illustrate the uses of game theory in the theory
of evolution,Males of a certain species frequently come into conflict with
other males over the opportunity to mate with females,If a male runs
into a situation of conflict,he has two alternative \strategies." A male
342 GAME THEORY (Ch,28)
can play \Hawk" in which case he will ght the other male until he either
wins or is badly hurt,Or he can play \Dove," in which case he makes
a display of bravery but retreats if his opponent starts to ght,If an
animal plays Hawk and meets another male who is playing Hawk,they
both are seriously injured in battle,If he is playing Hawk and meets an
animal who is playing Dove,the Hawk gets to mate with the female and
the Dove slinks o to celibate contemplation,If an animal is playing Dove
and meets another Dove,they both strut around for a while,Eventually
the female either chooses one of them or gets bored and wanders o,The
expected payo s to each of two males in a single encounter depend on
which strategy each adopts,These payo s are depicted in the box below.
The Hawk-Dove Game
Animal A
Animal B
Hawk Dove
Hawk?5;?5 10;0
Dove 0;10 4;4
(a) Now while wandering through the forest,a male will encounter many
conflict situations of this type,Suppose that he cannot tell in advance
whether another animal that he meets will behave like a Hawk or like
a Dove,The payo to adopting either strategy oneself depends on the
proportion of the other guys that is Hawks and the proportion that is
Doves,For example,suppose all of the other males in the forest act
like Doves,Any male that acted like a Hawk would nd that his rival
always retreated and would therefore enjoy a payo of 10 on every
encounter,If a male acted like a Dove when all other males acted like
Doves,he would receive an average payo of 4.
(b) If strategies that are more pro table tend to be chosen over strategies
that are less pro table,explain why there cannot be an equilibrium in
which all males act like Doves,If you know that you
are meeting a Dove,it pays to be a Hawk.
(c) If all the other males acted like Hawks,then a male who adopted the
Hawk strategy would be sure to encounter another Hawk and would get
a payo of?5,If instead,this male adopted the Dove strategy,he
would again be sure to encounter a Hawk,but his payo would be 0.
NAME 343
(d) Explain why there could not be an equilibrium where all of the an-
imals acted like Hawks,If everyone plays Hawk,it
would be profitable to play Dove.
(e) Since there is not an equilibrium in which everybody chooses the same
strategy,we might ask whether there might be an equilibrium in which
some fraction of the males chose the Hawk strategy and the rest chose
the Dove strategy,Suppose that the fraction of a large male population
that chooses the Hawk strategy is p,Then if one acts like a Hawk,the
fraction of one’s encounters in which he meets another Hawk is about p
and the fraction of one’s encounters in which he meets a Dove is about
1?p,Therefore the average payo to being a Hawk when the fraction of
Hawks in the population is p,mustbep (?5) + (1?p) 10 = 10?15p.
Similarly,if one acts like a Dove,the probability of meeting a Hawk is
about p and the probability of meeting another Dove is about (1?p).
Therefore the average payo to being a Dove when the proportion of
Hawks in the population is p will be p 0+(1?p) 4.
(f) Write an equation that states that when the proportion of the popu-
lation that acts like Hawks is p,the payo to Hawks is the same as the
payo s to Doves,4?4p =10?15p.
(g) Solve this equation for the value of p such that at this value Hawks
do exactly as well as Doves,This requires that p = 6=11.
(h) On the axes below,use blue ink to graph the average payo to the
strategy Dove when the proportion of the male population who are Hawks
is p,Use red ink to graph the average payo to the strategy,Hawk,when
the proportion of the male population who are Hawks is p,Label the
equilibrium proportion in your diagram by E.
344 GAME THEORY (Ch,28)
0255075100
2
4
6
Percentage of hawks
Payoff
8
Blue
Line
Red Line
e
(i) If the proportion of Hawks is slightly greater than E,whichstrat-
egy does better? Dove,If the proportion of Hawks is slightly less
than E,which strategy does better? Hawk,If the more pro table
strategy tends to be adopted more frequently in future plays,then if the
strategy proportions are out of equilibrium,will changes tend to move the
proportions back toward equilibrium or further away from equilibrium?
Closer.
28.4 (1) Evangeline and Gabriel met at a freshman mixer,They want
desperately to meet each other again,but they forgot to exchange names
or phone numbers when they met the rst time,There are two possible
strategies available for each of them,These are Go to the Big Party or
Stay Home and Study,They will surely meet if they both go to the party,
and they will surely not otherwise,The payo to meeting is 1,000 for
each of them,The payo to not meeting is zero for both of them,The
payo s are described by the matrix below.
Close Encounters of the Second Kind
Evangeline
Gabriel
Go to Party Stay Home
Go to Party 1000;1000 0;0
Stay Home 0;0 0;0
NAME 345
(a) A strategy is said to be a weakly dominant strategy for a player if
the payo from using this strategy is at least as high as the payo from
using any other strategy,Is there any outcome in this game where both
players are using weakly dominant strategies? The only one is
(top,left).
(b) Find all of the pure-strategy Nash equilibria for this game,There
are two,(top,left) and (bottom,right).
(c) Do any of the pure Nash equilibria that you found seem more rea-
sonable than others? Why or why not? Although (bottom,
right) is a Nash equilibrium,it seems a
silly one,If either player believes that
there is any chance that the other will go
to the party,he or she will also go.
(d) Let us change the game a little bit,Evangeline and Gabriel are still
desperate to nd each other,But now there are two parties that they
might go to,There is a little party at which they would be sure to meet
if they both went there and a huge party at which they might never see
each other,The expected payo to each of them is 1,000 if they both go
to the little party,Since there is only a 50-50 chance that they would nd
each other at the huge party,the expected payo to each of them is only
500,If they go to di erent parties,the payo to both of them is zero.
The payo matrix for this game is:
More Close Encounters
Evangeline
Gabriel
Little Party Big Party
Little Party 1000;1000 0;0
Big Party 0;0 500;500
346 GAME THEORY (Ch,28)
(e) Does this game have a dominant strategy equilibrium? No,What
are the two Nash equilibria in pure strategies? (1) Both go
to the little party,(2) Both go to the big
party.
(f) One of the Nash equilibria is Pareto superior to the other,Suppose
that each person thought that there was some slight chance that the
other would go to the little party,Would that be enough to convince
them both to attend the little party? No,Can you think of any rea-
son why the Pareto superior equilibrium might emerge if both players
understand the game matrix,if both know that the other understands
it,and each knows that the other knows that he or she understands the
game matrix? If both know the game matrix and
each knows that the other knows it,then
each may predict the other will choose the
little party.
28.5 (1) This is a famous game,known to game theorists as \The Battle
of the Sexes." The story goes like this,Two people,let us call them
Michelle and Roger,although they greatly enjoy each other’s company,
have very di erent tastes in entertainment,Roger’s tastes run to ladies’
mud wrestling,while Michelle prefers Italian opera,They are planning
their entertainment activities for next Saturday night,For each of them,
there are two possible actions,go to the wrestling match or go to the
opera,Roger would be happiest if both of them went to see mud wrestling.
His second choice would be for both of them to go to the opera,Michelle
would prefer if both went to the opera,Her second choice would be that
they both went to see the mud wrestling,They both think that the worst
outcome would be that they didn’t agree on where to go,If this happened,
they would both stay home and sulk.
BattleoftheSexes
Roger
Michelle
Wrestling Opera
Wrestling 2;1 0;0
Opera 0;0 1;2
NAME 347
(a) Is the sum of the payo s to Michelle and Roger constant over all
outcomes? No,(If so,this is called a \zero-sum game." Otherwise it is
called a \nonzero sum game.") Does this game have a dominant strategy
equilibrium? No.
(b) Find two Nash equilibria in pure strategies for this game,Both
go to opera,Both go to mud wrestling.
(c) Find a Nash equilibrium in mixed strategies,Michele
chooses opera with probability 2=3 and
wrestling with probability 1=3,Roger chooses
opera with probability 1=3 and mud wrestling
with probability 2=3.
28.6 (1) This is another famous two-person game,known to game the-
orists as \Chicken." Two teenagers in souped-up cars drive toward each
other at great speed,The rst one to swerve out of the road is \chicken."
The best thing that can happen to you is that the other guy swerves and
you don’t,Then you are the hero and the other guy is the chicken,If you
both swerve,you are both chickens,If neither swerves,you both end up
in the hospital,A payo matrix for a chicken-type game is the following.
Chicken
Joe Bob
Leroy
Swerve Don’t Swerve
Swerve 1;1 1;2
Don’t Swerve 2;1 0;0
(a) Does this game have a dominant strategy? No,What are the two
Nash equilibria in pure strategies? The two outcomes where
one teenager swervesand the does not.
348 GAME THEORY (Ch,28)
(b) Find a Nash equilibrium in mixed strategies for this game,Play
each strategy with probability 1=2.
28.7 (0) I propose the following game,I flip a coin,and while it is in the
air,you call either heads or tails,If you call the coin correctly,you get
to keep the coin,Suppose that you know that the coin always comes up
heads,What is the best strategy for you to pursue? Always call
heads.
(a) Suppose that the coin is unbalanced and comes up heads 80% of
the time and tails 20% of the time,Now what is your best strategy?
Always call heads.
(b) What if the coin comes up heads 50% of the time and tails 50% of the
time? What is your best strategy? It doesn’t matter.
You can call heads always,tails always,or
randomize your calls.
(c) Now,suppose that I am able to choose the type of coin that I will toss
(where a coin’s type is the probability that it comes up heads),and that
you will know my choice,What type of coin should I choose to minimize
my losses? A fair coin.
(d) What is the Nash mixed strategy equilibrium for this game? (It may
help to recognize that a lot of symmetry exists in the game.) I
choose a fair coin,and you randomize with
50% heads and 50% tails.
28.8 (0) Ned and Ruth love to play \Hide and Seek." It is a simple
game,but it continues to amuse,It goes like this,Ruth hides upstairs or
downstairs,Ned can look upstairs or downstairs but not in both places.
If he nds Ruth,Ned gets one scoop of ice cream and Ruth gets none,If
he does not nd Ruth,Ruth gets one scoop of ice cream and Ned gets
none,Fill in the payo s in the matrix below.
NAME 349
Hide and Seek
Ned
Ruth
Upstairs Downstairs
Upstairs 1;0 0;1
Downstairs 0;1 1;0
(a) Is this a zero-sum game? Yes,What are the Nash equilibria in
pure strategies? There are none.
(b) Find a Nash equilibrium in mixed strategies for this game.
Ruth hides upstairs and Ned searches
upstairs with probability 1/2; Ruth hides
downstairs and Ned searches downstairs with
probability 1/2.
(c) After years of playing this game,Ned and Ruth think of a way to
liven it up a little,Now if Ned nds Ruth upstairs,he gets two scoops of
ice cream,but if he nds her downstairs,he gets one scoop,If Ned nds
Ruth,she gets no ice cream,but if he doesn’t nd her she gets one scoop.
Fill in the payo s in the graph below.
Advanced Hide and Seek
Ned
Ruth
Upstairs Downstairs
Upstairs 2;0 0;1
Downstairs 0;1 1;0
350 GAME THEORY (Ch,28)
(d) Are there any Nash equilibria in pure strategies? No,What mixed
strategy equilibrium can you nd? Ruth hides downstairs
2/3 of the time,Ned looks downstairs 1/2
the time,If both use equilibrium strategies,what fraction of the
time will Ned nd Ruth? 1/2.
28.9 (1) Let’s have another look at the soccer example that was discussed
in the introduction to this section,But this time,we will generalize the
payo matrix just a little bit,Suppose the payo matrix is as follows.
The Free Kick
Goalie
Kicker
Kick Left Kick Right
Jump Left 1;0 0;1
Jump Right 1-p,p 1;0
Now the probability that the kicker will score if he kicks to the left
and the goalie jumps to the right is p,Wewillwanttoseehowthe
equilibrium probabilities change as p changes.
(a) If the goalie jumps left with probability
G
,then if the kicker kicks
right,his probability of scoring is
G
.
(b) If the goalie jumps left with probability
G
,then if the kicker kicks
left,his probability of scoring is p(1?
G
).
(c) Find the probability
G
that makes kicking left and kicking right lead
to the same probability of scoring for the kicker,(Your answer will be a
function of p.)
G
=
p
1+p
.
(d) If the kicker kicks left with probability
K
,then if the goalie jumps
left,the probability that the kicker will not score is
K
.
NAME 351
(e) If the kicker kicks left with probability
K
,then if the goalie jumps
right,the probability that the kicker will not score is (1?p)
K
+
(1?
K
).
(f) Find the probability
K
that makes the payo to the goalie equal from
jumping left or jumping right.
1
1+p
.
(g) The variable p tells us how good the kicker is at kicking the ball
into the left side of the goal when it is undefended,As p increases,does
the equilibrium probability that the kicker kicks to the left increase or
decrease? Decreases,Explain why this happens in a way that
even a TV sports announcer might understand,The better
the kicker’s weak side gets,the less often
the goalie defends the kicker’s good side.
So kicker can kick to good side more often.
28.10 (0) Maynard’s Cross is a trendy bistro that specializes in carpac-
cio and other uncooked substances,Most people who come to Maynard’s
come to see and be seen by other people of the kind who come to May-
nard’s,There is,however,a hard core of 10 customers per evening who
come for the carpaccio and don’t care how many other people come,The
number of additional customers who appear at Maynard’s depends on
how many people they expect to see,In particular,if people expect that
the number of customers at Maynard’s in an evening will be X,then
the number of people who actually come to Maynard’s is Y =10+:8X:
In equilibrium,it must be true that the number of people who actually
attend the restaurant is equal to the number who are expected to attend.
(a) What two simultaneous equations must you solve to nd the equilib-
rium attendance at Maynard’s? y =10+:8x and x = y.
(b) What is the equilibrium nightly attendance? 50.
(c) On the following axes,draw the lines that represent each of the
two equations you mentioned in Part (a),Label the equilibrium atten-
352 GAME THEORY (Ch,28)
dance level.
020406080
20
40
60
x
y
80
X=Y
Y=10+.8X
e
Y=11+.8X
(d) Suppose that one additional carpaccio enthusiast moves to the area.
Like the other 10,he eats at Maynard’s every night no matter how many
others eat there,Write down the new equations determining attendance
at Maynard’s and solve for the new equilibrium number of customers.
y =11+:8x and y = x,sox = y =55.
(e) Use a di erent color ink to draw a new line representing the equa-
tion that changed,How many additional customers did the new steady
customer attract (besides himself)? 4.
(f) Suppose that everyone bases expectations about tonight’s attendance
on last night’s attendance and that last night’s attendance is public knowl-
edge,Then X
t
= Y
t?1
,whereX
t
is expected attendance on day t and
Y
t?1
is actual attendance on day t?1,At any time t,Y
t
=10+:8X
t
.
Suppose that on the rst night that Maynard’s is open,attendance is 20.
What will be attendance on the second night? 26.
(g) What will be the attendance on the third night? 30.8.
(h) Attendance will tend toward some limiting value,What is it? 50.
28.11 (0) Yogi’s Bar and Grill is frequented by unsociable types who
hate crowds,If Yogi’s regular customers expect that the crowd at Yogi’s
will beX,then the number of people who show up at Yogi’s,Y,will be the
larger of the two numbers,120?2X and 0,Thus Y =maxf120?2X;0g:
NAME 353
(a) Solve for the equilibrium attendance at Yogi’s,Draw a diagram de-
picting this equilibrium on the axes below.
020406080
20
40
60
x
y
80
e
X=Y
Y=120-2X
(b) Suppose that people expect the number of customers on any given
night to be the same as the number on the previous night,Suppose that
50 customers show up at Yogi’s on the rst day of business,How many
will show up on the second day? 20,The third day? 80,The
fourth day? 0,The fth day? 120,The ninety-ninth day?
120,The hundredth day? 0.
(c) What would you say is wrong with this model if at least some of Yogi’s
customers have memory spans of more than a day or two?
They’d notice that last night’s attendance
is not a good predictor of tonight’s,If
attendance is low on odd-numbered days and
high on even-numbered days,it would be
smart to adjust by coming on odd-numbered
days.
28.12 (2) Economic ideas and equilibrium analysis have many fascinat-
ing applications in biology,Popular discussions of natural selection and
biological tness often take it for granted that animal traits are selected
for the bene t of the species,Modern thinking in biology emphasizes that
individuals (or strictly speaking,genes) are the unit of selection,A mu-
tant gene that induces an animal to behave in such a way as to help the
354 GAME THEORY (Ch,28)
species at the expense of the individuals that carry that gene will soon
be eliminated,no matter how bene cial that behavior is to the species.
A good illustration is a paper in the Journal of Theoretical Biology,
1979,by H,J,Brockmann,A,Grafen,and R,Dawkins,called \Evo-
lutionarily Stable Nesting Strategy in a Digger Wasp." They maintain
that natural selection results in behavioral strategies that maximize an
individual animal’s expected rate of reproduction over the course of its
lifetime,According to the authors,\Time is the currency which an animal
spends."
Females of the digger wasp Sphex ichneumoneus nest in underground
burrows,Some of these wasps dig their own burrows,After she has dug
her burrow,a wasp goes out to the elds and hunts katydids,These
she stores in her burrow to be used as food for her o spring when they
hatch,When she has accumulated several katydids,she lays a single egg
in the burrow,closes o the food chamber,and starts the process over
again,But digging burrows and catching katydids is time-consuming,An
alternative strategy for a female wasp is to sneak into somebody else’s
burrow while she is out hunting katydids,This happens frequently in
digger wasp colonies,A wasp will enter a burrow that has been dug by
another wasp and partially stocked with katydids,The invader will start
catching katydids,herself,to add to the stock,When the founder and
the invader nally meet,they ght,The loser of the ght goes away and
never comes back,The winner gets to lay her egg in the nest.
Since some wasps dig their own burrows and some invade burrows
begun by others,it is likely that we are observing a biological equilibrium
in which each strategy is as e ective a way for a wasp to use its time for
producing o spring as the other,If one strategy were more e ective than
the other,then we would expect that a gene that led wasps to behave
in the more e ective way would prosper at the expense of genes that led
them to behave in a less e ective way.
Suppose the average nesting episode takes 5 days for a wasp that
digs its own burrow and tries to stock it with katydids,Suppose that the
average nesting episode takes only 4 days for invaders,Suppose that when
they meet,half the time the founder of the nest wins the ght and half
the time the invader wins,Let D be the number of wasps that dig their
own burrows and let I be the number of wasps that invade the burrows
of others,The fraction of the digging wasps that are invaded will be
about
5
4
I
D
,(Assume for the time being that
5
4
I
D
< 1.) Half of the diggers
who are invaded will win their ght and get to keep their burrows,The
fraction of digging wasps who lose their burrows to other wasps is then
1
2
5
4
I
D
=
5
8
I
D
,Assume also that all the wasps who are not invaded by other
wasps will successfully stock their burrows and lay their eggs.
(a) Then the fraction of the digging wasps who do not lose their burrows
is just 1?
5
8
I
D
.
Therefore over a period of 40 days,a wasp who dug her own bur-
row every time would have 8 nesting episodes,Her expected number of
successes would be 8?5
I
D
.
NAME 355
(b) In 40 days,a wasp who chose to invade every time she had a chance
would have time for 10 invasions,Assuming that she is successful half the
time on average,her expected number of successes would be 5.
Write an equation that expresses the condition that wasps who always dig
their own burrows do exactly as well as wasps who always invade burrows
dug by others,8?5
I
D
=5.
(c) The equation you have just written should contain the expression
I
D
.
Solve for the numerical value of
I
D
that just equates the expected number
of successes for diggers and invaders,The answer is
3
5
.
(d) But there is a problem here,the equilibrium we found doesn’t appear
to be stable,On the axes below,use blue ink to graph the expected num-
ber of successes in a 40-day period for wasps that dig their own burrows
every time where the number of successes is a function of
I
D
.Useblack
ink to graph the expected number of successes in a 40-day period for in-
vaders,Notice that this number is the same for all values of
I
D
,Label the
point where these two lines cross and notice that this is equilibrium,Just
to the right of the crossing,where
I
D
is just a little bit bigger than the
equilibrium value,which line is higher,the blue or the black? Black.
At this level of
I
D
,which is the more e ective strategy for any individ-
ual wasp? Invade,Suppose that if one strategy is more e ective
than the other,the proportion of wasps adopting the more e ective one
increases,If,after being in equilibrium,the population got joggled just
a little to the right of equilibrium,would the proportions of diggers and
invaders return toward equilibrium or move further away? Further
away.
Success
e
Blue line
8-5(I/D)
5
Black line
I_
D
356 GAME THEORY (Ch,28)
(e) The authors noticed this likely instability and cast around for possible
changes in the model that would lead to stability,They observed that
an invading wasp does help to stock the burrow with katydids,This may
save the founder some time,If founders win their battles often enough
and get enough help with katydids from invaders,it might be that the
expected number of eggs that a founder gets to lay is an increasing rather
than a decreasing function of the number of invaders,On the axes below,
show an equilibrium in which digging one’s own burrow is an increasingly
e ective strategy as
I
D
increases and in which the payo to invading is
constant over all ratios of
I
D
,Is this equilibrium stable? Yes.
Success
I_
D
e
Chapter 29 NAME
Exchange
Introduction,The Edgeworth box is a thing of beauty,An amazing
amount of information is displayed with a few lines,points and curves,In
fact one can use an Edgeworth box to tell just about everything there is to
say about the case of two traders dealing in two commodities,Economists
know that the real world has more than two people and more than two
commodities,But it turns out that the insights gained from this model
extend nicely to the case of many traders and many commodities,So
for the purpose of introducing the subject of exchange equilibrium,the
Edgeworth box is exactly the right tool,We will start you out with an
example of two gardeners engaged in trade.
Example,Alice and Byron consume two goods,camelias and dahlias.
Alice has 16 camelias and 4 dahlias,Byron has 8 camelias and 8 dahlias.
They consume no other goods,and they trade only with each other,To
describe the possible allocations of flowers,we rst draw a box whose
width is the total number of camelias and whose height is the total number
of dahlias that Alice and Byron have between them,The width of the
box is therefore 16 + 8 = 24 and the height of the box is 4 + 8 = 12.
Dahlias Byron
12
6
0 6 121824
Alice Camelias
Any feasible allocation of flowers between Alice and Byron is fully
described by a single point in the box,Consider,for example,the alloca-
tion where Alice gets the bundle (15;9) and Byron gets the bundle (9;3).
This allocation is represented by the point A =(15;9) in the Edgeworth
box,The distance 15 from A to the left side of the box is the number of
camelias for Alice and the distance 9 from A to the bottom of the box is
the number of dahlias for Alice,This point also determines Byron’s con-
sumption of camelias and dahlias,The distance 9 from A to the right side
of the box is the total number of camelias consumed by Byron,and the
distance from A to the top of the box is the number of dahlias consumed
by Byron,Since the width of the box is the total supply of camelias and
the height of the box is the total supply of dahlias,these conventions en-
sure that any point in the box represents a feasible allocation of the total
358 EXCHANGE (Ch,29)
supply of camelias and dahlias.
It is useful to mark the initial allocation on the Edgeworth box,In
this case,the initial allocation is represented by the point E =(16;4).
Now suppose that Alice’s utility function is U(c;d)=c+2d and Byron’s
utility funtion is U(c;d)=cd,Alice’s indi erence curves will be straight
lines with slope?1=2,The indi erence curve that passes through her
initial endowment,for example,will be a line that runs from the point
(24;0) to the point (0;12),Since Byron has Cobb-Douglas utility,his
indi erence curves will be rectangular hyperbolas,but since quantities
for Byron are measured from the upper right corner of the box,these
indi erence curves will be flipped over as in the diagram.
The Pareto set or contract curve is the set of points where Alice’s
indi erence curves are tangent to Byron’s,There will be tangency if the
slopes are the same,The slope of Alice’s indi erence curve at any point is
1=2,The slope of Byron’s indi erence curve depends on his consumption
of the two goods,When Byron is consuming the bundle (c
B;d
B
),the slope
of his indi erence curve is equal to his marginal rate of substitution,which
is?d
B
=c
B
,Therefore Alice’s and Byron’s indi erence curves will nuzzle
up in a nice tangency whenever?d
B
=c
B
=?1=2,So the Pareto set in
this example is just the diagonal of the Edgeworth box.
Some problems ask you to nd a competitive equilibrium,For an
economy with two goods,the following procedure is often a good way to
calculate equilibrium prices and quantities.
Since demand for either good depends only on the ratio of prices of
good 1 to good 2,it is convenient to set the price of good 1 equal to
1andletp
2
be the price of good 2.
With the price of good 1 held at 1,calculate each consumer’s demand
for good 2 as a function of p
2
.
Write an equation that sets the total amount of good 2 demanded by
all consumers equal to the total of all participants’ initial endowments
of good 2.
Solve this equation for the value of p
2
that makes the demand for
good 2 equal to the supply of good 2,(When the supply of good 2
equals the demand of good 2,it must also be true that the supply of
good 1 equals the demand for good 1.)
Plug this price into the demand functions to determine quantities.
Example,Frank’s utility function is U(x
1;x
2
)=x
1
x
2
and Maggie’s is
U(x
1;x
2
)=minfx
1;x
2
g,Frank’s initial endowment is 0 units of good 1
and 10 units of good 2,Maggie’s initial endowment is 20 units of good 1
and 5 units of good 2,Let us nd a competitive equilibrium for Maggie
and Frank.
Set p
1
= 1 and nd Frank’s and Maggie’s demand functions for good
2 as a function of p
2
,Using the techniques learned in Chapter 6,we
nd that Frank’s demand function for good 2 is m=2p
2
,wherem is his
income,Since Frank’s initial endowment is 0 units of good 1 and 10 units
of good 2,his income is 10p
2
,Therefore Frank’s demand for good 2 is
10p
2
=2p
2
= 5,Since goods 1 and 2 are perfect complements for Maggie,
she will choose to consume where x
1
= x
2
,This fact,together with her
budget constraint implies that Maggie’s demand function for good 2 is
NAME 359
m=(1 + p
2
),Since her endowment is 20 units of good 1 and 5 units of
good 2,her income is 20 + 5p
2
,Therefore at price p
2
,Maggie’s demand
is (20 + 5p
2
)=(1 +p
2
),Frank’s demand plus Maggie’s demand for good 2
adds up to 5 + (20 + 5p
2
)=(1 +p
2
),The total supply of good 2 is Frank’s
10 unit endowment plus Maggie’s 5 unit endowment,which adds to 15
units,Therefore demand equals supply when
5+
(20 + 5p
2
)
(1 +p
2
)
=15:
Solving this equation,one nds that the equilibrium price is p
2
=2,At
the equilibrium price,Frank will demand 5 units of good 2 and Maggie
will demand 10 units of good 2.
29.1 (0) Morris Zapp and Philip Swallow consume wine and books.
Morris has an initial endowment of 60 books and 10 bottles of wine,Philip
has an initial endowment of 20 books and 30 bottles of wine,They have
no other assets and make no trades with anyone other than each other.
For Morris,a book and a bottle of wine are perfect substitutes,His utility
function is U(b;w)=b+w,whereb is the number of books he consumes
and w is the number of bottles of wine he consumes,Philip’s preferences
are more subtle and convex,He has a Cobb-Douglas utility function,
U(b;w)=bw,In the Edgeworth box below,Morris’s consumption is
measured from the lower left,and Philip’s is measured from the upper
right corner of the box.
020406080
20
40
Books
PhilipWine
Morris
e
Blue curve
Red curve
Black
line
(a) On this diagram,mark the initial endowment and label it E.Usered
ink to draw Morris Zapp’s indi erence curve that passes through his initial
endowment,Use blue ink to draw in Philip Swallow’s indi erence curve
that passes through his initial endowment,(Remember that quantities
for Philip are measured from the upper right corner,so his indi erence
curves are \Phlipped over.")
360 EXCHANGE (Ch,29)
(b) At any Pareto optimum,where both people consume some of each
good,it must be that their marginal rates of substitution are equal,No
matter what he consumes,Morris’s marginal rate of substitution is equal
to -1,When Philip consumes the bundle,(b
P;w
P
),his MRS is
w
P
=b
P
,Therefore every Pareto optimal allocation where both
consume positive amounts of both goods satis es the equation w
P
=
b
P
,Use black ink on the diagram above to draw the locus of Pareto
optimal allocations.
(c) At a competitive equilibrium,it will have to be that Morris consumes
some books and some wine,But in order for him to do so,it must be that
the ratio of the price of wine to the price of books is 1,Therefore
we know that if we make books the numeraire,then the price of wine in
competitive equilibrium must be 1.
(d) At the equilibrium prices you found in the last part of the question,
what is the value of Philip Swallow’s initial endowment? 50,At these
prices,Philip will choose to consume 25 books and 25
bottles of wine,If Morris Zapp consumes all of the books and all of the
wine that Philip doesn’t consume,he will consume 55 books and
15 bottles of wine.
(e) At the competitive equilibrium prices that you found above,Morris’s
income is 70,Therefore at these prices,the cost to Morris of con-
suming all of the books and all of the wine that Philip doesn’t consume
is (the same as,more than,less than) the same as his income.
At these prices,can Morris a ord a bundle that he likes better than the
bundle (55;15)? No.
(f) Suppose that an economy consisted of 1,000 people just like Morris
and 1,000 people just like Philip,Each of the Morris types had the same
endowment and the same tastes as Morris,Each of the Philip types had
the same endowment and tastes as Philip,Would the prices that you
found to be equilibrium prices for Morris and Philip still be competitive
equilibrium prices? Yes,If each of the Morris types and each of the
Philip types behaved in the same way as Morris and Philip did above,
would supply equal demand for both wine and books? Yes.
NAME 361
29.2 (0) Consider a small exchange economy with two consumers,Astrid
and Birger,and two commodities,herring and cheese,Astrid’s initial
endowment is 4 units of herring and 1 unit of cheese,Birger’s initial en-
dowment has no herring and 7 units of cheese,Astrid’s utility function is
U(H
A;C
A
)=H
A
C
A
,Birger is a more inflexible person,His utility func-
tion is U(H
B;C
B
)=minfH
B;C
B
g.(HereH
A
and C
A
are the amounts
of herring and cheese for Astrid,and H
B
and C
B
are amounts of herring
and cheese for Birger.)
(a) Draw an Edgeworth box,showing the initial allocation and sketching
in a few indi erence curves,Measure Astrid’s consumption from the lower
left and Birger’s from the upper right,In your Edgeworth box,draw two
di erent indi erence curves for each person,using blue ink for Astrid’s
and red ink for Birger’s.
02468
2
4
Cheese
BirgerHerring
Astrid
e
Blue curves
Red curves
Black
line
(b) Use black ink to show the locus of Pareto optimal allocations,(Hint:
Since Birger is kinky,calculus won’t help much here,But notice that
because of the rigidity of the proportions in which he demands the two
goods,it would be ine cient to give Birger a positive amount of either
good if he had less than that amount of the other good,What does that
tell you about where the Pareto e cient locus has to be?) Pareto
efficient allocations lie on the line with
slope 1 extending from Birger’s corner of
the box.
29.3 (0) Dean Foster Z,Interface and Professor J,Fetid Nightsoil ex-
change bromides and platitudes,Dean Interface’s utility function is
U
I
(B
I;P
I
)=B
I
+2
p
P
I
:
Professor Nightsoil’s utility function is
U
N
(B
N;P
N
)=B
N
+4
p
P
N
:
362 EXCHANGE (Ch,29)
Dean Interface’s initial endowment is 8 bromides and 12 platitudes,Pro-
fessor Nightsoil’s initial endowment is 8 bromides and 4 platitudes.
0481216
4
8
12
Bromides
Platitudes
16
Nightsoil
Interface
e
Red curve
Pencil curve
Blue line
3.2
(a) If Dean Interface consumes P
I
platitudes and B
I
bromides,his mar-
ginal rate of substitution will be?P
1=2
I
,If Professor Nightsoil
consumes P
N
platitudes and B
N
bromides,his marginal rate of substitu-
tion will be?2P
1=2
N
.
(b) On the contract curve,Dean Interface’s marginal rate of substitution
equals Professor Nightsoil’s,Write an equation that states this condition.
p
P
I
=
p
P
N
=2,This equation is especially simple because each
person’s marginal rate of substitution depends only on his consumption
of platitudes and not on his consumption of bromides.
(c) From this equation we see that P
I
=P
N
= 1=4 at all points on the
contract curve,This gives us one equation in the two unknowns P
I
and
P
N
.
(d) But we also know that along the contract curve it must be that P
I
+
P
N
= 16,since the total consumption of platitudes must equal
the total endowment of platitudes.
(e) Solving these two equations in two unknowns,we nd that everywhere
on the contract curve,P
I
and P
N
are constant and equal to P
I
=3:2
and P
N
=12:8.
NAME 363
(f) In the Edgeworth box,label the initial endowment with the letter
E,Dean Interface has thick gray penciled indi erence curves,Profes-
sor Nightsoil has red indi erence curves,Draw a few of these in the
Edgeworth box you made,Use blue ink to show the locus of Pareto op-
timal points,The contract curve is a (vertical,horizontal,diagonal)
horizontal line in the Edgeworth box.
(g) Find the competitive equilibrium prices and quantities,You know
what the prices have to be at competitive equilibrium because you know
what the marginal rates of substitution have to be at every Pareto
optimum,P
I
=3:2,P
N
=12:8,platitude
price/bromide price =
1
p
3:2
.
29.4 (0) A little exchange economy contains just two consumers,named
Ken and Barbie,and two commodities,quiche and wine,Ken’s initial
endowment is 3 units of quiche and 2 units of wine,Barbie’s initial en-
dowment is 1 unit of quiche and 6 units of wine,Ken and Barbie have iden-
tical utility functions,We write Ken’s utility function as,U(Q
K;W
K
)=
Q
K
W
K
and Barbie’s utility function as U(Q
B;W
B
)=Q
B
W
B
,whereQ
K
and W
K
are the amounts of quiche and wine for Ken and Q
B
and W
B
are amounts of quiche and wine for Barbie.
(a) Draw an Edgeworth box below,to illustrate this situation,Put quiche
on the horizontal axis and wine on the vertical axis,Measure goods for
Ken from the lower left corner of the box and goods for Barbie from the
upper right corner of the box,(Be sure that you make the length of the
box equal to the total supply of quiche and the height equal to the total
supply of wine.) Locate the initial allocation in your box,and label it W.
On the sides of the box,label the quantities of quiche and wine for each
of the two consumers in the initial endowment.
364 EXCHANGE (Ch,29)
24
2
4
6
8
0
Ken Quiche
Wine Barbie
w
ce
Black line
Red
curve
Blue
curve
Pareto
efficient
points
(b) Use blue ink to draw an indi erence curve for Ken that shows alloca-
tions in which his utility is 6,Use red ink to draw an indi erence curve
for Barbie that shows allocations in which her utility is 6.
(c) At any Pareto optimal allocation where both consume some of each
good,Ken’s marginal rate of substitution between quiche and wine must
equal Barbie’s,Write an equation that states this condition in terms
of the consumptions of each good by each person,W
B
=Q
B
=
W
K
=Q
K
.
(d) On your graph,show the locus of points that are Pareto e cient.
(Hint,If two people must each consume two goods in the same proportions
as each other,and if together they must consume twice as much wine as
quiche,what must those proportions be?)
(e) In this example,at any Pareto e cient allocation,where both persons
consume both goods,the slope of Ken’s indi erence curve will be?2.
Therefore,since we know that competitive equilibrium must be Pareto
e cient,we know that at a competitive equilibrium,p
Q
=p
W
= 2.
(f) What must be Ken’s consumption bundle in competitive equilibrium?
2 quiche,4 wine,How about Barbie’s consumption bundle?
2 quiche,4 wine,(Hint,You found competitive equilib-
rium prices above,You know Ken’s initial endowment and you know the
NAME 365
equilibrium prices,In equilibrium Ken’s income will be the value of his
endowment at competitive prices,Knowing his income and the prices,
you can compute his demand in competitive equilibrium,Having solved
for Ken’s consumption and knowing that total consumption by Ken and
Barbie equals the sum of their endowments,it should be easy to nd
Barbie’s consumption.)
(g) On the Edgeworth box for Ken and Barbie,draw in the competitive
equilibrium allocation and draw Ken’s competitive budget line (with black
ink).
29.5 (0) Linus Straight’s utility function is U(a;b)=a +2b,wherea
is his consumption of apples and b is his consumption of bananas,Lucy
Kink’s utility function isU(a;b)=minfa;2bg,Lucy initially has 12 apples
and no bananas,Linus initially has 12 bananas and no apples,In the
Edgeworth box below,goods for Lucy are measured from the upper right
corner of the box and goods for Linus are measured from the lower left
corner,Label the initial endowment point on the graph with the letter
E,Draw two of Lucy’s indi erence curves in red ink and two of Linus’s
indi erence curves in blue ink,Use black ink to draw a line through all
of the Pareto optimal allocations.
612
6
12
0
Linus Apples
Bananas Lucy
e
Red curves
Blue
curves
Black line
(a) In this economy,in competitive equilibrium,the ratio of the price of
apples to the price of bananas must be 1/2.
(b) Let a
S
be Linus’s consumption of apples and let b
S
be his consumption
of bananas,At competititive equilibrium,Linus’s consumption will have
to satisfy the budget constraint,a
s
+ 2 b
S
= 24,This gives us
one equation in two unknowns,To nd a second equation,consider Lucy’s
366 EXCHANGE (Ch,29)
consumption,In competitive equilibrium,total consumption of apples
equals the total supply of apples and total consumption of bananas equals
the total supply of bananas,Therefore Lucy will consume 12?a
s
apples
and 12?b
s
bananas,At a competitive equilibrium,Lucy will be
consuming at one of her kink points,The kinks occur at bundles where
Lucy consumes 2 apples for every banana that she consumes.
Therefore we know that
12?a
s
12?b
s
= 2.
(c) You can solve the two equations that you found above to nd the
quantities of apples and bananas consumed in competitive equilibrium
by Linus and Lucy,Linus will consume 6 units of apples and
9 units of bananas,Lucy will consume 6 units of apples
and 3 units of bananas.
29.6 (0) Consider a pure exchange economy with two consumers and
two goods,At some given Pareto e cient allocation it is known that both
consumers are consuming both goods and that consumer A has a marginal
rate of substitution between the two goods of 2,What is consumer B’s
marginal rate of substitution between these two goods? 2.
29.7 (0) Charlotte loves apples and hates bananas,Her utility function
is U(a;b)=a?
1
4
b
2
,wherea is the number of apples she consumes and
b is the number of bananas she consumes,Wilbur likes both apples and
bananas,His utility function is U(a;b)=a+2
p
b,Charlotte has an initial
endowment of no apples and 8 bananas,Wilbur has an initial endowment
of 16 apples and 8 bananas.
(a) On the graph below,mark the initial endowment and label it E.Use
red ink to draw the indi erence curve for Charlotte that passes through
this point,Use blue ink to draw the indi erence curve for Wilbur that
passes through this point.
NAME 367
0481216
4
8
12
Bananas
Apples
16
Wilbur
Charlotte
e
Red
line
Blue line
Black line
(b) If Charlotte hates bananas and Wilbur likes them,how many bananas
can Charlotte be consuming at a Pareto optimal allocation? 0.
On the graph above,use black ink to mark the locus of Pareto optimal
allocations of apples and bananas between Charlotte and Wilbur.
(c) We know that a competitive equilibrium allocation must be Pareto
optimal and the total consumption of each good must equal the total
supply,so we know that at a competitive equilibrium,Wilbur must be
consuming 16 bananas,If Wilbur is consuming this number of
bananas,his marginal utility for bananas will be 1/4 and his marginal
utility of apples will be 1,If apples are the numeraire,then
the only price of bananas at which he will want to consume exactly 16
bananas is 1/4,In competitive equilibrium,for the Charlotte-Wilbur
economy,Wilbur will consume 16 bananas and 14 apples
and Charlotte will consume 0 bananas and 2 apples.
29.8 (0) Mutt and Je have 8 cups of milk and 8 cups of juice to
divide between themselves,Each has the same utility function given by
u(m;j)=maxfm;jg,wherem is the amount of milk and j is the amount
of juice that each has,That is,each of them cares only about the larger
of the two amounts of liquid that he has and is indi erent to the liquid
of which he has the smaller amount.
368 EXCHANGE (Ch,29)
(a) Sketch an Edgeworth box for Mutt and Je,Use blue ink to show a
couple of indi erence curves for each,Use red ink to show the locus of
Pareto optimal allocations,(Hint,Look for boundary solutions.)
02468
2
4
6
Milk
Juice
8
Jeff
Mutt
Red
point
Red
point
Blue
curves
(Jeff)
Blue
curves
(Mutt)
29.9 (1) Remember Tommy Twit from Chapter 3,Tommy is happiest
when he has 8 cookies and 4 glasses of milk per day and his indi erence
curves are concentric circles centered around (8,4),Tommy’s mother,
Mrs,Twit,has strong views on nutrition,She believes that too much
of anything is as bad as too little,She believes that the perfect diet for
Tommy would be 7 glasses of milk and 2 cookies per day,In her view,
a diet is healthier the smaller is the sum of the absolute values of the
di erences between the amounts of each food consumed and the ideal
amounts,For example,if Tommy eats 6 cookies and drinks 6 glasses of
milk,Mrs,Twit believes that he has 4 too many cookies and 1 too few
glasses of milk,so the sum of the absolute values of the di erences from
her ideal amounts is 5,On the axes below,use blue ink to draw the locus
of combinations that Mrs,Twit thinks are exactly as good for Tommy
as (6;6),Also,use red ink to draw the locus of combinations that she
thinks is just as good as (8;4),On the same graph,use red ink to draw an
indi erence \curve" representing the locus of combinations that Tommy
likes just as well as 7 cookies and 8 glasses of milk.
NAME 369
2 4 6 8 10 12 14 16
2
4
6
8
10
12
14
16
Cookies
Milk
0
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
Black
line
Red curve
Blue curve
Tommy's red
curve
(a) On the graph,shade in the area consisting of combinations of cookies
and milk that both Tommy and his mother agree are better than 7 cookies
and 8 glasses of milk,where \better" for Mrs,Twit means she thinks it
is healthier,and where \better" for Tommy means he likes it better.
(b) Use black ink to sketch the locus of \Pareto optimal" bundles of
cookies and milk for Tommy,In this situation,a bundle is Pareto optimal
if any bundle that Tommy prefers to this bundle is a bundle that Mrs.
Twit thinks is worse for him,The locus of Pareto optimal points that you
just drew should consist of two line segments,These run from the point
(8,4) to the point 5,7 and from that point to the point 2,7.
29.10 (2) This problem combines equilibrium analysis with some of the
things you learned in the chapter on intertemporal choice,It concerns the
economics of saving and the life cycle on an imaginary planet where life
is short and simple,In advanced courses in macroeconomics,you would
study more-complicated versions of this model that build in more earthly
realism,For the present,this simple model gives you a good idea of how
the analysis must go.
370 EXCHANGE (Ch,29)
On the planet Drongo there is just one commodity,cake,and two
time periods,There are two kinds of creatures,\old" and \young." Old
creatures have an income of I units of cake in period 1 and no income in
period 2,Young creatures have no income in period 1 and an income of I
units of cake in period 2,There are N
1
old creatures and N
2
young crea-
tures,The consumption bundles of interest to creatures are pairs (c
1;c
2
),
where c
1
is cake in period 1 and c
2
is cake in period 2,All creatures,old
and young,have identical utility functions,representing preferences over
cake in the two periods,This utility function is U(c
1;c
2
)=c
a
1
c
1?a
2
,where
a is a number such that 0 a 1.
(a) If current cake is taken to be the numeraire,(that is,its price is
set at 1),write an expression for the present value of a consumption
bundle (c
1;c
2
),c
1
+ c
2
=(1 + r),Write down the present value
of income for old creatures I and for young creatures
I
=(1 + r),The budget line for any creature is determined by the
condition that the present value of its consumption bundle equals the
present value of its income,Write down this budget equation for old
creatures,c
1
+ c
2
=(1 + r)=I and for young creatures:
c
1
+c
2
=(1 +r)=I
=(1 +r).
(b) If the interest rate is r,write down an expression for an old creature’s
demand for cake in period 1 c
1
= aI andinperiod2 c
2
=
(1?a)I(1+r),Write an expression for a young creature’s demand
for cake in period 1 c
1
= aI
=(1 + r) andinperiod2 c
2
=
(1?a)I
,(Hint,If its budget line is p
1
c
1
+p
2
c
2
= W and its utility
function is of the form proposed above,then a creature’s demand function
for good 1 is c
1
= aW=p and demand for good 2 is c
2
=(1?a)W=p.) If
the interest rate is zero,how much cake would a young creature choose in
period 1? aI
,For what value of a would it choose the same amount
in each period if the interest rate is zero? a =1=2,If a =,55,
what would r have to be in order that young creatures would want to
consume the same amount in each period?,22.
(c) The total supply of cake in period 1 equals the total cake earnings of
all old creatures,since young creatures earn no cake in this period,There
are N
1
old creatures and each earns I units of cake,so this total is N
1
I.
Similarly,the total supply of cake in period 2 equals the total amount
earned by young creatures,This amount is N
2
I
.
NAME 371
(d) At the equilibrium interest rate,the total demand of creatures for
period-1 cake must equal total supply of period-1 cake,and similarly the
demand for period-2 cake must equal supply,If the interest rate is r,then
the demand for period-1 cake by each old creature is aI and the
demand for period-1 cake by each young creature is aI
=(1 + r).
Since there areN
1
old creatures and N
2
young creatures,the total demand
for period-1 cake at interest rate r is N
1
aI +N
2
aI
=(1 +r).
(e) Using the results of the last section,write an equation that sets the
demand for period-1 cake equal to the supply,N
1
aI+N
2
aI
=(1+
r)=N
1
I,Write a general expression for the equilibrium value of r,
given N
1
,N
2
,I,andI
,r =
N
2
I
a
N
1
I(1?a)
1,Solve this equation
for the special case when N
1
= N
2
and I = I
and a =11=21.
r = 10%.
(f) In the special case at the end of the last section,show that the interest
rate that equalizes supply and demand for period-1 cake will also equalize
supply and demand for period-2 cake,(This illustrates Walras’s law.)
Supply = demand for period 2 if N
1
(1?
a)I(1 + r)+N
2
(1?a)I
= N
2
I
.IfN
1
= N
2
and I = I
,then (1?a)(1 +r)+(1?a)=1.
If a =11=21,then r = 10%.
372 EXCHANGE (Ch,29)
Chapter 30 NAME
Production
Introduction,In this section we explore economywide production pos-
sibility sets,We pay special attention to the principle of comparative
advantage,The principle is simply that e ciency suggests that people
should specialize according to their relative abilities in di erent activities
rather than absolute abilities.
Example,For simplicity,let us imagine an island with only two people
on it,both of them farmers,They do not trade with the outside world.
Farmer A has 100 acres and is able to grow two crops,wheat and hay.
Each acre of his land that he plants to wheat will give him 50 bushels
of wheat,Each acre of his land that he plants to hay will give him 2
tons of hay,Farmer B also has 100 acres,but his land is not so good.
Each acre of his land yields only 20 bushels of wheat and only 1 ton of
hay,Notice that,although Farmer A’s land is better for both wheat and
hay,Farmer B’s land has comparative advantage in the production of hay.
This is true because the ratio of tons of hay to bushels of wheat per acre
2=50 =,04 for Farmer A and 1=20 =,05 for Farmer B,Farmer A,on the
other hand,has comparative advantage in the production of wheat,since
the ratio of bushels of wheat to tons of hay is 50=2 = 25 for Farmer A
and 20=1 = 20 for Farmer B,The e cient way to arrange production is to
have Farmer A \specialize" in wheat and farmer B \specialize" in hay,If
Farmer A devotes all of his land to wheat and Farmer B devotes all of his
land to hay,then total wheat production will be 5,000 bushels and total
hay production will be 100 tons,Suppose that they decide to produce
only 4,000 bushels of wheat,Given that they are going to produce 4,000
bushels of wheat,the most hay they can possibly produce together will
be obtained if Farmer A devotes 80 acres to wheat and 20 acres to hay
while Farmer B devotes all of his land to hay,Suppose that they decide to
produce 6,000 bushels of wheat,Then they will get the most hay possible
given that they are producing 6,000 bushels of wheat if Farmer A puts
all of his land into wheat and Farmer B puts 50 acres into wheat and the
remaining 50 acres into hay.
30.1 (0) Tip and Spot nally got into college,Tip can write term papers
at the rate of 10 pages per hour and solve workbook problems at the rate
of 3 per hour,Spot can write term papers at the rate of 6 pages per
hour and solve workbook problems at the rate of 2 per hour,Which of
these two has comparative advantage in solving workbook problems?
Spot.
374 PRODUCTION (Ch,30)
0 2040608010
20
40
60
80
Problems
Pages
120
Spot
Tip
Joint
30
18
12
36 96
(a) Tip and Spot each work 6 hours a day,They decide to work together
and to produce a combination of term papers and workbook problems
that lies on their joint production possibility frontier,On the above graph
plot their joint production possibility frontier,If they produce less than
60 pages of term papers,then Tip will write all of the term papers.
If they produce more than 60 pages of term papers,then Tip
will continue to specialize in writing term papers and Spot will also
write some term papers.
30.2 (0) Robinson Crusoe has decided that he will spend exactly 8
hours a day gathering food,He can either spend this time gathering
coconuts or catching sh,He can catch 1 sh per hour and he can gather
2 coconuts per hour,On the graph below,show Robinson’s production
possibility frontier between sh and coconuts per day,Write an equation
for the line segment that is Robinson’s production possibility frontier.
F +C=2=8.
NAME 375
0481216
4
8
12
Fish
Coconuts
16
Utility of 4
Utility of 8
Production
possibility frontier
(a) Robinson’s utility function is U(F;C)=FC,whereF is his daily
sh consumption and C is his daily coconut consumption,On the graph
above,sketch the indi erence curve that gives Robinson a utility of 4,
and also sketch the indi erence curve that gives him a utility of 8,How
many sh will Robinson choose to catch per day? 4,How many
coconuts will he collect? 8,(Hint,Robinson will choose a bundle
that maximizes his utility subject to the constraint that the bundle lies
in his production possibility set,But for this technology,his production
possibility set looks just like a budget set.)
(b) Suppose Robinson is not isolated on an island in the Paci c,but is
retired and lives next to a grocery store where he can buy either sh or
coconuts,If sh cost $1 per sh,how much would coconuts have to cost in
order that he would choose to consume twice as many coconuts as sh?
$.50,Suppose that a social planner decided that he wanted Robinson
to consume 4 sh and 8 coconuts per day,He could do this by setting
the price of sh equal to $1,the price of coconuts equal to $.50 and
giving Robinson a daily income of $ 8,
(c) Back on his island,Robinson has little else to do,so he pretends that
he is running a competitive rm that produces sh and coconuts,He
wonders,\What would the price have to be to make me do just what I
am actually doing? Let’s assume that sh are the numeraire and have a
price of $1,And let’s pretend that I have access to a competitive labor
market where I can hire as much labor as I want at some given wage.
There is a constant returns to scale technology,An hour’s labor produces
376 PRODUCTION (Ch,30)
one sh or 2 coconuts,At wages above $ 1 per hour,I wouldn’t
produce any sh at all,because it would cost me more than $1 to produce
a sh,At wages below $ 1 per hour,I would want to produce
in nitely many sh since I would make a pro t on every one,So the
only possible wage rate that would make me choose to produce a positive
nite amount of sh is $ 1 per hour,Now what would the price
of coconuts have to be to induce me to produce a positive number of
coconuts,At the wage rate I just found,the cost of producing a coconut
is $.50,At this price and only at this price,would I be willing to
produce a nite positive number of coconuts."
30.3 (0) We continue the story of Robinson Crusoe from the previous
problem,One day,while walking along the beach,Robinson Crusoe saw
a canoe in the water,In the canoe was a native of a nearby island,The
native told Robinson that on his island there were 100 people and that
they all lived on sh and coconuts,The native said that on his island,it
takes 2 hours to catch a sh and 1 hour to nd a coconut,The native said
that there was a competitive economy on his island and that sh were
the numeraire,The price of coconuts on the neighboring island must
have been $.50,The native o ered to trade with Crusoe at these
prices,\I will trade you either sh for coconuts or coconuts for sh at
the exchange rate of 2 coconuts for a sh," said he,\But you
will have to give me 1 sh as payment for rowing over to your island."
Would Robinson gain by trading with him? No,If so,would he buy
sh and sell coconuts or vice versa? Neither,Since their
prices are the same as the rate at which
he can transform the two goods,he can gain
nothing by trading.
(a) Several days later,Robinson saw another canoe in the water on the
other side of his island,In this canoe was a native who came from a
di erent island,The native reported that on his island,one could catch
only 1 sh for every 4 hours of shing and that it takes 1 hour to nd a
coconut,This island also had a competitive economy,The native o ered
to trade with Robinson at the same exchange rate that prevailed on his
own island,but said that he would have to have 2 sh in return for rowing
between the islands,If Robinson decides to trade with this island,he
chooses to produce only fish and will get his coconuts from
the other island,On the graph above,use black ink to draw Robinson’s
production possibility frontier if he doesn’t trade and use blue ink to
NAME 377
show the bundles he can a ord if he chooses to trade and specializes
appropriately,Remember to take away 2 sh to pay the trader.
0481216
4
8
12
Fish
Coconuts
16
Utility of 4
Utility of 8
Production
possibility frontier
(b) Write an equation for Crusoe’s \budget line" if he specializes appro-
priately and trades with the second trader,If he does this,what bundle
will he choose to consume? 3 fish,12 coconuts,Does he
like this bundle better than the bundle he would have if he didn’t trade?
Yes.
30.4 (0) The Isle of Veritas has made it illegal to trade with the outside
world,Only two commodities are consumed on this island,milk and
wheat,On the north side of the island are 40 farms,Each of these
farms can produce any combination of non-negative amounts of milk and
wheat that satis es the equation m =60?6w,On the south side of the
island are 60 farms,Each of these farms can produce any combination
of non-negative amounts of milk and wheat that satis es the equation
m =40?2w,The economy is in competitive equilibrium and 1 unit of
wheat exchanges for 4 units of milk.
(a) On the diagram below,use black ink to draw the production possibility
set for a typical farmer from the north side of the island,Given the
equilibrium prices,will this farmer specialize in milk,specialize in wheat,
or produce both goods? Specialize in milk,Use blue ink
to draw the budget that he faces in his role as a consumer if he makes
the optimal choice of what to produce.
378 PRODUCTION (Ch,30)
020406080
20
40
60
Wheat
Milk
80
Black line
Blue line
Red line
Pencil line
15
10
(b) On the diagram below,use black ink to draw the production possibility
set for a typical farmer from the south side of the island,Given the
equilibrium prices,will this farmer specialize in milk,specialize in wheat,
or produce both goods? Specialize in wheat,Use blue
ink to draw the budget that he faces in his role as a consumer if he makes
the optimal choice of what to produce.
020406080
20
40
60
Wheat
Milk
80
Black line
Blue line
Red line
Pencil line
(c) Suppose that peaceful Viking traders discover Veritas and o er to
exchange either wheat for milk or milk for wheat at an exchange rate of
NAME 379
1 unit of wheat for 3 units of milk,If the Isle of Veritas allows free trade
with the Vikings,then this will be the new price ratio on the island,At
this price ratio,would either type of farmer change his output? No.
(d) On the rst of the two graphs above,use red ink to draw the budget
for northern farmers if free trade is allowed and the farmers make the
right choice of what to produce,On the second of the two graphs,use
red ink to draw the budget for southern farmers if free trade is allowed
and the farmers make the right choice of what to produce.
(e) The council of elders of Veritas will meet to vote on whether to accept
the Viking o er,The elders from the north end of the island get 40
votes and the elders from the south end get 60 votes,Assuming that
everyone votes in the sel sh interest of his end of the island,how will
the northerners vote? In favor,How will the southerners vote?
Against,How is it that you can make a de nite answer to the last
two questions without knowing anything about the farmers’s consumption
preferences? The change strictly enlarges the
budget set for northerners and strictly
shrinks it for southerners.
(f) Suppose that instead of o ering to make exchanges at the rate of 1 unit
of wheat for 3 units of milk,the Vikings had o ered to trade at the price
of 1 unit of wheat for 1 unit of milk and vice versa,Would either type
of farmer change his output? Yes,Southerners would
now switch to specializing in milk,Use pencil
to sketch the budget line for each kind of farmer at these prices if he
makes the right production decision,How will the northerners vote now?
In favor,How will the southerners vote now? Depends
on their preferences about consumption.
Explain why it is that your answer to one of the last two questions has
to be \it depends." The two alternative budget
lines for southerners are not nested.
30.5 (0) Recall our friends the Mungoans of Chapter 2,They have a
strange two-currency system consisting of Blue Money and Red Money.
Originally,there were two prices for everything,a blue-money price and
a red-money price,The blue-money prices are 1 bcu per unit of ambrosia
and 1 bcu per unit of bubble gum,The red-money prices are 2 rcu’s per
unit of ambrosia and 4 rcu’s per unit of bubble gum.
380 PRODUCTION (Ch,30)
(a) Harold has a blue income of 9 and a red income of 24,If it has to
pay in both currencies for any purchase,draw its budget set in the graph
below,(Hint,You answered this question a few months ago.)
0 5 10 15 20
5
10
15
Ambrosia
Bubble gum
20
Part j budget set
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
(12,9)
9
12
6
9
Part a budget set
(b) The Free Choice party campaigns on a platform that Mungoans should
be allowed to purchase goods at either the blue-money price or the red-
money price,whichever they prefer,We want to construct Harold’s bud-
get set if this reform is instituted,To begin with,how much bubble gum
could Harold consume if it spent all of its blue money and its red money
on bubble gum? 15 units of bubble gum.
(c) How much ambrosia could it consume if it spent all of its blue
money and all of its red money on ambrosia? 21 units of
ambrosia.
(d) If Harold were spending all of its money of both colors on bubble gum
and it decided to purchase a little bit of ambrosia,which currency would
it use? The red currency.
(e) How much ambrosia could it buy before it ran out of that color money?
12 units of ambrosia.
(f) What would be the slope of this budget line before it ran out of that
kind of money? The slope would be?
1
2
.
NAME 381
(g) If Harold were spending all of its money of both colors on ambrosia
and it decided to purchase a little bit of bubble gum,which currency
would it use? The blue currency.
(h) How much bubble gum could it buy before it ran out of that color
money? He could buy 9 units of bubble gum.
(i) What would be the slope of this budget line before it ran out of that
kind of money? The slope would be?1.
(j) Use your answers to the above questions to draw Harold’s budget set
in the above graph if it could purchase bubble gum and ambrosia using
either currency.
382 PRODUCTION (Ch,30)
Chapter 31 NAME
Welfare
Introduction,Here you will look at various ways of determining social
preferences,You will check to see which of the Arrow axioms for ag-
gregating individual preferences are satis ed by these welfare relations.
You will also try to nd optimal allocations for some given social welfare
functions,The method for solving these last problems is analogous to
solving for a consumer’s optimal bundle given preferences and a budget
constraint,Two hints,Remember that for a Pareto optimal allocation
inside the Edgeworth box,the consumers’ marginal rates of substitution
will be equal,Also,in a \fair allocation," neither consumer prefers the
other consumer’s bundle to his own.
Example,A social planner has decided that she wants to allocate income
between 2 people so as to maximize
p
Y
1
+
p
Y
2
where Y
i
is the amount of
income that person i gets,Suppose that the planner has a xed amount
of money to allocate and that she can enforce any income distribution
such that Y
1
+ Y
2
= W,whereW is some xed amount,This planner
would have ordinary convex indi erence curves between Y
1
and Y
2
and
a \budget constraint" where the \price" of income for each person is 1.
Therefore the planner would set her marginal rate of substitution between
income for the two people equal to the relative price which is 1,When you
solve this,you will nd that she sets Y
1
= Y
2
= W=2,Suppose instead
that it is \more expensive" for the planner to give money to person 1 than
to person 2,(Perhaps person 1 is forgetful and loses money,or perhaps
person 1 is frequently robbed.) For example,suppose that the planner’s
budget is 2Y
1
+Y
2
= W,Then the planner maximizes
p
Y
1
+
p
Y
2
subject
to 2Y
1
+Y
2
= W,Setting her MRS equal to the price ratio,we nd that
p
Y
2
p
Y
1
=2,SoY
2
=4Y
1
,Therefore the planner makes Y
1
= W=5and
Y
2
=4W=5.
31.1 (2) One possible method of determining a social preference relation
is the Borda count,also known as rank-order voting,Each voter is asked
to rank all of the alternatives,If there are 10 alternatives,you give your
rst choice a 1,your second choice a 2,and so on,The voters’ scores for
each alternative are then added over all voters,The total score for an
alternative is called its Borda count,For any two alternatives,x and y,
if the Borda count of x is smaller than or the same as the Borda count
for y,thenx is \socially at least as good as" y,Suppose that there are
a nite number of alternatives to choose from and that every individual
has complete,reflexive,and transitive preferences,For the time being,
let us also suppose that individuals are never indi erent between any two
di erent alternatives but always prefer one to the other.
384 WELFARE (Ch,31)
(a) Is the social preference ordering de ned in this way complete? Yes.
Reflexive? Yes,Transitive? Yes.
(b) If everyone prefers x to y,will the Borda count rank x as socially
preferred to y? Explain your answer,Yes,If everybody
ranks x ahead of y,then everyone must give
x a higher rank than y,Then the sum of
the ranks of x must be larger than the sum
of the ranks of y.
(c) Suppose that there are two voters and three candidates,x,y,and
z,Suppose that Voter 1 ranks the candidates,x rst,z second,and y
third,Suppose that Voter 2 ranks the candidates,y rst,x second,and z
third,What is the Borda count for x? 3,For y? 4,For
z? 5,Now suppose that it is discovered that candidate z once
lifted a beagle by the ears,Voter 1,who has rather large ears himself,
is appalled and changes his ranking to x rst,y second,z third,Voter
2,who picks up his own children by the ears,is favorably impressed and
changes his ranking to y rst,z second,x third,Now what is the Borda
count for x? 4,For y? 3,For z? 5.
(d) Does the social preference relation de ned by the Borda count have
the property that social preferences between x and y depend only on how
people rank x versus y and not on how they rank other alternatives? Ex-
plain,No,In the above example,the ranking
of z changed,but nobody changed his mind
about whether x was better than y or vice
versa,Before the change x beat y,and after
the change y beat x.
31.2 (2) Suppose the utility possibility frontier for two individuals is
given by U
A
+2U
B
= 200,On the graph below,plot the utility frontier.
NAME 385
0 50 100 150 200
50
100
150
UA
UB
200
Blue line
Black line
Red line
Utility frontier
(a) In order to maximize a \Nietzschean social welfare function,"
W(U
A;U
B
)=maxfU
A;U
B
g,on the utility possibility frontier shown
above,one would set U
A
equal to 200 and U
B
equal to 0.
(b) If instead we use a Rawlsian criterion,W(U
A;U
B
)=minfU
A;U
B
g,
then the social welfare function is maximized on the above utility possi-
bility frontier where U
A
equals 66.66 and U
B
equals 66.66.
(c) Suppose that social welfare is given by W(U
A;U
B
)=U
1=2
A
U
1=2
B
.In
this case,with the above utility possibility frontier,social welfare is max-
imized where U
A
equals 100 and U
B
is 50,(Hint,You might
want to think about the similarities between this maximization problem
and the consumer’s maximization problem with a Cobb-Douglas utility
function.)
(d) Show the three social maxima on the above graph,Use black ink
to draw a Nietzschean isowelfare line through the Nietzschean maximum.
Use red ink to draw a Rawlsian isowelfare line through the Rawlsian
maximum,Use blue ink to draw a Cobb-Douglas isowelfare line through
the Cobb-Douglas maximum.
31.3 (2) A parent has two children named A and B and she loves both
of them equally,She has a total of $1,000 to give to them.
386 WELFARE (Ch,31)
(a) The parent’s utility function is U(a;b)=
p
a +
p
b,wherea is the
amount of money she gives to A and b istheamountofmoneyshegives
to B,How will she choose to divide the money? a = b = $500.
(b) Suppose that her utility function is U(a;b)=?
1
a
1
b
,How will she
choose to divide the money? a = b = $500.
(c) Suppose that her utility function is U(a;b)=loga +logb,How will
she choose to divide the money? a = b = $500.
(d) Suppose that her utility function is U(a;b)=minfa;bg,How will she
choose to divide the money? a = b = $500.
(e) Suppose that her utility function is U(a;b)=maxfa;bg,How will she
choose to divide the money? a =$1;000,b =0,or vice
versa.
(Hint,In each of the above cases,we notice that the parent’s problem is
to maximize U(a;b) subject to the constraint that a+b =1;000,This is
just like the consumer problems we studied earlier,It must be that the
parent sets her marginal rate of substitution between a and b equal to 1
since it costs the same to give money to each child.)
(f) Suppose that her utility function is U(a;b)=a
2
+ b
2
,How will
she choose to divide the money between her children? Explain why she
doesn’t set her marginal rate of substitution equal to 1 in this case.
She gives everything to one child,Her
preferences are not convex,indifference
curves are quarter circles.
31.4 (2) In the previous problem,suppose that A is a much more e cient
shopper than B so that A is able to get twice as much consumption
goods as B can for every dollar that he spends,Let a be the amount of
consumption goods that A gets and b the amount that B gets,We will
measure consumption goods so that one unit of consumption goods costs
$1 for A and $2 for B,Thus the parent’s budget constraint is a +2b =
1;000.
(a) If the mother’s utility function is U(a;b)=a+b,which child will get
more money? A,Which child will consume more goods? A.
NAME 387
(b) If the mother’s utility function is U(a;b)=a b,which child will get
more money? They get the same amount of money.
Which child will get to consume more? A consumes more.
(c) If the mother’s utility function is U(a;b)=?
1
a
1
b
,which child will
get more money? B gets more money,Which child will get
to consume more? They consume the same amount.
(d) If the mother’s utility function is U(a;b)=maxfa;bg,which child
will get more money? A,Which child will get to consume more?
A.
(e) If the mother’s utility function is U(a;b)=minfa;bg,which child will
get more money? B,Which child will get to consume more?
They consume the same amount.
Calculus 31.5 (1) Norton and Ralph have a utility possibility frontier that is given
by the following equation,U
R
+U
2
N
= 100 (where R and N signify Ralph
and Norton respectively).
(a) If we set Norton’s utility to zero,what is the highest possible utility
Ralph can achieve? 100,If we set Ralph’s utility to zero,what is
the best Norton can do? 10.
(b) Plot the utility possibility frontier on the graph below.
0 5 10 15 20
25
50
75
Norton's utility
Ralph's utility
100
388 WELFARE (Ch,31)
(c) Derive an equation for the slope of the above utility possibility curve.
dU
R
dU
N
=?2U
N
.
(d) Both Ralph and Norton believe that the ideal allocation is given by
maximizing an appropriate social welfare function,Ralph thinks that
U
R
= 75,U
N
= 5 is the best distribution of welfare,and presents the
maximization solution to a weighted-sum-of-the-utilities social welfare
function that con rms this observation,What was Ralph’s social welfare
function? (Hint,What is the slope of Ralph’s social welfare function?)
W = U
R
+10U
N
.
(e) Norton,on the other hand,believes that U
R
= 19,U
N
=9isthe
best distribution,What is the social welfare function Norton presents?
W = U
R
+18U
N
.
31.6 (2) Roger and Gordon have identical utility functions,U(x;y)=
x
2
+y
2
,There are 10 units of x and 10 units of y to be divided between
them,Roger has blue indi erence curves,Gordon has red ones.
(a) Draw an Edgeworth box showing some of their indi erence curves and
mark the Pareto optimal allocations with black ink,(Hint,Notice that
the indi erence curves are nonconvex.)
010
10
Roger
Gordon
Black lines
Black lines
Red curves
Blue
curves
Fair
Fair
y
x
(b) What are the fair allocations in this case? See diagram.
31.7 (2) Paul and David consume apples and oranges,Paul’s util-
ity function is U
P
(A
P;O
P
)=2A
P
+ O
P
and David’s utility function is
NAME 389
U
D
(A
D;O
D
)=A
D
+2O
D
,whereA
P
and A
D
are apple consumptions for
Paul and David,and O
P
and O
D
are orange consumptions for Paul and
David,There are a total of 12 apples and 12 oranges to divide between
Paul and David,Paul has blue indi erence curves,David has red ones.
Draw an Edgeworth box showing some of their indi erence curves,Mark
the Pareto optimal allocations on your graph.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
12
Apples
Oranges
0
Red curves
Blue
curves
Blue shading
Red shading
Pareto
optimal
Pareto optimal
Fair
Paul
David
12
(a) Write one inequality that says that Paul likes his own bundle as well
as he likes David’s and write another inequality that says that David likes
his own bundle as well as he likes Paul’s,2A
P
+O
P
2A
D
+O
D
and A
D
+2O
D
A
P
+2O
P
.
(b) Use the fact that at feasible allocations,A
P
+A
D
=12andO
P
+O
D
=
12 to eliminate A
D
and O
D
from the rst of these equations,Write the
resulting inequality involving only the variables A
P
and O
P
.Nowinyour
Edgeworth box,use blue ink to shade in all of the allocations such that
Paul prefers his own allocation to David’s,2A
P
+O
P
18.
(c) Use a procedure similar to that you used above to nd the allocations
where David prefers his own bundle to Paul’s,Describe these points
with an inequality and shade them in on your diagram with red ink.
A
D
+2O
D
18.
(d) On your Edgeworth box,mark the fair allocations.
31.8 (3) Romeo loves Juliet and Juliet loves Romeo,Besides love,
they consume only one good,spaghetti,Romeo likes spaghetti,but he
390 WELFARE (Ch,31)
also likes Juliet to be happy and he knows that spaghetti makes her
happy,Juliet likes spaghetti,but she also likes Romeo to be happy and
she knows that spaghetti makes Romeo happy,Romeo’s utility function
is U
R
(S
R;S
J
)=S
a
R
S
1?a
J
and Juliet’s utility function is U
J
(S
J;S
R
)=
S
a
J
S
1?a
R
,whereS
J
and S
R
are the amount of spaghetti for Romeo and
the amount of spaghetti for Juliet respectively,There is a total of 24 units
of spaghetti to be divided between Romeo and Juliet.
(a) Suppose that a =2=3,If Romeo got to allocate the 24 units of
spaghetti exactly as he wanted to,how much would he give himself?
16,How much would he give Juliet? 8,(Hint,Notice that this
problem is formally just like the choice problem for a consumer with a
Cobb-Douglas utility function choosing between two goods with a budget
constraint,What is the budget constraint?)
(b) If Juliet got to allocate the spaghetti exactly as she wanted to,how
much would she take for herself? 16,How much would she give
Romeo? 8.
(c) What are the Pareto optimal allocations? (Hint,An allocation
will not be Pareto optimal if both persons’ utility will be increased by
a gift from one to the other.) The Pareto optimal
allocations are all of the allocations in
which each person gets at least 8 units of
spaghetti.
(d) When we had to allocate two goods between two people,we drew an
Edgeworth box with indi erence curves in it,When we have just one
good to allocate between two people,all we need is an \Edgeworth line"
and instead of indi erence curves,we will just have indi erence dots.
Consider the Edgeworth line below,Let the distance from left to right
denote spaghetti for Romeo and the distance from right to left denote
spaghetti for Juliet.
(e) On the Edgeworth line you drew above,show Romeo’s favorite point
and Juliet’s favorite point.
NAME 391
(f) Suppose that a =1=3,If Romeo got to allocate the spaghetti,how
much would he choose for himself? 8,If Juliet got to allocate
the spaghetti,how much would she choose for herself? 8,Label
the Edgeworth line below,showing the two people’s favorite points and
the locus of Pareto optimal points.
(g) When a =1=3,at the Pareto optimal allocations what do Romeo and
Juliet disagree about? Romeo wants to give spaghetti
to Juliet,but she doesn’t want to take it.
Juliet wants to give spaghetti to Romeo,
but he doesn’t want to take it,Both like
spaghetti for themselves,but would rather
the other had it.
31.9 (2) Hat eld and McCoy hate each other but love corn whiskey.
Because they hate for each other to be happy,each wants the other to
have less whiskey,Hat eld’s utility function isU
H
(W
H;W
M
)=W
H
W
2
M
and McCoy’s utility function is U
M
(W
M;W
H
)=W
M
W
2
H
,whereW
M
is McCoy’s daily whiskey consumption and W
H
is Hat eld’s daily whiskey
consumption (both measured in quarts),There are 4 quarts of whiskey
to be allocated.
(a) If McCoy got to allocate all of the whiskey,how would he allocate it?
All for himself,If Hat eld got to allocate all of the whiskey,
how would he allocate it? All for himself.
(b) If each of them gets 2 quarts of whiskey,what will the utility of each
of them be2,If a bear spilled 2 quarts of their whiskey and they
divided the remaining 2 quarts equally between them,what would the
utility of each of them be? 0,If it is possible to throw away some
of the whiskey,is it Pareto optimal for them each to consume 2 quarts of
whiskey? No.
392 WELFARE (Ch,31)
(c) If it is possible to throw away some whiskey and they must consume
equal amounts of whiskey,how much should they throw away? 3
quarts.
Chapter 32 NAME
Externalities
Introduction,When there are externalities,the outcome from indepen-
dently chosen actions is typically not Pareto e cient,In these exercises,
you explore the consequences of alternative mechanisms and institutional
arrangements for dealing with externalities.
Example,A large factory pumps its waste into a nearby lake,The lake
is also used for recreation by 1,000 people,Let X betheamountofwaste
that the rm pumps into the lake,Let Y
i
be the number of hours per day
that person i spends swimming and boating in the lake,and let C
i
be the
number of dollars that person i spends on consumption goods,If the rm
pumps X units of waste into the lake,its pro ts will be 1;200X?100X
2
.
Consumers have identical utility functions,U(Y
i;C
i;X)=C
i
+9Y
i
Y
2
i
XY
i
,and identical incomes,Suppose that there are no restrictions
on pumping waste into the lake and there is no charge to consumers for
using the lake,Also,suppose that the factory and the consumers make
their decisions independently,The factory will maximize its pro ts by
choosing X = 6,(Set the derivative of pro ts with respect to X equal
to zero.) When X = 6,each consumer maximizes utility by choosing
Y
i
=1:5,(Set the derivative of utility with respect to Y
i
equal to zero.)
Notice from the utility functions that when each person is spending 1.5
hours a day in the lake,she will be willing to pay 1.5 dollars to reduce
X by 1 unit,Since there are 1,000 people,the total amount that people
will be willing to pay to reduce the amount of waste by 1 unit is $1,500.
If the amount of waste is reduced from 6 to 5 units,the factory’s pro ts
will fall from $3,600 to $3,500,Evidently the consumers could a ord to
bribe the factory to reduce its waste production by 1 unit.
32.1 (2) The picturesque village of Horsehead,Massachusetts,lies on a
bay that is inhabited by the delectable crustacean,homarus americanus,
also known as the lobster,The town council of Horsehead issues permits
to trap lobsters and is trying to determine how many permits to issue.
The economics of the situation is this:
1,It costs $2,000 dollars a month to operate a lobster boat.
2,If there are x boats operating in Horsehead Bay,the total revenue
from the lobster catch per month will be f(x)=$1;000(10x?x
2
).
(a) In the graph below,plot the curves for the average product,AP(x)=
f(x)=x,and the marginal product,MP(x)=10;000?2;000x.Inthe
same graph,plot the line indicating the cost of operating a boat.
394 EXTERNALITIES (Ch,32)
2 4 6 8 10 12
2
4
6
8
10
12
x
AP,MP
0
AP
Cost
MP
(b) If the permits are free of charge,how many boats will trap lobsters
in Horsehead,Massachusetts? (Hint,How many boats must enter before
there are zero pro ts?) 8 boats.
(c) What number of boats maximizes total pro ts? Set MP
equal to cost to give 10?2x =2,orx =4
boats.
(d) If Horsehead,Massachusetts,wants to restrict the number of boats to
the number that maximizes total pro ts,how much should it charge per
month for a lobstering permit? (Hint,With a license fee of F thousand
dollars per month,the marginal cost of operating a boat for a month
would be (2 + F) thousand dollars per month.) $4,000 per
month.
32.2 (2) Suppose that a honey farm is located next to an apple orchard
and each acts as a competitive rm,Let the amount of apples produced
be measured by A and the amount of honey produced be measured by H.
The cost functions of the two rms are c
H
(H)=H
2
=100 and c
A
(A)=
A
2
=100?H,The price of honey is $2 and the price of apples is $3.
(a) If the rms each operate independently,the equilibrium amount of
honey produced will be 100 and the equilibrium amount of apples
produced will be 150.
NAME 395
(b) Suppose that the honey and apple rms merged,What would be
the pro t-maximizing output of honey for the combined rm? 150.
What would be the pro t-maximizing amount of apples? 150.
(c) What is the socially e cient output of honey? 150,If the rms
stayed separate,how much would honey production have to be subsidized
to induce an e cient supply? $1 per unit.
32.3 (2) In El Carburetor,California,population 1,001,there is not
much to do except to drive your car around town,Everybody in town
is just like everybody else,While everybody likes to drive,everybody
complains about the congestion,noise,and pollution caused by tra c,A
typical resident’s utility function is U(m;d;h)=m+16d?d
2
6h=1;000,
where m is the resident’s daily consumption of Big Macs,d is the number
of hours per day that he,himself,drives,and h is the total amount of
driving (measured in person-hours per day) done by all other residents
of El Carburetor,The price of Big Macs is $1 each,Every person in El
Carburetor has an income of $40 per day,To keep calculations simple,
suppose it costs nothing to drive a car.
(a) If an individual believes that the amount of driving he does won’t af-
fect the amount that others drive,how many hours per day will he choose
to drive? 8,(Hint,What value of d maximizes U(m;d;h)?)
(b) If everybody chooses his best d,then what is the total amount h of
driving by other persons? 8,000.
(c) What will be the utility of each resident? 56.
(d) If everybody drives 6 hours a day,what will be the utility level of a
typical resident of El Carburetor? 64.
(e) Suppose that the residents decided to pass a law restricting the total
number of hours that anyone is allowed to drive,How much driving
should everyone be allowed if the objective is to maximize the utility of
the typical resident? (Hint,Rewrite the utility function,substituting
1;000d for h,and maximize with respect to d.) 5 hours per
day.
396 EXTERNALITIES (Ch,32)
(f) The same objective could be achieved with a tax on driving,How
much would the tax have to be per hour of driving? (Hint,This price
would have to equal an individual’s marginal rate of substitution between
driving and Big Macs when he is driving the \right" amount.) $6.
32.4 (3) Tom and Jerry are roommates,They spend a total of 80 hours
a week together in their room,Tom likes loud music,even when he sleeps.
His utility function is U
T
(C
T;M)=C
T
+ M,whereC
T
is the number
of cookies he eats per week and M is the number of hours of loud music
per week that is played while he is in their room,Jerry hates all kinds
of music,His utility function is U(C
J;M)=C
J
M
2
=12,Every week,
Tom and Jerry each get two dozen chocolate chip cookies sent from home.
They have no other source of cookies,We can describe this situation with
a box that looks like an Edgeworth box,The box has cookies on the
horizontal axis and hours of music on the vertical axis,Since cookies are
private goods,the number of cookies that Tom consumes per week plus
the number that Jerry consumes per week must equal 48,But music in
their room is a public good,Each must consume the same number of
hours of music,whether he likes it or not,In the box,let the height of a
point represent the total number of hours of music played in their room
per week,Let the distance of the point from the left side of the box be
\cookies for Tom" and the distance of the point from the right side of the
box be \cookies for Jerry."
012243648
20
40
60
Cookies
Music
80
Blue Line
Red Line
Blue Shading
a
b
Blue Line
Red Line
Tom
Jerry
(a) Suppose the dorm’s policy is that you must have your roommate’s
permission to play music,The initial endowment in this case denotes the
situation if Tom and Jerry make no deals,There would be no music,and
each person would consume 2 dozen cookies a week,Mark this initial
endowment on the box above with the label A,Use red ink to sketch
the indi erence curve for Tom that passes through this point,and use
NAME 397
blue ink to sketch the indi erence curve for Jerry that passes through
this point,[Hint,When you draw Jerry’s indi erence curve,remember
two things,(1) He hates music,so he prefers lower points on the graph
to higher ones,(2) Cookies for Jerry are measured from the right side
of the box,so he prefers points that are toward the left side of the box
to points that are toward the right.] Use blue ink to shade in the points
representing situations that would make both roommates better o than
they are at point A.
(b) Suppose,alternatively,that the dorm’s policy is \rock-n-roll is good
for the soul." You don’t need your roommate’s permission to play music.
Then the initial endowment is one in which Tom plays music for all of
the 80 hours per week that they are in the room together and where each
consumes 2 dozen cookies per week,Mark this endowment point in the
box above and label it B,Use red ink to sketch the indi erence curve
for Tom that passes through this point,and use blue ink to sketch the
indi erence curve for Jerry that passes through this point,Given the
available resources,can both Tom and Jerry be made better o than they
areatpointB? Yes.
Calculus 32.5 (0) A clothing store and a jewelry store are located side by side
in a small shopping mall,The number of customers who come to the
shopping mall intending to shop at either store depends on the amount
of money that the store spends on advertising per day,Each store also
attracts some customers who came to shop at the neighboring store,If
the clothing store spends $x
C
per day on advertising,and the jeweler
spends $x
J
on advertising per day,then the total pro ts per day of the
clothing store are
C
(x
C;x
J
)=(60+x
J
)x
C
2x
2
C
,and the total pro ts
per day of the jewelry store are
J
(x
C;x
J
) = (105 + x
C
)x
J
2x
2
J
.(In
each case,these are pro ts net of all costs,including advertising.)
(a) If each store believes that the other store’s amount of advertising
is independent of its own advertising expenditure,then we can nd the
equilibrium amount of advertising for each store by solving two equations
in two unknowns,One of these equations says that the derivative of the
clothing store’s pro ts with respect to its own advertising is zero,The
other equation requires that the derivative of the jeweler’s pro ts with
respect to its own advertising is zero,These two equations are written as
60 +x
J
4x
C
=0 and 105 +x
C
4x
J
=0,The
equilibrium amounts of advertising are x
C
=23 and x
J
=32.
Pro ts of the clothing store are $1,058 and pro ts of the jeweler
are 2,048.
398 EXTERNALITIES (Ch,32)
(b) The extra pro t that the jeweler would get from an extra dollar’s
worth of advertising by the clothing store is approximately equal to the
derivative of the jeweler’s pro ts with respect to the clothing store’s ad-
vertising expenditure,When the two stores are doing the equilibrium
amount of advertising that you calculated above,a dollar’s worth of ad-
vertising by the clothing store would give the jeweler an extra pro t of
about $32 and an extra dollar’s worth of advertising by the jeweler
would give the clothing store an extra pro t of about $23.
(c) Suppose that the owner of the clothing store knows the pro t functions
of both stores,She reasons to herself as follows,Suppose that I can decide
how much advertising I will do before the jeweler decides what he is going
to do,When I tell him what I am doing,he will have to adjust his behavior
accordingly,I can calculate his reaction function to my choice of x
C
,by
setting the derivative of his pro ts with respect to his own advertising
equal to zero and solving for his amount of advertising as a function of
my own advertising,When I do this,I nd thatx
J
= 105=4+x
C
=4.
If I substitute this value of x
J
into my pro t function and then choose x
C
to maximize my own pro ts,I will choose x
C
= 24.64 and he will
choose x
J
= 32.41,In this case my pro ts will be $1,062.72
and his pro ts will be $2,100.82.
(d) Suppose that the clothing store and the jewelry store have the same
pro t functions as before but are owned by a single rm that chooses
the amounts of advertising so as to maximize the sum of the two stores’
pro ts,The single rm would choose x
C
= $37.50 and x
J
=
$45,Without calculating actual pro ts,can you determine whether
total pro ts will be higher,lower,or the same as total pro ts would be
when they made their decisions independently? Yes,they
would be higher,How much would the total pro ts be?
$3,487.50.
32.6 (2) The cottagers on the shores of Lake Invidious are an unsavory
bunch,There are 100 of them,and they live in a circle around the lake.
Each cottager has two neighbors,one on his right and one on his left.
There is only one commodity,and they all consume it on their front
lawns in full view of their two neighbors,Each cottager likes to consume
the commodity but is very envious of consumption by the neighbor on
his left,Curiously,nobody cares what the neighbor on his right is doing.
In fact every consumer has a utility function U(c;l)=c?l
2
,wherec is
NAME 399
his own consumption and l is consumption by his neighbor on the left.
Suppose that each consumer owns 1 unit of the consumption good and
consumes it.
(a) Calculate his utility level,0.
(b) Suppose that each consumer consumes only 3=4 of a unit,Will all
individuals be better o or worse o? Better off.
(c) What is the best possible consumption if all are to consume the same
amount? 1=2.
(d) Suppose that everybody around the lake is consuming 1 unit,Can
any two people make themselves both better o either by redistributing
consumption between them or by throwing something away? No.
(e) How about a group of three people? No.
(f) How large is the smallest group that could cooperate to bene t all its
members? 100.
32.7 (0) Jim and Tammy are partners in Business and in Life,As
is all too common in this imperfect world,each has a little habit that
annoys the other,Jim’s habit,we will call activity X,and Tammy’s
habit,activity Y.Letx be the amount of activity X that Jim pursues
and y be the amount of activity Y that Tammy pursues,Due to a series
of unfortunate reverses,Jim and Tammy have a total of only $1,000,000
a year to spend,Jim’s utility function is U
J
= c
J
+ 500 lnx?10y,where
c
J
is the money he spends per year on goods other than his habit,x is
the number of units of activity X that he consumes per year,and y is the
number of units of activity Y that Tammy consumes per year,Tammy’s
utility function is U
T
= c
T
+ 500 lny?10x,wherec
T
istheamountof
money she spends on goods other than activity Y,y is the number of
units of activity Y that she consumes,and x is the number of units of
activity X that Jim consumes,Activity X costs $20 per unit,Activity
Y costs $100 per unit.
(a) Suppose that Jim has a right to half their joint income and Tammy
has a right to the other half,Suppose further that they make no bargains
with each other about how much activity X and Y they will consume.
How much of activity X will Jim choose to consume? 25 units.
How much of activity Y will Tammy consume? 5 units.
400 EXTERNALITIES (Ch,32)
(b) Because Jim and Tammy have quasilinear utility functions,their util-
ity possibility frontier includes a straight line segment,Furthermore,this
segment can be found by maximizing the sum of their utilities,Notice
that
U
J
(c
J;x;y)+U
T
(c
T;x;y)
= c
J
+ 500 lnx?20y +c
T
+ 500 lny?10x
= c
J
+c
T
+ 500 lnx?10x+ 500 lny?10y:
But we know from the family budget constraint that c
J
+c
T
=1;000;000?
20x?100y,Therefore we can write
U
J
(c
J;x;y)+U
T
(c
T;x;y)=1;000;000?20x?100y + 500 lnx?10x
+ 500 lny?10y
=1;000;000 + 500 lnx+ 500 lny?30x?110y:
Let us now choose x and y so as to maximize U
J
(c
J;x;y)+U
T
(c
T;x;y).
Setting the partial derivatives with respect to x and y equal to zero,we
nd the maximum where x = 16.67 and y = 4.54,Ifweplug
these numbers into the equation U
J
(c
J;x;y)+U
T
(c
T;x;y)=1;000;000+
500 lnx+500 lny?30x?110y,we nd that the utility possibility frontier is
described by the equation U
J
+U
C
= 1,001,163.86,(You need
a calculator or a log table to nd this answer.) Along this frontier,the
total expenditure on the annoying habits X and Y by Jim and Tammy is
787:34,The rest of the $1,000,000 is spent on c
J
and c
T
,Each possible
way of dividing this expenditure corresponds to a di erent point on the
utility possibility frontier,The slope of the utility possibility frontier
constructed in this way is -1.
32.8 (0) An airport is located next to a large tract of land owned by a
housing developer,The developer would like to build houses on this land,
but noise from the airport reduces the value of the land,The more planes
that fly,the lower is the amount of pro ts that the developer makes,Let
X be the number of planes that fly per day and let Y be the number of
houses that the developer builds,The airport’s total pro ts are 48X?X
2
,
and the developer’s total pro ts are 60Y?Y
2
XY,Let us consider the
outcome under various assumptions about institutional rules and about
bargaining between the airport and the developer.
(a) \Free to Choose with No Bargaining",Suppose that no bargains can
be struck between the airport and the developer and that each can decide
on its own level of activity,No matter how many houses the developer
builds,the number of planes per day that maximizes pro ts for the airport
is 24,Given that the airport is landing this number of planes,the
NAME 401
number of houses that maximizes the developer’s pro ts is 18,Total
pro ts of the airport will be 576 and total pro ts of the developer
will be 324,The sum of their pro ts will be 900.
(b) \Strict Prohibition",Suppose that a local ordinance makes it illegal
to land planes at the airport because they impose an externality on the
developer,Then no planes will fly,The developer will build 30
houses and will have total pro ts of 900.
(c) \Lawyer’s Paradise",Suppose that a law is passed that makes the
airport liable for all damages to the developer’s property values,Since the
developer’s pro ts are 60Y?Y
2
XY and his pro ts would be 60Y?Y
2
if no planes were flown,the total amount of damages awarded to the
developer will be XY,Therefore if the airport flies X planes and the
developer builds Y houses,then the airport’s pro ts after it has paid
damages will be 48X?X
2
XY,The developer’s pro ts including the
amount he receives in payment of damages will be 60Y?Y
2
XY+XY =
60Y?Y
2
,To maximize his net pro ts,the developer will choose to build
30 houses no matter how many planes are flown,To maximize its
pro ts,net of damages,the airport will choose to land 9 planes.
Total pro ts of the developer will be 900 and total pro ts of the
airport will be 81,The sum of their pro ts will be 981.
Calculus 32.9 (1) This problem concerns the airport and the developer from the
previous problem.
(a) \The Conglomerate",Suppose that a single rm bought the de-
veloper’s land and the airport and managed both to maximize joint
pro ts,Total pro ts,expressed as a function of X and Y would be
48X?X
2
+60Y?Y
2
XY Total pro ts are maximized
when X = 12 and Y = 24,Total pro ts are then equal to
1,008.
(b) \Dealing",Suppose that the airport and the developer remain in-
dependent,If the original situation was one of \free to choose," could
the developer increase his net pro ts by bribing the airport to cut back
one flight per day if the developer has to pay for all of the airport’s lost
pro ts? Yes,The developer decides to get the airport to reduce its
402 EXTERNALITIES (Ch,32)
flights by paying for all lost pro ts coming from the reduction of flights.
To maximize his own net pro ts,how many flights per day should he pay
the airport to eliminate? 12.
32.10 (1) Every morning,6,000 commuters must travel from East Potato
to West Potato,Commuters all try to minimize the time it takes to get to
work,There are two ways to make the trip,One way is to drive straight
across town,throught the heart of Middle Potato,The other way is to take
the Beltline Freeway that circles the Potatoes,The Beltline Freeway is
entirely uncongested,but the drive is roundabout and it takes 45 minutes
to get from East Potato to West Potato by this means,The road through
Middle Potato is much shorter,and if it were uncongested,it would take
only 20 minutes to travel from East Potato to West Potato by this means.
But this road can get congested,In fact,if the number of commuters who
use this road is N,then the number of minutes that it takes to drive from
East Potato to West Potato through Middle Potato is 20 +N=100.
(a) Assuming that no tolls are charged for using either road,in equilib-
rium how many commuters will use the road through Middle Potato?
2,500,What will be the total number of person-minutes per
day spent by commuters traveling from East Potato to West Potato?
45 6;000 = 270;000.
(b) Suppose that a social planner controlled access to the road through
Middle Potato and set the number of persons permitted to travel this
way so as to minimize the total number of person-minutes per day spent
by commuters traveling from East Potato to West Potato,Write an
expression for the total number of person-minutes per day spent by
commuters traveling from East Potato to West Potato as a function of
the number N of commuters permitted to travel on the Middle Potato
road,N(20 +
N
100
)+(6;000?N)45,How many com-
muters per day would the social planner allow to use the road through
Middle Potato? 1,250,In this case,how long would it take com-
muters who drove through Middle Potato to get to work? 32.5
minutes,What would be the total number of person-minutes per
day spent by commuters traveling from East Potato to West Potato?
1;250 32:5+4;750 45 = 254;375
NAME 403
(c) Suppose that commuters value time saved from commuting at $w per
minute and that the Greater Potato metropolitan government charges a
toll for using the Middle Potato road and divides the revenue from this
toll equally among all 6,000 commuters,If the government chooses the
toll in such a way as to minimize the total amount of time that people
spend commuting from East Potato to West Potato,how high should it
set the toll? $12:5w,How much revenue will it collect per day from
this toll? $15;625w,Show that with this policy every commuter is
better o than he or she was without the tolls and evaluate the gain per
consumer in dollars,Before the toll was in place,
all commuters spent 45 minutes traveling
to work,With the toll in place,commuters
who travel on the Beltline still spend
45 minutes traveling to work and commuters
who travel through Middle Potato are
indifferent between spending 45 minutes
traveling on the Beltline and paying the
toll to go through Middle Potato,Thus
nobody would be worse off even if toll
revenue were wasted,But everybody gets
back about $2:6w per day from the toll
revenue,so all are better off.
32.11 (2) Suppose that the Greater Potato metropolitan government
rejects the idea of imposing tra c tolls and decides instead to rebuild the
Middle Potato highway so as to double its capacity,With the doubled
capacity,the amount of time it takes to travel from East Potato to West
Potato on the Middle Potato highway is given by 20 + N=200,where
N is the number of commuters who use the Middle Potato highway,In
the new equilibrium,with expanded capacity and no tolls,how many
commuters will use the Middle Potato highway? 5,000 How long
will it take users of the Middle Potato highway to get to work? 45
minutes How many person-minutes of commuting time will be saved
404 EXTERNALITIES (Ch,32)
by expanding the capacity of the Middle Potato highway? 0 Do
you think people will think that this capacity expansion will be a good
use of their tax dollars? No.
Chapter 33 NAME
Law
Introduction,These problems are based on the survey of law and eco-
nomics found in your text,We hope that you will be pleased to see that
the techniques you learned in earlier chapters can provide useful insights
into issues that arise in law.
33.1 (2) Madame Norrell makes her living in Florida by stealing gold
buttons from designer jackets in expensive boutiques,She can sell each
button to a fence for $10,The maximum number of buttons she can steal
in a day is 50,Florida has a law against button theft,There is a ne of F
dollars if someone is caught stealing any number of buttons,The police
catch about 10 percent of all button thieves,and these must pay the ne
and forfeit any buttons they have stolen.
(a) Suppose that the only thing that Madame Norrell cares about is her
expected pro ts,What is the smallest ne that will discourage Madame
Norrell from stealing buttons? 4,500.
(b) Due to an oversupply of buttons,Madame Norrell’s fence announces
that he will no longer pay her a flat price for buttons,If Madame Norrell
delivers x buttons,she will be paid 5 lnx,(Assume that Madame Norrell
will take at least 1 button if she takes any at all.) Initially Madame
Norrell has $100,and the ne if she is caught stealing x buttons is $3
per button,However,she only has to pay the ne if she is caught,in
which case all her buttons are con scated and she collects zero from the
fence,How many buttons will Madame Norrell try to take,assuming she
maximizes her expected pro t? 15.
(c) What does the ne per button have to be to induce Madame Norrell
to limit herself to taking 10 buttons? 4.50.
(d) Now assume that Madame Norrell is an expected utility maximizer.
With probability,10,she is caught with x buttons and pays a ne of 3x.
With probability,90,she gets away with x buttons,which she can sell for
$10 each,She cares about the expected utility of her wealth,with von
Neumann-Morgenstern utility function lnx,Initially her wealth is $100.
How many buttons will she take? 29.
33.2 (2) Jim Levson rides his bike through the forest with reckless
abandon,while Dick Stout likes to hike in the woods,Let s be the speed
in miles per hour that James rides and w the speed with which Dick walks.
406 LAW (Ch,33)
Jim’s utility depends on how fast he rides and how many dollars he has,
while Dick’s utility depends on how fast he walks and how much money
he has.
U
Jim
=6
p
s?s+m
U
Dick
=4
p
w?w +m:
(a) How fast will Dick walk? 4 miles per hour,How fast will
Jim ride? 9 miles per hour.
(b) Alas,since Jim and Dick are both moving in the same forest,there
is some chance that Jim will run into Dick,Suppose that the expected
cost to Dick of such an accident depends on the speed that each moves:
c(s;w)=
s
2
16
+
w
2
2
,(Assume that Jim is tter than Dick and will incur
negligable costs in an accident.) If Dick has to pay the entire cost of an
accident,how fast will he walk? 1 mile per hour,How fast
will Jim ride? 9 miles per hour.
(c) Suppose that Jim now has full liability and must pay any costs that he
imposes on Dick,How fast will Dick walk? 4 miles per hour.
How fast will Jim ride? 4 miles per hour.
(d) What are the socially optimal speeds for Jim and Dick to move? Dick
should walk 1 mile per hour and Jim should ride 4 miles
per hour.
33.3 (2) Derri Bottled Water of Christchurch,New Zealand,sells bottled
water from \the bottom of the world." Due to a number of fortuitous
circumstances,Derri has a monopoly on bottled water in the South Island.
The demand for bottled water in the South Island is p(x)=10?x=200,
and the cost of producing x bottles of water is c(x)=x
2
=200,Here the
price is measured in New Zealand dollars and the quantity is measured
in 1;000 cases per month.
(a) Draw the demand curve,the marginal revenue curve,and the marginal
cost curve in the graph below,The pro t-maximizing quantity is 500
cases of water,and the pro t maximizing price is 7.5 dollars per case.
NAME 407
200 400 600 800 1000 1200
2
4
6
8
10
12
Quantity
Price
0
5
500
mc
Demand
mr
7.5
(b) The New Zealand antitrust authorities now bring action against Derri
waters for monopolizing the bottled water industry,They announce that
during the coming year they will con scate 50 percent of Derri’s prof-
its,Part of these con scated pro ts will be used to distribute rebates
to the consumers of bottled water,In particular,each purchaser of bot-
tled water will receive $2 per case from the government,How does this
rebate influence the demand for bottled water? Shifts it up
by $2 What is the equation for the new inverse demand curve?
p(x)=12?x=200.
(c) Solve for the new levels of output and price,Draw the marginal
revenue curve,marginal cost curve,and inverse demand curve in the
following graph.
408 LAW (Ch,33)
200 400 600 800 1000 1200
2
4
6
8
10
12
Quantity
Price
0
mc
Demand
mr
625
8
1_
8
Chapter 34 NAME
Information Technology
Introduction,We all recognize that information technology has revolu-
tionized the way we produce and consume,Some think that it is necessary
to have a \new economics" to understand this New Economy,We think
not,The economic tools that you have learned in this course can o er
very powerful insights into the economics of information technology,as
we illustrate in this set of problems.
34.1 (2) Bill Barriers,the president of MightySoft software company is
about to introduce a new computer operating system called DoorKnobs.
Because it is easier to swap les with people who have the same operating
system,the amount people are willing to pay to have DoorKnobs on their
computers is greater the larger they believe DoorKnobs’s market share to
be.
The perceived market share for DoorKnobs is the fraction of all com-
puters that the public believes is using DoorKnobs,When the price of
DoorKnobs is p,thenitsactual market share is the fraction of all com-
puter owners that would be willing to pay at least $p to have DoorKnobs
installed on their computers,Market researchers have discovered that if
DoorKnobs’s perceived market share is s and the price of DoorKnobs is
$p,then its actual market share will be x,wherex is related to the price
p and perceived market share s by the formula
p = 256s(1?x),(1)
In the short run,MightySoft can influence the perceived market share
of DoorKnobs by publicity,advertising,giving liquor and gifts to friendly
journalists,and giving away copies in conspicuous ways,In the long run,
the truth will emerge,and DoorKnobs’s perceived market share s must
equal its actual market share x.
(a) If the perceived market share is s,then the demand curve for Door-
Knobs is given by Equation 1,On the graph below,draw the demand
curve relating price to actual market share in the case in which Door-
Knobs’s perceived market share is s =1=2,Label this curve s =1=2.
(b) On the demand curve that you just drew with s =1=2,mark a
red dot on the point at which the actual market share of DoorKnobs is
1/2,(This is the point on the demand curve directly above x =1=2.)
What is the price at which half of the computer owners actually want to
buy DoorKnobs,given that everybody believes that half of all computer
owners want to buy DoorKnobs? $64
410 INFORMATION TECHNOLOGY (Ch,34)
(c) On the same graph,draw and label a separate demand curve for the
case where DoorKnobs’s perceived market share s takes on each of the
following values,s =1/8,1/4,3/4,7/8,1.
2 4 6 8 10 12 14 16
32
64
96
128
160
192
224
256
Actual Market Share (in sixteenths)
Willingness to Pay
0
S=1/8
S=1/4
S=1/2
S=3/4
S=7/8
S=1
(d) On the demand curve for a perceived market share of s =1=4,put
a red dot on the point at which the actual market share of DoorKnobs
is 1/4,(This is the point on this demand curve directly above x =1=4.)
If the perceived market share of DoorKnobs is 1/4,at what price is the
actual market share of DoorKnobs also 1/4? $48
(e) Just as you did for s =1=2ands =1=4,make red marks on the
demand curves corresponding to s = 1/8,3/4,7/8,and 1,showing the
price at which the actual market share is s,given that the perceived
market share is s.
(f) Let us now draw the long-run demand curve for DoorKnobs,where we
assume that computer owners’ perceived market shares s are the same as
the actual market shares x,If this is the case,it must be that s = x,so
the demand curve is given by p = 256x(1?x),On the graph above,plot
a few points on this curve and sketch in an approximation of the curve.
(Hint,Note that the curve you draw must go through all the red points
that you have already plotted.)
(g) Suppose that MightySoft sets a price of $48 for DoorKnobs and sticks
with that price,There are three di erent perceived market shares such
that the fraction of consumers who would actually want to buy Door-
Knobs for $48 is equal to the perceived market share,One such perceived
NAME 411
market share is 0,What are the other two possibilities? s =1=4
and s =3=4
(h) Suppose that by using its advertising and media influence,MightySoft
can temporarily set its perceived market share at any number between
0 and 1,If DoorKnobs’s perceived market share is x and if MightySoft
charges a price p = 256x(1?x),the actual market fraction will also be x
and the earlier perceptions will be reinforced and maintained,Assuming
that MightySoft chooses a perceived market share x and a price that
makes the actual market share equal to the perceived market share,what
market share x should MightySoft choose in order to maximize its revenue
and what price should it charge in order to maintain this market share?
(Hint,Revenue is px = 256x
2
(1?x).) Use calculus and show your
work,x =2=3,The first-order condition is
d
dx
256(x
2
x
3
)=0,This implies 2x =3x
2
,
which implies that x =2=3 or x =0,The
second order condition is satisfied only
when x =2=3,Price should be $256 1=3
2=3 = $56:89.
34.2 (1) Suppose that demand for DoorKnobs is as given in the previous
problem,and assume that the perceived market share in any period is
equal to the actual market share in the previous period,Then where x
t
is the actual market share in period t,the equation p = 256x
t?1
(1?x
t
)
is satis ed,Rearranging this equation,we nd that x
t
=1?(p=256x
t?1
)
whenever p=256x
t?1
1,If p=256x
t?1
0,then x
t
=0,Withthis
formula,if we know actual market share for any time period,we can
calculate market share for the next period.
Let us assume that DoorKnobs sets the price at p = $32 and never
changes this price,(To answer the following questions,you will nd a
calculator useful.)
(a) If the actual market share in the rst period was 1/2,nd the actual
market share in the second period,75,the third period,833.
Write down the actual market shares for the next few periods,8529,
8534,Do they seem to be approaching a limit? If so,what?
.853553.
412 INFORMATION TECHNOLOGY (Ch,34)
(b) Notice that when price is held constant at p,if DoorKnobs’s mar-
ket share converges to a constant x,itmustbethat x =1?(p=256 x).
Solve this equation for x in the case where p = $32,What do you make
of the fact that there are two solutions? This equation
implies x
2
x +1=8=0,Solutions are
x =0:85355 and x =0:14645,Both are
equilibrium market shares with a price of
$32.
34.3 (1) A group of 13 consumers are considering whether to connect to a
new computer network,Consumer 1 has an initial value of $1 for hooking
up to the network,consumer 2 has an initial value of $2,consumer 3 has
an iinitial value of $3,and so on up to consumer 13,Each consumer’s
willingness to pay to connect to the network depends on the total number
of persons who are connected to it,In fact,for each i,consumeri’s
willingness to pay to connect to the network is i times the total number
of persons connected,Thus if 5 people are connected to the network,
consumer 1’s willingness to pay is $5,consumer 2’s willingness to pay is
$10 and so on.
(a) What is the highest price at which 9 customers could hook up to the
market and all of them either make a pro t or break even? $45
(b) Suppose that the industry that supplies the computer network is com-
petitive and that the cost of hooking up each consumer to the network is
$45,Suppose that consumers are very conservative and nobody will sign
up for the network unless her buyer value will be at least as high as the
price she paid as soon as she signs up,How many people will sign up if
the price is $45? 0
(c) Suppose that the government o ers to subsidize \pioneer users" of the
system,The rst two users are allowed to connect for $10 each,After
the rst two users are hooked up,the government allows the next two
to connect for $25,After that,everyone who signs up will have to pay
the full cost of $45,Assume that users remain so conservative that will
sign up only if their buyer values will be at least equal to the price they
are charged when they connect,With the subsidy in place,how many
consumers in toto will sign up for the network? 9
34.4 (2) Professor Kremepu has written a new,highly simpli ed eco-
nomics text,Microeconomics for the Muddleheaded,which will be pub-
lished by East Frisian Press,The rst edition of this book will be in print
for two years,at which time it will be replaced by a new edition,East
NAME 413
Frisian Press has already made all its xed cost investments in the book
and must pay a constant marginal cost of $c for each copy that it sells.
Let p
1
be the price charged for new copies sold in the rst year of
publication and let p
2
be the price charged for new copies sold in the
second year of publication,The publisher and the students who buy
the book are aware that there will be an active market for used copies of
Microeconomics for the Muddleheaded one year after publication and that
used copies of the rst edition will have zero resale value two years after
publication,At the end of the rst year of publication,students can resell
their used textbooks to bookstores for 40% of the second-year price,p
2
.
The net cost to a student of buying the book in the rst year,using it
for class,and reselling it at the end of the year is p
1
0:4p
2
.Thenumber
of copies demanded in the rst year of publication is given by a demand
function,q
1
= D
1
(p
1
0:4p
2
).
Some of the students who use the book in the rst year of publication
will want to keep their copies for future reference,and some will damage
their books so that they cannot be resold,The cost of keeping one’s old
copy or of damaging it is the resale price 0:4p
2
,The number of books that
are either damaged or kept for reference is given by a \keepers" demand
function,D
k
(0:4p
2
),It follows that the number of used copies available
at the end of the rst year will be D
1
(p
1
0:4p
2
)?D
k
(0:4p
2
).
Students who buy Microeconomics for the Muddleheaded in the sec-
ond year of publication will not be able to resell their used copies,since
a new edition will then be available,These students can,however,buy
either a new copy or a used copy of the book,For simplicity of calcula-
tions,let us assume that students are indi erent between buying a new
copy or a used copy and that used copies cost the same as new copies in
the book store,(The results would be the same if students preferred new
to used copies,but bookstores priced used copies so that students were
indi erent between buying new and used copies.) The total number of
copies,new and used,that are purchased in the second year of publication
is q
2
= D
2
(p
2
).
(a) Write an expression for the number of new copies that East Frisian
Press can sell in the second year after publication if it sets prices p
1
in
year 1 and p
2
in year 2,D
2
(p
2
)?D
1
(p
1
:4p
2
)+D
k
(:4p
2
).
(b) Write an expression for the total number of new copies of Microeco-
nomics for the Muddleheaded that East Frisian can sell over two years at
prices p
1
and p
2
in years 1 and 2,D
1
(p
1
:4p
2
)+D
2
(p
2
)?
D
1
(p
1
:4p
2
)+D
k
(:4p
2
)=D
2
(p
2
)+D
k
(:4p
2
).
(c) Would the total number of copies sold over two years increase,de-
crease,or remain constant if p
1
were increased and p
2
remained constant?
It would remain constant.
414 INFORMATION TECHNOLOGY (Ch,34)
(d) Write an expression for the total revenue that East Frisian Press will
receive over the next two years if it sets prices p
1
and p
2
,p
1
D
1
(p
1
:4p
2
)+p
2
(D
2
(p
2
)?D
1
(p
1
:4p
2
)+D
k
(:4p
2
)) = (p
1
p
2
)D
1
(p
1
:4p
2
)+p
2
(D
2
(p
2
)+D
k
(:4p
2
)):
(e) To maximize its total pro ts over the next two years,East Frisian
must maximize the di erence between its total revenue and its variable
costs,Show that this di erence can be written as
(p
1
p
2
)D
1
(p
1
:4p
2
)+(p
2
c)
D
2
(p
2
)+D
k
(:4p
2
)
:
Variable cost is c(D
2
(p
2
)+D
k
(:4p
2
)).
Subtract this from previous answer.
(f) Suppose that East Frisian has decided that it must charge the same
price for the rst edition in both years that it is sold,Thus it must
set p = p
1
= p
2
,Write an expression for East Frisian’s revenue net
of variable costs over the next two years as a function of p.
(p?c)(D
2
(p)+D
k
(:4p))
34.5 (2) Suppose that East Frisian Press,discussed in the previous
problem,has a constant marginal cost of c = $10 for each copy of Micro-
economics for the Muddleheaded that it sells and let the demand functions
be
D
1
(p
1
0:4p
2
) = 100 (90?p
1
+0:4p
2
)
D
2
(p
2
) = 100(90?p
2
):
The number of books that people either damage or keep for reference
after the rst year is
D
k
(0:4p
2
) = 100(90?0:8p
2
):
(This assumption is consistent with the assumption that everyone’s will-
ingness to pay for keeping the book is half as great as her willingness to
pay to have the book while she is taking the course.) Assume that East
Frisian Press is determined to charge the same price in both years,so that
p
1
= p
2
= p.
NAME 415
(a) If East Frisian Press charges the same price p for Microeconomics for
the Muddleheaded in the rst and second years,show that the total sales
of new copies over the two years are equal to
18;000?180p:
Total sales are D
2
(p)+D
k
(:4p
2
) = 100(90?
p) + 100(90?:8p)) = 18;000?180p
(b) Write an expression for East Frisian’s total revenue,net of variable
costs,over the rst two years as a function of the price p,(p?
10)(18;000?180p)=19;800p?180p
2
180;000
(c) Solve for the price p that maximizes its total revenue net of variable
costs over the rst two years,p = $55,At this price,the net cost
to students in the rst year of buying the text and reselling it is $33.
The total number of copies sold in the rst year will be 5,700,The
total number of copies that are resold as used books is 1,100,The
total number of copies purchased by students in the second year will be
3,500,(Remember students in the second year know that they
cannot resell the book,so they have to pay the full price p for using it.)
The total number of new copies purchased by students in the second year
will be 2,400,Total revenue net of variable costs over the two years
will be $364,500.
34.6 (2) East Frisian Press is trying to decide whether it would be prof-
itable to produce a new edition of Microeconomics for the Muddleheaded
after one year rather than after two years,If it produces a new edition
after one year,it will destroy the used book market and all copies that
are purchased will be new copies,In this case,the number of new copies
that will be demanded in each of the two years will be 100(90?p),where
p is the price charged,The variable cost of each copy sold remains $10.
(a) Write an expression for the total number of copies sold over the course
of two years if the price is p in each year 200(90-p),Also,write
an expression for total revenue net of variable costs as a function of p.
200(p?10)(90?p).
416 INFORMATION TECHNOLOGY (Ch,34)
(b) Find the price that maximizes total revenue net of variable costs.
$50.
(c) The total number of new books sold in the rst year would be
4,000,and the total number of books sold in the second year would
be 4,000.
(d) East Frisian’s total revenue net of variable costs,if it markets a new
edition after one year,will be $320,000.
(e) Would it be more pro table for East Frisian Press to produce a new
edition after one year or after two years? After two years.
Which would be better for students? (Hint,The answer is not the same
for all students.) After two years is better for
students who take the course in the first
year of publication and plan to sell.
After one year is better for the other
students.
34.7 (3) Suppose that East Frisian Press publishes a new edition only af-
ter two years and that demands and costs are as in the previous problems.
Suppose that it sets two di erent prices p
1
and p
2
in the two periods.
(a) Write an expression for the total number of new copies sold at prices
p
1
and p
2
and show that this number depends on p
2
but not on p
1
.
100 ((70?p
1
+:4p
2
) + (140?1:8p
2
)?(70?p
1
+:4p
2
)) =
100(140?1:8p
2
)
(b) Show that at prices p
1
and p
2
,the di erence between revenues and
variablecostsisequalto
100
parenleftbig
90p
1
+ 108p
2
+1:4p
1
p
2
p
2
1
2:2p
2
2
1;800
:
This difference is 100(p
1
p
2
)(90?p
1
+
:4p
2
)+(p
2
10)(180?1:8p
2
),Expand this
expression.
NAME 417
(c) Calculate the prices p
1
and p
2
that maximize the di erence between
total revenue and variable costs and hence maximize pro ts,p
1
=
$80,p
2
= $50
(d) If East Frisian Press chooses its pro t-maximizing p
1
and p
2
,compare
the cost of using Microeconomics for the Muddleheaded for a student who
buys the book when it is rst published and resells it at the end of the
rst year with the cost for a student who buys the book at the beginning
of the second year and then discards it,The former has a
net cost of $80?:4 50 = $60 and the latter
has a cost of $50.
34.8 (2) The Silicon Valley company Intoot produces checkwriting soft-
ware,The program itself,Fasten,sells for $50 and includes a package of
checks,Check re ll packets for Fasten cost $20 to produce and Intoot sells
the checks at cost,Suppose that a consumer purchases Fasten for $50 in
period 1 and spends $20 on checks in each subsequent period,Assume
for simplicity that the consumer uses the program for an in nite number
of periods.
(a) If the interest rate is r =,10 per period,what is the present value
of the stream of payments made by the consumer? (Hint,a stream of
payments of x starting next period has a present value of x=r.) The total
cost of ownership of Fasten is 50+20/.10 = $250.
(b) Fasten’s competitor produces an equally e ective product called
Czechwriter,Czechwriter can do everything Fasten can do and vice versa
except that Fasten cannot use check re ll packets that are sold by anyone
other than Fasten,Czechwriter also sells for $50 and sells its checks for
$20 per period,A Fasten customer can switch to Czechwriter simply by
purchasing the program,This means his switching costs are $50
(c) Fasten is contemplating raising the price of checks to $30 per period.
If so,will its customers switch to Czechwriter? Explain,Yes,the
present value of continuing to use Fasten
are $300 while the costs of switching to
Czechwriter are $250.
418 INFORMATION TECHNOLOGY (Ch,34)
(d) Fasten contemplates raising the price of checks to $22 per period,Will
its customers switch? No,The present value of
continuing to use Fasten are $220 while the
present value of switching to Czechwriter
is $250.
(e) At what price for checks will Fasten’s customers just be indi erent to
switching? (Hint,Let x be this amount,Compare the present value of
staying with Fasten with the present value of switching to Czechwriter.)
Solve the equation x=:10 = 250 to find
x =25.
(f) If it charges the highest price that it can without making its customers
switch,what pro t does Fasten make on checks from each of its customers
per period? $5,What is the present value of the pro t per customer
that Fasten gets if it sets the price of checks equal to the number deter-
minedinthelastquestion? PV =5=:10 = 50,How does this
compare to the customer switching cost? It is the same.
(g) Suppose now that the cost of switching also involves several hours
of data conversion that the consumer values at $100,The total cost of
switching is the cost of the new program plus the data conversion cost
which is $150.
(h) Making allowances for the cost of data conversion,what is the highest
pricethatIntootcanchargeforitschecks? Solve x=:10 =
250 + 100 for x =35,What is the present value of pro t
from this price? $150,How does this compare to total switching
costs? It is the same.
(i) Suppose that someone writes a computer program that eliminates
the cost of converting data and makes this program available for free.
Suppose that Intoot continues to price its check re ll packages at $25,A
new customer is contemplating buying Fasten at a price of $50 and paying
$25 per period for checks,versus paying $50 for Czechwriter and paying
$20 for checks,If the functionality of the software is identical,which will
the consumer buy? Czechwriter.
NAME 419
(j) Intoot decides to distribute a coupon that o ers a discount of $50
o of the regular purchase price,What price would it have to set to
make consumers indi erent between purchasing Fasten and Czechwriter?
Solve 50 + 25=:10?d =50+20=:10 to find
that the discount should be $50.
(k) Suppose that consumers are shortsighted and only look at the cost
of the software itself,neglecting the cost of the checks,Which program
would they buy if Intoot o ered this coupon? Fasten,How might
Czechwriter respond to the Fasten o er? Issue its own
coupon for $50 and raise the price of its
checks to $35.
34.9 (2) Sol Microsystems has recently invented a new language,Guava,
which runs on a proprietary chip,the Guavachip,The chip can only be
used to run Guava,and Guava can only run on the Guavachip,Sol
estimates that if it sells the chip for a price p
c
and the language for a
price p
g
,the demand for the chip-language system will be
x = 120?(p
c
+p
g
):
(a) Sol initially sets up two independent subsidiaries,one to produce the
chip and one to produce the language,Each of the subsidiaries will price
its product so as to maximize its pro ts,while assuming that a change in
its own price will not a ect the pricing decision of the other subsidiary.
Assume that marginal costs are negligible for each company,If the price
of the language is set at p
g
,the chip company’s pro t function (neglecting
xed costs) is [120?p
c
p
g
]p
c
.
(b) Di erentiate this pro t function with respect to p
c
and set the result
equal to zero to calculate the optimal choice of p
c
as a function of p
g
.
p
c
= 120?2p
g
:
(c) Now consider the language subsidiary’s pricing decision,The optimal
choice of p
g
as a function of p
c
is p
g
= 120?2p
c
:
(d) Solving these two equations in two unknowns,we nd that p
c
=
40 and p
g
= 40,sothatp
c
+p
g
= 80
420 INFORMATION TECHNOLOGY (Ch,34)
(e) Sol Microsystems decides that the independent subsidiary system is
cumbersome,so it sets up Guava Computing which sells a bundled system
consisting of the chip and the language,Let p be the price of the bundle.
Guava Computing’s pro t function is [120?p]p.
(f) Di erentiate this pro t with respect to p and set the resulting expres-
sion to zero to determine p = 60.
(g) Compare the prices charged by the integrated system and the separate
subsidiaries,Which is lower? Integrated system,Which
is better for consumers? Integrated system,Which makes
more pro t? Integrated system.
34.10 (2) South Belgium Press produces the academic journal Nano-
economics,which has a loyal following among short microeconomists,and
Gigaeconomics,a journal for tall macroeconomists,It o ers a license for
the electronic version of each journal to university libraries at a subscrip-
tion cost per journal of $1,000 per year,The 200 top universities all
subscribe to both journals,each paying $2,000 per year to South Bel-
gium,By revealed preference,their willingness to pay for each journal is
at least $1,000.
(a) In an attempt to lower costs,universities decide to form pairs,with
one member of each pair subscribing to Nanoeconomics and one member
of each pair subscribing to Gigaeconomics,They agree to use interlibrary
loan to share the other journal,Since the copies are electronic,there is
no incremental cost to doing this,Under this pairing scheme,how many
subscriptions of each journal will South Belgium sell? 100
.
(b) In order to stem the revenue hemorrhage,South Belgium raises the
price of each journal,Assuming library preferences and budgets haven’t
changed,how high can they set this price? They can raise
the price to $2,000,since libraries have
already indicated that they are willing
to pay this much for the pair of journals.
(c) How does library expenditure and South Belgium’s revenue compare
to those of the previous regime? They remain the same.
NAME 421
(d) If there were a cost of interlibrary loan,how would your an-
swer change? Assuming they still bought
both journals,libraries would be worse
off since they would have to pay the
transactions cost for interlibrary loan.
422 INFORMATION TECHNOLOGY (Ch,34)
Chapter 35 NAME
Public Goods
Introduction,In previous chapters we studied sel sh consumers con-
suming private goods,A unit of private goods consumed by one person
cannot be simultaneously consumed by another,If you eat a ham sand-
wich,Icannoteatthesamehamsandwich,(Ofcoursewecanbotheat
ham sandwiches,but we must eat di erent ones.) Public goods are a dif-
ferent matter,They can be jointly consumed,You and I can both enjoy
looking at a beautiful garden or watching reworks at the same time,The
conditions for e cient allocation of public goods are di erent from those
for private goods,With private goods,e ciency demands that if you and
I both consume ham sandwiches and bananas,then our marginal rates of
substitution must be equal,If our tastes di er,however,we may consume
di erent amounts of the two private goods.
If you and I live in the same town,then when the local reworks
show is held,there will be the same amount of reworks for each of us.
E ciency does not require that my marginal rate of substitution between
reworks and ham sandwiches equal yours,Instead,e ciency requires
that the sum of the amount that viewers are willing to pay for a marginal
increase in the amount of reworks equal the marginal cost of reworks.
This means that the sum of the absolute values of viewers’ marginal rates
of substitution between reworks and private goods must equal the mar-
ginal cost of public goods in terms of private goods.
Example,A quiet midwestern town has 5,000 people,all of whom are in-
terested only in private consumption and in the quality of the city streets.
The utility function of person i is U(X
i;G)=X
i
+A
i
G?B
i
G
2
,whereX
i
is the amount of money that person i has to spend on private goods and
G is the amount of money that the town spends on xing its streets,To
nd the Pareto optimal amount of money for this town to spend on xing
its streets,we must set the sum of the absolute values of marginal rates of
substitution between public and private goods equal to the relative prices
of public and private goods,In this example we measure both goods in
dollar values,so the price ratio is 1,The absolute value of person i’s
marginal rate of substitution between public goods and private goods is
the ratio of the marginal utility of public goods to the marginal utility of
private goods,The marginal utility of private goods is 1 and the marginal
utility of public goods for person i is A
i
B
i
G,Therefore the absolute
value of person i’s MRS is A
i
B
i
G and the sum of absolute values
of marginal rates of substitution is
P
i
(A
i
B
i
G)=
P
i
A
i
(
P
B
i
)G.
Therefore Pareto e ciency requires that
P
i
A
i
(
P
i
B
i
)G =1,Solving
this for G,wehaveG =(
P
i
A
i
1)=
P
i
B
i
.
35.1 (0) Muskrat,Ontario,has 1,000 people,Citizens of Muskrat con-
sume only one private good,Labatt’s ale,There is one public good,the
town skating rink,Although they may di er in other respects,inhabitants
424 PUBLIC GOODS (Ch,35)
have the same utility function,This function is U(X
i;G)=X
i
100=G,
where X
i
is the number of bottles of Labatt’s consumed by citizen i and
G is the size of the town skating rink,measured in square meters,The
price of Labatt’s ale is $1 per bottle and the price of the skating rink is
$10 per square meter,Everyone who lives in Muskrat has an income of
$1,000 per year.
(a) Write down an expression for the absolute value of the marginal rate
of substitution between skating rink and Labatt’s ale for a typical citizen.
100=G
2
What is the marginal cost of an extra square meter of skating
rink (measured in terms of Labatt’s ale)? 10.
(b) Since there are 1,000 people in town,all with the same marginal
rate of substitution,you should now be able to write an equation that
states the condition that the sum of absolute values of marginal rates of
substitution equals marginal cost,Write this equation and solve it for the
Pareto e cient amount of G,1;000
100
G
2
=10.SoG = 100.
(c) Suppose that everyone in town pays an equal share of the cost of
the skating rink,Total expenditure by the town on its skating rink will
be $10G,Then the tax bill paid by an individual citizen to pay for the
skating rink is $10G=1;000 = $G=100,Every year the citizens of Muskrat
vote on how big the skating rink should be,Citizens realize that they will
have to pay their share of the cost of the skating rink,Knowing this,a
citizen realizes that if the size of the skating rink is G,then the amount
of Labatt’s ale that he will be able to a ord is 1;000?G=100.
(d) Therefore we can write a voter’s budget constraint as X
i
+G=100 =
1;000,In order to decide how big a skating rink to vote for,a voter simply
solves for the combination of X
i
and G that maximizes his utility subject
to his budget constraint and votes for that amount of G.HowmuchG is
that in our example? G = 100.
(e) If the town supplies a skating rink that is the size demanded by the
voters will it be larger than,smaller than,or the same size as the Pareto
optimal rink? The same.
(f) Suppose that the Ontario cultural commission decides to promote
Canadian culture by subsidizing local skating rinks,The provincial gov-
ernment will pay 50% of the cost of skating rinks in all towns,The costs
of this subsidy will be shared by all citizens of the province of Ontario.
There are hundreds of towns like Muskrat in Ontario,It is true that to
pay for this subsidy,taxes paid to the provincial government will have
to be increased,But there are hundreds of towns from which this tax
NAME 425
is collected,so that the e ect of an increase in expenditures in Muskrat
on the taxes its citizens have to pay to the state can be safely neglected.
Now,approximately how large a skating rink would citizens of Muskrat
vote for? G = 100
p
2,(Hint,Rewrite the budget constraint for
individuals observing that local taxes will be only half as large as before
and the cost of increasing the size of the rink only half as much as before.
Then solve for the utility-maximizing combination.)
(g) Does this subsidy promote economic e ciency? No.
35.2 (0) Ten people have dinner together at an expensive restaurant
and agree that the total bill will be divided equally among them.
(a) What is the additional cost to any one of them of ordering an appetizer
that costs $20? $2.
(b) Explain why this may be an ine cient system,Each pays
less than full cost of own meal,so all
overindulge.
35.3 (0) Cowflop,Wisconsin,has 1,000 people,Every year they have
a reworks show on the Fourth of July,The citizens are interested in
only two things|drinking milk and watching reworks,Fireworks cost 1
gallon of milk per unit,People in Cowflop are all pretty much the same.
In fact,they have identical utility functions,The utility function of each
citizen i is U
i
(x
i;g)=x
i
+
p
g=20,where x
i
is the number of gallons
of milk per year consumed by citizen i and g is the number of units of
reworks exploded in the town’s Fourth of July extravaganza,(Private
use of reworks is outlawed.)
(a) Solve for the absolute value of each citizen’s marginal rate of substi-
tution between reworks and milk,1=(40
p
g).
(b) Find the Pareto optimal amount of reworks for Cowflop,625.
35.4 (0) Bob and Ray are two hungry economics majors who are sharing
an apartment for the year,In a flea market they spot a 25-year-old sofa
that would look great in their living room.
Bob’s utility function is u
B
(S;M
B
)=(1+S)M
B
,and Ray’s utility
function is u
R
(S;M
R
)=(2+S)M
R
,In these expressions M
B
and M
R
are
the amounts of money that Bob and Ray have to spend on other goods,
S = 1 if they get the sofa,and S = 0 if they don’t get the sofa,Bob has
W
B
dollars to spend,and Ray has W
R
dollars.
426 PUBLIC GOODS (Ch,35)
(a) What is Bob’s reservation price for the sofa? Solve W
B
=
2(W
B
p
B
) to get p
B
= W
B
=2.
(b) What is Ray’s reservation price for the sofa? Solve 2W
R
=
3(W
R
p
R
),which gives p
R
= W
R
=3.
(c) If Bob has a total of W
B
= $100 and Ray has a total of W
R
= $75
to spend on sofas and other stu,they could buy the sofa and have a
Pareto improvement over not buying it so long as the cost of the sofa is
no greater than $75.
35.5 (0) Bonnie and Clyde are business partners,Whenever they work,
they have to work together,Their only source of income is pro t from
their partnership,Their total pro t per year is 50H,whereH is the
number of hours that they work per year,Since they must work together,
they both must work the same number of hours,so the variable \hours of
labor" is like a public \bad" for the two person community consisting of
Bonnie and Clyde,Bonnie’s utility function is U
B
(C
B;H)=C
B
:02H
2
and Clyde’s utility function is U
C
(C
C;H)=C
C
:005H
2
,whereC
B
and
C
C
are the annual amounts of money spent on consumption for Bonnie
and for Clyde.
(a) If the number of hours that they both work is H,what is the ratio
of Bonnie’s marginal utility of hours of work to her marginal utility of
private goods:04H,What is the ratio of Clyde’s marginal utility
of hours of work to his marginal utility of private goods:01H.
(b) If Bonnie and Clyde are both working H hours,then the total amount
of money that would be needed to compensate them both for having to
work an extra hour is the sum of what is needed to compensate Bonnie
and the amount that is needed to compensate Clyde,This amount is
approximately equal to the sum of the absolute values of their marginal
rates of substitution between work and money,Write an expression for
this amount as a function of H.,05H,How much extra money will
they make if they work an extra hour? $50.
(c) Write an equation that can be solved for the Pareto optimal number
of hours for Bonnie and Clyde to work.,05H =50.
Find the Pareto optimal H,H =1;000,(Hint,Notice that
this model is formally the same as a model with one public good H and
one private good,income.)
NAME 427
35.6 (0) Lucy and Melvin share an apartment,They spend some of
their income on private goods like food and clothing that they consume
separately and some of their income on public goods like the refrigerator,
the household heating,and the rent,which they share,Lucy’s utility
function is 2X
L
+G and Melvin’s utility function is X
M
G,whereX
L
and
X
M
are the amounts of money spent on private goods for Lucy and for
Melvin and where G is the amount of money that they spend on public
goods,Lucy and Melvin have a total of $8,000 per year between them to
spend on private goods for each of them and on public goods.
(a) What is the absolute value of Lucy’s marginal rate of substitution
between public and private goods? 1=2,What is the absolute value
of Melvin’s? X
M
=G.
(b) Write an equation that expresses the condition for provision of the
Pareto e cient quantity of the public good,1=2+X
M
=G =1.
(c) Suppose that Melvin and Lucy each spend $2,000 on private goods
for themselves and they spend the remaining $4,000 on public goods,Is
this a Pareto e cient outcome? Yes.
(d) Give an example of another Pareto optimal outcome in which Melvin
gets more than $2,000 and Lucy gets less than $2,000 worth of private
goods,One example,Melvin gets $2,500; Lucy
gets $500 and G =$5;000.
(e) Give an example of another Pareto optimum in which Lucy gets
more than $2,000,Lucy gets $5,000; Melvin gets
$1;000 and G =$2;000.
(f) Describe the set of Pareto optimal allocations,The allocations
that satisfy the equations X
M
=G =1=2 and
X
L
+X
M
+G =$8;000.
(g) The Pareto optima that treat Lucy better and Melvin worse will have
(more of,less of,the same amount of) public good as the Pareto optimum
that treats them equally,Less of.
428 PUBLIC GOODS (Ch,35)
35.7 (0) This problem is set in a fanciful location,but it deals with a
very practical issue that concerns residents of this earth,The question
is,\In a Democracy,when can we expect that a majority of citizens will
favor having the government supply pure private goods publicly?" This
problem also deals with the e ciency issues raised by public provision
of private goods,We leave it to you to see whether you can think of
important examples of publicly supplied private goods in modern Western
economies.
On the planet Jumpo there are two goods,aerobics lessons and
bread,The citizens all have Cobb-Douglas utility functions of the form
U
i
(A
i;B
i
)=A
1=2
i
B
1=2
i
,whereA
i
and B
i
are i’s consumptions of aerobics
lessons and bread,Although tastes are all the same,there are two di er-
ent income groups,the rich and the poor,Each rich creature on Jumpo
has an income of 100 fondas and every poor creature has an income of
50 fondas (the currency unit on Jumpo),There are two million poor
creatures and one million rich creatures on Jumpo,Bread is sold in the
usual way,but aerobics lessons are provided by the state despite the fact
that they are private goods,The state gives the same amount of aerobics
lessons to every creature on Jumpo,The price of bread is 1 fonda per
loaf,The cost to the state of aerobics lessons is 2 fondas per lesson,This
cost of the state-provided lessons is paid for by taxes collected from the
citizens of Jumpo,The government has no other expenses than providing
aerobics lessons and collects no more or less taxes than the amount needed
to pay for them,Jumpo is a democracy,and the amount of aerobics to
be supplied will be determined by majority vote.
(a) Suppose that the cost of the aerobics lessons provided by the state
is paid for by making every creature on Jumpo pay an equal amount of
taxes,On planets,such as Jumpo,where every creature has exactly one
head,such a tax is known as a \head tax." If every citizen of Jumpo gets
20 lessons,how much will be total government expenditures on lessons?
120 million fondas,How much taxes will every citizen
have to pay? 40 fondas,If 20 lessons are given,how much will a
rich creature have left to spend on bread after it has paid its taxes? 60
fondas,How much will a poor creature have left to spend on bread
after it has paid its taxes? 10 fondas.
(b) More generally,when everybody pays the same amount of taxes,if x
lessons are provided by the government to each creature,the total cost
to the government is 6 million times x and the taxes that one
creature has to pay is 2 times x.
NAME 429
(c) Since aerobics lessons are going to be publicly provided with every-
body getting the same amount and nobody able to get more lessons from
another source,each creature faces a choice problem that is formally the
same as that faced by a consumer,i,who is trying to maximize a Cobb-
Douglas utility function subject to the budget constraint 2A + B = I,
whereI is its income,Explain why this is the case,If A lessons
are provided,your taxes are 2A fondas.
After taxes,you have I?2A fondas to
spend on B.
(d) Suppose that the aerobics lessons are paid for by a head tax and all
lessons are provided by the government in equal amounts to everyone.
How many lessons would the rich people prefer to have supplied? 25.
How many would the poor people prefer to have supplied? 12.5.
(Hint,In each case you just have to solve for the Cobb-Douglas demand
with an appropriate budget.)
(e) If the outcome is determined by majority rule,how many aerobics
lessons will be provided? 12.5,How much bread will the rich get?
75,How much bread will the poor get? 25.
(f) Suppose that aerobics lessons are \privatized," so that no lessons are
supplied publicly and no taxes are collected,Every creature is allowed to
buy as many lessons as it likes and as much bread as it likes,Suppose
that the price of bread stays at 1 fonda per unit and the price of lessons
stays at 2 fondas per unit,How many aerobics lessons will the rich get?
25,How many will the poor get? 12.5,How much bread will the
rich get? 50,How much bread will the poor get? 25.
(g) Suppose that aerobics lessons remain publicly supplied but are paid
for by a proportional income tax,The tax rate is set so that tax rev-
enue pays for the lessons,If A aerobics lessons are o ered to each
creature on Jumpo,the tax bill for a rich person will be 3A fondas
and the tax bill for a poor person will be 1:5A fondas,If A lessons
are given to each creature,show that total tax revenue collected will
be the total cost of A lessons,There are 2,000,000
poor and 1,000,000 rich,total revenue is
2;000;000 1:5A+1;000;000 3A =6;000;000A.
430 PUBLIC GOODS (Ch,35)
There are 3,000,000 people in all,If each
gets A lessons and lessons cost 2 fondas,
total cost is 6;000;000A.
(h) With the proportional income tax scheme discussed above,what bud-
get constraint would a rich person consider in deciding how many aerobics
lessons to vote for? 3A + B = 100,What is the relevant bud-
get constraint for a poor creature? 1:5A + B =50,With these
tax rates,how many aerobics lessons per creature would the rich favor?
50=3,How many would the poor favor? 50=3,What quantity of
aerobics lessons per capita would be chosen under majority rule? 50=3.
How much bread would the rich get? 50,How much bread would the
poor get? 25.
(i) Calculate the utility of a rich creature under a head tax.
p
937:5
Under privatization.
p
1;250,Under a proportional income tax.
p
833:3,(Hint,In each case,solve for the consumption of bread and
the consumption of aerobics lessons that a rich person gets,and plug these
into the utility function.) Now calculate the utility of each poor creature
under the head tax.
p
312:5,Under privatization.
p
312:5,Un-
der the proportional income tax.
p
416:67,(Express these utilities
as square roots rather than calculating out the roots.)
(j) Is privatization Pareto superior to the head tax? Yes,Is a propor-
tional income tax Pareto superior to the head tax? No,Is privatization
Pareto superior to the proportional income tax? No,Explain the last
two answers,Rich prefer privatization,poor
prefer proportional income tax.
Chapter 36 NAME
Information
Introduction,The economics of information and incentives is a rela-
tively new branch of microeconomics,in which much intriguing work is
going on,This chapter shows you a sample of these problems and the
way that economists think about them.
36.1 (0) There are two types of electric pencil-sharpener producers.
\High-quality" manufacturers produce very good sharpeners that con-
sumers value at $14,\Low-quality" manufacturers produce less good ones
that are valued at $8,At the time of purchase,customers cannot distin-
guish between a high-quality product and a low-quality product; nor can
they identify the manufacturer,However,they can determine the quality
of the product after purchase,The consumers are risk neutral; if they
have probability q of getting a high-quality product and 1?q of getting
a low-quality product,then they value this prospect at 14q +8(1?q).
Each type of manufacturer can manufacture the product at a constant
unit cost of $11.50,All manufacturers behave competitively.
(a) Suppose that the sale of low-quality electric pencil-sharpeners is ille-
gal,so that the only items allowed to appear on the market are of high
quality,What will be the equilibrium price? $11.50.
(b) Suppose that there were no high-quality sellers,How many low-quality
sharpeners would you expect to be sold in equilibrium? Sellers
won’t sell for less than $11.50,consumers
won’t pay that much for low-quality product.
So in equilibrium there would be no sales.
(c) Could there be an equilibrium in which equal (positive) quantities
of the two types of pencil sharpeners appear in the market? No.
Average willingness to pay would be $11,
which is less than the cost of production.
So there would be zero trade.
432 INFORMATION (Ch,36)
(d) Now we change our assumptions about the technology,Suppose
that each producer can choose to manufacture either a high-quality or
a low-quality pencil-sharpener,with a unit cost of $11.50 for the for-
mer and $11 for the latter,what would we expect to happen in equilib-
rium? No trade,Producers would produce the
low-quality product since it has a lower
production cost,If all producers produce
low-quality output,costs will be $11 and
the willingness-to-pay for low quality is
$8.
(e) Assuming that each producer is able to make the production choice
described in the last question,what good would it do if the government
banned production of low-quality electric pencil-sharpeners? If
there is no ban,there will be no output
and no consumers’ surplus,If low-quality
products are banned,then in equilibrium
there is output and positive consumers’
surplus.
36.2 (0) In West Bend,Indiana,there are exactly two kinds of workers.
One kind has a (constant) marginal product worth $10 and the other kind
has a (constant) marginal product worth $15,There are equal numbers
of workers of each kind,A rm cannot directly tell the di erence between
the two kinds of workers,Even after it has hired them,it won’t be able
to monitor their work closely enough to determine which workers are of
which type.
(a) If the labor market is competitive,workers will be paid the average
value of their marginal product,This amount is $12.50.
(b) Suppose that the local community college o ers a microeconomics
course in night school,taught by Professor M,De Sade,The high-
productivity workers think that taking this course is just as bad as a
$3 wage cut,and the low-productivity workers think it is just as bad as
a $6 wage cut,The rm can observe whether or not an individual takes
the microeconomics course,Suppose that the high-productivity workers
all choose to take the microeconomics course and the low-productivity
NAME 433
workers all choose not to,The competitive wage for people who take the
microeconomics course will be $15 and the wage for people who don’t
take the microeconomics course will be $10.
(c) If there is a separating equilibrium,with high-productivity workers
taking the course and low-productivity workers not taking it,then the
net bene ts from taking the microeconomics course will be $2
for the high-productivity workers and $?1 for the low-productivity
workers,Therefore there (will be,won’t be) will be a separating
equilibrium of this type.
(d) Suppose that Professor De Sade is called o to Washington,to lec-
ture wayward representaatives on the economics of family values,His
replacement is Professor Morton Kremepu,Kremepu prides himself on
his ability to make economics \as easy as political science and as fun as
the soaps on TV." Professor Kremepu ’s claims are exaggerated,but at
least students like him better than De Sade,High-productivity workers
think that taking Kremepu ’s course is as bad as a $1 wage cut,and
low-productivity workers think that taking Kremepu ’s course is as bad
as a $4 wage cut,If the high-productivity workers all choose to take the
microeconomics course and the low-productivity workers all choose not to,
the competitive wage for people who take the microeconomics course will
be $15 and the wage for people who don’t take the microeconomics
course will be $10.
(e) If there is a separating equilibrium with high-productivity workers
taking the course and low-productivity workers not taking it,then the net
bene ts from taking Kremepu ’s microeconomics course will be $4
for the high-productivity workers and $1 for the low-productivity
workers,Therefore there (will be,won’t be) won’t be a separating
equilibrium of this type.
36.3 (1) In Enigma,Ohio,there are two kinds of workers,Klutzes
whose labor is worth $1,000 per month and Kandos,whose labor is worth
$2,500 per month,Enigma has exactly twice as many Klutzes as Kandos.
Klutzes look just like Kandos and are accomplished liars,If you ask,
they will claim to be Kandos,Kandos always tell the truth,Monitoring
individual work accomplishments is too expensive to be worthwhile,In
the old days,there was no way to distinguish the two types of labor,so
everyone was paid the same wage,If labor markets were competitive,
what was this wage? $1,500
434 INFORMATION (Ch,36)
(a) A professor who loves to talk o ered to give a free monthly lecture
on macroeconomics and personal hygiene to the employees of one small
rm,These lectures had no e ect on productivity,but both Klutzes and
Kandos found them to be excruciatingly dull,To a Klutz,each hour’s
lecture was as bad as losing $100,To a Kando,each hour’s lecture was as
bad as losing $50,Suppose that the rm gave each of its employees a pay
raise of $55 a month but insisted that he attend the professor’s lectures.
What would happen to the rm’s labor force? All Klutzes
would leave,Kandos would stay on,More
Kandos could be hired at these terms.
Klutzes would not accept job,What would happen
to the average productivity of the rm’s employees? Rise by
$1,000--from $1,500 to $2,500.
(b) Other rms noticed that those who had listened to the professor’s
lectures were more productive than those who had not,So they tried to
bid them away from their original employer,Since all those who agreed
to listen to the original lecture series were Kandos,their wage was bid up
to $2,500.
(c) After observing the \e ect of his lectures on labor productivity," the
professor decided to expand his e orts,He found a huge auditorium where
he could lecture to all the laborers in Enigma who would listen to him.
If employers believed that listening to the professor’s lectures improved
productivity by the improvement in productivity in the rst small rm
and o ered bonuses for attending the lectures accordingly,who would
attend the lectures? Everybody,Having observed this outcome,
how much of a wage premium would rms pay for those who had attended
the professor’s lectures? 0.
(d) The professor was disappointed by the results of his big lecture and
decided that if he gave more lectures per month,his pupils might \learn
more." So he decided to give a course of lectures for 20 hours a month.
Would there now be an equilibrium in which the Kandos all took his
course and none of the Klutzes took it and where those who took the
course were paid according to their true productivity? Yes,If
those who take the course get $2,500 and
people who do not get $1,000 a month,then
Kandos would take the course,since the
NAME 435
pain of 20 hours of lecture costs $1,000,
but the wage premium is $1,500,Klutzes
would not take the course,since the pain
of lectures costs $2,000 a month and the
wage premium is $1,500.
(e) What is the smallest number of hours the professor could lecture and
still maintain a separating equilibrium? 15 hours
36.4 (1) Old MacDonald produces hay,He has a single employee,Jack.
If Jack works for x hours he can produce x bales of hay,Each bale of hay
sells for $1,The cost to Jack of working x hours is c(x)=x
2
=10.
(a) What is the e cient number of bales of hay for Jack to cut? 5.
(b) If the most that Jack could earn elsewhere is zero,how much would
MacDonald have to pay him to get him to work the e cient amount?
5
2
=10 = $2:50.
(c) What is MacDonald’s net pro t? 5?2:50 = $2:50.
(d) Suppose that Jack would receive $1 for passing out leaflets,an activity
that involves no e ort whatsoever,How much would he have to receive
from MacDonald for producing the e cient number of bales of hay?
$3.50.
(e) Suppose now that the opportunity for passing out leaflets is no longer
available,but that MacDonald decides to rent his hay eld out to Jack for
a flat fee,How much would he rent it for? $2.50.
36.5 (0) In Rustbucket,Michigan,there are 200 people who want to sell
their used cars,Everybody knows that 100 of these cars are \lemons"
and 100 of these cars are \good." The problem is that nobody except the
original owners know which are which,Owners of lemons will be happy
to get rid of their cars for any price greater than $200,Owners of good
used cars will be willing to sell them for any price greater than $1,500,
but will keep them if they can’t get $1,500,There are a large number of
buyers who would be willing to pay $2,500 for a good used car,but would
pay only $300 for a lemon,When these buyers are not sure of the quality
of the car they buy,they are willing to pay the expected value of the car,
given the knowledge they have.
436 INFORMATION (Ch,36)
(a) If all 200 used cars in Rustbucket were for sale,how much would
buyers be willing to pay for a used car? $1,400,Would owners
of good used cars be willing to sell their used cars at this price? No.
Would there be an equilibrium in which all used cars are sold? No.
Describe the equilibrium that would take place in Rustbucket,Good
car owners won’t sell,Lemon owners will
sell,Price of a used car will be $300.
(b) Suppose that instead of there being 100 cars of each kind,everyone
in town is aware that there are 120 good cars and 80 lemons,How much
would buyers be willing to pay for a used car? $1,620,Would
owners of good used cars be willing to sell their used cars at this price?
Yes,Would there be an equilibrium in which all used cars are sold?
Yes,Would there be an equilibrium in which only the lemons were
sold? Yes,Describe the possible equilibrium or equilibria that would
take place in Rustbucket,One equilibrium has all
cars sold at a price of $1,620,There is
also an equilibrium where only the lemons
are sold.
36.6 (1) Each year,1,000 citizens of New Crankshaft,Pennsylvania,sell
their used cars and buy new cars,The original owners of the old cars
have no place to keep second cars and must sell them,These used cars
vary a great deal in quality,Their original owners know exactly what is
good and what is bad about their cars,but potential buyers can’t tell
them apart by looking at them,Lamentably,though they are in other
respects model citizens,the used-car owners in New Crankshaft have no
scruples about lying about their old jalopies,Each car has a value,V,
which a buyer who knew all about its qualities would be willing to pay.
There is a very large number of potential buyers,any one of which would
be willing to pay $V foracarofvalue$V:
The distribution of values of used cars on the market is quite simply
described,In any year,for any V between 0 and $2,000,the number of
used cars available for sale that are worth less than $V is V=2,Potential
used-car buyers are all risk-neutral,That is if they don’t know the value of
a car for certain,they value it at its expected value,given the information
they have.
NAME 437
Rod’s Garage in New Crankshaft will test out any used car and nd
its true value V,Rod’s Garage is known to be perfectly accurate and
perfectly honest in its appraisals,The only problem is that getting an
accurate appraisal costs $200,People with terrible cars are not going to
want to pay $200 to have Rod tell the world how bad their cars are,But
people with very good cars will be willing to pay Rod the $200 to get
their cars appraised,so they can sell them for their true values.
Let’s try to gure our exactly how the equilibrium works,which cars
get appraised,and what the unappraised cars sell for.
(a) If nobody had their car appraised,what would the market price
for used cars in North Crankshaft be and what would be the total
revenue received by used-car owners for their cars? They’d
all sell for $1,000 for total revenue of
$1,000,000.
(b) If all the cars that are worth more than $X are appraised and all
the cars that are worth less than $X are sold without appraisal,what
will the market price of unappraised used cars be? (Hint,What is the
expected value of a random draw from the set of cars worth less than
$X?) $X=2.
(c) If all the cars that are worth more than $X are appraised and all
thecarsthatareworthlessthan$X are sold without appraisal,then if
your car is worth $X,how much money would you have left if you had
it appraised and then sold it for its true value? $X?200,How
much money would you get if you sold it without having it appraised?
$X=2.
(d) In equilibrium,there will be a car of marginal quality such that all
cars better than this car will be appraised and all cars worse than this car
will be sold without being appraised,The owner of this car will be just
indi erent between selling his car unappraised and having it appraised.
What will be the value of this marginal car? Solve X=2=
X?200 to get X = $400.
(e) In equilibrium,how many cars will be sold unappraised and what
will they sell for? The worst 200 cars will be
unappraised and will sell for $200.
438 INFORMATION (Ch,36)
(f) In equilibrium,what will be the total net revenue of all owners
of used cars,after Rod’s Garage has been paid for its appraisals?
$1;000;000?800 200 = 840;000.
36.7 (2) In Pot Hole,Georgia,1,000 people want to sell their used cars.
These cars vary in quality,Original owners know exactly what their cars
are worth,All used cars look the same to potential buyers until they have
bought them; then they nd out the truth,For any number X between
0 and 2,000,the number of cars of quality lower than X is X=2,If a car
is of quality X,its original owner will be willing to sell it for any price
greater than X,If a buyer knew that a car was of quality X,she would
be willing to pay X + 500 for it,When buyers are not sure of the quality
of a car,they are willing to pay its expected value,given their knowledge
of the distribution of qualities on the market.
(a) Suppose that everybody knows that all the used cars in Pot Hole are
for sale,What would used cars sell for? $1,500,Would every
used car owner be willing to sell at this price? No,Which used
cars would appear on the market? Those worth less than
$1,500.
(b) Let X
be some number between 0 and 2,000 and suppose that all
cars of quality lower than X
are sold,but original owners keep all cars
of quality higher than X
,What would buyers be willing to pay for a
used car? X
=2 + 500,At this price,which used cars would be
for sale? Cars worth less than X
=2 + 500.
(c) Write an equation for the equilibrium value of X
,atwhichtheprice
that buyers are willing to pay is exactly enough to induce all cars of
quality less than X
into the market,X
=2 + 500 = X
,Solve
this equation for the equilibrium value of X
,X
=$1;000.
QUIZZES
This section contains short multiple-choice quizzes based on the workbook
problems in each chapter,Typically the questions are slight variations on
the workbook problems,so that if you have worked and understood the
corresponding workbook problem,the quiz question will be pretty easy.
Instructors who have adopted Workouts for their course can make use
of the test-item le o ered with the textbook,The test-item le contains
alternative versions of each quiz question in the back of Workouts,The
questions in these quizzes use di erent numerical values but the same in-
ternal logic,They can be used to provide additional problems for student
practice or for in-class quizzes.
When we teach this course we tell the students to work through all
the quiz questions in Workouts for each chapter,either by themselves
or with a study group,During the term we have a short in-class quiz
every other week or so,using the alternative versions from the test-item
le,These are essentially the Workouts quizzes with di erent numbers.
Hence,students who have done their homework nd it easy to do well on
the quizzes.
440 QUIZZES (Ch,36)
Quiz 2 NAME
The Budget Set
2.1 In Problem 2.1,if you have an income of $12 to spend,if commodity 1
costs $2 per unit,and if commodity 2 costs $6 per unit,then the equation
for your budget line can be written as
(a) x
1
=2+x
2
=6 = 12.
(b) (x
1
+x
2
)=(8) = 12.
(c) x
1
+3x
2
=6.
(d) 3x
1
+7x
2
= 13.
(e) 8(x
1
+x
2
) = 12.
2.2 In Problem 2.3,if you could exactly a ord either 6 units of x and 14
units of y,or 10 units of x and 6 units of y,then if you spent all of your
income on y,how many units of y could you buy?
(a) 26.
(b) 18.
(c) 34.
(d) 16.
(e) None of the other options are correct.
2.3 In Problem 2.4,Murphy used to consume 100 units of x and 50 units
of y when the price of x was 2 and the price of y was 4,If the price of x
rose to 5 and the price of y rose to 8,how much would Murphy’s income
have to rise so that he could still a ord his original bundle?
(a) 700.
(b) 500.
(c) 350.
(d) 1,050.
442 THE BUDGET SET (Ch,2)
(e) None of the other options are correct.
2.4 In Problem 2.7,Edmund must pay $6 each for punk rock video
casettes,If Edmund is paid $48 per sack for accepting garbage and if
his relatives send him an allowance of $384,then his budget line is de-
scribed by the equation:
(a) 6V =48G.
(b) 6V +48G = 384.
(c) 6V?48G = 384.
(d) 6V = 384?G.
(e) None of the other options are correct.
2.5 InProblem2.10,ifinthesameamountoftimethatittakesher
to read 40 pages of economics and 30 pages of sociology,Martha could
read 30 pages of economics and 50 pages of sociology,then which of these
equations describes combinations of pages of economics,E,and sociology,
S,that she could read in the time it takes to read 40 pages of economics
and 30 pages of sociology?
(a) E +S = 70.
(b) E=2+S = 50.
(c) 2E +S = 110.
(d) E +S = 80.
(e) All of the above.
2.6 In Problem 2.11,ads in the boring business magazine are read by
300 lawyers and 1,000 M.B.As,Ads in the consumer publication are
read by 250 lawyers and 300 M.B.A.’s,If Harry had $3,000 to spend
on advertising,if the price of ads in the boring business magazine were
$600 and the price of ads in the consumer magazine were $300,then the
combinations of recent M.B.A’s and lawyers with hot tubs whom he could
reach with his advertising budget would be represented by the integer
values along a line segment that runs between the two points
(a) (2,500,3,000) and (1,500,5,000).
(b) (3,000,3,500) and (1,500,6,000).
(c) (0,3,000) and (1,500,0).
NAME 443
(d) (3,000,0) and (0,6,000).
(e) (2,000,0) and (0,5,000).
2.7 In the economy of Mungo,discussed in Problem 2.12,there is a third
creature called Ike,Ike has a red income of 40 and a blue income of
10,(Recall that blue prices are 1 bcu (blue currency unit) per unit of
ambrosia and 1 bcu per unit of bubble gum,Red prices are 2 rcus (red
currency units) per unit of ambrosia and 6 rcus per unit of bubble gum.
You have to pay twice for what you buy,once in red currency,once in
blue currency.) If Ike spends all of its blue income,but not all of its red
income,then it must be that
(a) it consumes at least 5 units of bubble gum.
(b) it consumes at least 5 units of ambrosia.
(c) it consumes exactly twice as much bubblegum as ambrosia.
(d) it consumes at least 15 units of bubble gum.
(e) it consumes equal amounts of ambrosia and bubble gum.
444 THE BUDGET SET (Ch,2)
Quiz 3 NAME
Preferences
3.1 In Problem 3.1,Charlie’s indi erence curves have the equation
x
B
= constant=x
A
,where larger constants correspond to better indif-
ference curves,Charlie strictly prefers the bundle (7,15) to the following
bundle:
(a) (15,7).
(b) (8,14).
(c) (11,11).
(d) all three of these bundles.
(e) none of these bundles.
3.2 In Problem 3.2,Ambrose has indi erence curves with the equation
x
2
= constant?4x
1=2
1
,where larger constants correspond to higher indif-
ference curves,If good 1 is drawn on the horizontal axis and good 2 on
the vertical axis,what is the slope of Ambrose’s indi erence curve when
his consumption bundle is (1,6)?
(a)?1=6
(b)?6=1
(c)?2
(d)?7
(e)?1
3.3 In Problem 3.8,Nancy Lerner is taking a course from Professor Good-
heart who will count only her best midterm grade and from Professor
Stern who will count only her worst midterm grade,In one of her classes,
Nancy has scores of 50 on her rst midterm and 30 on her second midterm.
When the rst midterm score is measured on the horizontal axis and her
second midterm score on the vertical,her indi erence curve has a slope
of zero at the point (50,30),Therefore it must be that
(a) this class could be Professor Goodheart’s but couldn’t be Professor
Stern’s.
446 PREFERENCES (Ch,3)
(b) this class could be Professor Stern’s but couldn’t be Professor Good-
heart’s.
(c) this class couldn’t be either Goodheart’s or Stern’s.
(d) this class could be either Goodheart’s or Stern’s.
3.4 In Problem 3.9,if we graph Mary Granola’s indi erence curves with
avocados on the horizontal axis and grapefruits on the vertical axis,then
whenever she has more grapefruits than avocados,the slope of her indif-
ference curve is?2,Whenever she has more avocados than grapefruits,
the slope is?1=2,Mary would be indi erent between a bundle with 24
avocados and 36 grapefruits and another bundle that has 34 avocados and
(a) 28 grapefruits.
(b) 32 grapefruits.
(c) 22 grapefruits.
(d) 25 grapefruits.
(e) 26.50 grapefruits.
3.5 In Problem 3.12,recall that Tommy Twit’s mother measures the de-
parture of any bundle from her favorite bundle for Tommy by the sum
of the absolute values of the di erences,Her favorite bundle for Tommy
is (2,7){that is,2 cookies and 7 glasses of milk,Tommy’s mother’s in-
di erence curve that passes through the point (c;m)=(3;6) also passes
through
(a) (4,5).
(b) the points (2,5),(4,7),and (3,8).
(c) (2,7).
(d) the points (3,7),(2,6),and (2,8).
(e) None of the other options are correct.
3.6 In Problem 3.1,Charlie’s indi erence curves have the equation
x
B
= constant=x
A
,where larger constants correspond to better indif-
ference curves,Charlie strictly prefers the bundle (9,19) to the following
bundle:
(a) (19,9).
(b) (10,18).
(c) (15,17).
(d) More than one of these options are correct.
(e) None of the above are correct.
Quiz 4 NAME
Utility
4.1 In Problem 4.1,Charlie has the utility function U(x
A;x
B
)=x
A
x
B
.
His indi erence curve passing through 10 apples and 30 bananas will also
pass through the point where he consumes 2 apples and
(a) 25 bananas.
(b) 50 bananas.
(c) 152 bananas.
(d) 158 bananas.
(e) 150 bananas.
4.2 In Problem 4.1,Charlie’s utility function is U(A;B)=AB where
A and B are the numbers of apples and bananas,respectively,that he
consumes,When Charlie is consuming 20 apples and 100 bananas,then
if we put apples on the horizontal axis and bananas on the vertical axis,
the slope of his indi erence curve at his current consumption is
(a)?20.
(b)?5.
(c)?10.
(d)?1=5.
(e)?1=10.
4.3 In Problem 4.2,Ambrose has the utility function U(x
1;x
2
)=4x
1=2
1
+
x
2
,If Ambrose is initially consuming 81 units of nuts and 14 units of
berries,then what is the largest number of berries that he would be
willing to give up in return for an additional 40 units of nuts?
(a) 11
(b) 25
(c) 8
448 UTILITY (Ch,4)
(d) 4
(e) 2
4.4 Joe Bob,from Problem 4.12 has a cousin Jonas who consume goods
1 and 2,Jonas thinks that 2 units of good 1 is always a perfect substitute
for 3 units of good 2,Which of the following utility functions is the only
one that would NOT represent Jonas’s preferences?
(a) U(x
1;x
2
)=3x
1
+2x
2
+1;000.
(b) U(x
1;x
2
)=9x
2
1
+12x
1
x
2
+4x
2
2
.
(c) U(x
1;x
2
)=minf3x
1;2x
2
g.
(d) U(x
1;x
2
)=30x
1
+20x
2
10;000.
(e) More than one of the above does NOT represent Jonas’s preferences.
4.5 In Problem 4.7,Harry Mazzola has the utility function U(x
1;x
2
)=
minfx
1
+2x
2;2x
1
+ x
2
g,He has $40 to spend on corn chips and french
fries,If the price of corn chips is 5 dollar(s) per unit and the price of
french fries is 5 dollars per unit,then Harry will
(a) de nitely spend all of his income on corn chips.
(b) de nitely spend all of his income on french fries.
(c) consume at least as much corn chips as french fries,but might consume
both.
(d) consume at least as much french fries as corn chips,but might consume
both.
(e) consume equal amounts of french fries and corn chips.
4.6 Phil Rupp’s sister Ethel has the utility function U(x;y)=minf2x+
y;3yg.Wherex is measured on the horizontal axis and y on the vertical
axis,her indi erence curves
(a) consist of a vertical line segment and a horizontal line segment which
meet in a kink along the line y =2x.
(b) consist of a vertical line segment and a horizontal line segment which
meet in a kink along the line x =2y.
(c) consist of a horizontal line segment and a negatively sloped line seg-
ment which meet in a kink along the line x = y.
(d) consist of a positively sloped line segment and a negatively sloped line
segment which meet along the line x = y.
(e) consist of a horizontal line segment and a positively sloped line seg-
ment which meet in a kink along the line x =2y.
Quiz 5 NAME
Choice
5.1 In Problem 5.1,Charlie has a utility function U(x
A;x
B
)=x
A
x
B
,
the price of apples is 1 and the price of bananas is 2,If Charlie’s income
were 240,how many units of bananas would he consume if he chooses the
bundle that maximizes his utility subject to his budget constraint?
(a) 60
(b) 30
(c) 120
(d) 12
(e) 180
5.2 In Problem 5.1,if Charlie’s income is 40,the price of apples is 5
and the price of bananas is 6,how many apples are contained in the best
bundle that Charlie can a ord?
(a) 8
(b) 15
(c) 10
(d) 11
(e) 4
5.3 In Problem 5.2,Clara’s utility function is U(X;Y)=(X +2)(Y +1).
If Clara’s marginal rate of substitution is?2 and she is consuming 10
units of good X,how many units of good Y is she consuming?
(a) 2
(b) 24
(c) 12
(d) 23
450 CHOICE (Ch,5)
(e) 5
5.4 In Problem 5.3,Ambrose’s utility function is U(x
1;x
2
)=4x
1=2
1
+x
2
.
If the price of nuts is 1,the price of berries is 4,and his income is 72,how
many units of nuts will Ambrose choose?
(a) 2
(b) 64
(c) 128
(d) 67
(e) 32
5.5 Ambrose’s utility function is 4x
1=2
1
+x
2
,If the price of nuts is 1,the
price of berries is 4,and his income is 100,how many units of berries will
Ambrose choose?
(a) 65
(b) 9
(c) 18
(d) 8
(e) 12
5.6 In Problem 5.6,Elmer’s utility function is U(x;y)=minfx;y
2
g.If
the price of x is 15,the price of y is 10,and Elmer chooses to consume 7
units of y,what must Elmer’s income be?
(a) 1,610
(b) 175
(c) 905
(d) 805
(e) There is not enough information to tell.
Quiz 6 NAME
Demand
6.1 (See Problem 6.1,) If Charlie’s utility function is X
4
A
X
B
,apples
cost 90 cents each,and bananas cost 10 cents each,then Charlie’s budget
line is tangent to one of his indi erence curves whenever the following
equation is satis ed:
(a) 4X
B
=9X
A
.
(b) X
B
= X
A
.
(c) X
A
=4X
B
.
(d) X
B
=4X
A
.
(e) 90X
A
+10X
B
= M.
6.2 (See Problem 6.1.) If Charlie’s utility function is X
4
A
X
B
,the price
of apples is p
A
,the price of bananas is p
B
,and his income is m,then
Charlie’s demand for apples is
(a) m=(2p
A
).
(b) 0:25p
A
m.
(c) m=(p
A
+p
B
).
(d) 0:80m=p
A
.
(e) 1:25p
B
m=p
A
.
6.3 Ambrose’s brother Bartholomew has a utility function U(x
1;x
2
)=
24x
1=2
1
+ x
2
,His income is 51,the price of good 1 (nuts) is 4,and the
price of good 2 (berries) is 1,How many units of nuts will Bartholomew
demand?
(a) 19
(b) 5
(c) 7
(d) 9
452 DEMAND (Ch,6)
(e) 16
6.4 Ambrose’s brother Bartholomew has a utility function U(x
1;x
2
)=
8x
1=2
1
+x
2
,His income is 23,the price of nuts is 2,and the price of berries
is 1,How many units of berries will Bartholomew demand?
(a) 15
(b) 4
(c) 30
(d) 10
(e) There is not enough information to determine the answer.
6.5 In Problem 6.6,recall that Miss Mu et insists on consuming 2 units
of whey per unit of curds,If the price of curds is 3 and the price of whey
is 6,then if Miss Mu ett’s income is m,her demand for curds will be
(a) m=3.
(b) 6m=3.
(c) 3C +6W = m.
(d) 3m.
(e) m=15.
6.6 In Problem 6.8,recall that Casper’s utility function is 3x+y,where
x is his consumption of cocoa and y is his consumption of cheese,If the
total cost of x units of cocoa is x
2
,the price of cheese is 8,and Casper’s
income is $174,how many units of cocoa will he consume?
(a) 9
(b) 12
(c) 23
(d) 11
(e) 24
6.7 (See Problem 6.13.) Kinko’s utility function is U(w;j)=
minf7w;3w +12jg,wherew is the number of whips that he owns and j
is the number of leather jackets,If the price of whips is $20 and the price
of leather jackets is $60,Kinko will demand:
NAME 453
(a) 6 times as many whips as leather jackets.
(b) 5 times as many leather jackets as whips.
(c) 3 times as many whips as leather jackets.
(d) 4 times as many leather jackets as whips.
(e) only leather jackets.
454 DEMAND (Ch,6)
Quiz 7 NAME
Revealed Preference
7.1 In Problem 7.1,if the only information we had about Goldie were
that she chooses the bundle (6,6) when prices are (6,3) and she chooses
the bundle (10,0) when prices are (5,5),then we could conclude that
(a) the bundle (6,6) is revealed preferred to (10,0) but there is no evidence
that she violates WARP.
(b) neither bundle is revealed preferred to the other.
(c) Goldie violates WARP.
(d) the bundle (10,0) is revealed preferred to (6,6) and she violates WARP.
(e) the bundle (10,0) is revealed preferred to (6,6) and there is no evidence
that she violates WARP.
7.2 In Problem 7.3,Pierre’s friend Henri lives in a town where he has
to pay 3 francs per glass of wine and 6 francs per loaf of bread,Henri
consumes 6 glasses of wine and 4 loaves of bread per day,Recall that Bob
has an income of $15 per day and pays $.50 per loaf of bread and $2 per
glass of wine,If Bob has the same tastes as Henri,and if the only thing
that either of them cares about is consumption of bread and wine,we can
deduce
(a) nothing about whether one is better than the other.
(b) that Henri is better o than Bob.
(c) that Bob is better o than Henri.
(d) that both of them violate the weak axiom of revealed preferences.
(e) that Bob and Henri are equally well o,
7.3 Let us reconsider the case of Ronald in Problem 7.4,Let the prices
and consumptions in the base year be as in Situation D,where p
1
=3,
p
2
=1,x
1
=5,andx
2
= 15,If in the current year,the price of good 1 is
1 and the price of good 2 is 3,and his current consumptions of good 1 and
good 2 are 25 and 10 respectively,what is the Laspeyres price index of
current prices relative to base-year prices? (Pick the most nearly correct
answer.)
456 REVEALED PREFERENCE (Ch,7)
(a) 1.67
(b) 1.83
(c) 1
(d) 0.75
(e) 2.50
7.4 On the planet Homogenia,every consumer who has ever lived con-
sumes only two goods x and y and has the utility function U(x;y)=xy.
The currency in Homogenia is the fragel,On this planet in 1900,the
price of good 1 was 1 fragel and the price of good 2 was 2 fragels,Per
capita income was 120 fragels,In 1990,the price of good 1 was 5 fragels
and the price of good 2 was 5 fragels,The Laspeyres price index for the
price level in 1990 relative to the price level in 1900 is
(a) 3.75.
(b) 5.
(c) 3.33.
(d) 6.25.
(e) not possible to determine from this information.
7.5 On the planet Hyperion,every consumer who has ever lived has a
utility function U(x;y)=minfx;2yg,The currency of Hyperion is the
doggerel,In 1850 the price of x was 1 doggerel per unit,and the price of
y was 2 doggerels per unit,In 1990,the price of x was 10 doggerels per
unit and the price of y was 4 doggerels per unit,Paasche price index of
prices in 1990 relative to prices in 1850 is
(a) 6.
(b) 4.67.
(c) 2.50.
(d) 3.50.
(e) not possible to determine without further information.
Quiz 8 NAME
Slutsky Equation
8.1 In Problem 8.1,Charlie’s utility function is x
A
x
B
,The price of
apples used to be $1 per unit and the price of bananas was $2 per unit.
His income was $40 per day,If the price of apples increased to $1.25 and
the price of bananas fell to $1.25,then in order to be able to just a ord
his old bundle,Charlie would have to have a daily income of
(a) $37.50.
(b) $76.
(c) $18.75.
(d) $56.25.
(e) $150.
8.2 In Problem 8.1,Charlie’s utility function isx
A
x
B
,The price of apples
used to be $1 and the price of bananas used to be $2,and his income used
to be $40,If the price of apples increased to 8 and the price of bananas
stayed constant,the substitution e ect on Charlie’s apple consumption
reduces his consumption by
(a) 17.50 apples.
(b) 7 apples.
(c) 8.75 apples.
(d) 13.75 apples.
(e) None of the other options are correct.
8.3 Neville,in Problem 8.2,has a friend named Colin,Colin has the same
demand function for claret as Neville,namely q =,02m?2p,wherem
is income and p is price,Colin’s income is 6,000 and he initially had to
pay a price of 30 per bottle of claret,The price of claret rose to 40,The
substitution e ect of the price change
(a) reduced his demand by 20.
(b) increased his demand by 20.
458 SLUTSKY EQUATION (Ch,8)
(c) reduced his demand by 8.
(d) reduced his demand by 32.
(e) reduced his demand by 18.
8.4 Goods 1 and 2 are perfect complements and a consumer always con-
sumes them in the ratio of 2 units of Good 2 per unit of Good 1,If a
consumer has income 120 and if the price of good 2 changes from 3 to 4,
while the price of good 1 stays at 1,then the income e ect of the price
change
(a) is 4 times as strong as the substitution e ect.
(b) does not change demand for good 1.
(c) accounts for the entire change in demand.
(d) is exactly twice as strong as the substitution e ect.
(e) is 3 times as strong as the substitution e ect.
8.5 Suppose that Agatha in Problem 8.10 had $570 to spend on tickets
for her trip,She needs to travel a total of 1,500 miles,Suppose that the
price of rst-class tickets is $0.50 per mile and the price of second-class
tickets is $0.30 per mile,How many miles will she travel by second class?
(a) 900
(b) 1,050
(c) 450
(d) 1,000
(e) 300
8.6 In Problem 8.4,Maude thinks delphiniums and hollyhocks are perfect
substitutes,one for one,If delphiniums currently cost $5 per unit and
hollyhocks cost $6 per unit,and if the price of delphiniums rises to $9 per
unit,
(a) the income e ect of the change in demand for delphiniums will be
bigger than the substitution e ect.
(b) there will be no change in the demand for hollyhocks.
(c) the entire change in demand for delphiniums will be due to the sub-
stitution e ect.
(d) the fraction 1=4 of the change will be due to the income e ect.
(e) the fraction 3=4 of the change will be due to the income e ect.
Quiz 9 NAME
Buying and Selling
9.1 In Problem 9.1,if Abishag owned 9 quinces and 10 kumquats,and if
the price of kumquats is 3 times the price of quinces,how many kumquats
could she a ord if she spent all of her money on kumquats?
(a) 26
(b) 19
(c) 10
(d) 13
(e) 10
9.2 Suppose that Mario in Problem 9.2 consumes eggplant and tomatoes
in the ratio of one bushel of eggplant per bushel of tomatoes,His garden
yields 30 bushels of eggplant and 10 bushels of tomatoes,He initially faced
prices of $10 per bushel for each vegetable,but the price of eggplant rose
to $30 per bushel,while the price of tomatoes stayed unchanged,After
the price change,he would
(a) increase his eggplant consumption by 5 bushels.
(b) decrease his eggplant consumption by at least 5 bushels.
(c) increase his consumption of eggplant by 7 bushels.
(d) decrease his consumption of eggplant by 7 bushels.
(e) decrease his tomato consumption by at least 1 bushel.
9.3 (See Problem 9.9(b).) Dr,Johnson earns $5 per hour for his labor
and has 80 hours to allocate between labor and leisure,His only other
income besides his earnings from labor is a lump sum payment of $50 per
week,Suppose that the rst $200 per week of his labor income is untaxed,
but all labor income above $200 is taxed at a rate of 40 percent.
(a) Dr,J.’s budget line has a kink in it at the point where he takes 50
units of leisure.
(b) Dr,J.’s budget line has a kink where his income is 250 and his leisure
is 40.
460 BUYING AND SELLING (Ch,9)
(c) The slope of Dr,J.’s budget line is everywhere?3.
(d) Dr,J.’s budget line has no kinks in the part of it that corresponds to
a positive labor supply.
(e) Dr,J.’s budget line has a piece that is a horizontal straight line.
9.4 Dudley,in Problem 9.15,has a utility function U(C;R)=C?(12?
R)
2
,whereR is leisure and C is consumption per day,He has 16 hours
per day to divide between work and leisure,If Dudley has a nonlabor
income of $40 per day and is paid a wage of $6 per hour,how many hours
of leisure will he choose per day?
(a) 6
(b) 7
(c) 8
(d) 10
(e) 9
9.5 Mr,Cog in Problem 9.7 has 18 hours a day to divide between labor
and leisure,His utility function is U(C;R)=CR where C is the number
of dollars per day that he spends on consumption and R is the number of
hours per day that he spends at leisure,If he has 16 dollars of nonlabor
income per day and gets a wage rate of 13 dollars per hour when he works,
his budget equation,expressing combinations of consumption and leisure
that he can a ord to have,can be written as:
(a) 13R +C = 16.
(b) 13R +C = 250.
(c) R+C=13 = 328.
(d) C = 250 + 13R.
(e) C = 298 + 13R.
9.6 Mr,Cog in Problem 9.7 has 18 hours per day to divide between labor
and leisure,His utility function is U(C;R)=CR where C is the number
of dollars per day that he spends on consumption and R is the number of
hours per day that he spends at leisure,If he has a nonlabor income of
42 dollars per day and a wage rate of 13 dollars per hour,he will choose
a combination of labor and leisure that allows him to spend
(a) 276 dollars per day on consumption.
NAME 461
(b) 128 dollars per day on consumption.
(c) 159 dollars per day on consumption.
(d) 138 dollars per day on consumption.
(e) 207 dollars per day on consumption.
462 BUYING AND SELLING (Ch,9)
Quiz 10 NAME
Intertemporal Choice
10.1 If Peregrine in Problem 10.1 consumes (1,000,1,155) and earns
(800,1365) and if the interest rate is 0.05,the present value of his endow-
ment is
(a) 2,165.
(b) 2,100.
(c) 2,155.
(d) 4,305.
(e) 5,105.
10.2 Suppose that Molly from Problem 10.2 had income $400 in period 1
and income 550 in period 2,Suppose that her utility function werec
a
1
c
1?a
2
,
where a =0:40 and the interest rate were 0:10,If her income in period 1
doubled and her income in period 2 stayed the same,her consumption in
period 1 would
(a) double.
(b) increase by 160.
(c) increase by 80
(d) stay constant.
(e) increase by 400.
10.3 Mr,O,B,Kandle,of Problem 10.8 has a utility function c
1
c
2
where
c
1
is his consumption in period 1 and c
2
is his consumption in period 2.
He will have no income in period 2,If he had an income of 30,000 in
period 1 and the interest rate increased from 10% to 12%,
(a) his savings would increase by 2% and his consumption in period 2
would also increase.
(b) his savings would not change,but his consumption in period 2 would
increase by 300.
(c) his consumption in both periods would increase.
464 INTERTEMPORAL CHOICE (Ch,10)
(d) his consumption in both periods would decrease.
(e) his consumption in period 1 would decrease by 12% and his consump-
tion in period 2 would also decrease.
10.4 Harvey Habit in Problem 10.9 has a utility function U(c
1;c
2
)=
minfc
1;c
2
g,If he had an income of 1,025 in period 1,and 410 in period
2,and if the interest rate were 0.05,how much would Harvey choose to
spend on bread in period 1?
(a) 1,087.50
(b) 241.67
(c) 362.50
(d) 1,450
(e) 725
10.5 In the village in Problem 10.10,if the harvest this year is 3,000 and
the harvest next year will be 1,100,and if rats eat 50% of any grain that
is stored for a year,how much grain could the villagers consume next year
if they consume 1,000 bushels of grain this year?
(a) 2,100.
(b) 1,000.
(c) 4,100.
(d) 3,150.
(e) 1,200.
10.6 Patience has a utility function U(c
1;c
2
)=c
1=2
1
+0:83c
1=2
2
,c
1
is her
consumption in period 1 and c
2
is her consumption in period 2,Her
income in period 1 is 2 times as large as her income in period 2,At what
interestratewillshechoosetoconsumethesameamountinperiod1as
in period 2?
(a) 0.40
(b) 0.10
(c) 0.20
(d) 0
(e) 0.30
Quiz 11 NAME
Asset Markets
11.1 Ashley,in Problem 11.6,has discovered another wine,Wine D,Wine
drinkers are willing to pay 40 dollars to drink it right now,The amount
that wine drinkers are willing to pay will rise by 10 dollars each year
that the wine ages,The interest rate is 10%,How much would Ashley
be willing to pay for the wine if he buys it as an investment? (Pick the
closest answer.)
(a) $56
(b) $40
(c) $100
(d) $440
(e) $61
11.2 Chillingsworth,from Problem 11.10 has a neighbor,Shivers,who
faces the same options for insulating his house as Chillingsworth,But
Shivers has a larger house,Shivers’s annual fuel bill for home heating is
1,000 dollars per year,Plan A will reduce his annual fuel bill by 15%,plan
B will reduce it by 20%,and plan C will eliminate his need for heating fuel
altogether,The Plan A insulation job would cost Shivers 1,000 dollars,
Plan B would cost him 1,900 dollars,and Plan C would cost him 11,000
dollars,If the interest rate is 10% and his house and the insulation job
last forever,which plan is the best for Shivers?
(a) Plan A.
(b) Plan B.
(c) Plan C.
(d) Plans A and B are equally good.
(e) He is best o using none of the plans.
11.3 The price of an antique is expected to rise by 2% during the next
year,The interest rate is 6%,You are thinking of buying an antique
and selling it a year from now,You would be willing to pay a total of
200 dollars for the pleasure of owning the antique for a year,How much
would you be willing to pay to buy this antique? (See Problem 11.5.)
466 ASSET MARKETS (Ch,11)
(a) $3,333.33
(b) $4,200
(c) $200
(d) $5,000
(e) $2,000
11.4 A bond has a face value of 9,000 dollars,It will pay 900 dollars in
interest at the end of every year for the next 46 years,At the time of the
nal interest payment,46 years from now,the company that issued the
bond will \redeem the bond at face value." That is,the company buys
back the bond from its owner at a price equal to the face value of the
bond,If the interest rate is 10% and is expected to remain at 10%,how
much would a rational investor pay for this bond right now?
(a) $9,000
(b) $50,400
(c) $41,400
(d) More than any of the above numbers.
(e) Less than any of the above numbers.
11.5 The sum of the in nite geometric series 1;0:86;0:86
2;0:86
3;::,is
closest to which of the following numbers?
(a) in nity.
(b) 1.86.
(c) 7.14.
(d) 0.54.
(e) 116.28.
11.6 If the interest rate is 11%,and will remain 11% forever,how much
would a rational investor be willing to pay for an asset that will pay him
5,550 dollars one year from now,1,232 dollars two years from now,and
nothing at any other time?
(a) $6,000
(b) $5,000
(c) $54,545.45
(d) $72,000
(e) $7,000
Quiz 12 NAME
Uncertainty
12.1 In Problem 12.9,Billy has a von Neumann-Morgenstern utility func-
tion U(c)=c
1=2
,If Billy is not injured this season,he will receive an
income of 25 million dollars,If he is injured,his income will be only
$10,000,The probability that he will be injured is,1 and the probability
that he will not be injured is,9,His expected utility is
(a) 4,510.
(b) between 24 million and 25 million dollars.
(c) 100,000.
(d) 9,020.
(e) 18,040.
12.2 (See Problem 12.2.) Willy’s only source of wealth is his chocolate
factory,He has the utility function pc
1=2
f
+(1?p)c
1=2
nf
where p is the
probability of a flood and 1?p is the probability of no flood,Let c
f
and
c
n
f be his wealth contingent on a flood and on no flood,respectively,The
probability of a flood is p =1=15,The value of Willy’s factory is $600,000
if there is no flood and 0 if there is a flood,Willy can buy insurance where
if he buys $x worth of insurance,he must pay the insurance company
$3x=17 whether there is a flood or not,but he gets back $x from the
company if there is a flood,Willy should buy
(a) no insurance since the cost per dollar of insurance exceeds the prob-
ability of a flood.
(b) enough insurance so that if there is a flood,after he collects his insur-
ance his wealth will be 1/9 of what it would be if there is no flood.
(c) enough insurance so that if there is a flood,after he collects his insur-
ance,his wealth will be the same whether there is a flood or not.
(d) enough insurance so that if there is a flood,after he collects his in-
surance,his wealth will be 1/4 of what it would be if there is no flood.
(e) enough insurance so that if there is a flood,after he collects his insur-
ance his wealth will be 1/7 of what it would be if there is no flood.
12.3 Sally Kink is an expected utility maximizer with utility function
pu(c
1
)+(1?p)u(c
2
)whereforanyx<4;000,u(x)=2x and where
u(x)=8;000 +x for x greater than or equal to 4,000.
468 UNCERTAINTY (Ch,12)
(a) Sally will be risk averse if her income is less than 4,000 but risk loving
if her income is more than 4,000.
(b) Sally will be risk neutral if her income is less than 4,000 and risk
averse if her income is more than 4,000.
(c) For bets that involve no chance of her wealth exceeding 4,000,Sally
will take any bet that has a positive expected net payo,
(d) Sally will never take a bet if there is a chance that it leaves her with
wealth less than 8,000.
(e) None of the above are true.
12.4 (See Problem 12.11.) Martin’s expected utility function is pc
1=2
1
+
(1?p)c
1=2
2
where p is the probability that he consumes c
1
and 1?p is
the probability that he consumes c
2
,Wilbur is o ered a choice between
getting a sure payment of $Z or a lottery in which he receives $2,500 with
probability 0.40 and he receives $900 with probability 0.60,Wilbur will
choose the sure payment if
(a) Z>1;444 and the lottery if Z<1;444.
(b) Z>1;972 and the lottery if Z<1;972.
(c) Z>900 and the lottery if Z<900.
(d) Z>1;172 and the lottery if Z<1;172.
(e) Z>1;540 and the lottery if Z<1;540.
12.5 Clancy has $4,800,He plans to bet on a boxing match between
Sullivan and Flanagan,He nds that he can buy coupons for $6 that
will pay o $10 each if Sullivan wins,He also nds in another store some
coupons that will pay o $10 if Flanagan wins,The Flanagan tickets cost
$4 each,Clancy believes that the two ghters each have a probability
of 1/2 of winning,Clancy is a risk averter who tries to maximize the
expected value of the natural log of his wealth,Which of the following
strategies would maximize his expected utility?
(a) Don’t gamble at all.
(b) Buy 400 Sullivan tickets and 600 Flanagan tickets.
(c) Buy exactly as many Flanagan tickets as Sullivan tickets.
(d) Buy 200 Sullivan tickets and 300 Flanagan tickets.
(e) Buy 200 Sullivan tickets and 600 Flanagan tickets.
Quiz 13 NAME
Risky Assets
13.1 Suppose that Ms,Lynch in Problem 13.1 can make up her portfolio
using a risk-free asset that o ers a sure- re rate of return of 15% and a
risky asset with expected rate of return 30%,with standard deviation 5.
If she chooses a portfolio with expected rate of return 18.75%,then the
standard deviation of her return on this portfolio will be:
(a) 0.63%.
(b) 4.25%.
(c) 1.25%.
(d) 2.50%,
(e) None of the other options are correct.
13.2 Suppose that Fenner Smith of Problem 13.2 must divide his portfolio
between two assets,one of which gives him an expected rate of return of
15 with zero standard deviation and one of which gives him an expected
rate of return of 30 and has a standard deviation of 5,He can alter the
expected rate of return and the variance of his portfolio by changing the
proportions in which he holds the two assets,If we draw a \budget line"
with expected return on the vertical axis and standard deviation on the
horizontal axis,depicting the combinations that Smith can obtain,the
slope of this budget line is
(a) 3.
(b)?3.
(c) 1.50.
(d)?1:50.
(e) 4.50.
470 RISKY ASSETS (Ch,13)
Quiz 14 NAME
Consumer’s Surplus
14.1 In Problem 14.1,Sir Plus has a demand function for mead that is
given by the equation D(p) = 100?p,If the price of mead is 75,how
much is Sir Plus’s net consumer surplus?
(a) 312.50
(b) 25
(c) 625
(d) 156.25
(e) 6,000
14.2 Ms,Quasimodo in Problem 14.3 has the utility function U(x;m)=
100x?x
2
=2+m where x is his consumption of earplugs and m is money
left over to spend on other stu,If she has $10,000 to spend on earplugs
and other stu,and if the price of earplugs rises from $50 to $95,then
her net consumer’s surplus
(a) falls by 1,237.50.
(b) falls by 3237.50.
(c) falls by 225.
(d) increases by 618.75.
(e) increases by 2,475.
14.3 Bernice in Problem 14.5 has the utility function u(x;y)=minfx;yg
where x is the number of pairs of earrings she buys per week and y is the
number of dollars per week she has left to spend on other things,(We
allow the possibility that she buys fractional numbers of pairs of earrings
per week.) If she originally had an income of $13 per week and was paying
a price of $2 per pair of earrings,then if the price of earrings rose to $4,
the compensating variation of that price change (measured in dollars per
week) would be closest to
(a) $5.20.
(b) $8.67.
472 CONSUMER’S SURPLUS (Ch,14)
(c) $18.33.
(d) $17.33.
(e) $16.33.
14.4 If Bernice (whose utility function is minfx;yg where x is her con-
sumption of earrings and y is money left for other stu ) had an income
of $16 and was paying a price of $1 for earrings when the price of earrings
went up to $8,then the equivalent variation of the price change was
(a) $12.44.
(b) $56.
(c) $112.
(d) $6.22.
(e) $34.22.
14.5 In Problem 14.7,Lolita’s utility function is U(x;y)=x?x
2
=2+y
where x is her consumption of cow feed and y is her consumption of hay.
If the price of cow feed is 0.40,the price of hay is 1,and her income is 4,
and if Lolita chooses the combination of hay and cow feed that she likes
best from among those combinations she can a ord,her utility will be
(a) 4.18.
(b) 3.60.
(c) 0.18.
(d) 6.18.
(e) 2.18.
Quiz 15 NAME
Market Demand
15.1 In Gas Pump,South Dakota,every Buick owner’s demand for gaso-
line is 20?5p for p less than or equal to 4 and 0 for p>4,Every Dodge
owner’sdemandis15?3p for p less than or equal to 5 and 0 for p>5.
Suppose that Gas Pump,S.D.,has 100 Buick owners and 50 Dodge own-
ers,If the price of gasoline is 4,what is the total amount of gasoline
demanded in Gas Pump?
(a) 300
(b) 75
(c) 225
(d) 150
(e) None of the other options are correct.
15.2 In Problem 15.5,the demand function for drangles is given by
D(p)=(p +1)
2
,If the price of drangles is 10,then the price elasticity
of demand is
(a)?7:27.
(b)?3:64.
(c)?5:45.
(d)?0:91.
(e)?1:82.
15.3 In Problem 15.6,the only quantities of good 1 that Barbie can buy
are 1 unit or zero units,For x
1
equal to zero or 1 and for all positive values
of x
2
,suppose that Barbie’s preferences were represented by the utility
function (x
1
+4)(x
2
+ 2),Then if her income were 28,her reservation
price for good 1 would be
(a) 12.
(b) 1.50.
(c) 6.
474 MARKET DEMAND (Ch,15)
(d) 2.
(e) 0.40.
15.4 In the same football conference as the university in Problem 15.9
is another university where the demand for football tickets at each game
is 80;000?12;000p,If the capacity of the stadium at that university is
50,000 seats,what is the revenue-maximizing price for this university to
charge per ticket?
(a) 3.33
(b) 2.50
(c) 6.67
(d) 1.67
(e) 10
15.5 In Problem 15.9,the demand for tickets is given byD(p) = 200;000?
10;000p,wherep is the price of tickets,If the price of tickets is 4,then
the price elasticity of demand for tickets is
(a)?0:50.
(b)?0:38.
(c)?0:75.
(d)?0:13.
(e)?0:25.
Quiz 16 NAME
Equilibrium
16.1 This problem will be easier if you have done Problem 16.3.The
inverse demand function for grapefruit is de ned by the equation p =
296?7q,whereq is the number of units sold,The inverse supply function
is de ned by p =17+2q,A tax of 27 is imposed on suppliers for each
unit of grapefruit that they sell,When the tax is imposed,the quantity
of grapefruit sold falls to
(a) 31.
(b) 17.50.
(c) 26.
(d) 28.
(e) 29.50.
16.2 In a crowded city far away,the civic authorities decided that rents
were too high,The long-run supply function of two-room rental apart-
ments was given by q =18+2p and the long run demand function was
given by q = 114?4p where p is the rental rate in crowns per week.
The authorities made it illegal to rent an apartment for more than 10
crowns per week,To avoid a housing shortage,the authorities agreed to
pay landlords enough of a subsidy to make supply equal to demand,How
much would the weekly subsidy per apartment have to be to eliminate
excess demand at the ceiling price?
(a) 9
(b) 15
(c) 18
(d) 36
(e) 27
16.3 Suppose that King Kanuta from Problem 16.11 demands that each
of his subjects gives him 4 coconuts for every coconut that the subject
consumes,The king puts all of the coconuts that he collects in a large
pile and burns them,The supply of coconuts is given by S(p
s
) = 100p
s
,
where p
s
is the price received by suppliers,The demand for coconuts by
the king’s subjects is given by D(p
d
)=8;320?100p
d
,wherep
d
is the
price paid by consumers,In equilibrium,the price received by suppliers
will be
476 EQUILIBRIUM (Ch,16)
(a) 16.
(b) 24.
(c) 41.60.
(d) 208.
(e) None of the other options are correct.
16.4 In Problem 16.6,the demand function for Schrecklichs is 200?4P
S
2P
L
and the demand function for LaMerdes is 200?3P
L
P
S
,whereP
S
and P
L
are respectively the price of Schrecklichs and LaMerdes,If the
world supply of Schrecklichs is 100 and the world supply of Lamerdes is
90,then the equilibrium price of Schrecklichs is
(a) 8.
(b) 25.
(c) 42.
(d) 34.
(e) 16.
Quiz 17 NAME
Auctions
17.1 First Fiddler’s Bank has foreclosed on a home mortgage and is selling
the house at auction,There are three bidders for the house,Jesse,Sheila,
and Elsie,First Fiddler’s does not know the willingness to pay of any
of these bidders but on the basis of its previous experience believes that
each of them has a probability of 1/3 of valuing the house at $700,000,
a probability of 1/3 of valuing it at $500,000,and a probability of 1/3 of
valuing it at $200,000,First Fiddlers believes that these probabilities are
independent between buyers,If First Fiddler’s sells the house by means
of a second-bidder sealed-bid auction (Vickrey auction),what will be the
bank’s expected revenue from the sale? (Choose the closest answer.)
(a) $500,000
(b) $474,074
(c) $466,667
(d) $666,667
(e) $266,667
17.2 An antique cabinet is being sold by means of an English auction.
There are four bidders,Natalie,Heidi,Linda,and Eva,These bidders
are unacquainted with each other and do not collude,Natalie values the
cabinet at $1,200,Heidi values it at $950,Linda values it at $1,700,and
Eva values it at $700,If the bidders bid in their rational self-interest,the
cabinet will be sold to
(a) Linda for about $1,700.
(b) Natalie for about $1,200.
(c) either Linda or Natalie for about $1,200,Which of these two buyers
gets it is randomly determined.
(d) Linda for slightly more than $1,200.
478 AUCTIONS (Ch,17)
(e) either Linda or Natalie for about $950,Which of these two buyers
gets it is randomly determined.
17.3 A dealer decides to sell an antique automobile by means of an English
auction with a reservation price of $900,There are two bidders,The
dealer believes that there are only three possible values that each bidder’s
willingness to pay might take,$6,300,$2,700,and $900,Each bidder has
a probability of 1/3 of having each of these willingnesses to pay,and the
probabilities of the two bidders are independent of the other’s valuation.
Assuming that the two bidders bid rationally and do not collude,the
dealer’s expected revenue from selling the automobile is
(a) $4,500.
(b) $3,300.
(c) $2,700.
(d) $2,100.
(e) $6,300.
17.4 A dealer decides to sell an oil painting by means of an English
auction with a reservation price of slightly below $81,000,If he fails to
get a bid as high as his reservation price,he will burn the painting,There
are two bidders,The dealer believes that each bidder’s willingness to
pay will take one of the three values,$90,000,$81,000,and $45,000,The
dealer believes that each bidder has a probability of 1/3 of having each
of these three values,The probability distribution of each buyer’s value
is independent of that of the other’s,Assuming that the two bidders bid
rationally and do not collude,the dealer’s expected revenue from selling
the painting is slightly less than
(a) $73,000.
(b) $81,000.
(c) $45,000.
(d) $63,000.
NAME 479
(e) $72,000.
17.5 Jerry’s Auction House in Purloined Hubcap,Oregon,holds sealed-
bid used car auctions every Wednesday,Each car is sold to the highest
bidder at the second-highest bidder’s bid,On average,2/3 of the cars that
are auctioned are lemons and 1/3 are good used cars,A good used car is
worth $1,500 to any buyer,A lemon is worth $150 to any buyer,Most
buyers can do no better than picking at random from among these used
cars,The only exception is Al Crankcase,Recall that Al can sometimes
detect lemons by tasting the oil on the car’s dipstick,A good car never
fails Al’s test,but half of the lemons fail his test,Al attends every auction,
licks every dipstick,and bids his expected value of every car given the
results of his test,Al will bid:
(a) $825 for cars that pass his test and $150 for cars that fail his test.
Normal bidders will get only lemons.
(b) $750 for cars that pass his test and $500 for cars that fail his test.
Normal bidders will get only lemons.
(c) $500 for cars that pass his test and $150 for cars that fail his test.
Normal bidders will get good cars only 1/6 of the time.
(d) $600 for cars that pass his test and $250 for cars that fail his test.
Normal bidders will get good cars only 1/6 of the time.
(e) $300 for cars that pass his test and $150 for cars that fail his test.
Normal bidders will get good cars only 1/12 of the time.
480 AUCTIONS (Ch,17)
Quiz 18 NAME
Technology
18.1 This problem will be easier if you have done Problem 18.1,A rm
has the production functionf(x
1;x
2
)=x
0:90
1
x
0:30
2
,The isoquant on which
output is 40
3=10
has the equation
(a) x
2
=40x
3
1
.
(b) x
2
=40x
3:33
1
.
(c) x
1
=x
2
=3.
(d) x
2
=40x
0:30
1
.
(e) x
1
=0:30x
0:70
2
.
18.2 A rm has the production function f(x;y)=x
0:70
y
0:30
.This rm
has
(a) decreasing returns to scale and dimininishing marginal product for
factor x.
(b) increasing returns to scale and decreasing marginal product of factor
x.
(c) decreasing returns to scale and increasing marginal product for factor
x.
(d) constant returns to scale.
(e) None of the other options are correct.
18.3 A rm uses 3 factors of production,Its production function is
f(x;y;z)=minfx
5
=y;y
4;(z
6
x
6
)=y
2
g,If the amount of each input is
multiplied by 6,its output will be multiplied by
(a) 7,776.
(b) 1,296.
(c) 216.
(d) 0.
482 TECHNOLOGY (Ch,18)
(e) The answer depends on the original choice of x,y,andz.
18.4 A rm has a production function f(x;y)=1:20(x
0:10
+y
0:10
)
1
when-
ever x>0andy>0,When the amounts of both inputs are positive,
this rm has
(a) increasing returns to scale.
(b) decreasing returns to scale.
(c) constant returns to scale.
(d) increasing returns to scale if x+y>1 and decreasing returns to scale
otherwise.
(e) increasing returns to scale if output is less than 1 and decreasing
returns to scale if output is greater than 1.
Quiz 19 NAME
Profit Maximization
19.1 In Problem 19.1,the production function is F(L)=6L
2=3
,Suppose
that the cost per unit of labor is 8 and the price of output is 8,how many
units of labor will the rm hire?
(a) 128
(b) 64
(c) 32
(d) 192
(e) None of the other options are correct.
19.2 In Problem 19.2,the production function is given by f(x)=4x
1=2
.
If the price of the commodity produced is 70 per unit and the cost of the
input is 35 per unit,how much pro ts will the rm make if it maximizes
pro ts?
(a) 560
(b) 278
(c) 1,124
(d) 545
(e) 283
19.3 In Problem 19.11,the production function is f(x
1;x
2
)=x
1=2
1
x
1=2
2
.If
the price of factor 1 is 8 and the price of factor 2 is 16,in what proportions
should the rm use factors 1 and 2 if it wants to maximize pro ts?
(a) x
1
= x
2
.
(b) x
1
=0:50x
2
.
(c) x
1
=2x
2
.
(d) We can’t tell without knowing the price of output.
484 PROFIT MAXIMIZATION (Ch,19)
(e) x
1
=16x
2
.
19.4 In Problem 19.9,when Farmer Hoglund applies N pounds of fer-
tilizer per acre,the marginal product of fertilizer is 1?(N=200) bushels
of corn,If the price of corn is $4 per bushel and the price of fertilizer
is $1.20 per pound,then how many pounds of fertilizer per acre should
Farmer Hoglund use in order to maximize his pro ts?
(a) 140
(b) 280
(c) 74
(d) 288
(e) 200
Quiz 20 NAME
Cost Minimization
20.1 Suppose that Nadine in Problem 20.1 has a production function
3x
1
+ x
2
,If the factor prices are 9 for factor 1 and 4 for factor 2,how
much will it cost her to produce 50 units of output?
(a) 1,550
(b) 150
(c) 200
(d) 875
(e) 175
20.2 In Problem 20.2,suppose that a new alloy is invented which uses
copper and zinc in xed proportions,where one unit of output requires 3
units of copper and 3 units of zinc for each unit of alloy produced,If no
other inputs are needed,if the price of copper is 2 and the price of zinc
is 2,what is the average cost per unit when 4,000 units of the alloy are
produced?
(a) 6.33
(b) 666.67
(c) 0.67
(d) 12
(e) 6,333.33
20.3 In Problem 20.3,the production function is f(L;M)=4L
1=2
M
1=2
,
where L is the number of units of labor and M is the number of machines
used,If the cost of labor is $25 per unit and the cost of machines is $64
per unit,then the total cost of producing 6 units of output will be
(a) $120.
(b) $267.
(c) $150.
486 COST MINIMIZATION (Ch,20)
(d) $240.
(e) None of the other options are correct.
20.4 Suppose that in the short run,the rm in Problem 20.3 which has
production function F(L;M)=4L
1=2
M
1=2
must use 25 machines,If the
cost of labor is 8 per unit and the cost of machines is 7 per unit,the
short-run total cost of producing 200 units of output is
(a) 1,500.
(b) 1,400.
(c) 1,600.
(d) 1,950.
(e) 975.
20.5 In Problem 20.12,Al’s production function for deer is f(x
1;x
2
)=
(2x
1
+ x
2
)
1=2
where x
1
is the amount of plastic and x
2
is the amount of
wood used,If the cost of plastic is $2 per unit and the cost of wood is $4
per unit,then the cost of producing 8 deer is
(a) $64.
(b) $70.
(c) $256.
(d) $8.
(e) $32.
20.6 Two rms,Wickedly E cient Widgets and Wildly Nepotistic Wid-
gets,produce widgets with the same production function y = K
1=2
L
1=2
where K is the input of capital and L is the input of labor,Each company
can hire labor at $1 per unit and capital at $1 per unit,WEW produces
10 widgets per week,choosing its input combination so as to produce
these 10 widgets in the cheapest way possible,WNW also produces 10
widgets per week,but its dotty CEO requires it to use twice as much
labor as WEW uses,Given that it must use twice as many laborers as
WEW does,and must produce the same output,how much more larger
are WNW’s total costs than WEW’s?
(a) $10 per week
(b) $20 per week
(c) $15 per week
(d) $5 per week
(e) $2 per week
Quiz 21 NAME
Cost Curves
21.1 In Problem 21.2,if Mr,Dent Carr’s total costs are 4s
2
+75s + 60,
then if he repairs 15 cars,his average variable costs will be
(a) 135.
(b) 139.
(c) 195.
(d) 270.
(e) 97.50.
21.2 In Problem 21.3,Rex Carr could pay $10 for a shovel that lasts one
year and pay $5 a car to his brother Scoop to bury the cars,or he could
buy a low-quality car smasher that costs $200 a year to own and that
smashes cars at a marginal cost of $1 per car,If it is also possible for
Rex to buy a high-quality hydraulic car smasher that cost $300 per year
to own and if with this smasher he could dispose of cars at a cost of $0.80
per car,it would be worthwhile for him to buy this high-quality smasher
smasher if
(a) he plans to dispose of at least 500 cars per year.
(b) he plans to dispose of no more than 250 cars per year.
(c) he plans to dispose of at least 510 cars per year.
(d) he plans to dispose of no more than 500 cars per year.
(e) he plans to dispose of at least 250 cars per year.
21.3 Mary Magnolia in Problem 21.4 has variable costs equal to y
2
=F
where y is the number of bouquets she sells per month and where F is the
number of square feet of space in her shop,If Mary has signed a lease for
a shop with 1,600 square feet and if she is not able to get out of the lease
or to expand her store in the short run,and if the price of a bouquet is
$3 per unit,how many bouquets per month should she sell in the short
run?
(a) 1,600
488 COST CURVES (Ch,21)
(b) 800
(c) 2,400
(d) 3,600
(e) 2,640
21.4 Touchie MacFeelie’s production function is,1J
1=2
L
3=4
,whereJ is
the number of old jokes used and L is the number of hours of cartoonists’
labor,Touchie is stuck with 900 old jokes for which he paid 6 dollars each.
If the wage rate for cartoonists is 5,then the total cost of producing 24
comics books is
(a) 5,480.
(b) 2,740.
(c) 8,220.
(d) 5,504.
(e) 1,370.
21.5 Recall that Touchie McFeelie’s production function for comic books
is,1J
1=2
L
3=4
,Suppose that Touchie can vary both jokes and cartoonists’
labor,If old jokes cost $2 each and cartoonists’ labor costs $18 per hour,
then the cheapest way to produce comics books requires using jokes and
labor in the ratio J=L =
(a) 9.
(b) 12.
(c) 3.
(d) 2/3.
(e) 6.
Quiz 22 NAME
Firm Supply
22.1 Suppose that Dent Carr’s long-run total cost of repairing s cars per
week is c(s)=3s
2
+ 192,If the price he receives for repairing a car is 36,
then in the long run,how many cars will he x per week if he maximizes
pro ts?
(a) 6
(b) 0
(c) 12
(d) 9
(e) 18
22.2 In Problem 22.9,suppose that Irma’s production function is
f(x
1;x
2
)=(minfx
1;2x
2
g)
1=2
,If the price of factor 1 is w
1
=6and
the price of factor 2 is w
2
= 4,then her supply function is given by the
equation:
(a) S(p)=p=16.
(b) S(p)=pmaxfw
1;2w
2
g
2
.
(c) S(p)=pminfw
1;2w
2
g
2
.
(d) S(p)=8p.
(e) S(p)=minf6p;8pg.
22.3 A rm has the long-run cost function C(q)=2q
2
+ 8,In the long
run,it will supply a positive amount of output,so long as the price is
greater than
(a) 16.
(b) 24.
(c) 4.
(d) 8.
(e) 13.
490 FIRM SUPPLY (Ch,22)
Quiz 23 NAME
Industry Supply
23.1 In Problem 23.1,if the cost of plaster and labor is $9 per gnome and
everything else is as in the problem,what is the lowest price of gnomes
at which there would be a positive supply in the long run?
(a) $9
(b) $18
(c) $11.20
(d) $9.90
(e) $10.80
23.2 Suppose that the garden gnome industry was in long-run equilib-
rium given the circumstances described in Problem 23.1,Suppose,as in
Problem 23.2,that it was discovered to everyone’s surprise,on January 1,
1993 after it was to late to change orders for gnome molds,that the cost
of the plaster and labor needed to make a gnome had changed to 8,If
the demand curve does not change,what will happen to the equilibrium
price of gnomes?
(a) It rises by 1.
(b) It falls by 1.
(c) It stays constant.
(d) It rises by 8.
(e) It falls by 4.
23.3 Suppose that the garden gnome industry was in long run equilib-
rium as described in Problem 23.1 and that on January 1,1993,the cost
of plaster and labor remained at $7 per gnome,and the government in-
troduced a tax of $10 on every garden gnome sold,Then the equilibrium
price of garden gnomes in 1993 would be
(a) $17.
(b) $9.20.
492 INDUSTRY SUPPLY (Ch,23)
(c) $7.
(d) $10.
(e) $27.
23.4 Suppose that the cost of capturing a cockatoo and transporting him
to the U,S,is about $40 per bird,Cockatoos are drugged and smuggled
in suitcases to the U,S,Half of the smuggled cockatoos die in transit.
Each smuggled cockatoo has a 10% probability of being discovered,in
which case the smuggler is ned,If the ne imposed for each smuggled
cockatoo is increased to $900,then the equilibrium price of cockatoos in
theU.S.willbe
(a) $288.89.
(b) $130.
(c) $85.
(d) $67.
(e) $200.
23.5 In Problem 23.13,in the absence of government interference,there
is a constant marginal cost of $5 per ounce for growing marijuana and
delivering it to buyers,If the probability that any shipment of marijuana
is seized is 0.20 and the ne if a shipper is caught is $20 per ounce,then
the equilibrium price of marijuana per ounce is
(a) $11.25.
(b) $9.
(c) $25.
(d) $4.
(e) $6.
23.6 In Problem 23.8,the supply curve of any rm is S
i
(p)=p=2,If a
rm produces 3 units of output,what are its total variable costs?
(a) $18
(b) $7
(c) $13.50
(d) $9
(e) There is not enough information given to determine total variable
costs.
Quiz 24 NAME
Monopoly
24.1 In Problem 24.1,if the demand schedule for Bong’s book is Q =
3;000? 100p,the cost of having the book typeset is 10,000,and the
marginal cost of printing an extra book is $4,he would maximize his
pro ts by
(a) having it typeset and selling 1,300 copies.
(b) having it typeset and selling 1,500 copies.
(c) not having it typeset and not selling any copies.
(d) having it typeset and selling 2,600 copies.
(e) having it typeset and selling 650 copies.
24.2 In Problem 24.2,if the demand for pigeon pies is p(y)=70?y=2,
then what level of output will maximize Peter’s pro ts?
(a) 74
(b) 14
(c) 140
(d) 210
(e) None of the above
24.3 A pro t-maximizing monopoly faces an inverse demand function
described by the equation p(y)=70?y and its total costs are c(y)=5y,
where prices and costs are measured in dollars,In the past it was not
taxed,but now it must pay a tax of 8 dollars per unit of output,After
the tax,the monopoly will
(a) increase its price by $8.
(b) increase its price by $12.
(c) increase its price by $4.
(d) leave its price constant.
494 MONOPOLY (Ch,24)
(e) None of the other options are correct.
24.4 A rm has invented a new beverage called Slops,It doesn’t taste
very good,but it gives people a craving for Lawrence Welk’s music and
Professor Johnson’s jokes,Some people are willing to pay money for this
e ect,so the demand for Slops is given by the equation q =14?p.Slops
can be made at zero marginal cost from old-fashioned macroeconomics
books dissolved in bathwater,But before any Slops can be produced,the
rm must undertake a xed cost of 54,Since the inventor has a patent
on Slops,it can be a monopolist in this new industry.
(a) The rm will produce 7 units of Slops.
(b) A Pareto improvement could be achieved by having the government
pay the rm a subsidy of 59 and insisting that the rm o er Slops at zero
price.
(c) From the point of view of social e ciency,it is best that no Slops be
produced.
(d) The rm will produce 14 units of Slops.
(e) None of the other options are correct.
Quiz 25 NAME
Monopoly Behavior
25.1 (See Problem 25.1.) If demand in the U.S,is given by Q
1
=23;400?
900p
1
,wherep
1
is the price in the U.S,and if the demand in England
is given by 2;800? 200p
2
where p
2
is the price in England,then the
di erence between the price charged in England and the price charged in
the U.S,will be
(a) 6.
(b) 12.
(c) 0.
(d) 14.
(e) 18.
25.2 (See Problem 25.2.) A monopolist faces a demand curve described
by p(y) = 100?2y and has constant marginal costs of 16 and zero xed
costs,If this monopolist is able to practice perfect price discrimination,
its total pro ts will be
(a) 1,764.
(b) 21.
(c) 882.
(d) 2,646.
(e) 441.
25.3 A price-discriminating monopolist sells in two separate markets such
that goods sold in one market are never resold in the other,It charges 4 in
one market and 8 in the other market,At these prices,the price elasticity
inthe rstmarketis?1:50 and the price elasticity in the second market
is?0:10,Which of the following actions is sure to raise the monopolists
pro ts?
(a) Lower p
2
.
(b) Raise p
2
.
496 MONOPOLY BEHAVIOR (Ch,25)
(c) Raise p
1
and lower p
2
.
(d) Raise both p
1
and p
2
.
(e) Raise p
2
and lower p
1
.
25.4 The demand for Professor Bongmore’s new book is given by the
function Q =2;000?100p,If the cost of having the book typeset is
8,000,if the marginal cost of printing an extra copy is 4,and if he has no
other costs,then he would maximize his pro ts by
(a) having it typeset and selling 800 copies.
(b) having it typeset and selling 1,000 copies.
(c) not having it typeset and not selling any copies.
(d) having it typeset and selling 1,600 copies.
(e) having it typeset and selling 400 copies.
Quiz 26 NAME
Factor Markets
26.1 Suppose that in Problem 26.2,the demand curve for mineral water
is given by p =30?12q,wherep is the price per bottle paid by consumers
and q is the number of bottles purchased by consumers,Mineral water
is supplied to consumers by a monopolistic distributor,who buys from a
monopolist producer who is able to produce mineral water at zero cost.
The producer charges the distributor a price of c per bottle,where the
price c maximizes the producer’s total revenue,Given his marginal cost
of c,the distributor chooses an output to maximize pro ts,The price
paid by consumers under this arrangement is
(a) 15.
(b) 22.50.
(c) 2.50.
(d) 1.25.
(e) 7.50.
26.2 Suppose that the labor supply curve for a large university in a small
town is given by w =60+0:08L where L is number of units of labor per
week and w is the weekly wage paid per unit of labor,If the university
is currently hiring 1,000 units of labor per week,the marginal cost of an
additional unit of labor
(a) equals the wage rate.
(b) is twice the wage rate.
(c) equals the wage rate plus 160.
(d) equals the wage rate plus 80.
(e) equals the wage rate plus 240
26.3 Rabelaisian Restaurants has a monopoly in the town of Upper Duo-
denum,Its production function is Q =40L,whereL istheamountof
labor it uses and Q is the number of meals produced,Rabelaisian Restau-
rants nds that in order to hire L units of labor,it must pay a wage of
40 +,1L per unit of labor,The demand curve for meals at Rabelaisian
Restaurants is given by P =30:75?Q=1;000,The pro t-maximizing
output for Rabelasian Restaurants is
498 FACTOR MARKETS (Ch,26)
(a) 14,000.
(b) 28,000.
(c) 3,500.
(d) 3,000.
(e) 1,750.
Quiz 27 NAME
Oligopoly
27.1 Suppose that the duopolists Carl and Simon in Problem 27.1 face
a demand function for pumpkins of Q =13;200?800P,whereQ is the
total number of pumpkins that reach the market and P is the price of
pumpkins,Suppose further that each farmer has a constant marginal
cost of $0.50 for each pumpkin produced,If Carl believes that Simon is
going to produce Q
s
pumpkins this year,then the reaction function tells
us how many pumpkins Carl should produce in order to maximize his
pro ts,Carl’s reaction function is R
C
(Q
s
)=
(a) 6;400?Q
s
=2.
(b) 13;200?800Q
s
.
(c) 13;200?1;600Q
s
.
(d) 3;200?Q
s
=2.
(e) 9;600?Q
s
.
27.2 If in Problem 27.4,the inverse demand for bean sprouts were given
by P(Y ) = 290?4Y and the total cost of producing y units for any
rm were TC(Y)=50Y,and if the industry consisted of two Cournot
duopolists,then in equilibrium each rm’s production would be
(a) 30 units.
(b) 15 units.
(c) 10 units.
(d) 20 units.
(e) 18.13 units.
27.3 In Problem 27.5,suppose that Grinch and Grubb go into the wine
business in a small country where wine is di cult to grow,The demand
for wine is given by p = $360?:2Q where p is the price and Q is the total
quantity sold,The industry consists of just the two Cournot duopolists,
Grinch and Grubb,Imports are prohibited,Grinch has constant marginal
costs of $15 and Grubb has marginal costs of $75,How much is Grinch’s
output in equilibrium?
500 OLIGOPOLY (Ch,27)
(a) 675
(b) 1,350
(c) 337.50
(d) 1,012.50
(e) 2,025
27.4 In Problem 27.6,suppose that two Cournot duopolists serve the
Peoria-Dubuque route,and the demand curve for tickets per day is Q =
200?2p (so p = 100?Q=2),Total costs of running a flight on this route
are 700+40q whereq is the number of passengers on the flight,Each flight
has a capacity of 80 passengers,In Cournot equilibrium,each duopolist
will run one flight per day and will make a daily pro t of
(a) 100.
(b) 350.
(c) 200.
(d) 200.
(e) 2,400.
27.5 In Problem 27.4,suppose that the market demand curve for bean
sproutsisgivenbyP = 880?2Q,whereP is the price and Q is total
industry output,Suppose that the industry has two rms,a Stackleberg
leader,and a follower,Each rm has a constant marginal cost of $80 per
unit of output,In equilibrium,total output by the two rms will be
(a) 200.
(b) 100.
(c) 300.
(d) 400.
(e) 50.
27.6 There are two rms in the blastopheme industry,The demand
curve for blastophemes is given by p =2;100?3q,Each rm has one
manufacturing plant and each rm i has a cost function C(q
i
)=q
2
i
where
q
i
is the output of rm i,The two rms form a cartel and arrange to
split total industry pro ts equally,Under this cartel arrangement,they
will maximize joint pro ts if
NAME 501
(a) and only if each rm produces 150 units in its plant.
(b) they produce a total of 300 units,no matter which rm produces
them.
(c) and only if they each produce a total of 350 units.
(d) they produce a total of 233.33 units,no matter which rm produces
them.
(e) they shut down one of the two plants,having the other operate as a
monopoly and splitting the pro ts.
502 OLIGOPOLY (Ch,27)
Quiz 28 NAME
Game Theory
28.1 (See Problem 28.1.) Big Pig and Little Pig have two possible strate-
gies,Press the Button,and Wait at the Trough,If both pigs choose Wait,
both get 4,If both pigs press the button then Big Pig gets 5 and Little
Pig gets 5,If Little Pig presses the button and Big Pig waits,then Big
Pig gets 10 and Little Pig gets 0,Finally,if Big Pig presses and Little
Pig waits,then Big Pig gets 4 and Little Pig gets 2,In Nash equilibrium,
(a) Little Pig will get a payo of 2 and Big Pig will get a payo of 4.
(b) Little Pig will get a payo of 5 and Big Pig will get a payo of 5.
(c) both pigs will wait at the trough.
(d) Little Pig will get a payo of zero.
(e) the pigs must be using mixed strategies.
28.2 (See Problem 28.6.) Two players are engaged in a game of \chicken."
There are two possible strategies,Swerve and Drive Straight,A player
who chooses to Swerve is called \Chicken" and gets a payo of zero,
regardless of what the other player does,A player who chooses to Drive
Straight gets a payo of 32 if the other player swerves and a payo of
48 if the other player also chooses to Drive Straight,This game has two
pure strategy equilibria and
(a) a mixed strategy equilibrium in which each player swerves with prob-
ability 0.60 and drives straight with probability 0.40.
(b) two mixed strategies in which players alternate between swerving and
driving straight.
(c) a mixed strategy equilibrium in which one player swerves with prob-
ability 0.60 and the other swerves with probability 0.40.
(d) a mixed strategy in which each player swerves with probability 0.30
and drives straight with probability 0.70.
504 GAME THEORY (Ch,28)
(e) no mixed strategies.
28.3 The old Michigan football coach had only two strategies,run the ball
to the left side of the line,and run the ball to the right side,The defense
can concentrate either on the left side or the right side of Michigan’s
line,If the opponent concentrates on the wrong side,Michigan is sure to
gain at least 5 yards,If the defense defended the left side and Michigan
ran left,Michigan would be stopped for no gain,But if the opponent
defended the right side when Michigan ran right,Michigan would still
gain at least 5 yards with probability 0.40,It is the last play of the
game and Michigan needs to gain 5 yards to win,Both sides choose Nash
equilibrium strategies,In Nash equilibrium,Michigan would
(a) be sure to run to the right side.
(b) run to the right side with probability 0.63.
(c) run to the right side with probability 0.77.
(d) run with equal probability to one side or the other.
(e) run to the right side with probability 0.60.
28.4 Suppose that in the Hawk-Dove game discussed in Problem 28.3,
the payo to each player is?4 if both play Hawk,If both play Dove,
the payo to each player is 1 and if one plays Hawk and the other plays
Dove,the one that plays Hawk gets a payo of 3 and the one that plays
Dove gets 0,In equilibrium,we would expect Hawks and Doves to do
equally well,This happens when the proportion of the total population
that plays Hawk is
(a) 0.33.
(b) 0.17.
(c) 0.08.
(d) 0.67.
(e) 1.
28.5 (See Problem 28.11.) If the number of persons who attend the club
meeting this week is X,then the number of people who will attend next
week is 27 + 0:70X,What is a long-run equilibrium attendance for this
club?
(a) 27
(b) 38.57
(c) 54
(d) 90
(e) 63
Quiz 29 NAME
Exchange
29.1 An economy has two people Charlie and Doris,There are two goods,
apples and bananas,Charlie has an initial endowment of 3 apples and
12 bananas,Doris has an initial endowment of 6 apples and 6 bananas.
Charlie’s utility function is U(A
C;B
C
)=A
C
B
C
where A
C
is his apple
consumption and B
C
is his banana consumption,Doris’s utility function
is U(A
D;B
D
)=A
D
B
D
where A
D
and B
D
are her apple and banana
consumptions,At every Pareto optimal allocation,
(a) Charlie consumes the same number of apples as Doris.
(b) Charlie consumes 9 apples for every 18 bananas that he consumes.
(c) Doris consumes equal numbers of apples and bananas.
(d) Charlie consumes more bananas per apple than Doris does.
(e) Doris consumes apples and bananas in the ratio of 6 apples for every
6 bananas that she consumes.
29.2 In Problem 29.4,Ken’s utility function is U(Q
K;W
K
)=Q
K
W
K
and Barbie’s utility function is U(Q
B;W
B
)=Q
B
W
B
,If Ken’s initial
endowment were 3 units of quiche and 10 units of wine and Barbie’s
endowment were 6 units of quiche and 10 units of wine,then at any Pareto
optimal allocation where both persons consume some of each good,
(a) Ken would consume 3 units of quiche for every 10 units of wine.
(b) Barbie would consume twice as much quiche as Ken.
(c) Ken would consume 9 units of quiche for every 20 units of wine that
he consumed.
(d) Barbie would consume 6 units of quiche for every 10 units of wine
that she consumed.
(e) None of the other options are correct.
29.3 In Problem 29.1,suppose that Morris has the utility function
U(b;w)=6b +24w and Philip has the utility function U(b;w)=bw.
If we draw an Edgeworth box with books on the horizontal axis and wine
on the vertical axis and if we measure Morris’s consumptions from the
lower left corner of the box,then the contract curve contains
506 EXCHANGE (Ch,29)
(a) a straight line running from the upper right corner of the box to the
lower left.
(b) a curve that gets steeper as you move from left to right.
(c) a straight line with slope 1=4 passing through the lower left corner of
the box.
(d) a straight line with slope 1=4 passing through the upper right corner
of the box.
(e) a curve that gets flatter as you move from left to right.
29.4 In Problem 29.2,Astrid’s utility function is U(H
a;C
A
)=H
A
C
A
.
Birger’s utility function is minfH
B;C
B
g,Astrid’s initial endowment is no
cheese and 4 units of herring,and Birger’s initial endowments are 6 units
of cheese and no herring,Where p is a competitive equilibrium price of
herring and cheese is the numeraire,it must be that demand equals supply
in the herring market,This implies that
(a) 6=(p +1)+2=4.
(b) 6=4=p.
(c) 4=6=p.
(d) 6=p +4=2p =6.
(e) minf4;6g= p.
29.5 Suppose that in Problem 29.8,Mutt’s utility function is U(m;j)=
maxf3m;jg and Je ’s utility function is U(m;j)=2m + j.Mutis
initially endowed with 4 units of milk and 2 units of juice,Je is initially
endowed with 4 units of milk and 6 units of juice,If we draw an Edgeworth
box with milk on the horizontal axis and juice on the vertical axis and if
we measure goods for Mutt by the distance from the lower left corner of
the box,then the set of Pareto optimal allocations includes the
(a) left edge of the Edgeworth box but no other edges.
(b) bottom edge of the Edgeworth box but no other edges.
(c) left edge and bottom edge of the Edgeworth box.
(d) right edge of the Edgeworth box but no other edges.
NAME 507
(e) right edge and top edge of the Edgeworth box.
29.6 In Problem 29.3,Professor Nightsoil’s utility function,U
N
(B
N;P
N
),
is B
N
+4P
1=2
N
and Dean Interface’s utility function is U
I
(B
I;P
I
)=B
I
+
2P
1=2
I
,If Nightsoil’s initial endowment is 7 bromides and 15 platitudes
and if Interface’s initial endowment is 7 bromides and 25 platitudes,then
at any Pareto e cient allocation where both persons consume positive
amounts of both goods,it must be that
(a) Nightsoil consumes the same ratio of bromides to platitudes as Inter-
face.
(b) Interface consumes 8 platitudes.
(c) Interface consumes 7 bromides.
(d) Interface consumes 3 bromides.
(e) Interface consumes 5 platitudes.
508 EXCHANGE (Ch,29)
Quiz 30 NAME
Production
30.1 Suppose that in Problem 30.1,Tip can write 5 pages of term papers
or solve 20 workbook problems in an hour,while Spot can write 2 pages
of term papers or solve 6 workbook problems in an hour,If they each
decide to work a total of 7 hours,and to share their output then if they
produce as many pages of term paper as possible given that they produce
30 workbook problems,
(a) Spot will spend all of his time writing term papers and Tip will spend
some time at each task.
(b) Tip will spend all of his time writing term papers and Spot will spend
some time at each task.
(c) bothstudentswillspendsometimeateachtask.
(d) Spot will write term papers only and Tip will do workbook problems
only.
(e) Tip will write term papers only and Spot will do workbook problems
only.
30.2 Al and Bill are the only workers in a small factory which makes
geegaws and doodads,Al can make 3 geegaws per hour or 15 doodads per
hour,Bill can make 2 geegaws per hour or 6 doodads per hour,Assuming
that neither of them nds one task more odious than the other,
(a) Al has comparative advantage in producing geegaws,and Bill has
comparative advantage in producing doodads.
(b) Bill has comparative advantage in producing geegaws,and Al has
comparative advantage in producing doodads.
(c) Al has comparative advantage in producing both geegaws and doo-
dads.
(d) Bill has comparative advantage in producing both geegaws and doo-
dads.
510 PRODUCTION (Ch,30)
(e) both persons have comparative advantage in producing doodads.
30.3 (See Problem 30.5.) Every consumer has a red-money income and
a blue-money income and each commodity has a red price and a blue
price,You can buy a good by paying for it either with blue money at
the blue price,or with red money at the red price,Harold has 10 units
of red money to spend and 18 units of blue money to spend,The red
price of ambrosia is 1 and the blue price of ambrosia is 2,The red price
of bubblegum is 1 and the blue price of bubblegum is 1,If ambrosia is on
the horizontal axis,and bubblegum on the vertical,axis,then Harold’s
budget set is bounded
(a) by two line segments,one running from (0,28) to (10,18) and another
running from (10,18) to (19,0).
(b) by two line segments one running from (0,28) to (9,10) and the other
running from (9,10) to (19,0).
(c) by two line segments,one running from (0,27)to (10,18) and the other
running from (10,18) to (20,0).
(d) a vertical line segment and a horizontal line segement,intersecting at
(10,18).
(e) a vertical line segment and a horizontal line segment,intersecting at
(9,10).
30.4 (See Problem 30.2.) Robinson Crusoe has exactly 12 hours per day
to spend gathering coconuts or catching sh,He can catch 4 sh per hour
or he can pick 16 coconuts per hour,His utility function is U(F;C)=FC
where F is his consumption of sh and C is his consumption of coconuts.
If he allocates his time in the best possible way between catching sh and
picking coconuts,his consumption will be the same as it would be if he
could buy sh and coconuts in a competitive market where the price of
coconuts is 1,and where
(a) his income is 192 and the price of sh is 4.
(b) his income is 48 and the price of sh is 4.
(c) his income is 240 and the price of sh is 4.
(d) his income is 192 and the price of sh is 0.25.
(e) his income is 120 and the price of sh is 0.25.
30.5 On a certain island there are only two goods,wheat and milk,The
only scarce resource is land,There are 1,000 acres of land,An acre of land
will produce either 16 units of milk or 37 units of wheat,Some citizens
have lots of land,some have just a little bit,The citizens of the island
all have utility functions of the form U(M;W)=MW,At every Pareto
optimal allocation,
NAME 511
(a) the number of units of milk produced equals the number of units of
wheat produced.
(b) total milk production is 8,000.
(c) all citizens consume the same commodity bundle.
(d) every consumer’s marginal rate of substitution between milk and
wheat is?1.
(e) None of the above is true at every Pareto optimal allocation.
512 PRODUCTION (Ch,30)
Quiz 31 NAME
Welfare
31.1 A Borda count is used to decide an election between 3 candidates,
x,y,and z where a score of 1 is awarded to a rst choice,2 to a second
choice and 3 to a third choice,There are 25 voters,7 voters rank the
candidates x rst,y second,z third; 4 voters rank the candidates x rst,z
second,y third; 6 rank the candidates,z rst,y second,x third; 8 voters
rank the candidates,y rst,z second,x third,Which candidate wins?
(a) Candidate x.
(b) Candidate y.
(c) Candidate z.
(d) There is a tie between x and y,with z coming in third.
(e) There is a tie between y and z,with x coming in third.
31.2 A parent has two children living in cities with di erent costs of
living,The cost of living in city B is 3 times the cost of living in city A.
The child in city A has an income of 3,000 and the child in city B has an
income of $9,000,The parent wants to give a total of $4,000 to her two
children,Her utility function is U(C
A;C
B
)=C
A
C
B
,whereC
A
and C
B
are the consumptions of the children living in cities A and B respectively.
She will choose to
(a) give each child $2,000,even though this will buy less goods for the
child in city B.
(b) give the child in city B 3 times as much money as the child in city A.
(c) give the child in city A 3 times as much money as the child in city B.
(d) give the child in city B 1.50 times as much money as the child in
city A.
(e) give the child in city A 1.50 times as much money as the child in
city B.
31.3 Suppose that Paul and David from Problem 31.7 have utility func-
tions U =5A
P
+ O
P
and U = A
D
+5O
D
,respectively,where A
P
and
O
P
are Paul’s consumptions of apples and oranges and A
D
and O
D
are
David’s consumptions of apples and oranges,The total supply of apples
and oranges to be divided between them is 8 apples and 8 oranges,The
\fair" allocations consist of all allocations satisfying the following condi-
tions.
514 WELFARE (Ch,31)
(a) A
D
= A
P
and O
D
= O
P
.
(b) 10A
P
+2O
P
is at least 48,and 2A
D
+10O
D
is at least 48.
(c) 5A
P
+O
P
is at least 48,and 2A
D
+5O
D
is at least 48.
(d) A
D
+O
D
is at least 8,and A
S
+O
S
is at least 8.
(e) 5A
P
+O
P
is at least A
D
+5O
D
,andA
D
+5O
D
is at least 5A
P
+O
P
.
31.4 Suppose that Romeo in Problem 31.8 has the utility function U =
S
8
R
S
4
J
and Juliet has the utility function U = S
4
R
S
8
J
,whereS
R
is Romeo’s
spaghetti consumption and S
J
is Juliet’s,They have 96 units of spaghetti
to divide between them.
(a) Romeo would want to give Juliet some spaghetti if he had more than
48 units of spaghetti.
(b) Juliet would want to give Romeo some spaghetti if she has more than
62 units.
(c) Romeo and Juliet would never disagree about how to divide the
spaghetti.
(d) Romeo would want to give Juliet some spaghetti if he has more than
60 units of spaghetti.
(e) Juliet would want to give Romeo some spaghetti if she has more than
64 units of spaghetti.
31.5 Hat eld and McCoy burn with hatred for each other,They both
consume corn whisky,Hat eld’s utility function is U = W
H
W
2=8
M
and
McCoy’s utility is U = W
M
W
2=8
H
,whereW
H
is Hat eld’s whisky con-
sumption and W
M
is McCoy’s whisky consumption,measured in gallons.
The sheri has a total of 28 units of con scated whisky that he could
give back to them,For some reason,the sheri wants them both to be as
happy as possible,and he wants to treat them equally,The sheri should
give them each
(a) 14 gallons.
(b) 4 gallons and spill 20 gallons in the creek.
(c) 2 gallons and spill 24 gallons in the creek.
(d) 8 gallons and spill the rest in the creek.
(e) 1 gallon and spill the rest in the creek.
Quiz 32 NAME
Externalities
32.1 Suppose that in Horsehead,Massachusetts,the cost of operating
a lobster boat is $3,000 per month,Suppose that if X lobster boats
operate in the bay,the total monthly revenue from lobster boats in the
bay is $1;000(23x?x
2
),If there are no restrictions on entry and new
boats come into the bay until there is no pro t to be made by a new
entrant,then the number of boats that enter will be X1,If the number
of boats that operate in the bay is regulated to maximize total pro ts,
the number of boats in the bay will be X2.
(a) X1 = 20 and X2 = 20.
(b) X1 = 10 and X2=8.
(c) X1 = 20 and X2 = 10.
(d) X1 = 24 and X2 = 14.
(e) None of the other options are correct.
32.2 An apiary is located next to an apple orchard,The apiary produces
honey and the apple orchard produces apples,The cost function of the
apiary is C
H
(H;A)=H
2
=100?1A and the cost function of the apple
orchard is C
A
(H;A)=A
2
=100,where H and A are the number of units
of honey and apples produced respectively,The price of honey is 8 and
the price of apples is 7 per unit,Let A1 be the output of apples if the
rms operate independently,and let A2 be the output of apples if the
rms are operated by a single owner,It follows that
(a) A1 = 175 and A2 = 350.
(b) A1=A2 = 350.
(c) A1 = 200 and A2 = 350.
(d) A1 = 350 and A2 = 400.
516 EXTERNALITIES (Ch,32)
(e) A1 = 400 and A2 = 350.
32.3 Martin’s utility is U(c;d;h)=2c +5d?d
2
2h,whered is the
number of hours per day that he spends driving around,h is the number
of hours per day spent driving around by other people in his home town
and c is the amount of money he has left to spend on other stu besides
gasoline and auto repairs,Gas and auto repairs cost $.50 per hour of
driving,All the people in Martin’s home town have the same tastes,If
each citizen believes that his own driving will not a ect the amount of
driving done by others,they will all drive D1hoursperday,Iftheyall
drive the same amount,they would all be best o if each drove D2hours
per day,where
(a) D1=2andD2=1.
(b) D1=D2=2.
(c) D1=4andD2=2.
(d) D1=5andD2=0.
(e) D1 = 24 and D2=0.
32.4 (See Problems 32.8,32.9.) An airport is located next to a housing
development,Where X is the number of planes that land per day and Y
is the number of houses in the housing development,pro ts of the airport
are 22X?X
2
and pro ts of the developer are 32Y?Y
2
XY.Let
H1 be the number of houses built if a single pro t-maximizing company
owns the airport and the housing development,Let H2bethenumberof
houses built if the airport and the housing development are operated in-
dependently and the airport has to pay the developer the total \damages"
XY done by the planes to developer’s pro ts,Then
(a) H1=H2 = 14.
(b) H1 = 14 and H2 = 16.
(c) H1 = 16 and H2 = 14.
(d) H1 = 16 and H2 = 15.
(e) H1 = 15 and H2 = 19.
32.5 (See Problem 32.5.) A clothing store and a jeweler are located
side by side in a shopping mall,If the clothing store spends C dollars
on advertising and the jeweler spends J dollars on advertising,then the
pro ts of the clothing store will be (48 + J)C?2C
2
and the pro ts of
the jeweler will be (42 +C)J?2J
2
,The clothing store gets to choose his
amount of advertising rst,knowing that the jeweler will nd out how
much the clothing store advertised before deciding how much to spend.
The amount spent by the clothing store will be
NAME 517
(a) 16.71.
(b) 46.
(c) 69.
(d) 11.50.
(e) 34.50.
518 EXTERNALITIES (Ch,32)
Quiz 33 NAME
Law
33.1 Consider Madame Norrell,in Problem 33.1,She gets 5 logx if she
delivers x buttons to her fence,She has to pay a ne Fxif she is caught,
and she has a 10 percent chance of getting caught,If she is caught,she
cannot collect anything from her fence,How big should the ne be if we
want to limit Madam Norrell to taking 5 buttons?
(a) 4.5
(b) 5.5
(c) 9
(d) 11
(e) 12
33.2 Consider Jim and Dick,described in Problem 33.2,Jim rides at
speed s and has money m; his utility function is 10s +m,Dick walks at
speed w and has money m; his utility function is 10w + m.Thecostof
an accident to Jim is c
J
(s;w)=s
2
+ w
2
,and the cost of an accident to
Dick is also c
D
(s;w)=s
2
+w
2
,If there is no liability,how fast will Dick
and Jim move?
(a) s =10andw = 10.
(b) s =5andw =5.
(c) s =5andw = 10.
(d) s =10andw =5.
(e) s =15andw = 15.
520 LAW (Ch,33)
Quiz 34 NAME
Information Technology
34.1 If the demand function for the DoorKnobs operating system is re-
lated to perceived market share s and actual market share t by the equa-
tion p = 512s(1?x),then in the long run,the highest price at which
DoorKnobs could sustain a market share of 3/4 is
(a) $156.
(b) $64.
(c) $96.
(d) $128.
(e) $256.
34.2 Eleven consumers are trying to decide whether to connect to a new
communications network,Consumer 1 is of type 1,consumer 2 is of type
2,consumer 3 is of type 3,and so on,Where k is the number of consumers
connected to the network (including oneself),a consumer of type n has
willingness to pay to belong to this network equal to k times n.Whatis
the highest price at which 7 consumers could all connect to the network
and either make a pro t or at least break even?
(a) $40
(b) $33
(c) $25
(d) $40
(e) $35
34.3 Professor Kremepu ’s new,user-friendly textbook has just been
published,This book will be used in classes for two years,after which it
will be replaced by a new edition,The publisher charges a price of p
1
in
the rst year and p
2
in the second year,After the rst year,bookstores
buy back used copies for p
2
=2 and resell them to students in the second
year for p
2
,(Students are indi erent between new and used copies.) The
cost to a student of owning the book during the rst year is therefore
p
1
(p
2
=2),In the rst year of publication,the number of students
willing to pay $v to own a copy of the book for a year is 60;000?1;000v.
The number of students taking the course in the rst year who are willing
522 INFORMATION TECHNOLOGY (Ch,34)
to pay $w to keep the book for reference rather than sell it at the end of
the year is 60;000?5;000w,The number of persons who are taking the
course in the second year and are willing to pay at least $p for a copy of
the book is 50;000?1;000p,If the publisher sets a price of p
1
in the rst
year and p
2
p
1
in the second year,then the total number of copies of
the book that the publisher sells over the two years will be
(a) 120;000?1;000p
1
1;000p
2
.
(b) 120;000?1;000(p
1
p
2
=2).
(c) 120;000?3;000p
2
.
(d) 110;000?1;000(p
1
+p
2
=2).
(e) 110;000?1;500p
2
.
Quiz 35 NAME
Public Goods
35.1 Just north of the town of Muskrat,Ontario,is the town of Brass
Monkey,population 500,Brass Monkey,like Muskrat,has a single pub-
lic good,the town skating rink and a single private good,Labatt’s ale.
Everyone’s utility function is U
i
(X
i;Y)=X
i
64=Y,whereX
i
is the
number of bottles of ale consumed by i and Y is the size of the skating
rink in square meters,The price of ale is $1 per bottle,The cost of the
skating rink to the city is $5 per square meter,Everyone has an income
of at least $5,000,What is the Pareto e cient size for the town skating
rink?
(a) 80 square meters
(b) 200 square meters
(c) 100 square meters
(d) 165 square meters
(e) None of the other options are correct.
35.2 Recall Bob and Ray in Problem 35.4,They are thinking of buying a
sofa,Bob’s utility function is U
B
(S;M
B
)=(1+S)M
B
,and Ray’s utility
function is U
R
(S;M
R
)=(4+S)M
R
,whereS = 0 if they don’t get the sofa
and S = 1 if they do and where M
B
and M
R
are the amounts of money
they have respectively to spend on their private consumptions,Bob has
a total of $800 to spend on the sofa and other stu,Ray has a total of
$2,000 to spend on the sofa and other stu,The maximum amount that
they could pay for the sofa and still arrange to both be better o than
without it is
(a) $1,200.
(b) $500.
(c) $450.
(d) $800.
524 PUBLIC GOODS (Ch,35)
(e) $1,600.
35.3 Recall Bonnie and Clyde from Problem 35.5,Suppose that their
total pro ts are 48H,whereH is the number of hours they work per
year,Their utility functions are,respectively,U
B
(C
B;H)=C
B
0:01H
2
and U
C
(C
C;H)=C
C
0:01H
2
,whereC
B
and C
C
are their private goods
consumptions and H is the number of hours they work per year,If they
nd a Pareto optimal choice of hours of work and income distribution,it
must be that the number of hours they work per year is
(a) 1,300.
(b) 1,800.
(c) 1,200.
(d) 550.
(e) 650.
35.4 Recall Lucy and Melvin from Problem 35.6,Lucy’s utility function
is 2X
L
+ G,and Melvin’s utility function is X
M
G,where G is their ex-
penditures on the public goods they share in their apartment and where
X
L
and X
M
are their respective private consumption expenditures,The
total amount they have to spend on private goods and public goods is
32,000,They agree on a Pareto optimal pattern of expenditures in which
the amount that is spent on Lucy’s private consumption is 8,000,How
much do they spent on public goods?
(a) 8,000
(b) 16,000
(c) 8,050
(d) 4,000
(e) There is not enough information here to be able to determine the
answer.
Quiz 36 NAME
Information
36.1 As in Problem 36.2,suppose that low-productivity workers have
marginal products of 10 and high-productivity workers have marginal
products of 16,The community has equal numbers of each type of worker.
The local community college o ers a course in microeconomics,High-
productivity workers think taking this course is as bad as a wage cut of
4,and low-productivity workers think it is as bad as a wage cut of 7.
(a) There is a separating equilibrium in which high-productivity workers
take the course and are paid 16 and low-productivity workers do not take
the course and are paid 10.
(b) There is no separating equilibrium and no pooling equilibrium.
(c) There is no separating equilibrium,but there is a pooling equilibrium
in which everybody is paid 13.
(d) There is a separating equilibrium in which high-productivity workers
take the course and are paid 20 and low-productivity workers do not take
the course and are paid 10.
(e) There is a separating equilibrium in which high-productivity workers
take the course and are paid 16 and low-productivity workers are paid 13.
36.2 Suppose that in Enigma,Ohio,Klutzes have productivity of $1,000
and Kandos have productivity of $5,000 per month,You can’t tell Klutzes
from Kandos by looking at them or asking them,and it is too expensive
to monitor individual productivity,Kandos,however,have more patience
than Klutzes,Listening to an hour of dull lectures is as bad as losing $200
for a Klutz and $100 for a Kando,There will be a separating equilibrium
in which anybody who attends a course of H hours of lectures is paid
$5,000 per month and anybody who does not is paid $1,000 per month
(a) if H<40 and H>20.
(b) if H<80 and H>20.
(c) for all positive values of H.
(d) only in the limit as H approaches in nity.
526 INFORMATION (Ch,36)
(e) if H<35 and H>17:50.
36.3 In Rustbucket,Michigan,there are 200 used cars for sale,Half of
them are good,and half of them are lemons,Owners of lemons are willing
to sell them for $300,Owners of good used cars are willing to sell them for
prices above $1,100 but will keep them if the price is lower than $1,100.
There is a large number of potential buyers who are willing to pay $400
for a lemon and $2,100 for a good car,Buyers can’t tell good cars from
bad,but original owners know.
(a) There will be an equilibrium in which all used cars sell for $1,250.
(b) The only equilibrium is one in which all used cars on the market are
lemons and they sell for 400.
(c) There will be an equilibrium in which lemons sell for 300 and good
used cars sell for 1,100.
(d) There will be an equilibrium in which all used cars sell for 700.
(e) There will be an equilibrium in which lemons sell for 400 and good
used cars sell for 2,100.
36.4 Suppose that in Burnt Clutch,Pa.,the quality distribution of the
1000 used cars on the market is such that the number of used cars of value
less than V is V=2,Original owners must sell their used cars,Original
owners know what their cars are worth,but buyers can’t determine a car’s
quality until they buy it,An owner can either take his car to an appraiser
and pay the appraiser $100 to appraise the car (accurately and credibly),
or he can sell the car unappraised,In equilibrium,car owners will have
their cars appraised if and only if their value is at least
(a) $100.
(b) $500.
(c) $300.
(d) $200.
(e) $400.