第一章 概 论一、?生物化学的概念及其研究内容生物体的生命现象(过程)作为物质运动的一种独有的特殊的运动形式,其基本表现形式就是(新陈代谢和自我繁殖)。那么构成这种特殊运动形式物质基础又是什么呢?恩格斯很早就说过“蛋白质是生命活动的体现者”。现在已知仅有蛋白质是远远不够的,还要有核酸,糖类、脂类、维生素、激素、萜类,卜啉等。正是这些生命物质之间的相互协调的作用才形成了丰富多彩的生命现象,那么,这些生命物质到底有那些呢?他们是怎样产生和消亡,又是怎样相互转变和相互作用呢?这就是生物化学所要研究的内容。
那么就让我们试着给生物化学下一个定义吧。
生物化学是研究生物体的物质组成和生命过程中的化学变化的一门科学。
或者说生物化学是研究生命现象中的物质基础和化学变化的一门科学。
更简单地说生物化学就是研究生命现象的化学本质。
有人也称生物化学就是生命的化学。
二,生物化学的研究方法以上讲了生物化学的研究对象,那么现代生物化学家们整天干些什么呢?
四个字;分离分析。
从观察一个具体的生命现象开始,通过抽提、过滤、离心、色谱(层析)等生化技术分离出某种未知的生化物质(生化组分)比如一个新的未知蛋白组分,新基因片段,或新的次生代谢物,然后进行分析,
1,结构与性质:采用系列测定、X—射线衍射、波谱,质谱、圆二色散性等技术分析其结构和功能,结构是功能的基础,有其结构必有其功能。
2.功能:生理、病理、信好转导、抗病、抗旱、耐水肥、肥胖等、
3.代谢及其细胞调控:表达的时空特异性,该物质何时产生与消亡,在什么组织表达?从哪儿来最终到哪儿去,其代谢受什么调控?(潜伏、激活、沉默)。
4改造和利用认识世界是为了改造世界,通过分离、分析后搞清了这些生命现象,最后就可以对症下药:
基因治疗:血友病、癌症、肥胖等。
生化药物(基因工程药物):红细胞生成素,磺胺药。
遗传改良:抗虫、抗病、抗病毒等。
三,生物化学的发展史生物化学是生命科学中最古老的学科之一(之二:遗传学、细胞学)。
科学的发展总是由粗到细再到粗,或综—分—综。
最早的自然科学就是数、理、化、天、地、生。生就是生物学,研究的就是一些力所能及的生物形态观察、分类等。
随着各学的发展,学科间在理论知识和技术上相互渗透,尤其是化学、物理学的渗透,那么到18世纪,一些从事化学研究的科学家,如拉瓦锡、舍勒等人和一些药剂师、炼丹师转向生物领域,这就为生物化学的诞生播下了种子。这时生物学就逐渐分离成生理化学、遗传学、细胞学。
19世纪末,又从生理化学中分离出生物化学,20世纪中后期又从生物化学中分离出分子生物学并与经典遗传学结合为分子遗传学,还有发育生物学,结构生物学等等。现在又有统一的趋势,叫二十一世纪的“统一生物学”或干脆叫生命科学,生物工程严格讲应是生物技术与工程学的杂交学科。
1,静态生物化学时期(1920年以前)
研究内容以分析生物体内物质的化学组成、性质和含量为主。
2,动态生物化学时期(1950年以前)
这是一个飞速发展的辉煌时期,
随着同位素示踪技术、色谱技术等物理学手段的广泛应用,生物化学从单纯的组成分析深入到物质代谢途径及动态平衡、能量转化,光合作用、生物氧化、糖的分解和合成代谢、蛋白质合成、核酸的遗传功能、酶、维生素、激素、抗生素等的代谢,都基本搞清。
3,机能生物化学时期(1950年以后)
真正意义上的现代的生命化学。蛋白质化学和和核酸化学成为研究重点。
生物化学研究深入到生命的本质和奥秘:运动、神经、内分泌、生长、发育、繁殖等的分子机理。
1953年,DNA双螺旋结构、近代实验技术和研究方法奠定了现代分子生物学的基础,从此,核酸成了生物化学研究的热点和重心。
1776—1778年,瑞典化学家舍勒(Sheele)从天然产物中分离出,
甘 油glycerol
苹果酸 malic acid 苹果
柠檬酸citric acid 柠檬
尿 酸uric acid 膀胱结石
酒石酸 tartaric acid酒石
1937年,英国生物化学家克雷布斯(Krebs)发现三羧酸循环,获1953年诺贝尔生理学奖。
1953年,沃森—克里克(Watson—Crick)确定DNA双螺旋结构,获1962年诺贝尔生理、医学奖。
1955年,英国生物化学家桑格尔(Sanger)确定牛胰岛素结构,获1958年诺贝尔化学奖。
1980年,桑格尔和吉尔伯特(Gilbet)设计出测定DNA序列得方法,获1980年诺贝尔化学奖。
1984年,化学奖,Bruce Merrifield(美国),建立和发展蛋白质化学合成方法。
1994年,生理、医学,Alfred G.Gilman(美国),发现G蛋白及其在细胞内信号转导中的作用。
1、Rechard J.Roberts(美)等,发现断裂记因化学奖
2.Karg B,Mallis(美)发明PCR方法。
3.Michaet Smith(加拿大)建立DNA合成用与定点诱变研究
1996年,Petr c,Doherty(美)等,发现T细胞对病毒感染细胞的识别和MHC(主要组织相容性复合体)限制。生理医学奖
1997年
1.stanley B.prusiner(美)发现一中新型的致病因子—感染性蛋白颗粒“pnion”(疯牛病)生理医学奖
2 paul D.Boyer(美)等,说明ATP酶促成机制化学奖
3 Jens c,skon(丹麦)发现输送离子的Na+\K+___ATP酶。
1998年,生理、医学,Rolert F,Furchgott(美国),发发现NO是心血管系统的信号分子。
四,生物化学与二十一世纪生命科学展望
1,生物化学和分子生物学是二十一世纪生命科学的带头学科。
学科热点:基因组、蛋白质组、生物克隆
2,生物化学与农业原始农业:采集与狩猎,游牧式传统农业:原始的种植业,畜牧业现代农业:化肥,农药;绿色革命(杂种优势),生物防治,分子育种。
分子农业(工厂化农业):离开土地,细胞水平甚至是分子水平的生化加工业,仿生学原理。
植物:光合作用 → 固定化细胞培养,叶绿体→光合器。
动物:细胞培养。
3,生物化学与环保生物净化:
生物传感:酶,细胞,指示植物
4,生物化学与轻工业发酵工业:抗生素、氨基酸。
食品工业与饲料工业:酶,添加剂,香味剂,
制革与造纸工业:
生物电子学:DNA储存器。
5,生物化学与医药生化药物:疫苗,
基因工程药物:
基因治疗:
6,生物化学的机遇与挑战
(1),机遇:研究手段和研究方法的出现
(2),挑战:许多重大的理论问题没有解决光合作用生物能学基因表达与调控五,参考书籍教材;沈同《生物化学》上下、陶慰孙《蛋白质化学》、《Biochemistry》、《生物大分子物质的结构与功能》
杂志;《中国科学》
,科学通报》
,Annu,Rev,Biochem.》
练习题;
网站;生命科学(生物化学)
六,讲课方式;
只讲重点和难点和前沿性的热点,一般性知识看书。
讨论和启发式提问式七,学习方法认真听讲,做好笔记。
下去看书,即时消化最好能预习一下八,应掌握内容
1,基本的生物化学理论和知识
(1)生物大分子的结构、性质和功能(糖、脂、蛋白质、酶、维生素、核酸、激素、抗生素)。
功能:生理功能、发育、免疫、进化、生物膜、遗传信息传递等。
(2)生物大分子在生物体内的代谢(分解、合成、转化过程、能量的转化)。
(3)遗传信息传递的化学基础:
DNA复制与修复、RNA生物合成、蛋白质生物合成、代谢调节
2,生化分离分析的一些技术手段(实验生化和生化技术细讲)
第一章 糖一,糖的概念糖类物质是多羟基(2个或以上)的醛类(aldehyde)或酮类(Ketone)化合物,以及它们的衍生物或聚合物。
据此可分为醛糖(aldose)和酮糖(ketose)。? 糖还可根据碳层子数分为丙糖(triose),丁糖(terose),戊糖(pentose)、己糖(hexose)。
最简单的糖类就是丙糖(甘油醛和二羟丙酮)
由于绝大多数的糖类化合物都可以用通式Cn (H2O)n表示,所以过去人们一直认为糖类是碳与水的化合物,称为碳水化合物。现在已经这种称呼并恰当,只是沿用已久,仍有许多人称之为碳水化合物。
二,糖的种类根据糖的结构单元数目多少分为:
(1)单糖:不能被水解称更小分子的糖。
(2)寡糖:2-6个单糖分子脱水缩合而成,以双糖最为普遍,意义也较大。
(3)多糖:
均一性多糖:淀粉、糖原、纤维素、半纤维素、几丁质(壳多糖)
不均一性多糖:糖胺多糖类(透明质酸、硫酸软骨素、硫酸皮肤素等)
(4)结合糖(复合糖,糖缀合物,glycoconjugate):糖脂、糖蛋白(蛋白聚糖)、糖-核苷酸等
(5)糖的衍生物:糖醇、糖酸、糖胺、糖苷三,糖类的生物学功能
(1) 提供能量。植物的淀粉和动物的糖原都是能量的储存形式。
(2) 物质代谢的碳骨架,为蛋白质、核酸、脂类的合成提供碳骨架。
(3) 细胞的骨架。纤维素、半纤维素、木质素是植物细胞壁的主要成分,肽聚糖是细胞壁的主要成分。
(4) 细胞间识别和生物分子间的识别。
细胞膜表面糖蛋白的寡糖链参与细胞间的识别。一些细胞的细胞膜表面含有糖分子或寡糖链,构成细胞的天线,参与细胞通信。
红细胞表面ABO血型决定簇就含有岩藻糖。
第一节 单糖一,单糖的结构
1,单糖的链状结构确定链状结构的方法(葡萄糖):
a,与Fehling试剂或其它醛试剂反应,含有醛基。
b,与乙酸酐反应,产生具有五个乙酰基的衍生物。
c,用钠、汞剂作用,生成山梨醇。
图2
最简单的单糖之一是甘油醛(glyceraldehydes),它有两种立体异构形式(Stereoismeric form),图7.3。
这两种立体异构体在旋光性上刚好相反,一种异构体使平面偏振光(Plane polarized liyot)的偏振面沿顺时针方向偏转,称为右旋型异构体(dextrorotary),或D型异构体。另一种异构体则使平面偏振不的编振机逆时针编转,称左旋异构体(levorotary,L)或L型异构体。
像甘油醛这样具有旋光性差异的立体异构体又称为光学异构体(Cptical lsmer),常用D,L表示。
以甘油醛的两种光学异构体作对照,其他单糖的光学异构构与之比较而规定为D型或L型。
差向异构体(epimer):又称表异构体,只有一个不对称碳原子上的基因排列方式不同的非对映异构体,如D-等等糖与D-半乳糖。
链状结构一般用Fisher投影式表示:碳骨架、竖直写;氧化程度最高的碳原子在上方,
2,单糖的环状结构在溶液中,含有4个以上碳原子的单糖主要以环状结构。
单糖分子中的羟基能与醛基或酮基可逆缩合成环状的半缩醛(emiacetal)。环化后,羰基C就成为一个手性C原子称为端异构性碳原子(anomeric carbon atom),环化后形成的两种非对映异构体称为端基异构体,或头异构体(anomer),分别称为a-型及b-型头异构体。
环状结构一般用Havorth结构式表示:
用FisCher投影式表示环状结构很不方便。Haworth结构式比Fischer投影式更能正确反映糖分子中的键角和键长度。转化方法:
① 画一个五员或六员环
② 从氧原子右侧的端基碳(anomerio carbon)开始,画上半缩醛羟基,在Fischer投影式中右侧的居环下,左侧居环上。
构象式:
Haworth结构式虽能正确反映糖的环状结构,但还是过于简单,构象式最能正确地反映糖的环状结构,它反映出了糖环的折叠形结构。
3,几种重要的单糖的链状结构和环状结构
(1) 丙糖:D-甘油醛 二羟丙酮
(2) 丁糖:D-赤鲜糖D-赤鲜酮糖
(3) 戊糖:D-核糖 D-脱氧核糖 D-核酮糖D-木糖D-木酮糖
(4) 己糖:D-葡萄糖(a-型及b型)D-果糖
(5) 庚糖:D-景天庚酮糖
4,变旋现象在溶液中,糖的链状结构和环状结构(a、b)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。
从乙醇水溶液中结晶出的D—glucose称为α-D-(+)Glucose([α]20D=+113°),从吡啶溶液中结晶出的D—glucose称为β-D-(+)glucose([α]20D=+18.7°)。将a-D-(+)葡萄糖与b-D-(+)葡萄糖分别溶于水中,放置一段时间后,其旋光率都逐渐转变为+52.7°C。原因就是葡萄糖的不同结构形式相互转变,最后,各种结构形式达到一定的平衡,其中a型占36%,b型占63%,链式占1%。
图5 葡萄糖的变旋
5,构型与构象构型:分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构,如D-甘油醛与 L-甘油醛,D-葡萄糖和L葡萄糖是链状葡萄糖的两种构型,a-D-葡萄糖和b-D-葡萄糖是环状葡萄糖的两种构型。
一般情况下,构型都比较稳定,一种构型转变另一种构型则要求共价键的断裂、原子(基团)间的重排和新共价键的重新形成。
图3甘油醛的构型:
构象:由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式,不同的构象之间可以相互转变,在各种构象形式中,势能最低、最稳定的构象是优势对象。
图1-3吡喃型己糖构象
6,构型与旋光性旋光性是分子中具有不对称结构的物质的一种物理性质。
显然,构型不同旋光性就不同。
构型是人为规定的,旋光性是实验测出的。
因此,构型与旋光性之间没有必然的对应规律,每一种物质的旋光性只能通过实验来确定。
二,单糖的物理化学性质
(一) 物理性质旋光性:是鉴定糖的一个重要指标甜度:以蔗糖的甜度为标准溶解性:易溶于水而难溶于乙醚、丙酮等有面溶剂
(二) 化学性质
1,变旋图7-11
在溶液中,糖的链状结构和环状结构(a、b)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。三者间的比例因糖种类而异。
只有链状结构才具有下述的氧化还原反应。
2,糖醛反应(与酸的反应)
(1) Molish反应
Molish反应可以鉴定单糖的存在。
(2) Seliwannoff反应据此区分酮糖与醛糖。还可利用溴水区分醛糖与酮糖。
3,氧化反应氧化只发生在开链形式上。
在氧化剂、金属离子如Cu2+、酶的作用下,单糖可以发生几种类型的氧化:
图7、12
醛基氧化:糖酸(aldonic acid)
伯醇基氧化:醛酸(uronic acid)
醛基、伯醇基同时氧化:二酸(alduric acid)
能被弱氧化剂(如Fehhing试剂、Benedict试剂)氧化的糖称为还原性糖,所有的单糖都是还原性糖。
单糖氧化形成的羟基可以进一步形成环状内酯(Lactone)。
内酯在自然界中很普遍,如L-抗坏血酸(L-ascorbio acid),又称VC (Vitamcn c),就是D-葡萄糖酸的内酯衍生物。分子量176.1,它在体内是一种强还原剂。豚鼠(guinea pig)、猿(ape)和人不能合成Vc,从能合成Vc的肝脏微粒体中分离到合成Vc的三种酶,人和猿缺乏gulonolactone oxidase)。缺乏抗坏血酸将导致坏血病(scurvy),龄龈(gum)、腿部等开始出血,肿胀,逐渐扩展到全身,柑橘类果实(citrus frait)中含有丰富的Vc。
4,还原反应单糖可以被还原成相应的糖醇(Sugar alcohol)。
D-葡萄糖被还原成D-葡萄糖醇,又称山犁醇(D-Sorbitol)。
糖醇主要用于食品加工业和医药,山犁醇添加到糖果中能延长糖果的货架期,因为它能防止糖果失水。用糖精处理的果汁中一般都有后味,添加山犁醇后能去除后味。人体食用后,山犁醇在肝中又会转化为果糖。
5,异构化在弱碱性溶液中,D-葡萄糖、D-甘露糖和D-果糖,可以通过烯醇式相互转化(enediol intermediate)
图7.15
D-葡萄糖异构化为D-甘露糖后,由于其中的一个手性碳原子的构型发生变化,又称差向异构化(epimerization)。
6,酯化生物体中最常见也是最重要的糖酯是磷酸糖酯和硫酸糖酯。
磷酸糖酯及其衍生物是糖的代谢活性形式(糖代谢的中间产物)。
硫酸糖酯主要发现于结缔组织的蛋白聚糖中(Proteo glycan),由于硫酸糖酯带电荷,因此它能结合大量的水和阳离子。
葡萄糖的核苷二磷酸酯,如UDPG参与多糖的生物合成。
7,糖苷化单糖环状结构上的半缩醛羟基与醇或酚的羟基缩合失水成为缩醛式衍生物,通称为糖苷(glycosides)。
8,糖脎反应(亲核加成)
糖脎反应发生在醛糖和酮糖的链状结构上。
糖脎易结晶,可以根据结晶的形状,判断单糖的种类。
三,重要的单糖四,重要的单糖衍生物
1,糖醇
2,糖醛酸单糖的伯醇基被氧化成-COOH。
动物体内有两种很重要的糖醛酸:a-D-葡萄醛酸和差向异构物b-L-艾杜糖醛酸,它们在结缔组织中含量很高。
glucuronic acidβ-L-iduronate
葡萄糖醛酸是肝脏内的一种解毒剂,它与类固醇、一些药物、胆红素(血红蛋白的降解物)结合增强其水溶性,使之更易排出体外。
3,氨基糖(糖胺,amino sugar,glycosamine)
单糖的一个羟基(通常是C2位)被氨基取代。
常见的氨基糖有D-葡萄糖胺(D-glucosamine)和D-半乳糖胺(D-galactosamine)。
氨基糖的氨基还经常被乙酰化形成N-乙酰糖胺。
4,糖苷单糖的半缩醛羟基与其它分子的醇、酚等羟基缩合,脱水生成缩醛式衍生物,称糖苷Glycoside。
半缩醛部分是Glc,称Glc糖苷。半缩醛部分是Gal,称Gal糖苷。
O糖苷、N糖苷、S糖苷。
糖苷物质与糖类的区别:糖是半缩醛,不稳定,有变旋;苷是缩醛,较稳定,无变旋。
糖苷大多数有毒。
5,脱氧糖重要的有6-脱氧D-甘露糖,L-岩藻糖(L-fucose)和2-脱氧D-核糖。
岩藻糖常见于一些糖蛋白中,如红细胞表面ABO血型决定簇第二节 双糖和三糖双糖在自然界中含量也很丰富,它是人类饮食中主要的热源之一。在小肠中,双糖必须在酶的作用下水解成单糖才能被人体吸收。如果这些酶有缺陷的话,那么人体摄入双糖后由于不能消化它就会出现消化病。未消化的双糖进入大肠,在渗透压的作用下从周围组织夺取水分(腹泻,diarrhea),结肠中的细菌消化双糖(发酵)产生气体(气胀和绞痛或痉孪)。最常见的双糖消化缺陷是乳糖过敏,就是由于缺乏乳糖酶(Lactose),解决办法就是乳糖酶处理食物或避免摄入乳糖。
一,麦芽糖(maltose,malt sugar)
它是直链淀粉的水解中间物(a-麦芽糖),在自然界中似乎并不存在天然的麦芽糖。
结构:两分子a-葡萄糖,a(1-4)糖苷键。
a-麦芽糖(葡萄糖-a,a(1-4)-葡萄糖苷)b-麦芽糖[葡萄糖-a,b(1-4)-葡萄糖苷]
性质:
① 变旋现象,在水溶解中形成a、b和开链的混合物
② 具有还原性
③ 能成脎异麦芽糖:a(1-6)键型,支链淀粉和糖元的水解产物二,蔗糖植物的茎、叶都可以产生蔗糖,它可以在整个植物体中进行运输,也是光合产物的运输形式之一。
结构:a-葡萄糖,b-果糖 a,b(1-2)糖苷键,无异构体
蔗糖[葡萄糖-a,b(1-2)-果糖苷]
性质:① 无变旋现象 ② 无还原性 ③ 不能成脎三,乳糖顾名思义,主要存在于哺乳动物的乳汁中结构:b-半乳糖b(1-4)糖苷键 a(或b)-葡萄糖。两种异构体。
a-Lactose[半乳糖-b,a(1-4)-葡萄糖苷]b-lactose[半乳糖-b,b(1-4)-葡萄糖苷]
性质:① 有变旋现象② 具有还原性 ③ 能成脎四,纤维二糖(cellobiose)
纤维素的降解产物和基基本结构单位,自然界中不存在游离的纤维二糖结构:两分子b-葡萄糖b-(1,4)糖苷键
纤维二糖[葡萄糖-b(1,4)-葡萄糖苷]
性质:① 具有变旋现象 ② 具有还原性 ③ 能成脎五,海藻糖两分子α-D-Glc,在C1上的两个半缩醛羟基之间脱水,由α-1.1糖苷键构成。
六,棉子糖(三糖)
P31 结构非还原性三糖第三节 寡糖寡糖是指含有2-10个单糖单元的糖类。它们常常与蛋白质或脂类共价结合,以糖蛋白或糖脂的形式存在。
连接它们的共价键类型主要两大类:N-糖甘键型和O-糖苷键型。
① N-糖苷键型:寡糖链与多肽上的Asn的氨基相连。这类寡糖链有三种主要类型:高甘露糖型,杂合型和复杂型。
图7.29
② O-糖苷键型,寡糖链与多肽链上的Ser或Thr的羟基相连,或与膜脂的羟基相连。
第四节多糖多糖是由多个单糖分子缩合脱水而形成的。由于构成它的单糖的种类、数量以及连接方式的不同,多糖的结构极其复杂而且数量、种类庞大。
多糖是重要的能量贮存形式(如淀粉和糖原等)和细胞的骨架物质(如植物的纤维素和动物的几丁质),此外多糖还有更复杂的生理功能(如粘多糖和血型物质等)。
大部分的多糖类物质没有固定的分子量。多糖的大小从一定程度上可以反映细胞的代谢状态。例如:当血糖水平高时(如饭后),肝脏就合成糖原(glycogen)这时就分子量可达2′107,当血糖水平下降时,肝脏中的酶类就水解糖原,把葡萄糖释放到血液中。
多糖在水溶液中只形成胶体,虽然具有旋光性,但无变旋现象,也无还原性。
多糖可以分为均一性多糖(由同一种单糖分子组成)和不均一性多糖(由两种或两种以上单糖分子组成)
一,均一性多糖自然界中最丰富的均一性多糖是淀粉和糖原、纤维素。它们都是由葡萄糖组成。淀粉和糖原分别是植物和动物中葡萄糖的贮存形式,纤维素是植物细胞主要的结构组分。
1,淀粉植物营养物质的一种贮存形式,也是植物性食物中重要的营养成分。
① 直链淀粉许多a-葡萄糖以a(1-4)糖苷键依次相连成长而不分开的葡萄糖多聚物。典型情况下由数千个葡萄糖线基组成,分子量从150000到600000。
结构:长而紧密的螺旋管形。这种紧实的结构是与其贮藏功能相适应的。遇碘显兰色
图7.30
② 支链淀粉在直链的基础上每隔20-25个葡萄糖残基就形成一个a-(1-6)支链。不能形成螺旋管,遇碘显紫色。
淀粉酶:内切淀粉酶(α-淀粉酶)水解α-1.4键,外切淀粉酶(β-淀粉酶)α-1.4,脱支酶α-1.6
2,糖元与支链淀粉类似,只是分支程度更高,分支更,每隔4个葡萄糖残基便有一个分支。结构更紧密,更适应其贮藏功能,这是动物将其作为能量贮藏形式的一个重要原因,另一个原因是它含有大量的非原性端,可以被迅速动员水解。
糖元遇碘显红褐色。
3,纤维素结构:许多b-D-葡萄糖分子以b-(1-4)糖苷键相连而成直链。纤维素是植物细胞壁的主要结构成份,占植物体总重量的1/3左右,也是自然界最丰富的有机物,地球上每年约生产1011吨纤维素,经济价值:木材、纸张、纤维、棉花、亚麻。
完整的细胞壁是以纤维素为主,并粘连有半纤维素、果胶和木质素。约40条纤维素链相互间以氢键相连成纤维细丝,无数纤维细丝构成细胞壁完整的纤维骨架。
图7.33
降解纤维素的纤维素主要存在于微生物中,一些反刍动物可以利用其消化道内的微生物消化纤维素,产生的葡萄糖供自身和微生物共同利用。虽大多数的动物(包括人)不能消化纤维素,但是含有纤维素的食物对于健康是必需的和有益的。
4,几丁质(壳多糖):
N-乙酰-b-D-葡萄糖胺以b(1,4)糖苷链相连成的直链。
5,菊 糖 inulin
多聚果糖,存在于菊科植物根部。
6、?琼 脂 Ager
多聚半乳糖,是某些海藻所含的多糖,人和微生物不能消化琼脂。
几种均一多糖的结构、性质比较。
P35表1-6
二,不均一性多糖不均一性多糖种类繁多。
有一些不均一性多糖由含糖胺的重复双糖系列组成,称为糖胺聚糖(glyeosaminoglycans,GAGs),又称粘多糖。(mucopoly saceharides)、氨基多糖等。
糖胺聚糖是蛋白聚糖的主要组分,按重复双糖单位的不同,糖胺聚糖有五类:
1、透明质酸
2、硫酸软骨素
3、硫酸皮肤素
4、硫酸用层酸
5、肝素
6、硫酸乙酰肝素第五节 结合糖(glycoconjugate)
糖与非糖物质共价结合形成的复合物称结合糖(复合糖,糖缀合物),包括糖脂(glycolipids),糖蛋白与蛋白聚糖、肽聚糖(peptidoglycan),糖—核酸

一,糖蛋白糖蛋白是由短的寡糖链与蛋白质共价相连构成的分子。其总体性质更接近蛋白质。糖与蛋白质之间以蛋白质为主,其一定部位上以共价健与若干短的寡糖链相连,这些寡糖链常常是具分支的杂糖链,不呈现重复的双糖系列,一般由2-10个单体(少于15)组成,未端成员常常是唾液酸或L-岩藻糖。
(一) 组成
β-D-葡萄糖(Glc) α-D-甘露糖(Man) α-D-半乳糖(Gal)α-D-木糖(Xyl) α-D-阿拉伯糖(Ara) α-L-岩藻糖(Fuc) 葡萄糖醛酸(GlcuA)艾杜糖醛酸(IduA)N-乙酰葡萄糖胺(GlcNAG)N-乙酰半乳糖胺(GalNAC)N-乙酰神经氨酸(NeuNAC)即唾液酸(Sia)
(二) 糖链与蛋白的连接方式糖蛋白的糖肽连接键,简称糖肽键。糖肽链的类型可以概况为:
①N-糖苷键型:寡糖链(GlcNAC的β-羟基)与Asn的酰胺基、N-未端的a-氨基、Lys或Arg的W-氨基相连图15
② O-糖苷键型:寡糖链(GalNAC的α-羟基)与Ser、Thr和羟基赖氨酸、羟脯氨酸的羟基相连。
图16
③ S-糖苷键型:以半胱氨酸为连接点的糖肽键。
④ 酯糖苷键型:以天冬氨酸、谷氨酸的游离羧基为连接点。
(三) 糖蛋白中糖链的结构糖蛋白中的糖链变化较大,含有丰富的结构信息。寡糖链往往是受体、酶类的识别位点。
1,N-糖苷键型(N-连接)
N-糖苷键型主要有三类寡糖链:① 高甘露糖型,由GlcNAc和甘露糖组成;② 复合型:除了GlcNAc和甘露糖外、还有果糖、半乳糖、唾液酸;③ 杂合型,包含①和②的特征。
图17五糖核心
A,高甘露糖型中国地仓鼠卵细胞膜图18
B,N-乙酰半乳糖型图19
C,混合型卵白蛋白的一种糖链图20
2,O-糖苷键型(O-连接)
没有五糖核心。
图21人血纤维蛋白溶酶原:
图22 人免疫球蛋白IgA:
(四) 糖蛋白的生物学功能
(1)糖蛋白携带某些蛋白质代谢去向的信息糖蛋白寡糖链末端的唾液酸残基,决定着某种蛋白质是否在血流中存在或被肝脏除去的信息。
A脊椎动物血液中的铜蓝蛋白肝细胞能降解丢失了唾液酸的铜蓝蛋白,唾液酸的消除可能是体内“老”蛋白的标记方式之一。
B.红细胞新生的红细胞膜上唾液酸的含量远高于成熟的红细胞膜。用唾液酸酶处理新生的红细胞,回注机体,几小时后全部消失。而末用酶处理的红细胞,回注后,几天以后,仍能在体内正常存活。
(2)寡糖链在细胞识别、信号传递中起关键作用淋巴细胞正常情况应归巢到脾脏,而切去唾液酸后,结果竞归巢到了肝脏。
在原核中表达的真核基因,无法糖基化。
糖蛋白可以是胞溶性的,也可以是膜结合型的,可以存在于细胞内在也可存在于细胞间质中。
糖蛋白在动植物中较为典型,脊柱动物中糖蛋白尤为丰富,金属转运蛋白(转铁蛋白)、血铜蓝蛋白,凝血因子、补体系统、一些激素,促卵泡素(Follicle-stimulating hormone,FSH,前脑下垂体分泌,促进卵子和精子的发育)、RNase、膜结合蛋白(如动物细胞膜的Na+-K+-ATPase)、主要组织相容性抗原(major histocompatibility antigen,细胞表面上介导供体器官与受体器官交叉匹配的标识)。
绝大多数糖蛋白的寡糖是糖蛋白的功能中心。有些糖蛋白的糖对于糖蛋白自身成机体起着保护作用或润滑作用,如牛的RNaseB(糖蛋白)对热的抗性大于RNaseA,大量的唾液酸能增强唾液粘蛋白的粘性从而增强唾液的润滑性。南极鱼抗冻蛋白的糖组分能与水形氢键,阻止冰品的形成从而提高了抗冻性。
糖蛋白在细胞间信号传递方面着更为复杂的作用。Hiv的靶细胞结合蛋白GP120是一个糖蛋白,能与人类靶细胞表面的CD4受体结合从而附着在靶细胞表面,如果去掉GP120的糖部分则不能与CD4受体结合从而失去感染能力。细胞表面的糖蛋白形成细胞的糖萼(糖衣)、参与细胞的粘连,这在胚和组织的生长、发育以及分化中起着关键性作用。
二,蛋白聚糖(oroteoglycans)
由糖胺聚糖与多肽链共价相连构成的分子,总体性质与多糖更为接近。糖胺聚糖链长而不分支,呈现重复双糖系列结构,其一定部位上与若干肽链相连。由于糖胺聚糖具有粘稠性,所以蛋白聚白又称为粘蛋白、粘多糖–蛋白质复合物等。
(一) 蛋白聚糖中的糖肽键在蛋白聚糖中已知有三种不同类型的糖肽键:
1,D-木糖与Ser羟基之间形成的O-糖肽键;
硫酸软骨素硫酸皮肤素硫酸类肝 GlcUAβ1→3Galβ1→3Galβ1→4Xyl1 → Ser
肝素
2,N-乙酰半乳糖胺与Thr或Ser羟基之间形成的O-糖肽键。
骨骼硫酸角质素→ GalNAc l→ 6 GalNAc→ser(Thr)
Sia 2→3 Gal1→3↗
3,N-乙酰葡萄糖胺与Asn之间形成的N-糖肽键;
角膜硫酸角质素→GlcNAc—N—Asn.
(二) 糖白聚糖的生物学功能糖白聚糖主要存在于软骨、键等结缔组织和各种腺体分泌的粘液中,有构成组织间质、润滑剂、防护剂等多方面的作用。
三,肽聚糖peptidoglycan
是细菌细胞壁的主要成分,草兰氏阳性细菌胞壁所含的肽聚糖占干重的50-80%,草兰氏阴性细菌胞壁所含的肽聚糖占干重的1-10%
糖链由N-乙酰葡萄糖胺和N-乙酰胞壁酸通过β-1.4糖苷键连接而成,糖链间由肽链交联,构成稳定的网状结构,肽链长短视细菌种类不同而异。
图14
组成及结构特点(金黄色葡萄球菌)
1,G—M聚糖
2,四肽及连接方式四肽中N端的Ala上α-NH2与M中乳酸的羧基连接。
3.五聚Gly及连接方式
(1)五聚Gly的N端α—NH2与四肽C端Ala上的羧基连接。
(2)五聚Gly的C端羧基与另一个四肽的Lysε-NH2连接。
溶菌酶能水解G-M间的β-1.4糖苷键,使细胞壁出现孔洞,基至解体,从而杀死细菌。人的眼泪中存在大量的溶菌酶,某些噬菌体在感染宿主时也可分泌溶菌酶。鸡蛋中也含大量的溶菌酶。
生素能抑制肽聚糖的生物合成。
四,糖脂见脂类
第二章脂类Lipids
重点:磷脂、糖脂一,脂类的概念不溶于水而能被乙醚、氯仿、苯等非极性有机溶剂抽提出的化合物,统称脂类。脂类包括油脂(甘油三脂)和类脂(磷脂、蜡、萜类、甾类)。
二,分类
(1)单纯脂:脂肪酸与醇类形成的酯,甘油酯、鞘脂、蜡
(2)复合脂:甘油磷脂、鞘磷脂。
(3)萜类和甾类及其衍生物:不含脂肪酸,都是异戊二烯的衍生物。
(4)衍生脂:上述脂类的水解产物,包括脂肪酸及其衍生物、甘油、鞘氨醇等。
(5)结合脂类:糖脂、脂蛋白三,脂类的生物学功能脂类的生物学功能也多种多样:
①生物膜的结构组分(甘油磷脂和鞘磷脂,胆固醇、糖脂);②能量贮存形式(动物、油料种子的甘油三酯);③激素、维生素和色素的前体(萜类、固醇类);④生长因子;⑤抗氧化剂;⑥ 化学信号(如 );⑦参与信号识别和免疫(糖脂);⑧动物的脂肪组织有保温,防机械压力等保护功能,植物的蜡质可以防止水分的蒸发。
第一节 脂肪酸及其衍生物一,脂肪酸绝大多数的脂肪酸含有偶数个碳原子,形成长而不分支的链(也有分支的或含环的脂肪酸)。
不饱和脂肪酸有顺式和反式两种异物体。但生物体内大多数是顺式结构。
不饱和脂肪酸中,反式双键会造成脂肪酸链弯曲,分子间没有饱和脂肪酸链那样结合紧密。因此,不饱和脂肪酸的熔点低。
脂肪酸(主要是豆蔻酸与棕榈酸)可以与蛋白质共价相连,形成脂酰蛋白(acyloted protein),脂酰基团能促进膜蛋白与疏水环境间的相互作用。
1、必需脂肪酸essentialfattyacids
植物和细菌可以利用乙酰CoA合成所需的全部脂肪酸。
哺乳动物既可以从食物中获得大部分脂肪酸,也可以合成饱和脂肪酸和一些单不饱和脂肪酸。
但是,哺乳动物不能合成多不饱和脂肪酸(如亚油酸和亚麻酸),称为必需脂肪酸。
亚油酸和亚麻酸必须从植物中获取。花生四烯酸可由亚油酸在体内合成。
P52 表2—3某些油脂的脂肪酸组成
2、皂化值(评估油的质量)
完全皂化1克油脂所需KOH的毫克数,称皂化值。
用来评估油脂的质量。
3、酸值(酸败程度)
中和1克油脂中的游离脂肪酸所消耗的KOH毫克数。
4、(不饱和键的多少)
100克油脂吸收碘的克数。
二,类二十烷酸也称类花生酸(eicosanoid),包括前列腺素类(prostaglandin),凝血恶烷类(thromboxane)和白细胞三烯类(leucotriene)
是一大类由许多哺乳动物组织产生的激素类的物质。它们只在产生的器官中起作用,所以称为自泌调控分子,而不是激素。
大多数的类二十烷酸是花生四烯酸的衍生物。
花生四烯酸也称5,8,11,14-二十碳四烯酸(eicosatetraenoio acid),是由亚油酸合成后加上一个二碳单位、引入两个双键。
1,前列腺素类图9A
前列腺素类是花生四烯的衍生物。
前列腺素类有一个环戊烷结构,C11、C15位点各有一个-OH。
PGE在C9位上有一个C=O(carbonyl group),PGF在C9上有一个-OH。
角注数学表明分子中双键的数目,PG2类前列腺素是人类中最重要的前列腺素。
前列腺素参与许多生理过程的调节控制,促进炎症反应,参与生殖过程(如排卵、受孕和分娩时子宫的收缩),参与消化。
图9B
2、,凝血恶烷类(thromboxanes)
凝血恶烷类也是花生四烯酸的衍生物。
与其他类二十烷酸不同的是凝血恶烷类有环醚的结构。
凝血恶烷A2(TxA2)是该类化合物中最重要的一种,它主要由血小板产生,促进血小板凝聚和平滑肌收缩。
3,白细胞三烯(leucotriene,LT)
是花生四烯酸的羟基脂肪酸衍生物。
最初是在白细胞中发现的,并且有三烯结构,故名白细胞三烯。
LTC4、LTD4和LTE4是过敏性反应的慢反应物质的组分,在炎症反应起积极作用,促进白细胞趋向破坏组织。
第二节 脂酰甘油因为不带电荷,有时也称中性脂(neutral fats)
结构:
图1
简单三脂酰甘油混合三脂酰甘油第三节 磷脂磷脂是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂(表面活性剂是能降低液体,通常是水的,表面张力,沿水表面扩散的物质)。
磷脂有两类:甘油磷脂和鞘氨醇磷脂。
甘油磷脂由甘油、脂肪酸、磷酸和一分子氨基醇(如胆碱、乙醇胺、丝氨酸或肌醇)组成。
鞘氨醇磷脂只是以鞘氨醇代替了甘油。
一,甘油磷脂天然存在的甘油磷脂都是L—构型。
1,结构与分类依照氨基醇的不同可分以下几类:
P57 表2-6各种甘油磷脂的极性头部和电荷量
(1),磷脂酰胆碱(卵磷脂)(PC)
HO—CH2CH2N+(CH3)3(胆碱)
分布:
植物:大豆等,
动物:脑、精液、肾上腺、红细胞,蛋卵黄(8-10%)。
作用:控制肝脂代谢,防止脂肪肝的形成。
(2),磷脂酰乙醇胺(脑磷脂)(PE)
HO—CH2CH2—N+H3(乙醇胺)
参与血液凝结。
(3),磷脂酰丝氨酸(PS)
HO—CH2CH—COO-(丝氨酸)
N+H3
(1)—(3)X均为氨基醇。
(4),磷脂酰肌醇(PI)

(5),磷脂酰甘油(PG)
(6),二磷脂酰甘油(心磷脂)
2,甘油磷脂的性质
①极性:极性头、非极性尾
②带电性(可用于分离纯化)

二,鞘磷脂
高等动物组织中含量较丰富。
1,组成:
一个鞘氨醇一个脂肪酸一个磷酸一个胆碱或乙醇胺
2,结构与性质鞘磷脂极性头部分是磷脂酰胆碱或磷脂酰乙醇胺。
鞘磷脂结构与甘油磷脂相似,因此性质与甘油磷脂基本相同。
第四节 鞘脂类鞘脂类也是动植物生物膜的重要组分。
鞘脂类含有一个长的氨基醇。
一,鞘氨醇已发现的鞘氨醇类约有30种。
图2-氨基-4-十八碳烯-1.3-二醇此双键还原,即二氢鞘氨醇
鞘氨醇植物鞘氨醇
二,神经酰胺鞘脂类的核心结构是神经酰胺(ceramide),由鞘氨醇氨基以酰胺键与长链(18—26C)脂肪酸的羟基相连。

神经酰胺在鞘磷脂中,神经酰胺1位的-OH被磷酸胆碱(phosphorylcholine)或磷酸乙醇胺(phosphorylethanolamine)的磷酸基因酯化。
除了动物细胞膜外,鞘磷脂在神经细胞的髓鞘中含量最丰富。
第五节 结合脂类一,糖脂 glycolipid
P478 图9—8 P479 图9—10
甘油醇糖脂N—脂酰神经鞘氨醇糖脂(神经酰胺糖脂)
1,甘油醇糖脂
图半乳糖甘油二酯称:6—磺基Glc甘油二酯
2,N—脂酰神经鞘氨醇糖脂(神经酰胺糖脂)
神经酰胺还是糖脂的前体物,有时称鞘糖脂。
图9.9
在鞘糖脂中,单糖、双糖或寡糖通过O-糖苷键与神经酰胺相连,重要的鞘糖脂有脑苷脂(cerebroside)、硫脑苷脂(sulfatide)和神经节苷脂(ganglioside)。
脑苷脂是单糖与神经酰胺形成的糖脂,是非离子型的。半乳糖脑苷脂(galatocerebroside)几乎全部存在于脑的细胞膜中。
脑苷脂被硫酸化后称为硫脑苷脂,在生理pH下带负电荷。
寡糖链(带有一个或多个唾液酸残基)与神经酰胺形成的鞘糖脂称为神经节苷脂,最初是从神经组织中分离到的,在其它组织中也有分布。
神经节苷脂的命名含有M、D、T和角注数字,M、D、T分别表示含有一个、两个、三个唾液酸,数字表示在糖链上的位置。
(1),脑苷脂(中性糖鞘脂类)
图主要在神经、脑组织中,X为Glc称Glc脑苷脂,X为Gal称Gal脑苷脂。X还可能是:Fuc、GlcNAc、GalNAc
(2),神经节苷酯(酸性糖鞘脂类)
含有唾液酸,在脑灰质和胸腺中含量高。
中枢神经系统某些神经元膜的特征性脂,可能与通过神经元的神经冲动传递有关。
图人的神经系统细胞膜至少有15种神经节苷脂,它们的生物功能尚未完全了解。
3,糖脂的生物学功能糖脂的功能还不十分清楚,有些动物细胞膜上的糖脂分子能与细菌毒素以及细菌细胞结合,起受体的作用。
(1)细胞结构的刚性
(2)抗原的化学标记血型抗原
图人的A、B、O血型差异在于糖链末端残基。现在临床上正研究用酶促降解B—抗原或A抗原的末端残基Gal或GalNAc,从而增加O—抗原的血液来源。
(3)细胞分化阶段可鉴定的化学标记可能与糖链的长短有关
(4)调节细胞的正常生长与正常细胞转化成肿癌细胞有关。肿癌Cell的神经节苷脂糖链比正常Cell的短。
(5)授予细胞与其它生物活性物质的反应性倾向。
u 鞘脂贮积病(sphingolipld storage disease,sphingolipidose)
溶酶体贮积病是由于降解某种特定代谢物的酶发生遗传性缺陷造成的。一些溶解体贮积病与鞘脂代谢有关,也称鞘脂贮积病,常见的就是Tay-sochs神经节苷GM2贮积病,这是由于降解它的b-hexosaminidaseA(b-氨基己糖苷酶)缺陷造成的。当细胞积累GM2时就溶胀最终死亡,Tay-Sachs综合症(失明,肌肉萎缩,抽搐,精神错乱),通常在出生数月后表现出来。
disease symptern Accumulating spluingolipid Enzyme deficiency
Tay-sachs disease BlindnessMuscle weaknessSeizuresMental retardation Ganglioside GM2 b-hexosaminidoseA
Gaucheris disease Mental retardations,Liver and spleen enlargementEresion of cong bones Glucocerebosile b-glucosidase
Niemann-Pick disease Montal retardution sphingomyelin sphingomylinase
二,脂蛋白 lipoprotein
要点:血桨脂蛋白 血桨白蛋白
(学生自己看,此处不讲,在脂代谢中讲。)
虽然脂蛋白可以指任何与脂基(如脂肪酸、异戊二烯)共价相连的蛋白、但它常常用来指哺乳动物血浆(尤其是人)中的脂-蛋白质复合物。
血浆脂蛋白可以把脂类(三酰甘油、磷脂、胆固醇)从一个器官运输到另一个器官。
图9.17P233
血浆脂蛋白根据密度来分类:
(1) 乳糜微粒,密度非常低,运输甘油三酯和胆固醇脂,从小肠到组织肌肉和adipose组织。
(2) 极低密度脂蛋白VLDL(0.95-1.006g/cm3),在肝脏中生成,将脂类运输到组织中,当VLDL被运输到全身组织时,被分解为三酰甘油、脱辅基蛋白和磷脂,最后,VLDL被转变为低密度脂蛋白。
(3) 低密度脂蛋白(LDL,1.006-1.063g/cm3),把胆固醇运输到组织,经过一系列复杂的过程,LDL与LDL受体结合并被细胞吞食。
(4) 高密度脂蛋白(HDL,1.063-1.210g/cm3),也是在肝脏中生成,可能负责清除细胞膜上过量的胆固醇。当血浆中的卵磷脂:胆固醇酰基转移酶(Lecithin cholesterol acyltransferase,LCAT)将卵磷脂上的脂肪酸残基转移到胆固醇上生成胆固醇脂时,HDL将这些胆固醇脂动输到肝。肝脏将过量的胆固醇转化为胆汁酸。
u 脂蛋白与动脉粥样硬化:(atherosclerosis)
动脉粥样硬化是一个慢性病,在此过程中,粥样物质逐渐沉积在动脉的内壁上,这些沉积物称为Plaque(蚀斑),在plaque形成过程中,平滑肌细胞、巨噬细胞和各种细胞残渣逐渐聚集。当巨噬细胞中吞食了大量脂类物质(主要是胆固醇和胆固醇脂)它们就成为粥样化细胞。最后,粥样硬化斑钙化(calcify)突入动脉腔,阻止血液流动,大脑、心、肺等器官就会缺氧和营养。冠状动脉粥样硬化病是最常见的一种,由于缺氧和营破坏了心肌。
Plaque中的胆固醇大部分是来自粥样细胞吞噬的LDL。因此,毫不奇怪,高水平的血浆LDL与冠状动脉粥样症直接相关(LDL含有大量的胆固醇及胆固醇脂),其它相关因素还包括高脂类饮食、吸烟、抑郁和缺少运动,高水平的血浆HDL与代几率的冠状动脉病有关。肝细胞是唯一具有HDL受体的细胞。
可粥样化的细胞具有LDL受体,当LDL与受体结合后这些细胞就通过胞吞作用吞食LDL。在正常情况下,进入细胞中的LDL释放出的胆固醇和其它脂类可用于细胞结构和代谢上的需要。通常情况下LDL受体功能是高度调控的,吞入相对大量的LDL后,LDL受体合成就降低。巨噬细胞却不同,LDL受体的合成并不降低,粥样硬化斑中的巨噬细胞含有高水平的LDL受体,而且对氧化破坏的LDL仍有亲和力。抗坏血酸(Vc)和VE都是抗氧化剂,能抑止粥样斑的形成。
第六节 萜类和固醇类化合物可以统称为类异戊二烯类(isoprenoid),由乙酰-CoA经由异戊二烯焦磷酸生成的,而不是由异戊二烯合成的一,萜类一些真核蛋白质合成后经过异戊二烯化,常见的异戊二烯基团就是farnesyl和geranylgeranyl group
二,固醇类结构:
含有环戊烷多氢菲母核的一类醇、酸及其衍生物。包括:固醇、固醇衍生物。

1,胆固醇(二氢胆固醇、T—脱氢胆酸、胆固醇酯)
以游离或酯的形态存在于一切动物组织中,植物中没有。是最早由从动物胆石中分离出的固醇。
(1),结构
C3 羟基
C10和C13各一个甲基
C5与C6间一个双键
C17异辛烷
(2),性质
白色、斜方晶体。
a,醇基可与脂酸成酯(棕榈酸、硬脂酸、油酸)
b,双键可加氢
(3),分布及功能
a,70千克人体含140克左右,1/4在脑及神经组织中,肝、肾含量较多。肾上腺、卵巢等合成固醇激素的腺体含量也较多,可达1—5%。血清中含量升高,会增加患心血管疾病的可能性。
b,胆固醇是生物膜的重要成分,羟基极性端分布于膜的亲水界面,母核及侧链深入膜双层,控制膜的流动性,阻止磷脂在相变温度以下时转变成结晶状态,保证膜在低温时的流动性及正常功能。
c,胆固醇是合成胆汁酸、类固醇激素、维生素D等生理活性物质的前体。
胆汁酸(在肝中合成)参与肠道脂类吸收肾上腺皮质激素、雌激素、雄激素
7一脱氢胆固醇 紫外线 维生素D3
2,植物固醇不能被动物吸收和利用。
主要有:豆固醇(大豆中)
麦固醇(麦芽中)
3,酵母固醇麦角固醇,经紫外光照射可转化成维生素D3。
三,固醇衍生物
1,胆汁酸图多数脊椎动物的胆酸,能以肽键与Gly或牛磺酸结合。胆酸与脂肪酸或其他脂类结合(胆固醇,胡萝卜素)成盐,乳化肠腔内油脂,增加脂肪酶作用位点,便于油脂消化吸收。
2,类固醇激素
(1)肾上腺皮质激素(7种)
(2)性激素雄性激素:睾丸酮雌性激素:雌二醇、、黄体酮
第三章 蛋白质第一节 蛋白质概论蛋白质是所有生物中非常重要的结构分子和功能分子,几乎所有的生命现象和生物功能都是蛋白质作用的结果,因此,蛋白质是现代生物技术,尤其是基因工程,蛋白质工程、酶工程等研究的重点和归宿点。
一,蛋白质的化学组成与分类
1,元素组成碳 50%氢7%氧23% 氮16%硫 0-3%微量的磷、铁、铜、碘、锌、钼凯氏定氮:平均含氮16%,粗蛋白质含量=蛋白氮×6.25
2,氨基酸组成从化学结构上看,蛋白质是由20种L-型α氨基酸组成的长链分子。
3,分类
(1),按组成:
简单蛋白:完全由氨基酸组成结合蛋白:除蛋白外还有非蛋白成分(辅基)
详细分类,P 75 表 3-1,表 3-2。(注意辅基的组成)。
(2),按分子外形的对称程度:
球状蛋白质:分子对称,外形接近球状,溶解度好,能结晶,大多数蛋白质属此类。
纤维状蛋白质:对称性差,分子类似细棒或纤维状。
(3),功能分:
酶、运输蛋白、营养和贮存蛋白、激素、受体蛋白、运动蛋白、结构蛋白、防御蛋白。
4,蛋白质在生物体内的分布
含量(干重)微生物 50-80%
人 体45%
一般细胞50%
种类大肠杆菌3000种
人体 10万种
生物界 1010-1012
二,蛋白质分子大小与分子量蛋白质是由20种基本aa组成的多聚物,aa数目由几个到成百上千个,分子量从几千到几千万。一般情况下,少于50个aa的低分子量aa多聚物称为肽,寡肽或生物活性肽,有时也罕称多肽。多于50个aa的称为蛋白质。但有时也把含有一条肽链的蛋白质不严谨地称为多肽。此时,多肽一词着重于结构意义,而蛋白质原则强调了其功能意义。
P 76 表3-3(注意:单体蛋白、寡聚蛋白;残基数、肽链数。)
蛋白质分子量= aa数目*110
对于任一给定的蛋白质,它的所有分子在氨基酸组成、顺序、肽链长度、分子量等方面都是相同的,均一性。
三,蛋白质分子的构象与结构层次蛋白质分子是由氨基酸首尾连接而成的共价多肽链,每一种天然蛋白质都有自己特有的空间结构,这种空间结构称为蛋白质的(天然)构象。
P77 图3-1,蛋白质分子的构象示意图。
一级结构氨基酸顺序二级结构 α螺旋、β折叠、β转角,无规卷曲三级结构 α螺旋、β折叠、β转角、松散肽段四级结构 多亚基聚集四,蛋白质功能的多样性细胞中含量最丰实、功能最多的生物大分子。
1,酶
2,结构成分(结缔组织的胶原蛋白、血管和皮肤的弹性蛋白、膜蛋白)
3,贮藏(卵清蛋白、种子蛋白)
4,物质运输(血红蛋白、Na+-K+-ATPase、葡萄糖运输载体、脂蛋白、电子传递体)
5,细胞运动(肌肉收缩的肌球蛋白、肌动蛋白)
6,激素功能(胰岛素)
7,防御(抗体、皮肤的角蛋白、血凝蛋白)
8,接受、传递信息(受体蛋白,味觉蛋白)
9,调节、控制细胞生长、分化、和遗传信息的表达(组蛋白、阻遏蛋白)
第二节 氨基酸一,蛋白质的水解(见P79)
氨基酸是蛋白质的基本结构单位。在酸、碱、蛋白酶的作用下,可以被水解成氨基酸单体。
酸水解:色氨酸破坏,天冬酰胺、谷胺酰胺脱酰胺基碱水解:消旋,色氨酸稳定酶水解:水解位点特异,用于一级结构分析,肽谱氨基酸的功能:
(1),组成蛋白质
(2),一些aa及其衍生物充当化学信号分子
g-amino butyric acid (g-氨基丁酸)、Serotonic(5-羟色胺,血清紧张素)、melatonin(褪黑激素,N-乙酰-甲氧基色胺),都是神经递质,后二者是色氨酸衍生物(神经递质是一个神经细胞产生的影响第二个神经细胞或肌肉细胞功能的物质)。
Thyroxine(甲状腺素,动物甲状腺thyroid gland产生的Tyr衍生物)和吲乙酸(植物中的Trp衍生物)都是激素(激素就是一个细胞产生的调节其它细胞的功能的化学信号分子)。
(3),氨基酸是许多含N分子的前体物核苷酸和核酸的含氮碱基、血红素、叶绿素的合成都需要aa
(4),一些基本氨基酸和非基本aa是代谢中间物精氨酸、Citrulline(瓜氨酸)、Ornithine(鸟氨酸)是尿素循不(Urea cycle)的中间物,含氮废物在脊椎动物肝脏中合成尿素是排除它们的一种重要机制。
三,氨基酸的结构与分类
1809年发现Asp,1938年发Thr,目前已发现180多种。但是组成蛋白质的aa常见的有20种,称为基本氨基酸(编码的蛋白质氨基酸),还有一些称为稀有氨基酸,是多肽合成后由基本aa经酶促修饰而来。此外还有存在于生物体内但不组成蛋白质的非蛋白质氨基酸(约150种)。
(一) 编码的蛋白质氨基酸(20种)
也称基本氨基酸或标准氨基酸,有对应的遗传密码。
近年发现谷胱甘肽过氧化物酶中存在硒代半胱氨酸,有证据表明此氨基酸由终止密码UGA编码,可能是第21种蛋白质氨基酸。
结构通式:
不变部分,可变部分。L-型,羧酸的α-碳上接-NH2,,所以都是L-α-氨基酸。
α-氨基酸都是白色晶体,熔点一般在200℃以上。
除胱氨酸和酪氨酸外都能溶于水,脯氨酸和羟脯氨酸还能溶于乙醇和乙醚。
表20种氨基酸结构
1,按照R基的化学结构分(蛋白质工程的同源替代):
(1),R为脂肪烃基的氨基酸(5种)
Gly、Ala、Val、Leu、Ile、
图3-2
R基均为中性烷基(Gly为H),R基对分子酸碱性影响很小,它们几乎有相同的等电点。(6,0±0.03)
P 92 表 3-7 (比较等电点。)
Gly是唯一不含手性碳原子的氨基酸,因此不具旋光性。
从Gly至Ile,R基团疏水性增加,Ile 是这20 种a.a 中脂溶性最强的之一(除Phe 2.5、Trp3.4,Tyr 2.3以外)。
(2),R中含有羟基和硫的氨基酸(共4种)
含羟基的有两种:Ser和Thr。
图3-3
Ser的-CH2 OH基(pKa=15),在生理条件下不解离,但它是一个极性基团,能与其它基团形成氢键,具有重要的生理意义。在大多数酶的活性中心都发现有Ser残基存在。
Thr 中的-OH是仲醇,具有亲水性,但此-OH形成氢键的能力较弱,因此,在蛋白质活性中心中很少出现。
Ser和Thr的-OH往往与糖链相连,形成糖蛋白。
含硫的两种:Cys、Met
图3-4
Cys中R含巯基(-SH),Cys 具有两个重要性质:
(1)在较高pH值条件,巯基离解。
(2)两个Cys的巯基氧化生成二硫键,生成胱氨酸。
Cys—s—s—Cys
二硫键在蛋白质的结构中具有重要意义。
Cys还常常出现在酶的活性中心。
Met的R中含有甲硫基(-SCH3),硫原子有亲核性,易发生极化,因此,Met是一种重要的甲基供体。
u Cys与结石在细胞外液如血液中,Cys以胱氨酸(Cystine)氧化形式存在,胱氨酸的溶解性最差。
胱氨酸尿(Cystinuria)是一种遗传病,由于胱氨酸的跨膜运输缺陷导致大量的胱氨酸排泄到尿中。胱氨酸在肾(Kidney)、输尿管(ureter)、膀胱(urinary bladder)中结晶形成结石(Calculus,calculi),结石会导致疼疼、发炎甚至尿血。
大量服用青霉胺(Penicillcemine)能降低肾中胱氨的含量,因为青霉胺与半胱氨酸形成的化合物比胱氨酸易溶解。
青霉胺的结构
(3),R中含有酰胺基团(2种)
Asn、Gln
图3-5
酰胺基中氨基易发生氨基转移反应,转氨基反应在生物合成和代谢中有重要意义
(4),R中含有酸性基团(2种)
Asp、Glu,一般称酸性氨基酸图3-6
Asp侧链羧基pKa(β-COOH)为3.86,Glu侧链羧基pKa(γ-COOH)为4.25
它们是在生理条件下带有负电荷的仅有的两个 氨基酸。
(5),R中含碱性基团(3种)
Lys、Arg、His,一般称碱性氨基酸图3-7
Lys的R侧链上含有一个氨基,侧链氨基的pKa为10.53。生理条件下,Lys侧链带有一个正电荷(—NH3+),同时它的侧链有4个C的直链,柔性较大,使侧链的氨基反应活性增大。(如肽聚糖的短肽间的连接)
Arg是碱性最强的氨基酸,侧链上的胍基是已知碱性最强的有机碱,pKa值为12.48,生理条件下完全质子化。
His含咪唑环,咪唑环的pKa在游离氨基酸中和在多肽链中不同,前者pKa为6.00,后者为7.35,它是20种氨基酸中侧链pKa值最接近生理pH值的一种,在接近中性pH时,可离解平衡。它是在生理pH条件下唯一具有缓冲能力的氨基酸。
His含咪唑环,一侧去质子化和另一侧质子化同步进行,因而在酶的酸碱催化机制中起重要作用。
(6),R中含有芳基的氨基酸(3种)
Phe、Try、Trp
图3-8
都具有共轭π电子体系,易与其它缺电子体系或π电子体系形成电荷转移复合物( charge-transfercomplex)或电子重叠复合物。在受体—底物、或分子相互识别过程中具有重要作用。
这三种氨基酸在紫外区有特殊吸收峰,蛋白质的紫外吸收主要来自这三种氨基酸,在280nm处,Trp>Tyr>Phe。
Phe疏水性最强.。
酪氨酸的-OH磷酸化是一个十分普遍的调控机制,Tyr在较高pH值时,酚羟基离解。
Trp有复杂的π共轭休系,比Phe和Tyr更易形成电荷转移络合物。
(7),R为环状的氨基酸(1种)
Pro,有时也把His、Trp归入此类。
图3-9
Pro是唯一的一种环状结构的氨基酸,它的α-亚氨基是环的一部分,因此具有特殊的刚性结构。它在蛋白质空间结构中具有极重要的作用,一般出现在两段α-螺旋之间的转角处,Pro残基所在的位置必然发生骨架方向的变化,
u 必需氨基酸:
成年人:Leu、Ile、Val、Thr、Met、Trp、Lys、Phe
婴儿期:Arg和His供给不足,属半必须氨基酸。
必须氨基酸在人体内不能合成,是由于人体内不能合成这些氨基酸的碳架(α-酮酸)
2,按照R基的极性性质(能否与水形成氢键)20种基本aa,可以分为4类:
侧链极性(疏水性程度)
Gly 0 Ser -0.3 Glu -2.5 Lys -3.0
Ala 0.5 Asn -0.2 Asp -2.5 Arg -3.0
Met 1.3 Gln -0.2 His 0.5
Pro 1.4 Thr 0.4
Val 1.5 Cys 1.0
Leu 1.8 Tyr 2.3
Ile 1.8
Phe 2.5
Trp 3.4
(1),非极性氨基酸
9种,包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异氨酸、苯丙氨酸、色氨酸、甲硫氨酸氨酸、脯氨酸,这类氨基酸的R基都是疏水性的,在维持蛋白质的三维结构中起着重要作用。
(2),不带电何的极性氨基酸
6种,丝氨酸、苏氨酸、酪氨酸、半胱氨酸、天冬酰胺、谷氨酰胺。这类氨基酸的侧链都能与水形成氢键,因此很容易溶于水。
酪氨酸的-OH磷酸化是一个十分普遍的调控机制,Ser和Thr的-OH往往与糖链相连,Asn和Gln的-NH2很容易形成氢键,因此能增加蛋白质的稳定性。
(3),带负电荷的aa(酸性aa)
2种,在pH6~7时,谷氨酸和天冬氨酸的第二个羧基解离,因此,带负电何。
(4),带正电何的aa(碱性aa)
3种,Arg、Lys、His。在pH7时带净正电荷。
当胶原蛋白中的Lys侧链氧化时能形成很强的分子间(内)交联。Arg的胚基碱性很强,与NaOH相当。His是一个弱碱,在pH7时约10%质子化,是天然的缓冲剂,它往往存在于许多酶的活性中心。
酶的活性中心:His、Ser、Cys
非极性aa一般位于蛋白质的疏水核心,带电荷的aa和极性aa位于表面。
(二) 非编码的蛋白质氨基酸也称修饰氨基酸,是在蛋白质合成后,由基本氨基酸修饰而来。
Prothrombin(凝血酶原)中含有g-羧基谷氨酸,能结合Ca2+。
结缔组织中最丰富的蛋白质胶原蛋白含有大量4-羟脯氨酸和5-羟赖氨酸。
图3-10修饰aa的结构
(1)4-羟脯氨酸
(2)5-羟赖氨酸
这两种氨基酸主要存在于结缔组织的纤维状蛋白(如胶原蛋白)中。
(3)6-N-甲基赖氨酸(存在于肌球蛋白中)
(4)г-羧基谷氨酸
存在于凝血酶原及某些具有结合Ca2+离子功能的蛋白质中。
(5)Tyr的衍生物,3.5 -二碘酪氨酸、甲状腺素 (甲状腺蛋白中)
(6)锁链素由4个Lys组成(弹性蛋白中)。
(三) 非蛋白质氨基酸除参与蛋白质组成的20多种氨基酸外,生物体内存在大量的氨基酸中间代谢产物,它们不是蛋白质的结构单元,但在生物体内具有很多生物学功能,如尿素循环中的L-瓜氨酸和L-鸟氨酸。
(1)L-型α –氨基酸的衍生物
L-瓜氨酸图
L-鸟氨酸图
(2)D-型氨基酸
D-Glu、D-Ala(肽聚糖中)、D-Phe(短杆菌肽S)
(3)β-、γ-、δ-氨基酸
β-Ala(泛素的前体)、γ-氨基丁酸(神经递质)。
四,氨基酸的构型、旋光性和光吸收
1,氨基酸的构型除Gly外,19种氨基酸的α-碳原子都是不对称碳原子,因此有两种光学异构体,而Thr和Ile的β-碳原子也是不对称的,因此Thr、Ile各有两个不对称碳原子,有四种光学异构体。
图 P86 L-苏氨酸D-苏氨酸L-别一苏D-别-苏
构成蛋白质的氨基酸均属L-型(L-苏氨酸),大部分游离氨基酸也是L-型。
2,旋光性
20种氨基酸中,只有Gly无手性碳。Thr、Ile各有两个手性碳。其余17种氨基酸的L型与D型互为镜象关系,互称光学异构体(对映体,或立体异构体)。一个异构体的溶液可使偏振光逆时针旋转(记为(一))。另一个异构体可使偏振光顺时针旋转(计为(+)),称为旋光性。
光学异构体的其它理化性质完全相同。
外消旋物:D-型和L-型的等摩尔混合物。
L-苏氨酸和D-苏氨酸、L-别一苏氨酸和D-别-苏氨酸分别组成消旋物,而L-(D-)苏氨酸和L-(D-)别一苏氨酸则是非对映体。
旋光性物质在化学反应时经过对称的过度态时会发生消旋现象。蛋白质在与碱共热水解时或用一般的化学方法人工合成氨基酸时也会得到无旋光性的D-、L-消旋物。。
内消旋物:分子内消旋胱氨酸有三种立体异构体:L-胱氨酸、D-胱氨酸、内消旋胱氨酸。
L-胱氨酸和D-胱氨酸是外消旋物图 P86
L-胱氨酸 D-胱氨酸内消旋胱氨酸:(分子内部互相抵消而无旋光性)
蛋白质中L型氨基酸的比旋光度
P 87 蛋白质中L型氨基酸的比旋光度。
氨基酸的旋光符号和大小取决于它的R基的性质,并与溶液的PH值有关(PH值影响氨基和羧基的解离)。
3,氨基酸的光吸收性
20种氨基酸在可见光区域无光吸收,在远紫外区(〈220nm〉均有光吸收,在近紫外区(220-300nm)只有Tyr、Phe、Trp有吸收。
Tyr、Phe、Trp的R基含有共轭双键,在220-300nm紫外区有吸收。
λ(nm)ε
Tyr 275 1.4×103
Phe 257 2.0×102
Trp 280 5.6×103
Lambert-Beer:
五,氨基酸的酸碱性质(重点)
1,氨基酸在晶体和水溶液中主要以兼性离子形式存在
α-氨基酸都含有-COOH和-NH2,都是不挥发的结晶固体,熔点200-350℃,不溶于非极性溶剂,而易溶于水,这些性质与典型的羧酸(R-COOH)或胺(R-NH2)明显不同。
三个现象:
①晶体溶点高→离子晶格,不是分子晶格。
②不溶于非极性溶剂→极性分子
③介电常数高(氨基酸使水的介电常数增高,而乙醇、丙酮使水的介电常数降低。)→水溶液中的氨基酸是极性分子。
原因:α-羧基pK1在2.0左右,当pH>3.5,α-羧基以-COO-形式存在。α-氨基pK2在9.4左右,当pH<8.0时,α-氨基以α-NH+3形式存在。在pH3.5-8.0时,带有相反电荷,因此氨基酸在水溶液中是以两性离子离子形式存在。
Gly溶点232℃比相应的乙酸(16.5℃)、乙胺(-80.5℃)高,可推测氨基酸在晶体状态也是以两性离子形式存在。

2,氨基酸的两性解离和酸碱滴定曲线
HA A- + H+
pH=pKa/ +Log[共轭碱]/[共轭酸] pOH=pKb/+Log[共轭酸]/[共轭碱]
(1)pH>pKa/ 时,[碱]>[酸]
pH=pKa/ 时,[碱]=[酸]
pH<pKa/ 时,[酸]>[碱]
(2) pKa/就是[碱] = [酸]时溶液的pH值,Ka/就是此时溶液的[H+]
(3)当[碱] = [酸]时,溶液的pH值等于pKa/
(4)Gly的两性解离和滴定曲线
图3-14Gly的滴定曲线在pH2.34和pH9.60处,Gly具有缓冲能力。
滴定开始时,溶液中主要是Gly+。
起点:100% Gly+净电荷:+1
第一拐点:50%Gly +,50%Gly±平均净电荷:+0.5
第二拐点:100%Gly±净电荷:0等电点pI
第三拐点:50%Gly±,50%Gly- 平均净电荷:-0.5
终点: 100% Gly- 净电荷:-1
第一拐点:pH=pK+lg[Gly±]/[Gly+],pH=pK1=2.34
第二拐点:100%Gly±,净电荷为0,此时的pH值称氨基酸的等电点pI。
第三拐点:pH=pK2+lg[Gly-]/[Gly±]=pK2=9.6
Gly的等电点:
等电点时:[Gly-]=[Gly+]
等电点时氢离子浓度用I表示
I2=K1·K2PI=1/2(pK1+pK2)
氨基酸在等电点状态下,溶解度最小
pH > pI时,氨基酸带负电荷,-COOH解离成-COO-,向正极移动。
pH = pI时,氨基酸净电荷为零
pH < pI时,氨基酸带正电荷,-NH2解离成-N+H3,向负极移动。
以Gly为例
pH>2.34正+1.0 — +0.5
pH=2.34正+0.5
2.34<PH<5.97&NBSP;&NBSP;&NBSP;&NBSP; 正0.5 — 0
5.97<PH<9.60&NBSP;&NBSP;&NBSP;&NBSP; — 负0 -0.5
pH>9.60负-0.5 — -1.0
问题:
(1)pH = pKa/ 时,缓冲能力最大,等电点时缓冲能力最小。为什么?
(2)pI的计算(氨基酸,寡肽),等电点时各组分的比例分析
(3)不同pH下的组成分析和电泳行为
pH > pI时,氨基酸带负电荷,-COOH解离成-COO-,向正极移动。
pH = pI时,氨基酸净电荷为零,溶解度最小
pH < pI时,氨基酸带正电荷,-NH2解离成-N+H3,向负极移动。
(4)利用pI和pKa/确定各种氨基酸适合的酸碱缓冲范围
(5)计算不同氨基酸水溶液的pH值
(6)绘制滴定曲线(Glu)
根据P92页表3-7中Glu的数据(pK1α-COOH 2.19, pK2α-N+H39.67,pKR R-COOH 4.25,pI 3.22)
①绘出滴定曲线
②指出Glu-和Glu=各一半时的pH值
③指出Glu总是带正电荷的pH范围
④指出Glu±和Glu-能作为缓冲液使用的pH范围
①解:见图
②Glu-和Glu=各50%时pH为9.67
③pH<3.22时 Glu总带正电荷
④Glu±和Glu-缓冲范围pH4.25左右
P92表3-7,氨基酸的表观解离常数和等电点
①从表中(P92)可以看出,氨基酸的α-羧基pKa在1.8-2.6间,比典型羧基的pKa(如乙酸pKa为4.76)要小很多,说明氨基酸羧基的酸性此普通羧基强100倍以上。主要原因是氨基酸中α-氨基对α-羧基解离的影响(场效应)。

②表中只有His的咪唑基侧链在生理条件下不带电荷。
在生理条件下,只有His有缓冲能力。
血红蛋白中His含量高,在血液中具很强的缓冲能力。
六,氨基酸的化学性质
(一) α-NH2参加的反应
1,酰化反应
①酰化试剂:苄氧酰氯、叔丁氧甲酰氯、苯二甲酸酐、对-甲苯磺酰氯。这些酰化剂在多肽和蛋白质的人工合成中被用作氨基保护剂。
②丹磺酰氯(DNS-cl,5—二甲基氨基萘-1-磺酰氯)
DNS—cl可用于多肽链—NH2末端氨基酸的标记和微量氨基酸的定量测定。

N Gly—Ala—Ser—Leu—PheC→→→→DNS—Gly—Ala—Ser—Leu—PheC
水解DNS—Gly,Ala,Ser,Leu,Phe
DNS-氨基酸在紫外光激发后发黄色荧光。
③蛋白质的合成图
④(生物体内)在酶和ATP存在条件下,羧酸也可与氨基酸的氨基作用,形成酰基化产物。
苯甲酸与Gly的氨基的酰基化反应是生物体内解毒作用的一个典型的例子。
将经过匀浆的动物肝脏组织与Gly、苯甲酸和ATP混合保温,从混合液中可分离出N-苯甲酸一Gly。

苯甲酸是食品防腐剂,在生物体内转变成N-苯甲酰-Gly后,可经尿排出。
2,烷基化反应
α-氨基中的氮是一个亲核中心,能发生亲核取代反应。
①肌氨酸是存在于生物组织中重要的组分,它是Gly甲基化的产物:

②强亲电的有机物能与α-NH2发生烷基化反应。
第一次大战中使用的芥子气,它的主要作用是使氨基酸的α-氨基烷基化,从而破坏蛋白质的正常功能。

③Sanger反应(2.4一二硝基氟苯,DNFP)

二硝基苯基氨基酸(DNP-氨基酸),黄色,层析法鉴定,被Sanger用来测定多肽的NH2末端氨基酸。
④Edman反应(苯异硫氰酸酯,PITC)

苯氨基硫甲酰衍生物(PTC-氨基酸) → 苯乙内酰硫脲衍生物(PTH-氨基酸)
PTH-氨基酸,无色,可以用层析法分离鉴定。被Edman用来鉴定多肽的NH2末端氨基酸
⑤生成西佛碱的反应(Schiff)
氨基酸的α氨基与醛类反应,生成西佛碱。

西佛碱是某些酶促反应的中间产物(如转氨基反应的中间产物)。

⑥含硫氨基酸的烷基化反应硫原子也是亲核中心,可发生亲核取代反应。
生物体内,最重要的甲基化剂是S-腺苷甲硫氨酸(SAM),是由Met与ATP作用得到的S-烷基化产物。

在酶催化下,SAM可以使多种生物分子的氨基甲基化,如磷脂酰胆碱的生物合成。

S-腺嘌呤核苷-高半胱氨酸(比Cys多一个CH2)
(二) α-羧基参加的反应
①成盐、成酯分别与碱、醇作用
②成酰氯的反应(使羧基活化)
氨基被保护后,羧基可与二氯亚砜或五氯化磷反应,生成酰氯。

此反应使氨基酸的羧基活化,易与另一个氨基酸的氨基结合,在多肽的人工合成中常用。
(三) α-NH2和α-COOH共同参加的反应
1,与茚三酮反应茚三酮在弱酸中与α-氨基酸共热,引起氨基酸的氧化脱氨,脱羧反应,最后,茚三酮与反应产物——氨和还原茚三酮反应,生成紫色物质。(λmax=570nm)
定性、定量。
(四) 侧链R基参加的反应——用于蛋白质的化学修饰
(不作要求,只提一下,《陶慰孙》第四章)
七,氨基酸的分离和分析
1,电泳分离电泳的基本原理
举例:Glu、Leu,His,Lys,4种混合样,在pH6.0时,泳动方向及相对速度。
GluLeuHis Lys
pI3.225.987.599.74

2,滤纸层析和薄层层析分配原理
3,离子交换层析分离氨基酸磺酸型阳离子交换树脂图
树脂先用含Na的缓冲液处理成钠盐,且pH在2左右,将氨基酸混合液(pH2-3)上柱,氨基酸此时是阳离子,与树脂上的钠离子交换,被固定在树脂上。
作用力:(1)静电吸引,(2)氨基酸侧链与树脂基质(聚苯乙烯)的疏水作用力氨基酸分析仪第三节 肽peptide
一,肽和肽键的结构肽:是由一个氨基酸的羧基和另一个氨基酸的氨基脱水缩合而成的化合物。
肽键:氨基酸间脱水后形成的共价键称肽键(酰氨键),其中的氨基酸单位称氨基酸残基。
由两个氨基酸形成的肽叫二肽,
少于10个氨基酸的肽叫寡肽,
多于10个氨基酸的肽叫多肽。
结构:P111上 5肽
主要重复单位,
侧链R:由不同的氨基酸残基构成
名称:丝氨酰甘氨酰酪氨酰丙氨酰亮氨酸写法,N Ser-Gly--Try-Ala---Leu或SGYAL,如果倒过来写,则表示不同的肽,如Leu—Ala---Tyr---Gly---Ser。
肽键的结构特点:
(1)酰胺氮上的孤对电子与相邻羰基之间的共振作用,形成共振杂化体,稳定性高。
(2)肽键具有部分双键性质,不能自由旋转,具有平面性。
图P111 下肽键结构
结构1中,C-N单键长0.148nm
结构2中,C=N双键长0.127nm
结构3中,C--N键长0.132nm,6个原子几乎处在同一平面内(酰氨平面)。
肽键结构介于1和2之间(结构3),是结构1和结构2之间的平均中间状态。C-N单键具有的40%的双键性质,C═O双键具有40%的单键性质。
(3)肽键亚氨基在pH0---14内不解离。
(4)肽链中的肽键一般是反式构型,而Pro的肽键可能出现顺、反两种构型.

二,肽的重要性质
1,旋光性一般短肽的旋光度等于其各个氨基酸的旋光度的总和。蛋白质水解得到的各种短肽,只要不发生消旋作用,也具有旋光性。
2,肽的酸碱性质短肽在晶体和水溶液中也是以偶极离子形式存在。
在pH0―14范围内,肽键中的亚氨基不解离,因此肽的酸碱性质主要取决于N端α-NH2和C端α-COOH以及侧链R上可解离的基团。
在长肽或蛋白质中,可解离的基团主要是侧链基团。
肽中的末端α-COOH pK值比游离 a.a中的大一些,而末端α-N+H3的pK值比游离氨基酸中的小一些,R基变化不大。
pK值改变的原因:
见P113、表3-8,比较表3-8中Gly-Gly和Gly-Gly-Gly
Gly—Glu—Lys—Ala的解离:
图 P113
pH占优势离子的净电荷:
<3.5 +2
3.5-4.5+1
4.5-7.8 0
7.8-10.2 -1
>10.2 -2
注意:占优势离子的净电荷不是全部离子的平均净电荷。
问题1:求出二肽Lys—Lys 及三肽Lys—Lys—Lys的pI值。

将R++— 变成R+—,就必须考虑R+—与R(+,+,-1)等同,即侧链—N+H3解离50%,此时图
Lys-Lys-Lys分子中有三个侧链可解离,它的R+-实际相对于R(+,+,+,-1),此时每个侧链解离后带有 1/3个正电荷。
问题2:把一个氨基酸结晶加入pH7.0的纯水中,得到pH6.0的溶液,此氨基酸的pI值是大于6.0?小于6.0? 还是等于6.0? (小于6.0)
多肽的等电点,随着肽链内酸性氨基酸残基数的增加而下降,随着肽链内碱性氨基酸残基数的增加而上升。
多肽的等电点可以通过计算求得(如上例中),但残基数增大时,此法不行。可将肽链内酸性残基和碱性残基进行清点比较,推测等电点偏酸还是偏碱,然后用等电点聚焦电泳进行实验测定。
3,肽的化学反应和游离氨基酸一样,肽的α—羧基,α—氨基和侧链R基上的活性基团都能发生与游离氨基酸相似的反应。
凡是有肽键结构的化合物都会发生双缩脲反应,且可用于定量分析。双缩脲反应是肽和蛋白质特有的反应,游离氨基酸无此反应。

三,天然存在的活性肽生物体内存在大量的多肽和寡肽,其中有很多具有很强的生物活性,称活性肽。
生物的生长、发育、细胞分化、大脑功能、免疫、生殖、衰老、病变等都涉及到活性肽。
活性肽是细胞内部、细胞间、器官间信息沟通的主要化学信使。
很多激素、抗生素都属于肽类或肽的生物。
1,谷胱甘肽Glu—Cys—Gly
广泛存在于动、植、微生物细胞内,在细胞内参与氧化还原过程,清除内源性过氧化物和自由基,维护蛋白质活性中心的巯基处于还原状态。
2GSHGS—SG
H2O2 + 2GSH 2H2O + GS—SG
2、?短杆菌肽(抗生素)
由短杆菌产生的10肽环。抗革兰氏阳性细菌,临床用于治疗化浓性病症。
L-Orn—L-Leu—D-Phe—L-Pro—L-Val—L-Orn—L-Leu—D-Phe —L-Pro—L-Val
3,脑啡肽(5肽)
已发现几十种
Met--- 脑啡肽:Tyr—Gly—Gly—Phe—Met
Leu----脑啡肽: Tyr—Gly—Gly—Phe—Leu
具有镇痛作用。
1982年,中科院上海生化所用蛋白质工程技术合成了Leu---脑啡肽,既有镇痛作用又不会象吗啡那样使人上瘾。
,神经生物化学,神经多肽生物体内多肽或寡肽的来源:
①合成蛋白质的剪切、修饰
②酶专一性逐步合成(如谷胱甘肽)、
③动物肠道可吸收寡肽第四节 蛋白质的一级结构(共价结构)
蛋白质的一级结构也称共价结构、主链结构。
一,蛋白质结构层次
一级结构(氨基酸顺序、共价结构、主链结构)
↓ 是指蛋白质分子中氨基酸残基的排列顺序
二级结构

超二级结构

构象(高级结构) 结构域

三级结构(球状结构)

四级结构(多亚基聚集体)
一级结构:共价结构、蛋白质分子中氨基酸残基的排列顺序(含二硫键)
二级结构:多肽链主链中各个肽段形成的规则的或无规则的构象。主要有α-螺旋、β折叠、β-转角、无规卷曲。
超二级结构:由两个以上二级结构单元相互聚集形成的有规则的二级结构的组合体如αα、βαβ、βββ。
结构域:大的球蛋白分子中,多肽链形成几个紧密的球状构象,彼此分开,以松散的肽链相连,此球状构象是结构域,结构域是多肽链的独立折叠单位,一般由100-200个氨基酸残基构成。
三级结构:多肽链通过盘旋、折叠,形成紧密的借各种次级键维持的球状构象。
或:蛋白质分子或亚基内所有原子的空间排布,不含亚基间或分子间的空间排列关系。
四级结构:寡聚蛋白中亚基种类、数目、空间排布及亚基间相互作用力。
单链蛋白质只有一、二、三级结构,无四级结构。

RNase
单条肽链 肌红蛋白
单体蛋白胰岛素
多条肽链 胰凝乳蛋白酶
蛋白质
相同亚基 一种乳酸脱氢酶α4

寡聚蛋白
不同亚基 血红蛋白α2β2
蛋白质一级结构(序列)中含有形成高级结构的全部需的信息,一级结构决定高级结构结构及功能。
二,一级结构的要点蛋白质主链由氨基酸以酰胺键连接,多肽的线性结构叫肽链,组成肽链的氨基酸叫氨基酸残基。
一级结构要点:
⑴蛋白质中的肽键都是由α-NH2和α-COOH结合生成的。
⑵每一种蛋白质都有相同的肽主链结构,各种蛋白质间的差异是蛋白质的氨基酸种类、数量及排列顺序不同。
⑶氨基酸的α-NH2和α-COOH缩合,只有末端及侧链基团有化学活性。
⑷每个蛋白质或每个蛋白质的亚基只有一个α-NH2 和α-COOH
⑸分子量大于5000的活性肽才能称为蛋白质。
三,.蛋白质一级结构测定
推断 预测氨基酸序列(一级结构)→空间结构 (高级结构)→ 功能
(一) 蛋白质测序的一般步骤祥见 P116
(1) 测定蛋白质分子中多肽链的数目。
(2) 拆分蛋白质分子中的多肽链。
(3) 测定多肽链的氨基酸组成。
(4) 断裂链内二硫键。
(5) 分析多肽链的N末端和C末端。
(6) 多肽链部分裂解成肽段。
(7) 测定各个肽段的氨基酸顺序
(8) 确定肽段在多肽链中的顺序。
(9) 确定多肽链中二硫键的位置。
(二) 蛋白质测序的基本策略对于一个纯蛋白质,理想方法是从N端直接测至C端,但目前只能测60个N端氨基酸。
1,直接法(测蛋白质的序列)
两种以上特异性裂解法
NC
A 法裂解A1A2 A3 A4
B 法裂解B1B2 B3 B4
用两种不同的裂解方法,产生两组切点不同的肽段,分离纯化每一个肽段,分离测定两个肽段的氨基酸序列,拼接成一条完整的肽链。
2,间接法(测核酸序列推断氨基酸序列)
核酸测序,一次可测600-800bp
(三) 测序前的准备工作
1,蛋白质的纯度鉴定纯度要求,97%以上,且均一,纯度鉴定方法。(两种以上才可靠)
⑴聚丙烯酰胺凝胶电泳(PAGE)要求一条带
⑵DNS—cl(二甲氨基萘磺酰氯)法测N端氨基酸
2、?测定分子量
用于估算氨基酸残基n=
方法:凝胶过滤法、沉降系数法
3,确定亚基种类及数目多亚基蛋白的亚基间有两种结合方式:
⑴非共价键结合
8mol/L尿素,SDSSDS-PAGE测分子量
⑵二硫键结合
过甲酸氧化:
—S—S—+HCOOOH→ SO3H
β巯基乙醇还原:
举例:,血红蛋白 (α2β2)
(注意,人的血红蛋白α和β的N端相同。)
分子量:M
拆亚基:M1,M2 两条带
拆二硫键:M1,M2 两条带
分子量关系:M = 2M1 + 2M2
4,测定氨基酸组成主要是酸水解,同时辅以碱水解。氨基酸分析仪自动进行。
确定肽链中各种a.a出现的频率,便于选择裂解方法及试剂。
①Trp测定
对二甲基氨基苯甲醛590nm。
②Cys 测定
5、5/一二硫代双(—2—硝基苯甲酸)DTNB,412nm
5,端基分析
①N端分析
DNS-cl法:最常用,黄色荧光,灵敏度极高,DNS-多肽水解后的DNS-氨基酸不需要提取。
DNFB法:Sanger试剂,DNP-多肽,酸水解,黄色DNP-氨基酸,有机溶剂(乙酸乙酯)抽提分离,纸层析、薄层层析、液相等
PITC法:Edman法,逐步切下。无色PTH-氨基酸,有机溶剂抽提,层析。
②C端分析
A.肼解法
H2N-A-B-C-D-COOH 无水肼NH2NH2100℃5-10h。

A-NHNH2,B-NHNH2,C-NHNH2,D-COOH
氨基酸的酰肼,用苯甲醛沉淀,C端在上清中,Gln、Asn、Cys、Arg不能用此法。
B.羧肽酶法(Pro不能测)
羧肽酶A:除Pro、Arg、Lys外的所有C端a.a
羧肽酶B:只水解Arg、Lys
N H2N… … … … …Val—Ser—Gly C
图 P118羧肽酶法测C末端
(四) 肽链的部分裂解和肽段的分离纯化
1,化学裂解法
①溴化氰—Met—X— 产率85%
②亚碘酰基苯甲酸—Trp—X— 产率70-100%
③NTCB(2-硝基-5-硫氰苯甲酸)—X—Cys—
④羟胺NH2OH —Asn—Gly—
约150个氨基酸出现一次
2,酶法裂解
①胰蛋白酶 LysX
(X ≠ Pro)
Arg—— X
②胰凝乳蛋白酶 Tyr——X
(X ≠ Pro)
Trp——X
Phe——X
胃蛋白酶
Phe(Trp,Try,Leu)——Phe(Trp,Try,Leu)
③Glu蛋白酶 Glu——X
(V8蛋白酶)
④Arg蛋白酶 Arg——X
⑤Lys蛋白酶 X——Lys
⑥Pro蛋白酶 Pro——X
3,肽段的分离纯化
①电泳法 SDS-PAGE
根据分子量大小分离
②离子交换层析法(DEAE—Cellulose、DEAE—Sephadex)
根据肽段的电荷特性分离
③反相HPLC法
根据肽段的极性分离
④凝胶过滤
4,肽段纯度鉴定分离得到的每一个肽段,需分别鉴定纯度,常用DNS-c l法要求:SDS-PAGE单带、HPLC单峰、N端单一。
(五) 肽段的序列测定及肽链的拼接
1,Edman法一次水解一个N端a.a
(1)耦联
PITC + H2N—A-B-C-D…… pH8—9,40℃PTC——A-B-C-D……
(2)裂解
PTC—A-B-C-D……TFA无水三氟乙酸ATZ—A+H2N—B-C-D
(3)转化
ATZ—APTH—A
用GC或HPLC测定PTH-A
PTC肽:苯氨基硫甲酰肽
ATZ:噻唑啉酮苯胺(一氨基酸)
PTH:苯乙内酰硫脲(一氨基酸)
耦联:得PTC肽
一次循环裂解:ATZ- a.a
转化:PTH-a.a
反应产率 99% 循环次数120
(偶联、降98%60
解两步) 90%40
2,DNS-Edman法用DNS法测N末端,用Edman法提供(n-1)肽段。
A-B-C-D-E肽

3,有色Edman法荧光基团或有色试剂标记的PITC试剂。
4,用自动序列分析仪测序仪器原理:Edman法,可测60肽。
1967液相测序仪
自旋反应器,适于大肽段。
1971固相测序仪
表面接有丙氨基的微孔玻璃球,可耦连肽段的C端。
1981气相测序仪
用Polybrene反应器。
(聚阳离子)四级铵盐聚合物
液相:5nmol20-40肽97%
气相:5pmol 60 肽 98%
5,肽段拼接成肽链
16肽,N端HC端S
A法裂解:ONSPSEOVERLAHOWT
B法裂解:SEOWTONVERLAPSHO
重叠法确定序列:HOWTONSEOVER LAPS
(六) 二硫键、酰胺及其他修饰基团的确定
1,二硫键的确定(双向电泳法)
碘乙酰胺封闭-SH
胃蛋白酶酶解蛋白质第一向电泳过甲酸氧化—S—S—生成-SO3H
第二向电泳分离出含二硫键的两条短肽,测序与拼接出的肽链比较,定出二硫键的位置。
2,酰胺的确定
Asp –Asn、Glu-Gln
酶解肽链,产生含单个Asx或Glx的肽,用电泳法确定是Asp还是Asn
举例:Leu-Glx-Pro-Val肽在pH=6.0 时,电荷量是Leu+Pro0Val-
此肽除Glx外,净电荷为0,可根据此肽的电泳行为确定是Glu或是Gln。
3,糖、脂、磷酸基位置的确定糖类通过Asn、Ser与蛋白质连接,-N-糖苷-0-糖苷脂类:Ser,Thr、Cys
磷酸:Ser,Thr、His
经验性序列:Lys(Arg)-Ser-Asn-Ser(PO4)
Arg-Thr-Leu-Ser(PO4)
Lys(Arg) –Ala-Ser(PO4)
四,蛋白质的一级结构与生物功能
(一) 蛋白质的一级结构决定高级结构和功能蛋白质一级结构举例:
(1) 牛胰岛素
Sanger于1953年首次完成测序工作。
P128图3-38
分子量:5700 dalton
51个a.a残基,A链21个残基,B链30个残基,
A链内有一个二硫键 Cys 6—Cys 11
A.B链间有二个二硫键 A.Cys 7 — B Cys 7
A.Cys 20—B Cys 19
(2)核糖核酸酶(RNase)
P128 图3-39
分子量:12600
124个a.a残基
4个链内二硫键。
牛胰RNase变性一复性实验:
P164图3-69。
(8M尿素+β硫基乙醇)变性、失活→透析,透析后构象恢复,
活性恢复95%以上,而二硫键正确复性的概率是1/105。
(3)人血红蛋白α和β链及肌红蛋白的一级结构
P129图3-40
(二) 同源蛋白质一级结构的种属差异与生物进化同源蛋白质:在不同的生物体内具有同一功能的蛋白质。如:血红蛋白在不同的脊椎动物中都具有输送氧气的功能,细胞色素在所有的生物中都是电子传递链的组分。
同源蛋白质的特点:
①多肽链长度相同或相近
②同源蛋白质的氨基酸顺序中有许多位置的氨基酸对所有种属来说都是相同的,称不变残基,不变残基高度保守,是必需的。
③除不变残基以外,其它位置的氨基酸对不同的种属有很大变化,称可变残基,可变残基中,个别氨基酸的变化不影响蛋白质的功能。
通过比较同源蛋白质的氨基酸序列的差异可以研究不同物种间的亲源关系和进化,亲源关系越远,同源蛋白的氨基酸顺序差异就越大。
1,细胞色素C
存在于线粒体膜内,在真核细胞的生物氧化过程中传递电子。
P130,图3-41
分子量:12500左右氨基酸残基:100个左右,单链。
25种生物中,细胞色素C的不变残基35个。
60种生物中,细胞色素C的不变残基27个。
亲源关系越近的,其细胞色素C的差异越小。
亲源关系越远的,其细胞色素C的差异越大。
人与黑猩猩 0
人与猴 1
人与狗 10
人与酵母 44
2,胰岛素祥见 P175胰岛素的结构与功能
不同生物的胰岛素a.a序列中,有24个氨基酸残基位置始终不变,
A.B链上6个Cys 不变(重要性),其余18(24-6)个氨基酸多数为非极性侧链,对稳定蛋白质的空间结构起重要作用。
其它氨基酸 对稳定蛋白质的空间结构作用不大,但对免疫反应起作用,猪与人接近,而狗则与人不同,因此可用猪的胰岛素治疗人的糖尿病。
(三) 蛋白质一级结构的个体差异—分子病分子病:基因突变引起某个功能蛋白的某个(些)氨基酸残基发生了遗传性替代从而导致整个分子的三维结构发生改变,致使其功能部分或全部丧失。
Linus Pauling首先发现镰刀形红细胞贫血现是由于血红蛋白发生了遗传突变引起的,成人的血红蛋白是由两条相同的a链和两条相同的b链组成a2b2,镰刀形红细胞中,血红蛋白b链第6位的aa线基由正常的Glu变成了疏水性的Val。因此,当血红蛋白没有携带O2时就由正常的球形变成了刚性的棍棒形,病人的红细胞变成镰刀形,容易发生溶血作用(血细胞溶解)导致病血,棍棒形的血红蛋白对O2的结合力比正常的低。
以血红蛋白为例:α2β2寡聚蛋白正常人血红蛋白,β.N......Glu 6
镰刀型贫血β.N......Val 6
生理条件下电荷:
Va10Glu-
疏水 亲水人的血红蛋白分子的四条肽链中(574个氨基酸残基)只有两个Glu分子变化成Va1分子,就能发生镰刀状细胞贫血病。
(四) 一级结构的部分切除与蛋白质的激活一些蛋白质、酶、多肽激素在刚合成时是以无活性的前体形式存在,只有切除部分多肽后才呈现生物活性,如血液凝固系统的血纤维蛋白原和凝血酶原,消化系统的蛋白酶原、激素前体等。
1,血液凝固的机理
凝血因子(凝血酶原致活因子)
凝血酶原 凝血酶

纤维蛋白原A纤维蛋白B 凝胶
(1),凝血酶原
P133图3-43凝血酶原的结构糖蛋白,分子量66000,582个a.a残基,单链。
在凝血酶原致活因子催化下,凝血酶原分子中的Arg274—Thr275和Arg323—Ile324断裂,释放出274个a.a,产生活性凝血酶。
A链49 a.a
B链259 a.a
(2),纤维蛋白原
P133 图3-44纤维蛋白原的结构
α2β2r2
α肽:600个氨基酸,β肽:461氨基酸,r肽:410个氨基酸在凝血酶作用下,从二条α链和二条β链的N端各断裂一个特定的肽键-Arg—Gly-,释放出二个纤维肽A(19个氨基酸)和二个纤维肽B(21个氨基酸),它们含有较多的酸性氨基酸残基。
P133 纤维肽A,B的结构
A、B肽切除后,减少了蛋白质分子的负电荷,促进分子间聚集,形成网状结构。
P134上
在凝血因子XIIIa(纤维蛋白稳定因子)催化下,纤维蛋白质单体间形成共价健(Gln-Lys结合),生成交联的纤维蛋白。
2,胰岛素原的激活
P134图3-45
胰岛素在胰岛的β细胞内质网的核糖体上合成,称前胰岛素原,含信号肽。前胰岛素原在信号肽的引导下,进入内质网腔,进入后,信号肽被信号肽酶切除,生成胰岛素原,被运至高尔基体贮存。并在特异的肽酶作用下,切除C肽,得到活性胰岛素。
五,多肽与蛋白质的人工合成在医药和研究方面意义重大
1958年,北大生物系合成催产素8肽。
1965年,中国科学院生化所、有机所、北大化学系人工合成牛胰岛素。
1969年,美国Merrifield用自动化的固相多肽合成仪合成第一个酶——牛胰RNase(124aa—)。
P139图3-46多肽的固相合成
C端 N端。
挂接→去保护→中和→缩合→去保护→中和→缩合
第五节 蛋白质的二级结构和纤维状蛋白质二级结构是指多肽链中有规则重复的构象。
一,肽链的构象多肽链的共价主链上所有的α--碳原子都参与形成单键,因此,从理论上讲,一个多肽主链能有无限多种构象。
但是,目前已知,一个蛋白质的多肽链在生物体内只有一种或很少几种构象,且相当稳定,这种构象称天然构象,此时蛋白质具有生物活性,这一事实说明:天然蛋白质主链上的单键并不能自由旋转。
1,肽链的二面角
P143图3-51、图3-52
多肽主链上只有α碳原子连接的两个键(Cα—N1和Cα-C2)是单键,能自由旋转。
环绕Cα—N键旋转的角度为Φ
环绕Cα—C2键旋转的角度称Ψ
多肽链的所有可能构象都能用Φ和Ψ这两个构象角来描述,称二面角。
当Φ的旋转键Cα-N1两侧的N1-C1和Cα-C2呈顺式时,规定Φ=0°。
当Ψ的旋转键Cα-C2两侧的Cα-N1和C2-N2呈顺式时,规定Ψ=0°。
从Cα向N1看,顺时针旋转Cα-N1键形成的Φ角为正值,反之为负值。
从Cα向C2看,顺时针旋转Cα- C2键形成的Ψ角为正值,反之为负值。
2,多肽链折叠的空间限制
Φ和Ψ同时为0的构象实际不存在,因为两个相邻肽平面上的酰胺基H原子和羰基0原子的接触距离比其范德华半经之和小,空间位阻。
因此二面角(Φ、Ψ)所决定的构象能否存在,主要取决于两个相邻肽单位中非键合原子间的接近有无阻碍。
Cα上的R基的大小与带电性影响Φ和Ψ
P144表3-12蛋白质中非键合原子间的最小接触距离。
拉氏构象图:Ramachandran根据蛋白质中非键合原子间的最小接触距离,确定了哪些成对二面角(Φ、Ψ)所规定的两个相邻肽单位的构象是允许的,哪些是不允许的,并且以Φ为横坐标,以Ψ为纵坐标,在坐标图上标出,该坐标图称拉氏构象图。
P145拉氏构象图(Gly除外)
⑴实线封闭区域一般允许区,非键合原子间的距离大于一般允许距离,此区域内任何二面角确定的构象都是允许的,且构象稳定。
⑵虚线封闭区域是最大允许区,非键合原子间的距离介于最小允许距离和一般允许距离之间,立体化学允许,但构象不够稳定。
⑶虚线外区域是不允许区,该区域内任何二面角确定的肽链构象,都是不允许的,此构象中非键合原子间距离小于最小允许距离,斥力大,构象极不稳定。
Gly的Φ、Ψ角允许范围很大。
总之,由于原子基因之间不利的空间相互作用,肽链构象的范围是很有限的,对非Gly 氨基酸残基一般允许区占全平面的7.7%,最大允许区占全平面20.3%。
二,二级结构的基本类型驱使蛋白质折叠的主要动力:
(1)暴露在溶剂中的疏水基团降低至最少程度。
(2)要保持处于伸展状态的多肽链和周围水分子间形成的氢键相互作用的有利能量状态。
1,α螺旋
(1),α螺旋及其特征在α螺旋中,多肽主链按右手或左手方向盘绕,形成右手螺旋或左手螺旋,相邻的螺圈之间形成链内氢键,构成螺旋的每个Cα都取相同的二面角Φ、Ψ。
典型的α螺旋有如下特征:
① 二面角:Φ= -57°,Ψ= - 48°,是一种右手螺旋回忆 P143图3-52
② 每圈螺旋:3.6个a.a残基,高度:0.54nm
③ 每个残基绕轴旋转100°,沿轴上升0.15nm
④ 氨基酸残基侧链向外
⑤ 相邻螺圈之间形成链内氢链,氢键的取向几乎与中心轴平行。
⑥ 肽键上N-H氢与它后面(N端)第四个残基上的C=0氧间形成氢键。
图这种典型的α螺旋用3.613表示,3.6表示每圈螺旋包括3.6个残基,13表示氢键封闭的环包括13个原子。
2.27螺旋(n=1)
310 螺旋(n=2,Φ= -49°,Ψ= - 26°)
613螺旋(n=3)
4.316螺旋(n=4)
封闭环原子数3n+4(n=1、2、.....)
2.27 3103.6134.316
n=1 n=2 n=3n=4
α-螺旋 π-螺旋
(2),R侧链对α—螺旋的影响
R侧链的大小和带电性决定了能否形成α—螺旋以及形成的α—螺旋的稳定性。
① 多肽链上连续出现带同种电荷基团的氨基酸 残基,(如Lys,或Asp,或Glu),则由于静电排斥,不能形成链内氢键,从而不能形成稳定的α—螺旋。如多聚Lys、多聚Glu。而当这些残基分散存在时,不影响α—螺旋稳定。
② Gly的Φ角和Ψ角可取较大范围,在肽中连续存在时,使形成α—螺旋所需的二面角的机率很小,不易形成α—螺旋。丝心蛋白含50%Gly,不形成α—螺旋。
③ R基大(如Ile)不易形成α—螺旋
④ Pro、脯氨酸中止α—螺旋。
⑤ R基较小,且不带电荷的氨基酸利于α—螺旋的形成。如多聚丙氨酸在pH7的水溶液中自发卷曲成α—螺旋。
(3),pH对α—螺旋的影响多聚L-Glu和多聚L-Lys
P149图3-57
(4),右手α-螺旋与左手α-螺旋
图P148
右手螺旋比左手螺旋稳定。
蛋白质中的α—螺旋几乎都是右手,但在嗜热菌蛋白酶中有很短的一段左手α—螺旋,由Asp-Asn-Gly-Gly(226-229)组成(φ+64°、Ψ+42°)。
(5),α-螺旋结构的旋光性由于α-螺旋结构是一种不对称的分子结构,因而具有旋光性,原因:(1)α碳原子的不对称性,(2) 构象本身的不对称性。
天然α—螺旋能引起偏振光右旋,利用α—螺旋的旋光性,可测定蛋白质或多肽中α—螺旋的相对含量,也可用于研究影响α—螺旋与无规卷曲这两种构象之间互变的因素。
α-螺旋的比旋不等于构成其本身的氨基酸比旋的加和,而无规卷曲的肽链比旋则等于所有氨基酸比旋的加和。
(6),α-螺旋(包括其它二级结构)形成中的协同性一旦形成一圈α-螺旋后,随后逐个残基的加入就会变的更加容易而迅速
2,β-折叠
P149图3—58P150图3—59
两条或多条几乎完全伸展的多肽链(或同一肽链的不同肽段)侧向聚集在一起,相邻肽链主链上的NH和C=0之间形成氢链,这样的多肽构象就是β-折叠片。β-折叠中所有的肽链都参于链间氢键的形成,氢键与肽链的长轴接近垂直。多肽主链呈锯齿状折叠构象,侧链R基交替地分布在片层平面的两侧。
平行式:所有参与β-折叠的肽链的N端在同一方向。
反平行式:肽链的极性一顺一倒,N端间隔相同平行式:φ=-119°Ψ=+113°
反平行式:φ=-139°Ψ=+135°
从能量上看,反平β-折叠比平行的更稳定,前者的氢键NH---O几乎在一条直线上,此时氢键最强。
在纤维状蛋白质中β-折叠主要是反平行式,而在球状蛋白质中反平行和平行两种方式都存在。
在纤维状蛋白质的β-折叠中,氢键主要是在肽链之间形式,而在球状蛋白质中,β-折叠既可在不同肽链间形成,也可在同一肽链的不同部分间形成。
3,β-转角(β-turn)
β-转角也称β-回折(reverse turn)、β-弯曲(β-bend)、发夹结构(hair-pin structure)
β-转角是球状蛋白质分子中出现的180°回折,有人称之为发夹结构,由第一个a.a残基的C=O与第四个氨基酸残基的N-H间形成氢键。
目前发现的β转角多数在球状蛋白质分子表面,β转角在球状蛋白质中含量十分丰富,占全部残基的1/4。
β转角的特征:
①由多肽链上4个连续的氨基酸残基组成。
②主链骨架以180°返回折叠。
③第一个a.a残基的C=O与第四个a.a残基的N-H生成氢键
④C1α与C4α之间距离小于0.7nm
⑤多数由亲水氨基酸残基组成。
4,无规卷曲
没有规律的多肽链主链骨架构象。
球状蛋白中含量较高,对外界理化因子敏感,与生物活性有关。
α-螺旋,β-转角,β-折叠在拉氏图上有固定位置,而无规卷曲的φ、Ψ二面角可存在于所有允许区域内。
三,超二级结构由若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角及无规卷曲)组合在一起,彼此相互作用,形成有规则的、在空间上能够辨认的二级结构组合体。
1,αα结构(复绕α-螺旋)
由两股或三股右手α-螺旋彼此缠绕而成的左手超螺旋,重复距离140A。
p153 图3-61A
存在于α-角蛋白,肌球蛋白,原肌球蛋白和纤维蛋白原中。
2,βxβ结构两段平行式的β-链(或单股的β-折叠)通过一段连接链(x结构)连接而形成的超二级结构。
①βcβ
x为无规卷曲
p153 图3-61B
②βαβ
x为α-螺旋,最常见的是βαβαβ,称Rossmann折叠,存在于苹果酸脱氢酶,乳酸脱氢酶中。
p153 图3-61C
3,β曲折(β-meander)
由三条(以上)相邻的反平行式的β-折叠链通过紧凑的β-转角连接而形成的超二级结构。
P153图3-61 D
4,回形拓扑结构(希腊钥匙)
P153图3-61E
5,β-折叠桶由多条β-折叠股构成的β-折叠层,卷成一个筒状结构,筒上β折叠可以是平行的或反平行的,一般由5-15条β-折叠股组成。
超氧化物歧化酶的β-折叠筒由8条β-折叠股组成。筒中心由疏水氨基酸残基组成。
6,α-螺旋-β转角-α-螺旋两个α-螺旋通过一个β转角连接在一起。
λ噬菌体的λ阻遏蛋白含此结构。在蛋白质与DNA的相互作用中,此种结构占有极为重要的地位。
四,纤维状蛋白质纤维状蛋白质的氨基酸序列很有规律,它们形成比较单一的、有规律的二级结构,结果整个分子形成有规律的线形结构,呈现纤维状或细棒状,分子轴比(轴比:长轴/短轴)大于10,轴比小于10是的球状蛋白质。
广泛分布于脊椎和无脊椎动物体内,占脊椎动物体内蛋白质总量的50%以上,起支架和保护作用。
1,角蛋白源于外胚层细胞,包括皮肤及皮肤的衍生物(发、毛、鳞、羽、甲、蹄、角、爪、丝)可分为α-角蛋白和β角蛋白。
(1),α-角蛋白
P155 图3-63,P156图3-64

主要由α-螺旋结构组成,三股右手α-螺旋向左缠绕形成原纤维,原纤维排列成“9+2”的电缆式结构称微纤维,成百根微纤维结合成大纤微结构稳定性由二硫键保证,α-角蛋白在湿热条件下可伸展转变成β-构象,烫发的化学机理Cys含量较高。
?a-角蛋白(a-Keratin)中有两种类型的多肽链:I型和II型。每一个I型多肽型和一个II型多肽链形成一个卷曲螺旋二聚体(Coiled coil dimmer)。一对卷曲螺旋反平行式地形成左手超螺旋结构称原纤维(Protofilament,4股右手a-螺旋),原纤维的亚基间以氢键和二硫键相连。4个原纤维形成微纤维,成百根微纤维形成大纤维,每一个头发细胸,也将纤维(fiber)含有数个大纤维,一根头发就是由无数的死细胞相互间以角蛋白相连组成的。?
(2),β-角蛋白
P157图3-65
含大量的Gly、Ala、Ser,以β-折叠结构为主。
丝心蛋白取片层结构,即反平行式β-折叠片以平行的方式堆积成多层结构。链间主要以氢键连接,层间主要靠范德华力维系。
2,胶原蛋白
3,弹性蛋白
4,肌球蛋白、肌动蛋白和微管蛋白第六节 球状蛋白质的高级结构与功能前面讲了蛋白质结构的两个较低级的组织水平:一级结构和二级结构(包括超二级结构),本节讲述蛋白质(主要是球蛋白)的高级结构:结构域、三级结构、四级结构,及其与生物功能。
一,蛋白质的一级结构决定高级结构蛋白质功能的复杂性和多样性是建立在结构多样性的基础上。
多肽链的二级结构由R基的短程顺序决定,当一组在肽链上相邻的氨基酸残基具有适当的顺序时,能自发形成α-螺旋和β-折叠,并处于稳定状态。
而多肽链的三级结构由氨基酸的长程顺序决定,如产生特异转弯的氨基酸残基(Pro、Thr、Ser)的精确位置决定多肽链转弯形成的方向和角度。
同源蛋白质的不变残基决定蛋白质的高级结构。
RNase的变性、复性实验,证明蛋白质的三维构象归根结底是复杂生物大分子的“自我装配”。
P164图3-69RNase的变性与复性示意图二,球状蛋白质的结构域、三级结构与功能
(一) 结构域结构域(domain),又称motif(模块)
在二级结构及超二级结构的基础上,多肽链进一步卷曲折叠,组装成几个相对独立、近似球形的三维实体。结构域是球状蛋白的折叠单位,多肽链折叠的最后一步是结构域间的缔合。
对于较小的蛋白质分子或亚基来说,结构域和三级结构往往是一个意思,就是说这些蛋白质是单结构域的。
结构域一般有100-200氨基酸残基,结构域之间常常有一段柔性的肽段相连,形成所谓的铰链区,使结构域之间可以发生相对移动。
每个结构域承担一定的生物学功能,几个结构域协同作用,可体现出蛋白质的总体功能。例如,脱氢酶类的多肽主链有两个结构域,一个为NAD+结合结构域,一个是起催化作用的结构域,两者组合成脱氢酶的脱氢功能区。
结构域间的裂缝,常是活性部位,也是反应物的出入口。一般情况下,酶的活性部位位于两个结构域的裂缝中。
EF手:钙结合蛋白中,含有Helix-Loop-Lelix结构锌指:DNA结合蛋白中,2个His、2个Cys结合一个Zn
亮氨酸拉链:DNA结合蛋白中,由亮氨酸倒链形成的拉链式结构,
图5.19
(二) 三级结构:
三级结构:整个多肽链在二级结构、超二级结构和结构域的基础上盘旋、折叠,形成的特定的整个空间结构。
或者说,三级结构是多肽链中所有原子的空间排布。
1,三级结构有以下特点:
&#129; 许多在一级结权上相差很远的aa碱基在三级结构上相距很近。
&#8218; 球形蛋白的三级结构很密实,大部分的水分子从球形蛋白的核心中被排出,这使得极性基团间以及非极性基团间的相互用成为可能。
&#402; 大的球形蛋白(200aa以上),常常含有几个结构域,结构域是一种密实的结构体,典型情况下常常含有特定的功能(如结合离子和小分子)
2,维持三级结构的作用力:
P164 图3-70
(1)氢键大多数蛋白质采取的折叠策略是使主链肽基之间形成最大数目的分子内氢键(如α-螺旋、β-折叠),同时保持大部分能成氢键的侧链处于蛋白质分子表面,与水相互作用。
(2)范德华力(分子间及基团间作用力)
包括三种弱的作用力:
定向效应极性基团间诱导效应极性与非极性基团间分散效应非极性基团间
(3)疏水相互作用蛋白质中的疏水残基避开水分子而聚集在分子内部的趋向力。它在维持蛋白质的三级结构方面占有突出的地位。
(4)离子键(盐键)
是正电贺和负电荷之间的一种静电作用。
生理pH下,Asp、Glu侧链解离成负离子,Lys、Arg、His离解成正离子。多数情况下,这些基团分布在球状蛋白质分子的表面,与水分子形成排列有序的水化层。偶尔有少数带相反电荷的测链在分子的疏水内部形成盐键。
(5)共价健,主要的是二硫键,
在二硫键形成之前,蛋白质分子已形成三级结构,二硫键不指导多肽链的折叠,三级结构形成后,二硫键可稳定此构象。
主要存在于体外蛋白中,在细胞内,由于有高浓度的还原性物质,所以没有二硫键。
6、静电相互作用最强的静电作用就是带相反电何的离子基因间的静电作用,又称盐桥。盐桥和较弱的静电相互作用(离子-偶级、偶级-偶级、范德华力)也是维持亚基间以及蛋白质与配体间的作用力。
3,免疫球蛋白的一级结构
P193图3-99
第七节 蛋白质的性质与分离、纯化、鉴定一,蛋白质的酸碱性质蛋白质也是一类两性电解质,能和酸、碱发生作用。
在蛋白质分子中,可解离基团主要是侧链基团,及少数N端-NH2和C端-COOH。
P197表3-16
天然球状蛋白质的可解离基团大部分可被滴定,而某些天然蛋白质中有一部分可解离基因由于埋藏在分子内部或参与氢键形成而不能解离。
1,等电点和等离子点(中性盐Ca2+、Mg2+、cl、HPO42++)
等电点:
P198表3-173-18
蛋白质的等电点和它所含的酸性氨基酸残基和碱性氨基酸残基的比例有关。
等离子点:没有其它盐类干扰时,蛋白质质子供体解离出的质子数与质子受体结合的质子数相等时的pH值称等离子点,是每种蛋白质的特征常数。
在等电点条件下,蛋白质的电导性、溶解度最小,粘度最大。
2,蛋白质的电泳分离聚丙烯酰胺凝胶电泳PAGE
SDS-PAGE(荷质比相同,分子量不同)
3,离子交换层析分离蛋白质与氨基酸分离原理相似二,蛋白质的大小与形状测分子量的方法:
化学组成法凝胶过滤法
SDS-PAGE法三,胶体性质与蛋白质的沉淀蛋白质分子直径在1-100nm之间,在水溶液中具有胶体溶液的通性(布朗运动,丁达耳现象,不能通过半透膜)
透析:将含小分子杂质的蛋白质放入透析袋中,置水溶液中,小分子杂质不断从袋中出来,大分子蛋白质仍留在袋中。
蛋白质在水中溶解度依赖于多肽链氨基酸残基侧链基团的相对极性,离子化基因数量越多,溶解度越大。
1,稳定蛋白质胶体溶液的主要因素
①蛋白质表面极性基团形成的水化膜将蛋白质颗粒彼此隔开,不会互相碰撞凝聚而沉淀。
②两性电解质非等电状态时,带同种电荷,互相排斥不致聚集而沉淀。
一旦电荷被中和或水化膜被破坏,蛋白质颗粒聚集,便从溶液中析出沉淀。
2,沉淀蛋白质的方法
①盐析法向蛋白质溶液中加入大量的中性盐[(NH4)2SO4、Na2SO4、Nacl],使蛋白质脱去水化层而聚集沉淀。
②有机溶剂沉淀法破坏水化膜,降低介电常数
③重金属盐沉淀
pH大于等电点时,蛋白质带负电荷,可与重金属离子(Hg2+,Pb2+,Cu2+ 等)结成不溶性沉淀
④生物碱试剂和某些酸类沉淀法
pH小于等电时,蛋白质带正电荷,易与生物碱试剂和酸类的负离子生成不溶性沉淀。
生物碱试剂:是指能引起生物碱沉淀的一类试剂,单宁酸、苦味酸、钨酸。
酸 类:三氯乙酸、磺基水杨酸。
⑤加热变性沉淀。
往往是不可逆的。
四,蛋白质的变性变性作用:理、化因素影响,使蛋白质生物活性丧失,溶解度下降,不对称性增大及其它理化常数改变。
(1)变性的因素:
&#129; 强酸和强碱;&#8218; 有机溶剂,破坏疏水作用;&#402; 去污剂、去污剂都是两亲分子,破坏疏水作用;&#8222; 还原性试剂:尿素、b-硫基乙醇;… 盐浓度、盐析、盐溶;&#8224; 重金属离子,Hg2+、pb2+,能与-SH或带电基团反应。&#8225; 温度;&#710; 机械力:如搅拌和研磨中的气泡。
(2)变性的实质:
次级键(有时包括二硫键)被破坏,天然构象解体。变性不汲及一级结构的破坏。
(3)蛋白质变性后,往往出现下列现象:
①结晶及生物活性丧失是蛋白质变性的主要特征。
②硫水侧链基团外露。
③理化性质改变,溶解度降低、沉淀,粘度增加,分子伸展。
④生理化学性质改变。分子结构伸展松散,易被蛋白酶水解。
实际应用:
A.消毒灭菌:75%乙醇,紫外线,高温。
B.制备活性蛋白质时严防蛋白质变性。
(4)变性机理
①热变性(往往是不可逆的)多肽链受到过分的热振荡,引起氢链破坏。
②酸碱变性:破坏了盐链。
③有机溶剂:破坏水化膜,降低蛋白质溶液介电常数。
(5)可逆变性与不可逆变性有人认为:二级、三级或四级结构遭受被破坏即为变性,三级(或四级)结构被破坏时引起可逆变性,而二级及三级(或四级)结构一并遭破坏时引起不可逆变性。
五,分离纯化蛋白质的主要方法实质:①蛋白与非蛋白分开,②蛋白质之间分开原理:
1,溶解度差异
PEG沉淀法有机溶剂沉淀法等电点沉淀法
2,热稳定性差异热处理沉淀法铜锌SOD(65℃、15分钟、稳定)
3,电荷性质差异离子交换层析法电泳法
4,分子大小和形状差异凝胶过滤、超滤法透析法、离心法
5,亲和力的差异亲和层析法某种蛋白质能与一种配基特异而非共价结合。
配基是指能被生物大分子识别并与之结合的原子、原子团和分子,如酶的底物、辅酶、调节效应物及其结构类似物,激素与受体蛋白、抗原与抗体。
分离原理:
P224图3-124
u 蛋白质毒素一些致病生物产生的毒素中有很多是蛋白质。毒性机理有:&#129; 破坏细胞膜;&#8218; 干扰细胞内机能;&#402; 抑制神经细胞突触的功能。
直接作用于细胞膜的毒素称溶细胞毒素,可以由细菌、真菌、植物、鱼、蛇等产生。链球菌属(Streptoccus)Pyogene产生的链球菌溶血素(包括0.5等),能使精细胞产生孔洞,Na+等离子外渗,细胞死亡。链球菌溶血素O是产生风湿热的原因之一(rheiematie fever)。此外,一些有毒的酶点,如蛇的磷酯酶在A2也能破坏细胞膜。
破坏细胞内机能的毒素也很多,如白候杆菌(Corynebacteriadiphtheriae)产生的白候毒素(diphtheria toxin)和霍乱弧菌(Vibrio cholerae)产生的霍乱毒素(cholera toxin)。它们均由A、B两个亚基组成,B亚基与靶细胞结合,A亚基致毒。白候毒素分子一旦进入靶细胞,AB亚在就分开,A亚基是一种酶能阻止蛋白质的合成,寄主的心、肾和神经组织都会被破坏。
霍乱毒素的B亚基由5个相同亚基组成,B亚基与肠细胞膜结合,A亚基就被送入这些细胞中,A亚基激活一种酶使cAMP大量产生,cAMP打开细胞膜的CL通道,由于CL-外泄引起渗适压的改变,水分也大量丧失,结果导致腹泻(diarrhoea),不加治疗的话,严重的脱水可使病人48小时内死亡。
神经突触连接两个神经元或一个神经元与一个肌肉细胞。一种毒蜕的产生的毒素a-Latrotoxin(125KD)是一条多肽链,能剌激神经递质乙酰胆碱(acetylcholine,ACH)的广谱性释放酶。肉毒杆菌(Lostrldium botulinum)产生的肉毒杆菌毒素(botulinum toxin)能抑制Ach释放酶肉毒中毒(botulism)为是由于受了被污染的罐袋食物引起的第四章 酶酶是一类具有高效率、高度专一性、活性可调节的高分子生物催化剂。
1957巴斯德提出酒精发酵是酵母细胞活动的结果。
1 分子Glc→2分子乙醇+2分子CO2从Glc开始,经过12种酶催化,12步反应,生成乙醇。
1897Buchner兄弟证明发酵与细胞的活动无关,不含细胞的酵母汁也能进行乙醇发酵。
1913Michaelis和Menten提出米氏学说—酶促动力学原理。
1926Sumner首次从刀豆中提出脲酶结晶,并证明具有蛋白质性质。
1969化学合成核糖核酸酶。
1967-1970从E.coli中发现第I、第II类限制性核酸内切酶。
1986Cech发现四膜虫细胞大核期间26S rRNA前体具有自我剪接功能。
ribozyme, deoxyribozyme
E.coRI
5’——GAATTC——3’
3’——CTTAAG——5’
限制作用修饰作用
5’——GAATTC——3’ 5’——GAATTC——3’
3’——CTTAAG——5’ 3’——CTTAAG——5’
第一节 酶学概论一,酶的生物学意义大肠杆菌生命周期20分钟,生物体内化学反应变得容易和迅速进行的根本原因是体内普通存在生物催化剂—酶。没有酶,生长、发育、运动等等生命活动就无法继续。
限制性核酸内切酶(限制-修饰)
二,酶的概念及其作用特点
1,酶是一种生物催化剂酶是一类具有高效率、高度专一性、活性可调节的高分子生物催化剂。
生物催化剂,酶(enzyme),核(糖)酶(ribozyme),脱氧核(糖)酶(deoxyribozyme)
2,酶催化反应的特点
(1),催化效率高酶催化反应速度是相应的无催化反应的108-1020倍,并且至少高出非酶催化反应速度几个数量级。
(2),专一性高酶对反应的底物和产物都有极高的专一性,几乎没有副反应发生。
(3),反应条件温和温度低于100℃,正常大气压,中性pH环境。
(4),活性可调节根据据生物体的需要,许多酶的活性可受多种调节机制的灵活调节,包括:别构调节、酶的共价修饰、酶的合成、活化与降解等。
(5),酶的催化活性离不开辅酶、辅基、金属离子
3,酶与非生物催化剂相比的几点共性:
①催化效率高,用量少(细胞中含量低)。
②不改变化学反应平衡点。
③降低反应活化能。
P234 图4-1非催化过程及催化过程自由能的变化
④反应前后自身结构不变。
催化剂改变了化学反应的途径,使反应通过一条活化能比原途径低的途径进行,催化剂的效应只反映在动力学上(反应速度),不影响反应的热力学(化学平衡)。
三,酶的化学本质
(一) 酶的蛋白质本质经典概念:所有的酶都是蛋白质,酶是具有催化功能的蛋白质,因此酶具有蛋白质的一切共性。
1,酶的蛋白质组成有些酶仅由蛋白质组成,例如,脲酶、溶菌酶、淀粉酶、脂肪酶、核糖核酸酶等有些酶不仅含有蛋白质(酶蛋白),还含有非蛋白质成分(辅助因子),只有酶蛋白与辅助因子结合形成复合物(全酶)才表现出酶活性,如超氧化物歧化酶Cu2+、Zn2+)、乳酸脱氢酶(NAD+)
酶的专一性由酶蛋白的结构决定,辅助因子传递电子或某些化学基团。
2,酶的辅助因子酶的辅助因子主要有金属离子(Fe2+、Fe3+,Cu+、Cu2+,Mn2+、、Mn3+、Zn2+、Mg2+,K+,Na+,Mo6+,Co2+等)和有机化合物。
辅酶:与酶蛋白结合较松,可透析除去。
辅基:与酶蛋白结合较紧。
酶 辅助因子
CuZn-SOD Cu2+Zn2+
Mn-SODMn2+
过氧化物酶Fe2+或Fe3+
II型限制性核酸内切酶Mg2+
羧肽酶Zn2+
P235表4-1 一些酶的辅助因子(金属离子)
P237表4-2基团反应中的辅酶和辅基。
酶蛋白决定酶专一性,辅助因子决定酶促反应的类型和反应的性质。比如,NAD+可与多种酶蛋白结合,构成专一性强的乳酸脱氢酶、醇脱氢酶、苹果酸脱氢酶、异柠檬酸脱氢酶。
生物体内酶种类很多,而辅助因子种类却很少,原因是一种辅助因子可与多种酶蛋白结合。
(二) ribozyme核酶(具有催化功能的RNA)
1980以前,已知所有的生物催化剂,其化学本质都是蛋白质。
80年代初,美国科罗拉多大学博尔德分校的Thomas Cech和美国耶鲁大学Sidney Altman各自独立发现RNA具有生物催化功能,此发现被认为是近十年生化领域最令人鼓舞的发现,此二人分亨1989诺贝尔化学奖。
ribozyme种类:①自我剪接ribozyme ②自我剪切ribozyme③催化分子间反应ribozyme
后边细讲四,按酶蛋白的亚基组成及结构特点分类
1,单体酶由一条或多条共价相连的肽链组成的酶分子牛胰RNase124a.a单链鸡卵清溶菌酶129a.a单链胰凝乳蛋白酶三条肽链单体酶种类较少,一般多催化水解反应。
2,寡聚酶由两个或两个以上亚基组成的酶,亚基可以相同或不同,一般是偶数,亚基间以非共价键结合。
①含相同亚基的寡聚酶苹果脱胱氢酶(鼠肝),2个相同的亚基
②含不同亚基的寡聚酶琥珀酸脱氢酶(牛心),αβ2个亚基寡聚酶中亚基的聚合,有的与酶的专一性有关,有的与酶活性中心形成有关,有的与酶的调节性能有关。
大多数寡聚酶是胞内酶,而胞外酶一般是单体酶。
多酶复合体由两个或两个以上的酶,靠非共价键结合而成,其中每一个酶催化一个反应,所有反应依次进行,构成一个代谢途径或代谢途径的一部分。如脂肪酸合成酶复合体。
例如:大肠杆菌丙酮酸脱氢酶复合体由三种酶组成
①丙酮酸脱氢酶(E1)以二聚体存在2×9600
②二氢硫辛酸转乙酰基酶(E2)70000
③二氢硫辛酸脱氢酶(E3)以二聚体存在2×56000
复合体:12个E1二聚体24×96000
24个E2单体24×70000
6个E3二聚体 12×56000
总分子量560万
4,多酶融合体一条多肽链上含有两种或两种以上催化活性的酶,这往往是基因融合的产物。
例如:天冬氨酸激酶I---高丝氨酸脱氢酶I融合体(双头酶)
该酶是四聚体α4,每条肽链含两个活性区域:N-端区域是Asp激酶,C端区域是高Ser脱氢酶。
五,酶在细胞中的分布一个细胞内含有上千种酶,互相有关的酶往往组成一个酶体系,分布于特定的细胞组分中,因此某些调节因子可以比较特异地影响某细胞组分中的酶活性,而不使其它组分中的酶受影响。
1,分布于细胞核的酶核被膜酸性磷酸酶染色质三磷酸核苷酶核仁核糖核酸酶核内可溶性部分酵解酶系、乳酸脱氢酶
2,分布于细胞质的酶参与糖代谢的酶 酵解酶系
磷酸戊糖途径酶系参与脂代谢的酶 脂肪酸合成酶复合体参与a.a蛋白质的酶Asp氨基转移酶参与核酸合成的酶 核苷激酶核苷酸激酶
3,分布于内质网的酶
光滑内质网 胆固醇合成酶系
粗糙内质网蛋白质合成酶系
(细胞质一侧)
4,分布于线粒体的酶外膜:酰基辅酶A合成酶内膜:NADH脱氢酶基质:三羧酸循环酶系
脂肪酸β-氧化酶系
5,分布于溶酶体的酶水解蛋白质的酶水解糖苷类的酶水解核酸的酶水解脂类的酶
6,标志酶有些酶只分布于细胞内某种特定的组分中,
核:尼克酰胺单核苷酸腺苷酰转移酶,功能:DNA、RNA生物合成线粒体:琥珀酸脱氢酶(电子转移、三羧酸循环)
溶酶体:酸性磷酸酶(细胞成分的水解)
微粒体:(核蛋白体、多核蛋白体、内质网)Glc-6-磷酸酶上清液:乳酸脱氢酶第二节 酶的国际分类及命名一,习惯命名
1961年6以前使用的酶沿用习惯命名
1.(绝大多数酶)依据底物来命名如:催化蛋白质水解的酶称蛋白酶。催化淀粉水解的酶称淀粉酶。
2,依据催化反应的性质命名如:水解酶、转氨酶
3 结合上述两个原则命名,琥珀酸脱氢酶。
4,有时加上酶的来源如:胃蛋白酶、牛胰凝乳蛋白酶习惯命名较简单,但缺乏系统性。
二,国际系统命名系统名称应明确标明酶的底物及催化反应的性质。
如:草酸氧化酶(习惯名),系统名称:草酸:氧氧化酶又如:谷丙转氨酶(习惯名),系统名:丙氨酸:α-酮戊二酸氨基转移酶反应:丙氨酸+α--酮戊二酸→Glu+丙酮酸三,国际系统分类法及编号(EC编号)
原则:将所有酶促反应按性质分为六类,分别用1、2、3、4、5、6表示。
再根据底物中被作用的基团或键的特点,将每一大类分为若干个亚类,编号用1、2、3……,每个亚类又可分为若干个亚一亚类,用编号1、2、3……表示。
每一个酶的编号由4个数字组成,中间以“·”隔开。第一个数字表示大类,第二个数字表示亚类,第三个表示亚-亚类,第四个数字表示在亚-亚中的编号。
1,氧化还原酶类催化氧化还原反应: A·2H+B=A+B·2H
乳酸:NAD+氧化还原酶(EC1.1.1.27),习惯名:乳酸脱氢酶

2,转移酶类
AB+C=A+BC
Ala:酮戊二酸氨基移换酶(EC2.6.1.2),习惯名,谷丙转氨酶

3,水解酶类催化水解反应,包括淀粉酶、核酸酶、蛋白酶、脂酶。
亮氨酸氨基肽水解酶(EC3.4.1.1),习惯名:Ile氨肽酶。
4,裂合酶类(裂解酶)
催化从底物上移去一个基团而形成双键的反应或其逆反应二磷酸酮糖裂合酶(EC4.1.2.7), 习惯名:醛缩酶
5,异构酶(EC5.3.1.9)
催化同分异构体相互转化,6-磷酸Glc异构酶
6,合成酶(连接酶)
催化一切必须与ATP分解相偶联、并由两种物质合成一种物质的反应。
P241 表4-8 酶的国际分类——大类和亚类
举例:乙醇脱氢酶的分类编号是 EC1.1.1.1,乳酸脱氢酶EC1.1.1.27,苹果酸脱氢酶EC1.1.1.37
第一个数字表示大类:氧化还原第二个数字表示反应基团:醇基第三个数字表示电子受体:NAD+或NADP+
第四个数字表示此酶底物:乙醇,乳酸,苹果酸。
前面三个编号表明这个酶的特性:反应性质、底物性质(键的类型)及电子或基团的受体,第四个编号用于区分不同的底物。
酶的物种和组织的差异来自不同物种或同一物种不同组织或不同细胞器的同一种酶,虽然它们催化同一个生化反应,但它们的一级结构可能不相同,有时反应机制也可能不同,可是无论是酶的系统命名法还是习惯命名法,对这些均不加以区别,而定为相同的名称,这是因为命名酶的根据是酶所催化的反应。
例如,SOD不管来源如何,均催化如下反应
2O2-+2H+→H2O2+O2H2O2再由过氧化氢酶催化、分解它们有同一个名称和酶的编号EC1.15.1.1
实际此酶可分三类:
CuZn-SOD 真核生物细胞质中
Mn-SOD 真核生物线粒体中
Fe-SOD
即使同是CuZn-SOD,来自牛红细胞与猪红细胞的,其一级结构也有很大不同。
因此,在讨论一个具体的酶时,应对它的来源与名称一并加以说明。
第三节 酶促反应动力学酶促反应动力学是研究酶促反应的速度以及影响酶促反应速度的各种因素,包括低物浓度、酶浓度、pH、温度、激活剂与抑制剂、等。
一,酶的量度酶的含量不能直接用重量和摩尔数表示(不纯、失活、分子量不知),而采用酶的活力单位表示
1,酶活力与酶促反应速度酶活力:用在一定条件下,酶催化某一反应的反应速度表示。反应速度快,活力就越高。
酶量—酶活力一反应速度酶促反应速度的表示方法:单位时间、单位体积中底物的减少量或产物的增加量。
单位:浓度/单位时间
P243图4-4酶反应速度曲线
研究酶促反应速度,以酶促反应的初速度为准。因为底物浓度降低、酶部分失活产物抑制和逆反应等因素,会使反应速度随反应时间的延长而下降。
2,酶的活力单位(U)
国际酶学会标准单位:在特定条件下,1分钟内能转化1umol底物的酶量,称一个国际单位(IU)。特定条件:25℃ pH及底物浓度采用最适条件(有时底物分子量不确定时,可用转化底物中1umol的有关基团的酶量表示)。
实际工作中,每一种酶的测活方法不同,对酶单位分别有一个明确的定义。
如,限制性核酸内切酶用粘度法测活性:定义为30℃,1分钟,使底物DNA溶液的比粘度下降25%的酶量为1个酶单位。
转化率法:标准条件,5分钟使1ug供体DNA残留37%的转化活性所需的酶量为1个酶单位。
凝胶电泳法测活:37℃,1小时,使1ugλDNA完全水解的酶量为1个酶单位。
可见,同一种酶采用不同的测活方法,得到的酶活单位是不同的,即使是同一种测活法,实验条件稍有相同,测得的酶单位亦有差异。
如 淀粉酶,两种定义
A:1 g可溶性starch,在1h内液化所需的enzyme量。
B:l ml 2%可溶性starch,在1h内液化所需的enzyme量。
1g 酶制剂溶于1000ml H2O,取0.5ml与2%的starch 20ml反应,pH6.0,10分钟完全液化,求酶活力。
A:60/10×20×2%×1/0.5×1000=4800u/克enzyme制剂
B:60/10×20/0.5×1000=240000u/克enzyme制剂
3,酶的比活力Specificactivity
每毫克酶蛋白所具有的酶活力。酶的比活力是分析酶的纯度是重要指标。
单位:U/mg蛋白质。
有时用每克酶制剂或每毫升酶制剂含有多少个活力单位表示。
举例:一个酶的分离纯化分为4 步。
步骤 1 2 3 4
总活力(U)6 4 3 2
总蛋白质(mg)2010 5 2
比活力(U/mg)6/204/10 3/52/2
酶的提纯过程中,总蛋白减少,总活力减少,比活力增高。
酶的纯化倍数:
酶的回收率:×100%
4,酶的转换数和催化周期分子活性定义:每mol的 enzyme在1秒内转化substrate的 mol数。
亚基或催化中心活性定义:每mol 的active subunit或 active center 在一秒内转化的substrate 的mol 数,称为转换数Kcat
P244图表4—4
转换数的倒数即为催化周期:一个酶分子每催化一个底物分子所需的时间。
如:乳糖脱氢酶转换数为1000/秒,则它的催化周期为10-3秒。
二,底物浓度对酶促反应速度的影响单底物酶促反应,包括异构酶、水解酶及大部分裂合催化的反应。
1913 Michaelis 和Menten 提出米—曼方程。
(一) 底物浓度对酶促反应速度的影响——米式学说的提出
1903Henri研究蔗糖水解反应。

sucrose +H2Oacid glucose +fructose
sucrase
酸水解
VV


[sucrose]

酶水解
V
V
[enzyme]( substrate不变) [sucrose]
底物浓度与酶促反应速度的关系:
当底物浓度不断增大时,反应速度不再上升,趋向一个极限,酶被底物饱和(底物饱和现象)。
中间产物假说:酶与底物先络合成一个中间产物,然后中间产物进一步分解成产物和游离的酶。
证据:(1)竞争性抑制实验(2)底物保护酶不变性(3)结晶ES复合物的获得。
米式学说:
1913年,Michaelis和Menten继承和发展了中间产物学说,在前人工作基础上提出酶促动力学的基本原理,并以数学公式表明了底物浓度与酶促反应速度的定量关系,称米式学说:
(二) 米式方程的导出:
1,基于快速平衡假说——早年的米式方程最初,Michaelis和Menten是根据“快速平衡假说”推出米式方程。
快速平衡假说:
① 在反应的初始阶段,底物浓度远远大于酶浓度,因此,底物浓度{S}可以认为不变。
② 游离的酶与底物形成ES的速度极快,E + S ES,而ES形成产物的速度极慢,ES分解成产物P对于[ES]浓度的动态平衡没有影响,不予考虑。
K1、K2》K3
③ 因为研究的是初速度,P的量很小,由PES可以忽略不记。
ES的生成速度:K1([E] - [ES])[S]
ES的分解速度:K2[ES]
K1([E] - [ES])[S]=K2[ES]
反应速度:
KS现在称为底物常数
2,Briggs和Haldane的“稳态平衡假说”及其对米式方程的发展:
稳态平衡假说:
[ES]的的生成与分解处于动态平衡(稳态),有时必须考虑[ES]分解成产物P对于[ES]动态平衡的影响([ES]分解速度)。或者说,[ES]的动态平衡(分解速度)不仅与ESE+S有关,还与ES P + E有关。
稳态平衡假说的贡献在于第②点。
用稳态假说推导米式方程:
ES生成速度:
k1([E] - [ES])[S]
ES分解速度:
k2[ES]+k3[ES]
以上两个速度相等。
k1([E] - [ES])[S] = k2[ES]+k3[ES]
反应速度:
Vmax=k3 [E]
Km称米氏常数,当Km及Vmax已知时,即可确定酶反应速度与底物浓度的关系。
(三) 米式方程讨论
1,快速平衡假说与稳态平衡假说的实质区别
当K1、K2>>K3时,即ES P是整个反应平衡中极慢的一步,那么
这就是早年提出的米式方程因此说,稳态平衡 = 快速平衡 + 慢速平衡,
当ES P(即K3/K1)极慢时,稳态平衡基本等于快速平衡
2,Km的物理意义当反应速度v=1/2 Vmax时,Km = [S],
Km的物理意义是:当反应速度达到最大反应速度的一半时底物的浓度。
单位:与底物浓度的单位一致,mol·L-1或mmol·L-1
Km是酶的特征常数之一。一般只与酶的性质有关,与酶的浓度无关。不同的酶Km值不同。
P248表4-5一些酶的Km值。
3,Km与天然底物如果一个酶有几种底物,则每一种底物各有一个特定的Km,其中Km最小的底物称该酶的最适底物或天然底物。因为Km愈小(达到Vmax一半所需的底物浓度愈小)表示V变化越灵敏底物。
4,Km、Ks与底物亲和力
Km称米式常数,Km=(K2+K3)/K1,从某种意义上讲,Km是ES分解速度(K2+K3)与形成速度(K1)的比值,它包含ES解离趋势(K2/K1)和产物形成趋势(K3/K1)。
Ks称为底物常数,Ks=K2/K1,它是ES的解离常数,只反映ES解离趋势,因此,1/Ks可以表示酶与底物的亲和力大小(ES形成趋势),不难看出,底物亲和力大不一定反应速度大(产物形成趋势,K3/K1)
只有当K2、K1>>K3时,Km≈Ks,因此,1/Km只能近似地表示底物亲和力的大小。
问题:
(1) Km越小,底物亲和力越大(X)
(2) Ks越小,底物亲和力越大(√)
(3) 天然底物就是亲和力最大的底物(X)
(4) 天然底物就是Km值最小的底物(√)
5,Km与米式方程的实际用途已知V求[S]
已知[S]求V
相对速度(酶活性中心被占据分数Y):
当v=Vmax时,表明酶的活性部位已全部被底物占据,v与[S]无关,只和[Et]成正比。当v=1/2 Vmax时,表示活性部位有一半被占据。
设定达到最大反应速度的0.9倍时,所需底物浓度为[S]0.9
[S]0.9=9Km
同理有:[S]0.8=4Km
[S]0.7=2.33Km
[S]0.6=1.5Km
[S]0.5=1Km
[S]0.1=1/9Km
[S]0.9 /[S]0.1=81
[S]0.7/[S]0.1=21
(四) Km和Vmax的求解方法
1,双倒数作图法要从实验数据所得到的v-[S]曲线来直接决定Vmax是很困难的,也不易求出Km值。
由米式方程两边取倒数:
将实验所得的初速度数据v和[S]取倒数,得各种1/v和1/[S]值,将1/v对1/[S]作图,得
P250 图4-6
上图[S]范围在0.330—2.0Km,最适。
若[S]范围在3.3—20 Km,直线斜率太小。
若[S]范围在0.033––0.2 Km,直线斜率太大。
如当Km=1×10-5mol/L时,实验所取底物浓度范围应在0.33×10-5-2.0×10-5mol/L。
一般选底物浓度应考虑能否得到1/[S]的常数增量。
如当选[S]为1.01、1.11、1.25、1.42、1.66、2.0、2.5、3.33、5.0、10时
1/[S]为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0是常数增量。
反之,若选[S]为常数增量1.0、2.0、3.0、4.0、5.0、10时,
1/[S]为0.1、0.111、0.125、0.5、1.0,是非常数增量,点多集中在1/v轴附近。
2,V—V/[S]作图法
P250图4-7
三,多底物的酶促反应前面讨论的米氏方程(推导米氏方程时用的是单底物),适用于单底物酶促反应,如异构、水解及大部分裂合反应,不适用于多底物反应。
A、B、C表示底物,按照底物与酶的结合顺序,产物则按它们从酶产复合物中释放次序分别用P、Q、R表示。
双底物酶促反应已知有三种机理
1,有序顺序反应机理底物A、B与酶结合的顺序是一定的,产物P、Q的释放顺序也是一定的。
P251
举例:P251 乙醇脱氢酶
2,随机顺序反应机理底物A、B与酶结合的顺序是随机的,产物P、Q的释放顺序也是随机的。
P252
如糖原磷酸化酶
3,乒乓反应机理先结合第一个底物A,释放第一个产物P,酶的构象发生变化,结合第二个底物B,释放第二个产物Q。
P252
举例:谷丙转氨酶四,pH对酶促反应速度的影响
1,pH影响酶活力的因素
①影响酶蛋白构象,过酸或过碱会使酶变性。
②影响酶和底物分子解离状态,尤其是酶活性中心的解离状态,最终影响ES形成。
③影响酶和底物分子中另一些基团解离,这些基团的离子化状态影响酶的专一性及活性中心构象。
2.酶的最适pH和稳定性pH
最适pH:使酶促反应速度达到最大时的介质pH。
酶在试管反应中的最适pH与它所在细胞中的生理pH不一定完全相同,为什么?
几种酶的最适pH,见P253表4—6。
稳定性pH:在一定pH范围内,酶不会变性失活,此范围称酶的稳定性pH。

A.最适pH曲线:最适pH=6.8
B.稳定性pH曲线:pH5~8
曲线B:将酶在不同pH下保温,再调回pH6.8,测定反应速度。
曲线B说明,在pH6.8~8及5~6.8范围内反应速度的降低,不是由于酶蛋白变性失活造成的,而是由于酶或底物形成了不正常的解离,而在pH >8和pH<5范围,则是由两种因素共同作用的结果。
虽然大部分酶的pH—酶活曲线是钟形,但也有半钟形甚至直线形。
P254 图4-9 酶的pH—酶活曲线五,温度对酶促反应速度的影响。
1.最适温度及影响因素
温度对酶促反应速度的影响有两个方面:
①提高温度,加快反应速度。
②提高温度,酶变性失活。
这两种因素共同作用,在小于最适温度时,前一种因素为主;在大于最适温度时,后一种因素为主。最适温度就是这两种因素综合作用的结果。
温度系数Q10:温度升高10℃,反应速度与原来的反应速度之比,Q10一般为1~2。
温血动物的酶,最适温度35℃—40℃,植物酶最适温度40℃—50℃,细菌Taq DNA聚合酶70℃。
2.酶的稳定性温度在某一时间范围内,酶活性不降低的最高温度称该酶的稳定性温度。
酶的稳定性温度有一定的时间限制。
稳定性温度范围的确定方法:将酶分别在不同温度下预保温一定时间,然后回到较低温度(即酶的热变性失活作用可忽略的温度),测酶活性。
图酶浓度高、不纯、有底物、抑制剂和保护剂会使稳定性温度增高。
酶的保存:
①液体酶制剂可以利用上述5种因素中的几种,低温(几个月)。
②干粉,可在室温下放置一段时间,长期保存,应在低温冰箱中。
六,酶浓度对酶促反应速度的影响如果底物浓度足够大,使酶饱和,则反应速度与酶浓度成正比。
Vmax=K3 [E]
[S]过量且不变时,v∝[E]。
七,激活剂对酶促反应速度的影响凡是能提高酶活性的物质,都称为激活剂。activator
激活剂作用包括两种情况:
一种是由于激活剂的存在,使一些本来有活性的酶活性进一步提高,这一类激活剂主要是离子或简单有机化合物。
另一种是激活酶原,无活性→有活性,这一类激活剂可能是离子或蛋白质。
1,无机离子的激活作用
(1)金属离子:K+,Na+、Mg2+,Zn2+、Fe 2+,Ca2+
(2)阴离子:cl-、Br -
(3)氢离子许多金属离子是酶的辅助因子,是酶的组成成分,参与催化反应中的电子传递。
有些金属离子可与酶分子肽链上侧链基团结合,稳定酶分子的活性构象。
有的金属离子通过生成螯合物,在酶与底物结合中起桥梁作用。
注意:
(1) 无机离子的激活作用具有选择性,不同的离子激活不同的酶。
(2) 不同离子之间有拮抗作用,如Na+与K+、Mg+与Ca+,但Mg+与Zn+常可替代。
(3) 激活剂的浓度要适中,过高往往有抑制作用,1~50mM
2,简单有机分子的激活作用
①还原剂(如Cys、还原型谷胱甘肽)能激活某些活性中心含有—SH的酶。
②金属螯合剂(EDTA)能去除酶中重金属离子,解除抑制作用。
抑制剂对酶促反应速度的影响酶是protein,凡可使酶蛋白变性而引起酶活力丧失的作用称为酶的失活作用。
抑制作用:使酶活力下降但并不引起酶蛋白变性的作用称为抑制作用。(不可逆抑制、可逆抑制)
抑制剂(inhibitor):不引起酶蛋白变性,但能使酶分子上某些必需基团(活性中心上一些基团)发生变化,引起酶活性下降,甚至丧失,此类物质称为酶的抑制剂。
研究抑制剂对酶的作用有重大的意义:
(1) 药物作用机理和抑制剂型药物的设计与开发:抗癌药
(2) 对生物体的代谢途径进行认为调控,代谢控制发酵
(3) 研究酶的活性中心的构象及其化学功能基团,不仅可以设计农药,而且也是酶工程和化学修饰酶、酶工业的基础
(一) 不可逆抑制作用(非专性必、专一性)
抑制剂与酶活性中心基团共价结合,使酶的活性下降,无法用透析法除去抑制剂。
1,非专一性不可逆抑制剂此类抑制剂可以和一类或几类基团反应。它们不但能和酶分子中的必需基团作用,同时也能和相应的非必需基团作用。
(1),酰化剂二异丙基磷酰氟酯(DFP,神经毒气)和许多有机磷农药都属于磷酰化剂,能与酶活性中心Ser的—OH结合,抑制某些蛋白酶及酯酶。这类化合物的作用机理是强烈地抑制与中枢神经系统有关的乙酰胆碱脂酶,使乙酰胆碱不能分解为乙酰和胆碱。乙酰胆碱的堆积,引起一系列神经中毒症状。
P258 结构式:磷酰化剂与DFP
P259反应式:磷酰化剂与胆碱酯酶形成磷酰化胆碱酯酶
解毒剂:PAM(解磷定),可以把酶上的磷酸根除去。
(2),烷化剂许多有机汞、有机砷都是烷化剂,可以使酶的巯基烷化
P259 反应式:对氯汞苯甲酸与巯基酶的反应
有机汞、有机砷化合物和重金属还可以与还原型硫辛酸(人体重要的辅酶)反应解毒剂:二巯基丙醇
(3),氰化物与含铁扑啉的酶中的Fe2+结合,阻抑细胞呼吸。
(4),重金属
Ag、Cu、Hg、Cd、Pb能使大多数酶失活,EDTA可解除。
(5),还原剂以二硫键为必需基团的酶,可以被巯基乙醇、二硫苏糖醇等巯基试剂还原失活。
(6),含活泼双键试剂(与—SH、—NH2反应)
N—乙基顺丁烯二酰亚胺

(7),亲电试剂四硝基甲烷,可使Tyr硝基化。

2,专一性不可逆抑制此类抑制剂仅仅和活性部位的有关基团反应。
(1),Ks型专一性不可逆抑制剂
Ks型抑制剂不仅具有与底物相似的、可与酶结合的基团,同时还有一个能与酶的其它基团反应的活泼基团。
专一性:抑制剂与酶活性部位某基团形成的非共价络合物和抑制剂与非活性部位同类基团形成的非共价络合物之间的解离常数不同。
举例:
胰凝乳蛋白酶的Ks型不可逆抑制剂:对一甲苯磺酰-L-苯丙氨酰氯甲烷(TPCK)与该酶的最佳底物对-甲苯磺酰-L-苯丙氨酸甲酯的结构相似,都含有对-甲苯磺酰-L-苯丙氨酰基,酶通过对这个基团的强亲和力,把TPCK误认为底物而与之结合,形成Ks很小的非共价络合物。
《酶学》P119
最佳底物TPCK
-CH2-cl与酶活性部位的一个His-咪唑基距离很近,很易使之烷基化,而非活性部位的咪唑基,由于远离-CH2-cl,则不被烷基化。
(2)、?Kcat型专一性不可逆抑制剂这种抑制剂是根据酶的催化过程来设计的,它们与底物类似,既能与酶结合,也能被催化发生反应,在其分子中具有潜伏反应基团(latentreactivegroup),该基团会被酶催化而活化,并立即与酶活性中心某基团进行不可逆结合,使酶受抑制。此种抑制专一性强,又是经酶催化后引起,被称为自杀性底物。
举例1:
β-羟基癸酰硫酯脱水酶的Kcat型不可逆抑制剂:CH3(CH2)5-C=C-CH2-CO-S-R
此酶催化的反应:
P260反应式
当有Kcat抑制剂时,此抑制剂被催化生成连丙二烯结构,连丙二烯易与His咪唑反应,使酶失活。
P261反应式
举例2:
以FMN(黄素单核苷酸)、FAD(黄素腺嘌呤二核苷酸)为辅基的单胺氧化酶的Kcat型不可逆抑制剂;炔类化合物。
迫降灵是一种单胺氧化酶的自杀性底物,是治疗高血压的良药。

单胺氧化酶能氧化某些血管舒张剂(如组胺)

由于迫降灵能抑制单胺氧化酶,也就能抑制一些血管舒张剂(如组胺)的氧化,因而有降血压的作用。
Kcat型专一性不可逆抑制剂的专一性很强,近来已设计出多种酶的Kcat逆制剂,在医疗方面起到很大作用。
(二) 可逆抑制作用 ReversibleInhibition
此类抑制剂与酶蛋白的结合是可逆的,可以用透折法除去抑制剂,恢复酶的活性。
1,竞争性抑制(Competitive inhibition)
抑制剂与底物竞争酶的活性中心。
竞争性抑制剂具有与底物类似的结构,可与酶形成可逆的EI复合物,阻止底物与酶结合。可以通过增加底物浓度而解除此种抑制。
P258图4-11 酶与底物及竞争性、非竞争性抑制剂结合的模型
举例1:丙二酸抑制琥珀酸脱氢酶
举例2:磺胺类药物及其作用机理磺胺类药物可以抑制细菌的生长繁殖,治疗细菌引起的各种疾病。
磺胺类药物是对氨基苯磺酰胺或其衍生物,它是对氨基苯甲酸的结构类似物,竞争性抑制二氢叶酸合成酶
P261 结构式:对氨基苯甲酸 对氨基苯磺酰胺 叶酸
磺胺类药物的药理(对氨基苯磺酰胺):
嘌呤核苷酸的合成必需要由四氢叶酸(辅酶)提供一碳单位;四氢叶酸可由二氢叶酸或叶酸转化而成;二氢叶酸是在二氢叶酸合成酶作用下,利用蝶呤、对氨基苯甲酸及Glu合成。
动物体内的叶酸可从食物中获取,细菌体内的叶酸只能在二氢叶酸合成酶作用下,利用对氨基苯甲酸合成。
如果动物体内含有大量的对氨基苯磺酰胺,可与对氨基苯甲酸竞争二氢叶酸合成酶的活性中心,抑制细菌二氢叶酸合成。
2,非竞争性抑制特点:抑制剂与酶活性中的以外的基团结合,其结构可能与底物无关。
酶可以同时与底物及抑制剂结合,但是,中间产物ESI不能进一步分解为产物,因此,酶的活性降低。显然,不能通过增加底物的浓度的办法来消除非竞争性抑制作用。
非竞争性抑制剂多是与酶活性中心之外的巯基可逆结合,包括某些含金属离子的化合物(Cu2+、Hg2+、Ag+)和EDTA,。
3,反竞争性抑制酶只有在与底物结合后,才能与抑制剂结合。E+S→ES+I ≠ P
(三) 可逆抑制作用的动力学
用书上P263-266的方法可推出三种抑制方程。
1,竞争性抑制,
动力学方程:
竞争性抑制曲线:
P263图4-12竞争性抑制曲线
竞争性抑制作用小结:
(1) Vmax不变,Km变大。要达到同一个给定的Vmax分数,必须要有比无抑制剂时大得多的底物浓度。
(2) 竞争性抑制剂对酶促反应的抑制程度,决定于[I]、[S]、Km和Ki
A,[I]一定,增加[S],可减少抑制程度。
B,[S]一定,增加[I],可增加抑制程度(Km’增加)。
C,Ki值较低时,任何给定[I]和[S],抑制程度都较大,Ki越大,抑制作用越小。
D,[I]=Ki时,所作双倒数图直线的斜率加倍。
E,在一定[S]、[I]下,Km值愈低,抑制程度愈小。
2,非竞争性抑制动力学方程:
相对速度:
抑制分数:
非竞争抑制曲线:
P265图4-13
非竞争性抑制剂可使酶促反应的Vmax降至Vmax/(1+[I]/Ki),而对Km无影响。它对酶促反应的抑制程度决定于[I]和Ki,与酶的Km和[S]无关。
3,反竞争性抑制动力学方程:
相对速度:
抑制分数,
P265 图4-14反竞争抑制曲线
在反竞争性抑制作用下,Km及Vmax都变小,且Km’<KM&NBSP;&NBSP;
P266表4-7 小结: 三种可逆抑制作用的酶促反应速度V与Km值九,有机介质中的酶促反应(只是一部分酶)
传统观点:酶是水溶性生物大分子,只能在水介质中进行催化反应,有机介质会使酶变性。
其实在细胞中,许多生物膜上的酶就是在低极性的微环境中发挥催化功能的。
优点: ①利于疏水性底物的反应。
②可提高酶的热稳定性,提高催化温度。
③能催化在水中不能进行的反应。
④可改变反应平衡移动方向。
⑤可控制底物专一性。
⑥防止由水引起的副反应。
⑦可扩大pH值的适应性等等。
1,有机介质中酶促反应的条件
(1),必需水(结合水)
酶催化活性所必需的构象,是由水分子直接或间接地通过氢键等非共价相互作用来维持的,因此只有与酶分子紧密结合的单层水分子,对酶的催化活性才是至关重要的。
这紧紧吸附在酶分子表面,维持酶催化活性所必需的最少量的水称为必需水(或结合水、束缚水)。
酶的活性由必需水决定,而与溶剂里的水含量无关,只要必需水不丢失,其它大部分水即使都被有机溶剂取代,酶仍然保持其催化活性。
因此,可把有机介质中酶促反应理解为宏观上是在有机介质中,而在微观上仍是水中的酶促反应。正因如此,才能使用有机介质代替水溶液,进行酶促反应。
一个干燥的酶水合: 吸附水量:
酶分子表面电荷基团:0-0.07g/g(水/酶)
酶分子表面极性基团:0.07-0.25g/g
弱极性、非极性基团:0.25-0.28g/g
表面完全水化,被一层水分子包围。
酶的必需水含量因酶而异。
脂肪酶:几个水分子/每个酶分子胰凝乳蛋白酶:50个水分子/每个酶分子乙醇脱氢酶:几百个水分子/每个酶分子
(2),对酶的要求具有对抗有机介质变性的经能力。
(3),合适的溶剂及反应体系
(4),合适的pH
保证有机介质中酶的微环境具有最适pH值。酶应从具有最适pH值的缓冲液中冻干或沉淀出来。
2,有机介质对酶性质的影响
(1),稳定性大多数酶在低水有机介质中比在水介质中更稳定。
a,热稳定性提高例如:猪胰脂肪酶在醇和酯中进行催化反应,在100℃半衰期长达12h,其活性比25℃时还高几倍
b,储存稳定性提高胰凝乳蛋白酶在20℃时,在水中半衰期只几天。在辛烷中,可放6个月,仍保持全部活性。
(2),活性
有两类影响 升高活性
降低活性酶的超活性:高于水溶液中酶活性值的活性。
(3),专一性某些有机溶剂会使某些酶的专一性发生变化,如脂肪酶在有机介质中有合成肽键的功能。星号活力(第二活力)。
(4),反应平衡有机介质能改变某些酶催化的反应平衡。
例如:水解酶类(蛋白水解酶)
在水介质中,水的浓度为55.5mol/L,平衡趋向水解方向,
如在含水量极低的有机介质中,平衡向含成方向偏移。
实例:(酶) 合成)产物 溶剂合成收率
枯草杆菌蛋白酶核糖核酸酶甘油90% 50%
无色杆菌蛋白酶 胰岛素 乙醇30% 80%
凝血酶 人生长素 甘油80% 20%
(5),分子印迹和pH记忆酶在冻干前可用配体作印迹。
竞争性抑制剂,可诱导酶活性中心构象发生变化,形成一种高活性构象,而此种构象在除去抑制剂后,因酶在有机介质中的高度刚性而得到保持。
pH记忆:
酶在有机介质中能“记住”它最后存在过的水溶液的pH值,因该pH值决定了酶分子上有关基团的解离状态,这种状态在冻干过程和分散到有机介质中之后仍得到保持。
第四节 酶的作用机理一,专一性的机理
(一) 酶专一性类型一般说来,一种分子能成为某种酶的底物,必须具备两个条件:
分子上有被酶作用的化学键。
分子上有一个或多个结合基团能与酶活性中心结合。
2,诱导楔合模型酶分子与底物分子接近时,酶蛋白质受底物分子诱导,构象发生有利于与底物结合的变化,酶与底物在此基础上互补楔合,进行反应。
P271 图4—18
二,高效性的机理
1,邻近效应与定向效应酶把底物分子(一种或两种)从溶液中富集出来,使它们固定在活性中心附近,反应基团相互邻近,同时使反应基团的分子轨道以正确方位相互交叠,反应易于发生。
两种效应对反应速度的影响
①使底物浓度在活性中心附近很高甚至比溶液中高10万倍,提高反应速度。
②酶对底物分子的电子轨道具有导向作用举例:酚羟基和羧基环化成内酸

3个CH3固定了-OH和-COOH的相对方位。
③酶使分子间反应转变成分子内反应反应速度提高:107

④邻近效应和定向效应对底物起固定作用酶底复合物寿命比一般双分子相互碰撞的平均寿命长,前者10-7-10-4秒,后者10-13秒,增大了产物形成的机率。
2,扭曲变形和构象变化的催化效应酶中某些基团可使底物分子的敏感键中某些基团的电子云密度变化,产生电子张力。
P276图4-20
环状反应物I水解开环,环扭曲能量大量释放,加速反应。
底物与酶蛋白接触,加速反应。
①酶从低活性形式转变为高活性形式
②底物扭曲、变形
③底物构象变化,变得更像过度态结构,大大降低活化能。
3,共价催化酶作为亲核基团或亲电基团,与底物形成一个反应活性很高的共价中间物,此中间物易变成过渡态,反应活化能大大降低,提高反应速度。
①亲核共价催化丝氨酸羟基、Cys的-SH、His的咪唑基。
举例:咪唑基催化对硝基苯乙酸酯水解。

②亲电共价催化
亲电基团攻击底物的富电子基团例:Asp转氨酶催化Asp 转氨反应

P278表4-13形成共价ES复合物的某些酶
4,酸碱催化酶分子的一些功能基团起质子供体或质子受体的作用。
参与酸碱催化的基团:氨基、羧基、巯基、酚羟基、咪唑基。
P279 表4-14 酶分子中可作为广义酸碱的功能基团
影响酸碱催化反应速度的两个因素
⑴酸碱强度,咪唑基在pH6附近给出质子和结合质子能力相同,是最活泼的催化基团。
⑵给出质子或结合质子的速度,咪唑基最快
①酸催化酯、酰胺和肽的水解

过程:共轭酸与>C=0氧形成氢键,使>C=0碳带更多正电荷,更易吸引H2O分子上的氧,降低>C=0碳与H2O氧形成共价键的活化能;接着,共轭酸将H+转移给>C=0氧,自己成为共轭碱,并从H2O分子吸引一个H+,回复原状。
②碱催化酯、酰胺水解

过程:共轭碱先与H2O中H形成氢键,使H2O中氧的电负性增强,更易对>C=0碳进行亲核进攻,降低碳氧键生成的活化能。
5,活性中心的微环境
⑴ 疏水环境酶活性中心附近往往是疏水的,介电常数低,可加强极性基团间的反应。
⑵电荷环境在酶活性中心附近,往往有一电荷离子,可稳定过渡态的离子,增加酶促反应速度。如溶菌酶Asp52带负电荷,可以稳定过渡态的正离子。
酶催化反应的高效性,可能是由于以上五种因素中的几种因素协同作用的结果,而非酶催化反应往往只有一种催化机制。
三,某些酶的活性中心及其作用机理
(一) 酶的活性中心
糖蛋白,分子量66000,582个a.a残基,单链。
在凝血酶原致活因子催化下,凝血酶原分子中的Arg274—Thr275和Arg323—Ile324断裂,释放出274个a.a,产生活性凝血酶。
A链49 a.a
B链259 a.a
(2),纤维蛋白原
P133 图3-44纤维蛋白原的结构
α2β2r2
α肽:600个氨基酸,β肽:461氨基酸,r肽:410个氨基酸在凝血酶作用下,从二条α链和二条β链的N端各断裂一个特定的肽键-Arg—Gly-,释放出二个纤维肽A(19个氨基酸)和二个纤维肽B(21个氨基酸),它们含有较多的酸性氨基酸残基。
P133 纤维肽A,B的结构
A、B肽切除后,减少了蛋白质分子的负电荷,促进分子间聚集,形成网状结构。
P134上
在凝血因子XIIIa(纤维蛋白稳定因子)催化下,纤维蛋白质单体间形成共价健(Gln-Lys结合),生成交联的纤维蛋白。
2,胰岛素原的激活
P134图3-45
胰岛素在胰岛的β细胞内质网的核糖体上合成,称前胰岛素原,含信号肽。前胰岛素原在信号肽的引导下,进入内质网腔,进入后,信号肽被信号肽酶切除,生成胰岛素原,被运至高尔基体贮存。并在特异的肽酶作用下,切除C肽,得到活性胰岛素。
五,多肽与蛋白质的人工合成在医药和研究方面意义重大
1958年,北大生物系合成催产素8肽。
1965年,中国科学院生化所、有机所、北大化学系人工合成牛胰岛素。
1969年,美国Merrifield用自动化的固相多肽合成仪合成第一个酶——牛胰RNase(124aa—)。
P139图3-46多肽的固相合成
C端 N端。
挂接→去保护→中和→缩合→去保护→中和→缩合
第五节 蛋白质的二级结构和纤维状蛋白质二级结构是指多肽链中有规则重复的构象。
一,肽链的构象多肽链的共价主链上所有的α--碳原子都参与形成单键,因此,从理论上讲,一个多肽主链能有无限多种构象。
但是,目前已知,一个蛋白质的多肽链在生物体内只有一种或很少几种构象,且相当稳定,这种构象称天然构象,此时蛋白质具有生物活性,这一事实说明:天然蛋白质主链上的单键并不能自由旋转。
1,肽链的二面角
P143图3-51、图3-52
多肽主链上只有α碳原子连接的两个键(Cα—N1和Cα-C2)是单键,能自由旋转。
环绕Cα—N键旋转的角度为Φ
环绕Cα—C2键旋转的角度称Ψ
多肽链的所有可能构象都能用Φ和Ψ这两个构象角来描述,称二面角。
当Φ的旋转键Cα-N1两侧的N1-C1和Cα-C2呈顺式时,规定Φ=0°。
当Ψ的旋转键Cα-C2两侧的Cα-N1和C2-N2呈顺式时,规定Ψ=0°。
从Cα向N1看,顺时针旋转Cα-N1键形成的Φ角为正值,反之为负值。
从Cα向C2看,顺时针旋转Cα- C2键形成的Ψ角为正值,反之为负值。
2,多肽链折叠的空间限制
Φ和Ψ同时为0的构象实际不存在,因为两个相邻肽平面上的酰胺基H原子和羰基0原子的接触距离比其范德华半经之和小,空间位阻。
因此二面角(Φ、Ψ)所决定的构象能否存在,主要取决于两个相邻肽单位中非键合原子间的接近有无阻碍。
Cα上的R基的大小与带电性影响Φ和Ψ
P144表3-12蛋白质中非键合原子间的最小接触距离。
拉氏构象图:Ramachandran根据蛋白质中非键合原子间的最小接触距离,确定了哪些成对二面角(Φ、Ψ)所规定的两个相邻肽单位的构象是允许的,哪些是不允许的,并且以Φ为横坐标,以Ψ为纵坐标,在坐标图上标出,该坐标图称拉氏构象图。
P145拉氏构象图(Gly除外)
⑴实线封闭区域一般允许区,非键合原子间的距离大于一般允许距离,此区域内任何二面角确定的构象都是允许的,且构象稳定。
⑵虚线封闭区域是最大允许区,非键合原子间的距离介于最小允许距离和一般允许距离之间,立体化学允许,但构象不够稳定。
⑶虚线外区域是不允许区,该区域内任何二面角确定的肽链构象,都是不允许的,此构象中非键合原子间距离小于最小允许距离,斥力大,构象极不稳定。
Gly的Φ、Ψ角允许范围很大。
总之,由于原子基因之间不利的空间相互作用,肽链构象的范围是很有限的,对非Gly 氨基酸残基一般允许区占全平面的7.7%,最大允许区占全平面20.3%。
二,二级结构的基本类型驱使蛋白质折叠的主要动力:
(1)暴露在溶剂中的疏水基团降低至最少程度。
(2)要保持处于伸展状态的多肽链和周围水分子间形成的氢键相互作用的有利能量状态。
1,α螺旋
(1),α螺旋及其特征在α螺旋中,多肽主链按右手或左手方向盘绕,形成右手螺旋或左手螺旋,相邻的螺圈之间形成链内氢键,构成螺旋的每个Cα都取相同的二面角Φ、Ψ。
典型的α螺旋有如下特征:
① 二面角:Φ= -57°,Ψ= - 48°,是一种右手螺旋回忆 P143图3-52
② 每圈螺旋:3.6个a.a残基,高度:0.54nm
③ 每个残基绕轴旋转100°,沿轴上升0.15nm
④ 氨基酸残基侧链向外
⑤ 相邻螺圈之间形成链内氢链,氢键的取向几乎与中心轴平行。
⑥ 肽键上N-H氢与它后面(N端)第四个残基上的C=0氧间形成氢键。
图这种典型的α螺旋用3.613表示,3.6表示每圈螺旋包括3.6个残基,13表示氢键封闭的环包括13个原子。
2.27螺旋(n=1)
310 螺旋(n=2,Φ= -49°,Ψ= - 26°)
613螺旋(n=3)
4.316螺旋(n=4)
封闭环原子数3n+4(n=1、2、.....)
2.27 3103.6134.316
n=1 n=2 n=3n=4
α-螺旋 π-螺旋
(2),R侧链对α—螺旋的影响
R侧链的大小和带电性决定了能否形成α—螺旋以及形成的α—螺旋的稳定性。
① 多肽链上连续出现带同种电荷基团的氨基酸 残基,(如Lys,或Asp,或Glu),则由于静电排斥,不能形成链内氢键,从而不能形成稳定的α—螺旋。如多聚Lys、多聚Glu。而当这些残基分散存在时,不影响α—螺旋稳定。
② Gly的Φ角和Ψ角可取较大范围,在肽中连续存在时,使形成α—螺旋所需的二面角的机率很小,不易形成α—螺旋。丝心蛋白含50%Gly,不形成α—螺旋。
③ R基大(如Ile)不易形成α—螺旋
④ Pro、脯氨酸中止α—螺旋。
⑤ R基较小,且不带电荷的氨基酸利于α—螺旋的形成。如多聚丙氨酸在pH7的水溶液中自发卷曲成α—螺旋。
(3),pH对α—螺旋的影响多聚L-Glu和多聚L-Lys
P149图3-57
(4),右手α-螺旋与左手α-螺旋
图P148
右手螺旋比左手螺旋稳定。
蛋白质中的α—螺旋几乎都是右手,但在嗜热菌蛋白酶中有很短的一段左手α—螺旋,由Asp-Asn-Gly-Gly(226-229)组成(φ+64°、Ψ+42°)。
(5),α-螺旋结构的旋光性由于α-螺旋结构是一种不对称的分子结构,因而具有旋光性,原因:(1)α碳原子的不对称性,(2) 构象本身的不对称性。
天然α—螺旋能引起偏振光右旋,利用α—螺旋的旋光性,可测定蛋白质或多肽中α—螺旋的相对含量,也可用于研究影响α—螺旋与无规卷曲这两种构象之间互变的因素。
α-螺旋的比旋不等于构成其本身的氨基酸比旋的加和,而无规卷曲的肽链比旋则等于所有氨基酸比旋的加和。
(6),α-螺旋(包括其它二级结构)形成中的协同性一旦形成一圈α-螺旋后,随后逐个残基的加入就会变的更加容易而迅速。
2,β-折叠
P149图3—58P150图3—59
两条或多条几乎完全伸展的多肽链(或同一肽链的不同肽段)侧向聚集在一起,相邻肽链主链上的NH和C=0之间形成氢链,这样的多肽构象就是β-折叠片。β-折叠中所有的肽链都参于链间氢键的形成,氢键与肽链的长轴接近垂直。多肽主链呈锯齿状折叠构象,侧链R基交替地分布在片层平面的两侧。
平行式:所有参与β-折叠的肽链的N端在同一方向。
反平行式:肽链的极性一顺一倒,N端间隔相同平行式:φ=-119°Ψ=+113°
反平行式:φ=-139°Ψ=+135°
从能量上看,反平β-折叠比平行的更稳定,前者的氢键NH---O几乎在一条直线上,此时氢键最强。
在纤维状蛋白质中β-折叠主要是反平行式,而在球状蛋白质中反平行和平行两种方式都存在。
在纤维状蛋白质的β-折叠中,氢键主要是在肽链之间形式,而在球状蛋白质中,β-折叠既可在不同肽链间形成,也可在同一肽链的不同部分间形成。
3,β-转角(β-turn)
β-转角也称β-回折(reverse turn)、β-弯曲(β-bend)、发夹结构(hair-pin structure)
β-转角是球状蛋白质分子中出现的180°回折,有人称之为发夹结构,由第一个a.a残基的C=O与第四个氨基酸残基的N-H间形成氢键。
目前发现的β转角多数在球状蛋白质分子表面,β转角在球状蛋白质中含量十分丰富,占全部残基的1/4。
β转角的特征:
①由多肽链上4个连续的氨基酸残基组成。
②主链骨架以180°返回折叠。
③第一个a.a残基的C=O与第四个a.a残基的N-H生成氢键
④C1α与C4α之间距离小于0.7nm
⑤多数由亲水氨基酸残基组成。
4,无规卷曲
没有规律的多肽链主链骨架构象。
球状蛋白中含量较高,对外界理化因子敏感,与生物活性有关。
α-螺旋,β-转角,β-折叠在拉氏图上有固定位置,而无规卷曲的φ、Ψ二面角可存在于所有允许区域内。
三,超二级结构由若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角及无规卷曲)组合在一起,彼此相互作用,形成有规则的、在空间上能够辨认的二级结构组合体。
1,αα结构(复绕α-螺旋)
由两股或三股右手α-螺旋彼此缠绕而成的左手超螺旋,重复距离140A。
p153 图3-61A
存在于α-角蛋白,肌球蛋白,原肌球蛋白和纤维蛋白原中。
2,βxβ结构两段平行式的β-链(或单股的β-折叠)通过一段连接链(x结构)连接而形成的超二级结构。
①βcβ
x为无规卷曲
p153 图3-61B
②βαβ
x为α-螺旋,最常见的是βαβαβ,称Rossmann折叠,存在于苹果酸脱氢酶,乳酸脱氢酶中。
p153 图3-61C
3,β曲折(β-meander)
由三条(以上)相邻的反平行式的β-折叠链通过紧凑的β-转角连接而形成的超二级结构。
P153图3-61 D
4,回形拓扑结构(希腊钥匙)
P153图3-61E
5,β-折叠桶由多条β-折叠股构成的β-折叠层,卷成一个筒状结构,筒上β折叠可以是平行的或反平行的,一般由5-15条β-折叠股组成。
超氧化物歧化酶的β-折叠筒由8条β-折叠股组成。筒中心由疏水氨基酸残基组成。
6,α-螺旋-β转角-α-螺旋两个α-螺旋通过一个β转角连接在一起。
λ噬菌体的λ阻遏蛋白含此结构。在蛋白质与DNA的相互作用中,此种结构占有极为重要的地位。
四,纤维状蛋白质纤维状蛋白质的氨基酸序列很有规律,它们形成比较单一的、有规律的二级结构,结果整个分子形成有规律的线形结构,呈现纤维状或细棒状,分子轴比(轴比:长轴/短轴)大于10,轴比小于10是的球状蛋白质。
广泛分布于脊椎和无脊椎动物体内,占脊椎动物体内蛋白质总量的50%以上,起支架和保护作用。
1,角蛋白源于外胚层细胞,包括皮肤及皮肤的衍生物(发、毛、鳞、羽、甲、蹄、角、爪、丝)可分为α-角蛋白和β角蛋白。
(1),α-角蛋白
P155 图3-63,P156图3-64

主要由α-螺旋结构组成,三股右手α-螺旋向左缠绕形成原纤维,原纤维排列成“9+2”的电缆式结构称微纤维,成百根微纤维结合成大纤微结构稳定性由二硫键保证,α-角蛋白在湿热条件下可伸展转变成β-构象,烫发的化学机理Cys含量较高。
?a-角蛋白(a-Keratin)中有两种类型的多肽链:I型和II型。每一个I型多肽型和一个II型多肽链形成一个卷曲螺旋二聚体(Coiled coil dimmer)。一对卷曲螺旋反平行式地形成左手超螺旋结构称原纤维(Protofilament,4股右手a-螺旋),原纤维的亚基间以氢键和二硫键相连。4个原纤维形成微纤维,成百根微纤维形成大纤维,每一个头发细胸,也将纤维(fiber)含有数个大纤维,一根头发就是由无数的死细胞相互间以角蛋白相连组成的。?
(2),β-角蛋白
P157图3-65
含大量的Gly、Ala、Ser,以β-折叠结构为主。
丝心蛋白取片层结构,即反平行式β-折叠片以平行的方式堆积成多层结构。链间主要以氢键连接,层间主要靠范德华力维系。
2,胶原蛋白
3,弹性蛋白
4,肌球蛋白、肌动蛋白和微管蛋白第六节 球状蛋白质的高级结构与功能前面讲了蛋白质结构的两个较低级的组织水平:一级结构和二级结构(包括超二级结构),本节讲述蛋白质(主要是球蛋白)的高级结构:结构域、三级结构、四级结构,及其与生物功能。
一,蛋白质的一级结构决定高级结构蛋白质功能的复杂性和多样性是建立在结构多样性的基础上。
多肽链的二级结构由R基的短程顺序决定,当一组在肽链上相邻的氨基酸残基具有适当的顺序时,能自发形成α-螺旋和β-折叠,并处于稳定状态。
而多肽链的三级结构由氨基酸的长程顺序决定,如产生特异转弯的氨基酸残基(Pro、Thr、Ser)的精确位置决定多肽链转弯形成的方向和角度。
同源蛋白质的不变残基决定蛋白质的高级结构。
RNase的变性、复性实验,证明蛋白质的三维构象归根结底是复杂生物大分子的“自我装配”。
P164图3-69RNase的变性与复性示意二,球状蛋白质的结构域、三级结构与功能
(一) 结构域结构域(domain),又称motif(模块)
在二级结构及超二级结构的基础上,多肽链进一步卷曲折叠,组装成几个相对独立、近似球形的三维实体。结构域是球状蛋白的折叠单位,多肽链折叠的最后一步是结构域间的缔合。
对于较小的蛋白质分子或亚基来说,结构域和三级结构往往是一个意思,就是说这些蛋白质是单结构域的。
结构域一般有100-200氨基酸残基,结构域之间常常有一段柔性的肽段相连,形成所谓的铰链区,使结构域之间可以发生相对移动。
每个结构域承担一定的生物学功能,几个结构域协同作用,可体现出蛋白质的总体功能。例如,脱氢酶类的多肽主链有两个结构域,一个为NAD+结合结构域,一个是起催化作用的结构域,两者组合成脱氢酶的脱氢功能区。
结构域间的裂缝,常是活性部位,也是反应物的出入口。一般情况下,酶的活性部位位于两个结构域的裂缝中。
EF手:钙结合蛋白中,含有Helix-Loop-Lelix结构锌指:DNA结合蛋白中,2个His、2个Cys结合一个Zn
亮氨酸拉链:DNA结合蛋白中,由亮氨酸倒链形成的拉链式结构,
图5.19
(二) 三级结构:
三级结构:整个多肽链在二级结构、超二级结构和结构域的基础上盘旋、折叠,形成的特定的整个空间结构。
或者说,三级结构是多肽链中所有原子的空间排布。
1,三级结构有以下特点:
&#129; 许多在一级结权上相差很远的aa碱基在三级结构上相距很近。
&#8218; 球形蛋白的三级结构很密实,大部分的水分子从球形蛋白的核心中被排出,这使得极性基团间以及非极性基团间的相互用成为可能。
&#402; 大的球形蛋白(200aa以上),常常含有几个结构域,结构域是一种密实的结构体,典型情况下常常含有特定的功能(如结合离子和小分子)
2,维持三级结构的作用力:
P164 图3-70
(1)氢键大多数蛋白质采取的折叠策略是使主链肽基之间形成最大数目的分子内氢键(如α-螺旋、β-折叠),同时保持大部分能成氢键的侧链处于蛋白质分子表面,与水相互作用。
(2)范德华力(分子间及基团间作用力)
包括三种弱的作用力:
定向效应极性基团间诱导效应极性与非极性基团间分散效应非极性基团间
(3)疏水相互作用蛋白质中的疏水残基避开水分子而聚集在分子内部的趋向力。它在维持蛋白质的三级结构方面占有突出的地位。
(4)离子键(盐键)
是正电贺和负电荷之间的一种静电作用。
生理pH下,Asp、Glu侧链解离成负离子,Lys、Arg、His离解成正离子。多数情况下,这些基团分布在球状蛋白质分子的表面,与水分子形成排列有序的水化层。偶尔有少数带相反电荷的测链在分子的疏水内部形成盐键。
(5)共价健,主要的是二硫键,
在二硫键形成之前,蛋白质分子已形成三级结构,二硫键不指导多肽链的折叠,三级结构形成后,二硫键可稳定此构象。
主要存在于体外蛋白中,在细胞内,由于有高浓度的还原性物质,所以没有二硫键。
6、静电相互作用最强的静电作用就是带相反电何的离子基因间的静电作用,又称盐桥。盐桥和较弱的静电相互作用(离子-偶级、偶级-偶级、范德华力)也是维持亚基间以及蛋白质与配体间的作用力。
3,免疫球蛋白的一级结构
P193图3-99
第七节 蛋白质的性质与分离、纯化、鉴定一,蛋白质的酸碱性质蛋白质也是一类两性电解质,能和酸、碱发生作用。
在蛋白质分子中,可解离基团主要是侧链基团,及少数N端-NH2和C端-COOH。
P197表3-16
天然球状蛋白质的可解离基团大部分可被滴定,而某些天然蛋白质中有一部分可解离基因由于埋藏在分子内部或参与氢键形成而不能解离。
1,等电点和等离子点(中性盐Ca2+、Mg2+、cl、HPO42++)
等电点:
P198表3-173-18
蛋白质的等电点和它所含的酸性氨基酸残基和碱性氨基酸残基的比例有关。
等离子点:没有其它盐类干扰时,蛋白质质子供体解离出的质子数与质子受体结合的质子数相等时的pH值称等离子点,是每种蛋白质的特征常数。
在等电点条件下,蛋白质的电导性、溶解度最小,粘度最大。
2,蛋白质的电泳分离聚丙烯酰胺凝胶电泳PAGE
SDS-PAGE(荷质比相同,分子量不同)
3,离子交换层析分离蛋白质与氨基酸分离原理相似二,蛋白质的大小与形状测分子量的方法:
化学组成法凝胶过滤法
SDS-PAGE法三,胶体性质与蛋白质的沉淀蛋白质分子直径在1-100nm之间,在水溶液中具有胶体溶液的通性(布朗运动,丁达耳现象,不能通过半透膜)
透析:将含小分子杂质的蛋白质放入透析袋中,置水溶液中,小分子杂质不断从袋中出来,大分子蛋白质仍留在袋中。
蛋白质在水中溶解度依赖于多肽链氨基酸残基侧链基团的相对极性,离子化基因数量越多,溶解度越大。
1,稳定蛋白质胶体溶液的主要因素
①蛋白质表面极性基团形成的水化膜将蛋白质颗粒彼此隔开,不会互相碰撞凝聚而沉淀。
②两性电解质非等电状态时,带同种电荷,互相排斥不致聚集而沉淀。
一旦电荷被中和或水化膜被破坏,蛋白质颗粒聚集,便从溶液中析出沉淀。
2,沉淀蛋白质的方法
①盐析法向蛋白质溶液中加入大量的中性盐[(NH4)2SO4、Na2SO4、Nacl],使蛋白质脱去水化层而聚集沉淀。
②有机溶剂沉淀法破坏水化膜,降低介电常数
③重金属盐沉淀
pH大于等电点时,蛋白质带负电荷,可与重金属离子(Hg2+,Pb2+,Cu2+ 等)结成不溶性沉淀
④生物碱试剂和某些酸类沉淀法
pH小于等电时,蛋白质带正电荷,易与生物碱试剂和酸类的负离子生成不溶性沉淀。
生物碱试剂:是指能引起生物碱沉淀的一类试剂,单宁酸、苦味酸、钨酸。
酸 类:三氯乙酸、磺基水杨酸。
⑤加热变性沉淀。
往往是不可逆的。
四,蛋白质的变性变性作用:理、化因素影响,使蛋白质生物活性丧失,溶解度下降,不对称性增大及其它理化常数改变。
(1)变性的因素:
&#129; 强酸和强碱;&#8218; 有机溶剂,破坏疏水作用;&#402; 去污剂、去污剂都是两亲分子,破坏疏水作用;&#8222; 还原性试剂:尿素、b-硫基乙醇;… 盐浓度、盐析、盐溶;&#8224; 重金属离子,Hg2+、pb2+,能与-SH或带电基团反应。&#8225; 温度;&#710; 机械力:如搅拌和研磨中的气泡。
(2)变性的实质:
次级键(有时包括二硫键)被破坏,天然构象解体。变性不汲及一级结构的破坏。
(3)蛋白质变性后,往往出现下列现象:
①结晶及生物活性丧失是蛋白质变性的主要特征。
②硫水侧链基团外露。
③理化性质改变,溶解度降低、沉淀,粘度增加,分子伸展。
④生理化学性质改变。分子结构伸展松散,易被蛋白酶水解。
实际应用:
A.消毒灭菌:75%乙醇,紫外线,高温。
B.制备活性蛋白质时严防蛋白质变性。
(4)变性机理
①热变性(往往是不可逆的)多肽链受到过分的热振荡,引起氢链破坏。
②酸碱变性:破坏了盐链。
③有机溶剂:破坏水化膜,降低蛋白质溶液介电常数。
(5)可逆变性与不可逆变性有人认为:二级、三级或四级结构遭受被破坏即为变性,三级(或四级)结构被破坏时引起可逆变性,而二级及三级(或四级)结构一并遭破坏时引起不可逆变性。
五,分离纯化蛋白质的主要方法实质:①蛋白与非蛋白分开,②蛋白质之间分开原理:
1,溶解度差异
PEG沉淀法有机溶剂沉淀法等电点沉淀法
2,热稳定性差异热处理沉淀法铜锌SOD(65℃、15分钟、稳定)
3,电荷性质差异离子交换层析法电泳法
4,分子大小和形状差异凝胶过滤、超滤法透析法、离心法
5,亲和力的差异亲和层析法某种蛋白质能与一种配基特异而非共价结合。
配基是指能被生物大分子识别并与之结合的原子、原子团和分子,如酶的底物、辅酶、调节效应物及其结构类似物,激素与受体蛋白、抗原与抗体。
分离原理:
P224图3-124
u 蛋白质毒素一些致病生物产生的毒素中有很多是蛋白质。毒性机理有:&#129; 破坏细胞膜;&#8218; 干扰细胞内机能;&#402; 抑制神经细胞突触的功能。
直接作用于细胞膜的毒素称溶细胞毒素,可以由细菌、真菌、植物、鱼、蛇等产生。链球菌属(Streptoccus)Pyogene产生的链球菌溶血素(包括0.5等),能使精细胞产生孔洞,Na+等离子外渗,细胞死亡。链球菌溶血素O是产生风湿热的原因之一(rheiematie fever)。此外,一些有毒的酶点,如蛇的磷酯酶在A2也能破坏细胞膜。
破坏细胞内机能的毒素也很多,如白候杆菌(Corynebacteriadiphtheriae)产生的白候毒素(diphtheria toxin)和霍乱弧菌(Vibrio cholerae)产生的霍乱毒素(cholera toxin)。它们均由A、B两个亚基组成,B亚基与靶细胞结合,A亚基致毒。白候毒素分子一旦进入靶细胞,AB亚在就分开,A亚基是一种酶能阻止蛋白质的合成,寄主的心、肾和神经组织都会被破坏。
霍乱毒素的B亚基由5个相同亚基组成,B亚基与肠细胞膜结合,A亚基就被送入这些细胞中,A亚基激活一种酶使cAMP大量产生,cAMP打开细胞膜的CL通道,由于CL-外泄引起渗适压的改变,水分也大量丧失,结果导致腹泻(diarrhoea),不加治疗的话,严重的脱水可使病人48小时内死亡。
神经突触连接两个神经元或一个神经元与一个肌肉细胞。一种毒蜕的产生的毒素a-Latrotoxin(125KD)是一条多肽链,能剌激神经递质乙酰胆碱(acetylcholine,ACH)的广谱性释放酶。肉毒杆菌(Lostrldium botulinum)产生的肉毒杆菌毒素(botulinum toxin)能抑制Ach释放酶肉毒中毒(botulism)为是由于受了被污染的罐袋食物引起的。
第四章 酶酶是一类具有高效率、高度专一性、活性可调节的高分子生物催化剂。
1957巴斯德提出酒精发酵是酵母细胞活动的结果。
1 分子Glc→2分子乙醇+2分子CO2从Glc开始,经过12种酶催化,12步反应,生成乙醇。
1897Buchner兄弟证明发酵与细胞的活动无关,不含细胞的酵母汁也能进行乙醇发酵。
1913Michaelis和Menten提出米氏学说—酶促动力学原理。
1926Sumner首次从刀豆中提出脲酶结晶,并证明具有蛋白质性质。
1969化学合成核糖核酸酶。
1967-1970从E.coli中发现第I、第II类限制性核酸内切酶。
1986Cech发现四膜虫细胞大核期间26S rRNA前体具有自我剪接功能。
ribozyme, deoxyribozyme
E.coRI
5’——GAATTC——3’
3’——CTTAAG——5’
限制作用修饰作用
5’——GAATTC——3’ 5’——GAATTC——3’
3’——CTTAAG——5’ 3’——CTTAAG——5’
第一节 酶学概论一,酶的生物学意义大肠杆菌生命周期20分钟,生物体内化学反应变得容易和迅速进行的根本原因是体内普通存在生物催化剂—酶。没有酶,生长、发育、运动等等生命活动就无法继续。
限制性核酸内切酶(限制-修饰)
二,酶的概念及其作用特点
1,酶是一种生物催化剂酶是一类具有高效率、高度专一性、活性可调节的高分子生物催化剂。
生物催化剂,酶(enzyme),核(糖)酶(ribozyme),脱氧核(糖)酶(deoxyribozyme)
2,酶催化反应的特点
(1),催化效率高酶催化反应速度是相应的无催化反应的108-1020倍,并且至少高出非酶催化反应速度几个数量级。
(2),专一性高酶对反应的底物和产物都有极高的专一性,几乎没有副反应发生。
(3),反应条件温和温度低于100℃,正常大气压,中性pH环境。
(4),活性可调节根据据生物体的需要,许多酶的活性可受多种调节机制的灵活调节,包括:别构调节、酶的共价修饰、酶的合成、活化与降解等。
(5),酶的催化活性离不开辅酶、辅基、金属离子
3,酶与非生物催化剂相比的几点共性:
①催化效率高,用量少(细胞中含量低)。
②不改变化学反应平衡点。
③降低反应活化能。
P234 图4-1非催化过程及催化过程自由能的变化
④反应前后自身结构不变。
催化剂改变了化学反应的途径,使反应通过一条活化能比原途径低的途径进行,催化剂的效应只反映在动力学上(反应速度),不影响反应的热力学(化学平衡)。
三,酶的化学本质
(一) 酶的蛋白质本质经典概念:所有的酶都是蛋白质,酶是具有催化功能的蛋白质,因此酶具有蛋白质的一切共性。
1,酶的蛋白质组成有些酶仅由蛋白质组成,例如,脲酶、溶菌酶、淀粉酶、脂肪酶、核糖核酸酶等有些酶不仅含有蛋白质(酶蛋白),还含有非蛋白质成分(辅助因子),只有酶蛋白与辅助因子结合形成复合物(全酶)才表现出酶活性,如超氧化物歧化酶Cu2+、Zn2+)、乳酸脱氢酶(NAD+)
酶的专一性由酶蛋白的结构决定,辅助因子传递电子或某些化学基团。
2,酶的辅助因子酶的辅助因子主要有金属离子(Fe2+、Fe3+,Cu+、Cu2+,Mn2+、、Mn3+、Zn2+、Mg2+,K+,Na+,Mo6+,Co2+等)和有机化合物。
辅酶:与酶蛋白结合较松,可透析除去。
辅基:与酶蛋白结合较紧。
酶 辅助因子
CuZn-SOD Cu2+Zn2+
Mn-SODMn2+
过氧化物酶Fe2+或Fe3+
II型限制性核酸内切酶Mg2+
羧肽酶Zn2+
P235表4-1 一些酶的辅助因子(金属离子)
P237表4-2基团反应中的辅酶和辅基。
酶蛋白决定酶专一性,辅助因子决定酶促反应的类型和反应的性质。比如,NAD+可与多种酶蛋白结合,构成专一性强的乳酸脱氢酶、醇脱氢酶、苹果酸脱氢酶、异柠檬酸脱氢酶。
生物体内酶种类很多,而辅助因子种类却很少,原因是一种辅助因子可与多种酶蛋白结合。
(二) ribozyme核酶(具有催化功能的RNA)
1980以前,已知所有的生物催化剂,其化学本质都是蛋白质。
80年代初,美国科罗拉多大学博尔德分校的Thomas Cech和美国耶鲁大学Sidney Altman各自独立发现RNA具有生物催化功能,此发现被认为是近十年生化领域最令人鼓舞的发现,此二人分亨1989诺贝尔化学奖。
ribozyme种类:①自我剪接ribozyme ②自我剪切ribozyme③催化分子间反应ribozyme
后边细讲四,按酶蛋白的亚基组成及结构特点分类
1,单体酶由一条或多条共价相连的肽链组成的酶分子牛胰RNase124a.a单链鸡卵清溶菌酶129a.a单链胰凝乳蛋白酶三条肽链单体酶种类较少,一般多催化水解反应。
2,寡聚酶由两个或两个以上亚基组成的酶,亚基可以相同或不同,一般是偶数,亚基间以非共价键结合。
①含相同亚基的寡聚酶苹果脱胱氢酶(鼠肝),2个相同的亚基
②含不同亚基的寡聚酶琥珀酸脱氢酶(牛心),αβ2个亚基寡聚酶中亚基的聚合,有的与酶的专一性有关,有的与酶活性中心形成有关,有的与酶的调节性能有关。
大多数寡聚酶是胞内酶,而胞外酶一般是单体酶。
3,多酶复合体由两个或两个以上的酶,靠非共价键结合而成,其中每一个酶催化一个反应,所有反应依次进行,构成一个代谢途径或代谢途径的一部分。如脂肪酸合成酶复合体。
例如:大肠杆菌丙酮酸脱氢酶复合体由三种酶组成
①丙酮酸脱氢酶(E1)以二聚体存在2×9600
②二氢硫辛酸转乙酰基酶(E2)70000
③二氢硫辛酸脱氢酶(E3)以二聚体存在2×56000
复合体:12个E1二聚体24×96000
24个E2单体24×70000
6个E3二聚体 12×56000
总分子量560万
4,多酶融合体一条多肽链上含有两种或两种以上催化活性的酶,这往往是基因融合的产物。
例如:天冬氨酸激酶I---高丝氨酸脱氢酶I融合体(双头酶)
该酶是四聚体α4,每条肽链含两个活性区域:N-端区域是Asp激酶,C端区域是高Ser脱氢酶。
五,酶在细胞中的分布一个细胞内含有上千种酶,互相有关的酶往往组成一个酶体系,分布于特定的细胞组分中,因此某些调节因子可以比较特异地影响某细胞组分中的酶活性,而不使其它组分中的酶受影响。
1,分布于细胞核的酶核被膜酸性磷酸酶染色质三磷酸核苷酶核仁核糖核酸酶核内可溶性部分酵解酶系、乳酸脱氢酶
2,分布于细胞质的酶参与糖代谢的酶 酵解酶系
磷酸戊糖途径酶系参与脂代谢的酶 脂肪酸合成酶复合体参与a.a蛋白质的酶Asp氨基转移酶参与核酸合成的酶 核苷激酶核苷酸激酶
3,分布于内质网的酶
光滑内质网 胆固醇合成酶系
粗糙内质网蛋白质合成酶系
(细胞质一侧)
4,分布于线粒体的酶外膜:酰基辅酶A合成酶内膜:NADH脱氢酶基质:三羧酸循环酶系
脂肪酸β-氧化酶系
5,分布于溶酶体的酶水解蛋白质的酶水解糖苷类的酶水解核酸的酶水解脂类的酶
6,标志酶有些酶只分布于细胞内某种特定的组分中,
核:尼克酰胺单核苷酸腺苷酰转移酶,功能:DNA、RNA生物合成线粒体:琥珀酸脱氢酶(电子转移、三羧酸循环)
溶酶体:酸性磷酸酶(细胞成分的水解)
微粒体:(核蛋白体、多核蛋白体、内质网)Glc-6-磷酸酶上清液:乳酸脱氢酶第二节 酶的国际分类及命名一,习惯命名
1961年6以前使用的酶沿用习惯命名
1.(绝大多数酶)依据底物来命名如:催化蛋白质水解的酶称蛋白酶。催化淀粉水解的酶称淀粉酶。
2,依据催化反应的性质命名如:水解酶、转氨酶
3 结合上述两个原则命名,琥珀酸脱氢酶。
4,有时加上酶的来源如:胃蛋白酶、牛胰凝乳蛋白酶习惯命名较简单,但缺乏系统性。
二,国际系统命名系统名称应明确标明酶的底物及催化反应的性质。
如:草酸氧化酶(习惯名),系统名称:草酸:氧氧化酶又如:谷丙转氨酶(习惯名),系统名:丙氨酸:α-酮戊二酸氨基转移酶反应:丙氨酸+α--酮戊二酸→Glu+丙酮酸三,国际系统分类法及编号(EC编号)
原则:将所有酶促反应按性质分为六类,分别用1、2、3、4、5、6表示。
再根据底物中被作用的基团或键的特点,将每一大类分为若干个亚类,编号用1、2、3……,每个亚类又可分为若干个亚一亚类,用编号1、2、3……表示。
每一个酶的编号由4个数字组成,中间以“·”隔开。第一个数字表示大类,第二个数字表示亚类,第三个表示亚-亚类,第四个数字表示在亚-亚中的编号。
1,氧化还原酶类催化氧化还原反应: A·2H+B=A+B·2H
乳酸:NAD+氧化还原酶(EC1.1.1.27),习惯名:乳酸脱氢酶

2,转移酶类
AB+C=A+BC
Ala:酮戊二酸氨基移换酶(EC2.6.1.2),习惯名,谷丙转氨酶

3,水解酶类催化水解反应,包括淀粉酶、核酸酶、蛋白酶、脂酶。
亮氨酸氨基肽水解酶(EC3.4.1.1),习惯名:Ile氨肽酶。
4,裂合酶类(裂解酶)
催化从底物上移去一个基团而形成双键的反应或其逆反应二磷酸酮糖裂合酶(EC4.1.2.7), 习惯名:醛缩酶
5,异构酶(EC5.3.1.9)
催化同分异构体相互转化,6-磷酸Glc异构酶
6,合成酶(连接酶)
催化一切必须与ATP分解相偶联、并由两种物质合成一种物质的反应。
P241 表4-8 酶的国际分类——大类和亚类
举例:乙醇脱氢酶的分类编号是 EC1.1.1.1,乳酸脱氢酶EC1.1.1.27,苹果酸脱氢酶EC1.1.1.37
第一个数字表示大类:氧化还原第二个数字表示反应基团:醇基第三个数字表示电子受体:NAD+或NADP+
第四个数字表示此酶底物:乙醇,乳酸,苹果酸。
前面三个编号表明这个酶的特性:反应性质、底物性质(键的类型)及电子或基团的受体,第四个编号用于区分不同的底物。
酶的物种和组织的差异来自不同物种或同一物种不同组织或不同细胞器的同一种酶,虽然它们催化同一个生化反应,但它们的一级结构可能不相同,有时反应机制也可能不同,可是无论是酶的系统命名法还是习惯命名法,对这些均不加以区别,而定为相同的名称,这是因为命名酶的根据是酶所催化的反应。
例如,SOD不管来源如何,均催化如下反应
2O2-+2H+→H2O2+O2H2O2再由过氧化氢酶催化、分解它们有同一个名称和酶的编号EC1.15.1.1
实际此酶可分三类:
CuZn-SOD 真核生物细胞质中
Mn-SOD 真核生物线粒体中
Fe-SOD
即使同是CuZn-SOD,来自牛红细胞与猪红细胞的,其一级结构也有很大不同。
因此,在讨论一个具体的酶时,应对它的来源与名称一并加以说明。
第三节 酶促反应动力学酶促反应动力学是研究酶促反应的速度以及影响酶促反应速度的各种因素,包括低物浓度、酶浓度、pH、温度、激活剂与抑制剂、等。
一,酶的量度酶的含量不能直接用重量和摩尔数表示(不纯、失活、分子量不知),而采用酶的活力单位表示
1,酶活力与酶促反应速度酶活力:用在一定条件下,酶催化某一反应的反应速度表示。反应速度快,活力就越高。
酶量—酶活力一反应速度酶促反应速度的表示方法:单位时间、单位体积中底物的减少量或产物的增加量。
单位:浓度/单位时间
P243图4-4酶反应速度曲线
研究酶促反应速度,以酶促反应的初速度为准。因为底物浓度降低、酶部分失活产物抑制和逆反应等因素,会使反应速度随反应时间的延长而下降。
2,酶的活力单位(U)
国际酶学会标准单位:在特定条件下,1分钟内能转化1umol底物的酶量,称一个国际单位(IU)。特定条件:25℃ pH及底物浓度采用最适条件(有时底物分子量不确定时,可用转化底物中1umol的有关基团的酶量表示)。
实际工作中,每一种酶的测活方法不同,对酶单位分别有一个明确的定义。
如,限制性核酸内切酶用粘度法测活性:定义为30℃,1分钟,使底物DNA溶液的比粘度下降25%的酶量为1个酶单位。
转化率法:标准条件,5分钟使1ug供体DNA残留37%的转化活性所需的酶量为1个酶单位。
凝胶电泳法测活:37℃,1小时,使1ugλDNA完全水解的酶量为1个酶单位。
可见,同一种酶采用不同的测活方法,得到的酶活单位是不同的,即使是同一种测活法,实验条件稍有相同,测得的酶单位亦有差异。
如 淀粉酶,两种定义
A:1 g可溶性starch,在1h内液化所需的enzyme量。
B:l ml 2%可溶性starch,在1h内液化所需的enzyme量。
1g 酶制剂溶于1000ml H2O,取0.5ml与2%的starch 20ml反应,pH6.0,10分钟完全液化,求酶活力。
A:60/10×20×2%×1/0.5×1000=4800u/克enzyme制剂
B:60/10×20/0.5×1000=240000u/克enzyme制剂
3,酶的比活力Specificactivity
每毫克酶蛋白所具有的酶活力。酶的比活力是分析酶的纯度是重要指标。
单位:U/mg蛋白质。
有时用每克酶制剂或每毫升酶制剂含有多少个活力单位表示。
举例:一个酶的分离纯化分为4 步。
步骤 1 2 3 4
总活力(U)6 4 3 2
总蛋白质(mg)2010 5 2
比活力(U/mg)6/204/10 3/52/2
酶的提纯过程中,总蛋白减少,总活力减少,比活力增高。
酶的纯化倍数:
酶的回收率:×100%
4,酶的转换数和催化周期分子活性定义:每mol的 enzyme在1秒内转化substrate的 mol数。
亚基或催化中心活性定义:每mol 的active subunit或 active center 在一秒内转化的substrate 的mol 数,称为转换数Kcat
P244图表4—4
转换数的倒数即为催化周期:一个酶分子每催化一个底物分子所需的时间。
如:乳糖脱氢酶转换数为1000/秒,则它的催化周期为10-3秒。
二,底物浓度对酶促反应速度的影响单底物酶促反应,包括异构酶、水解酶及大部分裂合催化的反应。
1913 Michaelis 和Menten 提出米—曼方程。
(一) 底物浓度对酶促反应速度的影响——米式学说的提出
1903Henri研究蔗糖水解反应。

sucrose +H2Oacid glucose +fructose
sucrase
酸水解
VV


[sucrose]

酶水解
V
V
[enzyme]( substrate不变) [sucrose]
底物浓度与酶促反应速度的关系:
当底物浓度不断增大时,反应速度不再上升,趋向一个极限,酶被底物饱和(底物饱和现象)。
中间产物假说:酶与底物先络合成一个中间产物,然后中间产物进一步分解成产物和游离的酶。
证据:(1)竞争性抑制实验(2)底物保护酶不变性(3)结晶ES复合物的获得。
米式学说:
1913年,Michaelis和Menten继承和发展了中间产物学说,在前人工作基础上提出酶促动力学的基本原理,并以数学公式表明了底物浓度与酶促反应速度的定量关系,称米式学说:
(二) 米式方程的导出:
1,基于快速平衡假说——早年的米式方程最初,Michaelis和Menten是根据“快速平衡假说”推出米式方程。
快速平衡假说:
① 在反应的初始阶段,底物浓度远远大于酶浓度,因此,底物浓度{S}可以认为不变。
② 游离的酶与底物形成ES的速度极快,E + S ES,而ES形成产物的速度极慢,ES分解成产物P对于[ES]浓度的动态平衡没有影响,不予考虑。
K1、K2》K3
③ 因为研究的是初速度,P的量很小,由PES可以忽略不记。
ES的生成速度:K1([E] - [ES])[S]
ES的分解速度:K2[ES]
K1([E] - [ES])[S]=K2[ES]
反应速度:
KS现在称为底物常数
2,Briggs和Haldane的“稳态平衡假说”及其对米式方程的发展:
稳态平衡假说:
[ES]的的生成与分解处于动态平衡(稳态),有时必须考虑[ES]分解成产物P对于[ES]动态平衡的影响([ES]分解速度)。或者说,[ES]的动态平衡(分解速度)不仅与ESE+S有关,还与ES P + E有关。
稳态平衡假说的贡献在于第②点。
用稳态假说推导米式方程:
ES生成速度:
k1([E] - [ES])[S]
ES分解速度:
k2[ES]+k3[ES]
以上两个速度相等。
k1([E] - [ES])[S] = k2[ES]+k3[ES]
反应速度:
Vmax=k3 [E]
Km称米氏常数,当Km及Vmax已知时,即可确定酶反应速度与底物浓度的关系。
(三) 米式方程讨论
1,快速平衡假说与稳态平衡假说的实质区别
当K1、K2>>K3时,即ES P是整个反应平衡中极慢的一步,那么
这就是早年提出的米式方程因此说,稳态平衡 = 快速平衡 + 慢速平衡,
当ES P(即K3/K1)极慢时,稳态平衡基本等于快速平衡
2,Km的物理意义当反应速度v=1/2 Vmax时,Km = [S],
Km的物理意义是:当反应速度达到最大反应速度的一半时底物的浓度。
单位:与底物浓度的单位一致,mol·L-1或mmol·L-1
Km是酶的特征常数之一。一般只与酶的性质有关,与酶的浓度无关。不同的酶Km值不同。
P248表4-5一些酶的Km值。
3,Km与天然底物如果一个酶有几种底物,则每一种底物各有一个特定的Km,其中Km最小的底物称该酶的最适底物或天然底物。因为Km愈小(达到Vmax一半所需的底物浓度愈小)表示V变化越灵敏底物。
4,Km、Ks与底物亲和力
Km称米式常数,Km=(K2+K3)/K1,从某种意义上讲,Km是ES分解速度(K2+K3)与形成速度(K1)的比值,它包含ES解离趋势(K2/K1)和产物形成趋势(K3/K1)。
Ks称为底物常数,Ks=K2/K1,它是ES的解离常数,只反映ES解离趋势,因此,1/Ks可以表示酶与底物的亲和力大小(ES形成趋势),不难看出,底物亲和力大不一定反应速度大(产物形成趋势,K3/K1)
只有当K2、K1>>K3时,Km≈Ks,因此,1/Km只能近似地表示底物亲和力的大小。
问题:
(1) Km越小,底物亲和力越大(X)
(2) Ks越小,底物亲和力越大(√)
(3) 天然底物就是亲和力最大的底物(X)
(4) 天然底物就是Km值最小的底物(√)
5,Km与米式方程的实际用途已知V求[S]
已知[S]求V
相对速度(酶活性中心被占据分数Y):
当v=Vmax时,表明酶的活性部位已全部被底物占据,v与[S]无关,只和[Et]成正比。当v=1/2 Vmax时,表示活性部位有一半被占据。
设定达到最大反应速度的0.9倍时,所需底物浓度为[S]0.9
[S]0.9=9Km
同理有:[S]0.8=4Km
[S]0.7=2.33Km
[S]0.6=1.5Km
[S]0.5=1Km
[S]0.1=1/9Km
[S]0.9 /[S]0.1=81
[S]0.7/[S]0.1=21
(四) Km和Vmax的求解方法
1,双倒数作图法要从实验数据所得到的v-[S]曲线来直接决定Vmax是很困难的,也不易求出Km值。
由米式方程两边取倒数:
将实验所得的初速度数据v和[S]取倒数,得各种1/v和1/[S]值,将1/v对1/[S]作图,得
P250 图4-6
上图[S]范围在0.330—2.0Km,最适。
若[S]范围在3.3—20 Km,直线斜率太小。
若[S]范围在0.033––0.2 Km,直线斜率太大。
如当Km=1×10-5mol/L时,实验所取底物浓度范围应在0.33×10-5-2.0×10-5mol/L。
一般选底物浓度应考虑能否得到1/[S]的常数增量。
如当选[S]为1.01、1.11、1.25、1.42、1.66、2.0、2.5、3.33、5.0、10时
1/[S]为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0是常数增量。
反之,若选[S]为常数增量1.0、2.0、3.0、4.0、5.0、10时,
1/[S]为0.1、0.111、0.125、0.5、1.0,是非常数增量,点多集中在1/v轴附近。
2,V—V/[S]作图法
P250图4-7
三,多底物的酶促反应前面讨论的米氏方程(推导米氏方程时用的是单底物),适用于单底物酶促反应,如异构、水解及大部分裂合反应,不适用于多底物反应。
A、B、C表示底物,按照底物与酶的结合顺序,产物则按它们从酶产复合物中释放次序分别用P、Q、R表示。
双底物酶促反应已知有三种机理
1,有序顺序反应机理底物A、B与酶结合的顺序是一定的,产物P、Q的释放顺序也是一定的。
P251
举例:P251 乙醇脱氢酶
2,随机顺序反应机理底物A、B与酶结合的顺序是随机的,产物P、Q的释放顺序也是随机的。
P252
如糖原磷酸化酶
3,乒乓反应机理先结合第一个底物A,释放第一个产物P,酶的构象发生变化,结合第二个底物B,释放第二个产物Q。
P252
举例:谷丙转氨酶四,pH对酶促反应速度的影响
1,pH影响酶活力的因素
①影响酶蛋白构象,过酸或过碱会使酶变性。
②影响酶和底物分子解离状态,尤其是酶活性中心的解离状态,最终影响ES形成。
③影响酶和底物分子中另一些基团解离,这些基团的离子化状态影响酶的专一性及活性中心构象。
2.酶的最适pH和稳定性pH
最适pH:使酶促反应速度达到最大时的介质pH。
酶在试管反应中的最适pH与它所在细胞中的生理pH不一定完全相同,为什么?
几种酶的最适pH,见P253表4—6。
稳定性pH:在一定pH范围内,酶不会变性失活,此范围称酶的稳定性pH。

A.最适pH曲线:最适pH=6.8
B.稳定性pH曲线:pH5~8
曲线B:将酶在不同pH下保温,再调回pH6.8,测定反应速度。
曲线B说明,在pH6.8~8及5~6.8范围内反应速度的降低,不是由于酶蛋白变性失活造成的,而是由于酶或底物形成了不正常的解离,而在pH >8和pH<5范围,则是由两种因素共同作用的结果。
虽然大部分酶的pH—酶活曲线是钟形,但也有半钟形甚至直线形。
P254 图4-9 酶的pH—酶活曲线五,温度对酶促反应速度的影响。
1.最适温度及影响因素
温度对酶促反应速度的影响有两个方面:
①提高温度,加快反应速度。
②提高温度,酶变性失活。
这两种因素共同作用,在小于最适温度时,前一种因素为主;在大于最适温度时,后一种因素为主。最适温度就是这两种因素综合作用的结果。
温度系数Q10:温度升高10℃,反应速度与原来的反应速度之比,Q10一般为1~2。
温血动物的酶,最适温度35℃—40℃,植物酶最适温度40℃—50℃,细菌Taq DNA聚合酶70℃。
2.酶的稳定性温度在某一时间范围内,酶活性不降低的最高温度称该酶的稳定性温度。
酶的稳定性温度有一定的时间限制。
稳定性温度范围的确定方法:将酶分别在不同温度下预保温一定时间,然后回到较低温度(即酶的热变性失活作用可忽略的温度),测酶活性。
图酶浓度高、不纯、有底物、抑制剂和保护剂会使稳定性温度增高。
酶的保存:
①液体酶制剂可以利用上述5种因素中的几种,低温(几个月)。
②干粉,可在室温下放置一段时间,长期保存,应在低温冰箱中。
六,酶浓度对酶促反应速度的影响如果底物浓度足够大,使酶饱和,则反应速度与酶浓度成正比。
Vmax=K3 [E]
[S]过量且不变时,v∝[E]。
七,激活剂对酶促反应速度的影响凡是能提高酶活性的物质,都称为激活剂。activator
激活剂作用包括两种情况:
一种是由于激活剂的存在,使一些本来有活性的酶活性进一步提高,这一类激活剂主要是离子或简单有机化合物。
另一种是激活酶原,无活性→有活性,这一类激活剂可能是离子或蛋白质。
1,无机离子的激活作用
(1)金属离子:K+,Na+、Mg2+,Zn2+、Fe 2+,Ca2+
(2)阴离子:cl-、Br -
(3)氢离子许多金属离子是酶的辅助因子,是酶的组成成分,参与催化反应中的电子传递。
有些金属离子可与酶分子肽链上侧链基团结合,稳定酶分子的活性构象。
有的金属离子通过生成螯合物,在酶与底物结合中起桥梁作用。
注意:
(1) 无机离子的激活作用具有选择性,不同的离子激活不同的酶。
(2) 不同离子之间有拮抗作用,如Na+与K+、Mg+与Ca+,但Mg+与Zn+常可替代。
(3) 激活剂的浓度要适中,过高往往有抑制作用,1~50mM
2,简单有机分子的激活作用
①还原剂(如Cys、还原型谷胱甘肽)能激活某些活性中心含有—SH的酶。
②金属螯合剂(EDTA)能去除酶中重金属离子,解除抑制作用。
抑制剂对酶促反应速度的影响酶是protein,凡可使酶蛋白变性而引起酶活力丧失的作用称为酶的失活作用。
抑制作用:使酶活力下降但并不引起酶蛋白变性的作用称为抑制作用。(不可逆抑制、可逆抑制)
抑制剂(inhibitor):不引起酶蛋白变性,但能使酶分子上某些必需基团(活性中心上一些基团)发生变化,引起酶活性下降,甚至丧失,此类物质称为酶的抑制剂。
研究抑制剂对酶的作用有重大的意义:
(1) 药物作用机理和抑制剂型药物的设计与开发:抗癌药
(2) 对生物体的代谢途径进行认为调控,代谢控制发酵
(3) 研究酶的活性中心的构象及其化学功能基团,不仅可以设计农药,而且也是酶工程和化学修饰酶、酶工业的基础
(一) 不可逆抑制作用(非专性必、专一性)
抑制剂与酶活性中心基团共价结合,使酶的活性下降,无法用透析法除去抑制剂。
1,非专一性不可逆抑制剂此类抑制剂可以和一类或几类基团反应。它们不但能和酶分子中的必需基团作用,同时也能和相应的非必需基团作用。
(1),酰化剂二异丙基磷酰氟酯(DFP,神经毒气)和许多有机磷农药都属于磷酰化剂,能与酶活性中心Ser的—OH结合,抑制某些蛋白酶及酯酶。这类化合物的作用机理是强烈地抑制与中枢神经系统有关的乙酰胆碱脂酶,使乙酰胆碱不能分解为乙酰和胆碱。乙酰胆碱的堆积,引起一系列神经中毒症状。
P258 结构式:磷酰化剂与DFP
P259反应式:磷酰化剂与胆碱酯酶形成磷酰化胆碱酯酶
解毒剂:PAM(解磷定),可以把酶上的磷酸根除去。
(2),烷化剂许多有机汞、有机砷都是烷化剂,可以使酶的巯基烷化
P259 反应式:对氯汞苯甲酸与巯基酶的反应
有机汞、有机砷化合物和重金属还可以与还原型硫辛酸(人体重要的辅酶)反应解毒剂:二巯基丙醇
(3),氰化物与含铁扑啉的酶中的Fe2+结合,阻抑细胞呼吸。
(4),重金属
Ag、Cu、Hg、Cd、Pb能使大多数酶失活,EDTA可解除。
(5),还原剂以二硫键为必需基团的酶,可以被巯基乙醇、二硫苏糖醇等巯基试剂还原失活。
(6),含活泼双键试剂(与—SH、—NH2反应)
N—乙基顺丁烯二酰亚胺

(7),亲电试剂四硝基甲烷,可使Tyr硝基化。

2,专一性不可逆抑制此类抑制剂仅仅和活性部位的有关基团反应。
(1),Ks型专一性不可逆抑制剂
Ks型抑制剂不仅具有与底物相似的、可与酶结合的基团,同时还有一个能与酶的其它基团反应的活泼基团。
专一性:抑制剂与酶活性部位某基团形成的非共价络合物和抑制剂与非活性部位同类基团形成的非共价络合物之间的解离常数不同。
举例:
胰凝乳蛋白酶的Ks型不可逆抑制剂:对一甲苯磺酰-L-苯丙氨酰氯甲烷(TPCK)与该酶的最佳底物对-甲苯磺酰-L-苯丙氨酸甲酯的结构相似,都含有对-甲苯磺酰-L-苯丙氨酰基,酶通过对这个基团的强亲和力,把TPCK误认为底物而与之结合,形成Ks很小的非共价络合物。
《酶学》P119
最佳底物TPCK
-CH2-cl与酶活性部位的一个His-咪唑基距离很近,很易使之烷基化,而非活性部位的咪唑基,由于远离-CH2-cl,则不被烷基化。
(2)、?Kcat型专一性不可逆抑制剂这种抑制剂是根据酶的催化过程来设计的,它们与底物类似,既能与酶结合,也能被催化发生反应,在其分子中具有潜伏反应基团(latentreactivegroup),该基团会被酶催化而活化,并立即与酶活性中心某基团进行不可逆结合,使酶受抑制。此种抑制专一性强,又是经酶催化后引起,被称为自杀性底物。
举例1:
β-羟基癸酰硫酯脱水酶的Kcat型不可逆抑制剂:CH3(CH2)5-C=C-CH2-CO-S-R
此酶催化的反应:
P260反应式
当有Kcat抑制剂时,此抑制剂被催化生成连丙二烯结构,连丙二烯易与His咪唑反应,使酶失活。
P261反应式
举例2:
以FMN(黄素单核苷酸)、FAD(黄素腺嘌呤二核苷酸)为辅基的单胺氧化酶的Kcat型不可逆抑制剂;炔类化合物。
迫降灵是一种单胺氧化酶的自杀性底物,是治疗高血压的良药。

单胺氧化酶能氧化某些血管舒张剂(如组胺)

由于迫降灵能抑制单胺氧化酶,也就能抑制一些血管舒张剂(如组胺)的氧化,因而有降血压的作用。
Kcat型专一性不可逆抑制剂的专一性很强,近来已设计出多种酶的Kcat逆制剂,在医疗方面起到很大作用。
(二) 可逆抑制作用 ReversibleInhibition
此类抑制剂与酶蛋白的结合是可逆的,可以用透折法除去抑制剂,恢复酶的活性。
1,竞争性抑制(Competitive inhibition)
抑制剂与底物竞争酶的活性中心。
竞争性抑制剂具有与底物类似的结构,可与酶形成可逆的EI复合物,阻止底物与酶结合。可以通过增加底物浓度而解除此种抑制。
P258图4-11 酶与底物及竞争性、非竞争性抑制剂结合的模型
举例1:丙二酸抑制琥珀酸脱氢酶
举例2:磺胺类药物及其作用机理磺胺类药物可以抑制细菌的生长繁殖,治疗细菌引起的各种疾病。
磺胺类药物是对氨基苯磺酰胺或其衍生物,它是对氨基苯甲酸的结构类似物,竞争性抑制二氢叶酸合成酶
P261 结构式:对氨基苯甲酸 对氨基苯磺酰胺 叶酸
磺胺类药物的药理(对氨基苯磺酰胺):
嘌呤核苷酸的合成必需要由四氢叶酸(辅酶)提供一碳单位;四氢叶酸可由二氢叶酸或叶酸转化而成;二氢叶酸是在二氢叶酸合成酶作用下,利用蝶呤、对氨基苯甲酸及Glu合成。
动物体内的叶酸可从食物中获取,细菌体内的叶酸只能在二氢叶酸合成酶作用下,利用对氨基苯甲酸合成。
如果动物体内含有大量的对氨基苯磺酰胺,可与对氨基苯甲酸竞争二氢叶酸合成酶的活性中心,抑制细菌二氢叶酸合成。
2,非竞争性抑制特点:抑制剂与酶活性中的以外的基团结合,其结构可能与底物无关。
酶可以同时与底物及抑制剂结合,但是,中间产物ESI不能进一步分解为产物,因此,酶的活性降低。显然,不能通过增加底物的浓度的办法来消除非竞争性抑制作用。
非竞争性抑制剂多是与酶活性中心之外的巯基可逆结合,包括某些含金属离子的化合物(Cu2+、Hg2+、Ag+)和EDTA,。
3,反竞争性抑制酶只有在与底物结合后,才能与抑制剂结合。E+S→ES+I ≠ P
(三) 可逆抑制作用的动力学
用书上P263-266的方法可推出三种抑制方程。
1,竞争性抑制,
动力学方程:
竞争性抑制曲线:
P263图4-12竞争性抑制曲线
竞争性抑制作用小结:
(1) Vmax不变,Km变大。要达到同一个给定的Vmax分数,必须要有比无抑制剂时大得多的底物浓度。
(2) 竞争性抑制剂对酶促反应的抑制程度,决定于[I]、[S]、Km和Ki
A,[I]一定,增加[S],可减少抑制程度。
B,[S]一定,增加[I],可增加抑制程度(Km’增加)。
C,Ki值较低时,任何给定[I]和[S],抑制程度都较大,Ki越大,抑制作用越小。
D,[I]=Ki时,所作双倒数图直线的斜率加倍。
E,在一定[S]、[I]下,Km值愈低,抑制程度愈小。
2,非竞争性抑制动力学方程:
相对速度:
抑制分数:
非竞争抑制曲线:
P265图4-13
非竞争性抑制剂可使酶促反应的Vmax降至Vmax/(1+[I]/Ki),而对Km无影响。它对酶促反应的抑制程度决定于[I]和Ki,与酶的Km和[S]无关。
3,反竞争性抑制动力学方程:
相对速度:
抑制分数,
P265 图4-14反竞争抑制曲线
在反竞争性抑制作用下,Km及Vmax都变小,且Km’<KM&NBSP;&NBSP;
P266表4-7 小结: 三种可逆抑制作用的酶促反应速度V与Km值九,有机介质中的酶促反应(只是一部分酶)
传统观点:酶是水溶性生物大分子,只能在水介质中进行催化反应,有机介质会使酶变性。
其实在细胞中,许多生物膜上的酶就是在低极性的微环境中发挥催化功能的。
优点: ①利于疏水性底物的反应。
②可提高酶的热稳定性,提高催化温度。
③能催化在水中不能进行的反应。
④可改变反应平衡移动方向。
⑤可控制底物专一性。
⑥防止由水引起的副反应。
⑦可扩大pH值的适应性等等。
1,有机介质中酶促反应的条件
(1),必需水(结合水)
酶催化活性所必需的构象,是由水分子直接或间接地通过氢键等非共价相互作用来维持的,因此只有与酶分子紧密结合的单层水分子,对酶的催化活性才是至关重要的。
这紧紧吸附在酶分子表面,维持酶催化活性所必需的最少量的水称为必需水(或结合水、束缚水)。
酶的活性由必需水决定,而与溶剂里的水含量无关,只要必需水不丢失,其它大部分水即使都被有机溶剂取代,酶仍然保持其催化活性。
因此,可把有机介质中酶促反应理解为宏观上是在有机介质中,而在微观上仍是水中的酶促反应。正因如此,才能使用有机介质代替水溶液,进行酶促反应。
一个干燥的酶水合: 吸附水量:
酶分子表面电荷基团:0-0.07g/g(水/酶)
酶分子表面极性基团:0.07-0.25g/g
弱极性、非极性基团:0.25-0.28g/g
表面完全水化,被一层水分子包围。
酶的必需水含量因酶而异。
脂肪酶:几个水分子/每个酶分子胰凝乳蛋白酶:50个水分子/每个酶分子乙醇脱氢酶:几百个水分子/每个酶分子
(2),对酶的要求具有对抗有机介质变性的经能力。
(3),合适的溶剂及反应体系
(4),合适的pH
保证有机介质中酶的微环境具有最适pH值。酶应从具有最适pH值的缓冲液中冻干或沉淀出来。
2,有机介质对酶性质的影响
(1),稳定性大多数酶在低水有机介质中比在水介质中更稳定。
a,热稳定性提高例如:猪胰脂肪酶在醇和酯中进行催化反应,在100℃半衰期长达12h,其活性比25℃时还高几倍
b,储存稳定性提高胰凝乳蛋白酶在20℃时,在水中半衰期只几天。在辛烷中,可放6个月,仍保持全部活性。
(2),活性
有两类影响 升高活性
降低活性酶的超活性:高于水溶液中酶活性值的活性。
(3),专一性某些有机溶剂会使某些酶的专一性发生变化,如脂肪酶在有机介质中有合成肽键的功能。星号活力(第二活力)。
(4),反应平衡有机介质能改变某些酶催化的反应平衡。
例如:水解酶类(蛋白水解酶)
在水介质中,水的浓度为55.5mol/L,平衡趋向水解方向,
如在含水量极低的有机介质中,平衡向含成方向偏移。
实例:(酶) 合成)产物 溶剂合成收率
枯草杆菌蛋白酶核糖核酸酶甘油90% 50%
无色杆菌蛋白酶 胰岛素 乙醇30% 80%
凝血酶 人生长素 甘油80% 20%
(5),分子印迹和pH记忆酶在冻干前可用配体作印迹。
竞争性抑制剂,可诱导酶活性中心构象发生变化,形成一种高活性构象,而此种构象在除去抑制剂后,因酶在有机介质中的高度刚性而得到保持。
pH记忆:
酶在有机介质中能“记住”它最后存在过的水溶液的pH值,因该pH值决定了酶分子上有关基团的解离状态,这种状态在冻干过程和分散到有机介质中之后仍得到保持。
第四节 酶的作用机理一,专一性的机理
(一) 酶专一性类型一般说来,一种分子能成为某种酶的底物,必须具备两个条件:
分子上有被酶作用的化学键。
分子上有一个或多个结合基团能与酶活性中心结合。
2003-2-15 11:39:48
上官婉儿


头衔:军师
等级:版主
文章:475
积分:4973
门派:生物学
注册:2002-9-29
第20楼
2,诱导楔合模型酶分子与底物分子接近时,酶蛋白质受底物分子诱导,构象发生有利于与底物结合的变化,酶与底物在此基础上互补楔合,进行反应。
P271 图4—18
二,高效性的机理
1,邻近效应与定向效应酶把底物分子(一种或两种)从溶液中富集出来,使它们固定在活性中心附近,反应基团相互邻近,同时使反应基团的分子轨道以正确方位相互交叠,反应易于发生。
两种效应对反应速度的影响
①使底物浓度在活性中心附近很高甚至比溶液中高10万倍,提高反应速度。
②酶对底物分子的电子轨道具有导向作用举例:酚羟基和羧基环化成内酸

3个CH3固定了-OH和-COOH的相对方位。
③酶使分子间反应转变成分子内反应反应速度提高:107

④邻近效应和定向效应对底物起固定作用酶底复合物寿命比一般双分子相互碰撞的平均寿命长,前者10-7-10-4秒,后者10-13秒,增大了产物形成的机率。
2,扭曲变形和构象变化的催化效应酶中某些基团可使底物分子的敏感键中某些基团的电子云密度变化,产生电子张力。
P276图4-20
环状反应物I水解开环,环扭曲能量大量释放,加速反应。
底物与酶蛋白接触,加速反应。
①酶从低活性形式转变为高活性形式
②底物扭曲、变形
③底物构象变化,变得更像过度态结构,大大降低活化能。
3,共价催化酶作为亲核基团或亲电基团,与底物形成一个反应活性很高的共价中间物,此中间物易变成过渡态,反应活化能大大降低,提高反应速度。
①亲核共价催化丝氨酸羟基、Cys的-SH、His的咪唑基。
举例:咪唑基催化对硝基苯乙酸酯水解。

②亲电共价催化
亲电基团攻击底物的富电子基团例:Asp转氨酶催化Asp 转氨反应

P278表4-13形成共价ES复合物的某些酶
4,酸碱催化酶分子的一些功能基团起质子供体或质子受体的作用。
参与酸碱催化的基团:氨基、羧基、巯基、酚羟基、咪唑基。
P279 表4-14 酶分子中可作为广义酸碱的功能基团
影响酸碱催化反应速度的两个因素
⑴酸碱强度,咪唑基在pH6附近给出质子和结合质子能力相同,是最活泼的催化基团。
⑵给出质子或结合质子的速度,咪唑基最快
①酸催化酯、酰胺和肽的水解

过程:共轭酸与>C=0氧形成氢键,使>C=0碳带更多正电荷,更易吸引H2O分子上的氧,降低>C=0碳与H2O氧形成共价键的活化能;接着,共轭酸将H+转移给>C=0氧,自己成为共轭碱,并从H2O分子吸引一个H+,回复原状。
②碱催化酯、酰胺水解

过程:共轭碱先与H2O中H形成氢键,使H2O中氧的电负性增强,更易对>C=0碳进行亲核进攻,降低碳氧键生成的活化能。
5,活性中心的微环境
⑴ 疏水环境酶活性中心附近往往是疏水的,介电常数低,可加强极性基团间的反应。
⑵电荷环境在酶活性中心附近,往往有一电荷离子,可稳定过渡态的离子,增加酶促反应速度。如溶菌酶Asp52带负电荷,可以稳定过渡态的正离子。
酶催化反应的高效性,可能是由于以上五种因素中的几种因素协同作用的结果,而非酶催化反应往往只有一种催化机制。
三,某些酶的活性中心及其作用机理
(一) 酶的活性中心
1,活性中心的概念对于不需要辅酶的酶来说,活性中心就是酶分子在三维结构上比较靠近的少数几个氨基酸残基或是这些残基的某些基团,它们在一级结构上相距可能很远,通过肽链的盘绕、折叠而在空间构象上相互靠近。
对于需要辅酶的酶来说,辅酶分子或辅酶分子的某一部分结构往往就是活性中心的组成部分。
一般认为,活性中心有两个功能部位:底物结合部位,催化部位活性中心外的部位为活性中心的形成提供了结构基础 。
2,活性中心的氨基酸残基有七种a.a在酶活性中心出现的频率最高,它们是Ser、His、Cys、Tyr、Asp、Glu、Lys。
活性中心的a.a残基往往分散在相互较远的a.a顺序中,有的甚至分散在不同的肽链上,如α-胰凝乳蛋白酶活性中心的几个a.a残基,分别位于B、C两个肽链上,靠分子空间结构的形成,集中在酶分子特定区域,成为具有催化功能的活性中心。
酶分子a.a残基分类
(1)接触残基它们与底物接触,参与底物的化学转变,此类a.a残基的一个或几个原子与底物分子中一个或几个原子的距离都在一个键距离之内(1.5-2A)。
它们的侧链起与底物结合作用的称为结合基团,起催化作用的称为催化基团。
(2)辅助残基它不与底物接触,而是在使酶与底物结合及协助接触残基发挥作用方面起作用。
上述两类残基构成酶活性中心。
(3)结构残基在维持酶分子正常三维构象方面起重要作用,它们与酶活性相关,但不在酶活性中心范围内,属于酶活性中心以外的必需残基上述三类残基统称酶的必需基团,若被其它a.a取代,往往造成酶失活。
(4)非贡献残基(非必需基团)
它们对酶活性的显示不起作用,可由其它a.a代替,且在酶分子中占很大比例。
它们可能在免疫,酶活性调节,运输转移,防止降解等方面起作用。
结合底物作用(结合残基)
接触残基
活性中心 催化作用(催化基团)
必需基团辅助残基
活性中心外(结构残基)
酶蛋白
非必需基团
3,活性中心区域的一级结构由于一些酶的活性中心一级结构结构与催化机理极其相似,可把它们归为一族。
蛋白水解酶就有几个族:
(1)丝氨酸蛋白酶(胰凝乳蛋白酶、胰乳蛋白酶、弹性蛋白酶、枯草杆菌蛋白酶等)
(2)锌蛋白酶(羧肽酶等)
(3)巯基蛋白酶(木瓜蛋白酶等)
(4)羧基蛋白酶(胃蛋白酶等)
在同一族酶中,活性中心一级结构的a.a顺序极相似。
酶 a.a顺序胰蛋白酶(牛) Asp-Ser-Cys-Gln-Gly-Asp-Ser-Gly-Gly-Pro-Val-Val-Cys-Ser-Gly-Lys
胰凝乳蛋白酶(牛) Ser-Ser-Cys-Met-Gly-Asp-Ser-Gly-Gly-Pro-Leu-Val-Cys-Lys- Lys-Asn
弹性蛋白酶(猪) Ser-Gly-Cys-Gln-Gly-Asp-Ser-Gly-Gly-Pro-Leu-His-Cys-Leu-Val-Asn
凝血酶(牛) …Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-Met-Lys-Ser-Pro
这4个源于哺乳动物的酶活性中心,都含有一个包括Ser在内的完全相同的六肽:
…Gly-Asp-Ser-Gly-Gly-Pro…
u 同源的趋异进化来自胰脏的胰凝乳蛋白酶(Phe,Tyr,Trp、)、胰蛋白酶(Lys、Arg )和弹性蛋白酶(疏水残基),活性中心Ser附近的a.a顺序相同,且分子一级结构中有40%a.a顺序相同,三维结构也相同,表明它们起源于共同的祖先,但是它们的底物专一性不同。
这种来源于共同祖先,经基因突变而得出不同专一性的结果称为同源的趋异进化。
u 异源的趋同进化来自枯草杆菌的Ser蛋白酶的结构与上述三种酶很不同,且活性中心Ser附近的a.a顺序也不同(-Gly-Thr-Ser-Met-Ala-Ser)。
电荷中继网的位置也不同:
电荷中继网的位置也不同:
Asp102-His57-Ser195(胰凝乳蛋白酶和弹性蛋白酶)
Asp32-His64-Ser221(枯草杆菌蛋白酶)
这表明枯草杆菌蛋白酶与胰凝乳蛋白酶等三个酶来源不同,但它们的电荷中继网相同,功能相同,这种情况称异源的趋同进化。
4,判断和研究活性中心的主要方法
(1)通过酶的专一性(2)酶的化学修饰法(3)亲合标记法(4)X射线晶体衍射法
(二) 酶作用机理举例
1,胰凝乳蛋白酶的作用机理:
(1),专一性

该酶需要底物有一个疏水基团结合于酶上的疏水部位,这个结合起定位作用,使底物敏感键对准酶的催化基团。
疏水定位基团:Phe、Tyr、Trp
(2),催化机理
① 活性中心:Ser195—His57—Asp102,三者构成一个氢键体系,His57的咪唑基是Ser195的羟基和Asp102的羧基之间的桥梁,这个氢键体系称为电荷中继网(hargerelaynetwork)。通过电荷中继网,进行酸碱催化及共价催化。Ser195由于His57和Asp102的影响而成为很强的亲核基团,它是活性中心的底物结合部位,His57是活性中心的催化部位。
PP285 图4-27,P287 图4-30 胰凝乳蛋白酶中的电荷中继网
② 胰凝乳蛋白酶对多肽的水解过程
P288图4—31胰凝乳蛋白酶对多肽的水解过程
第一阶段酰化
Ser195--OH 中的氧攻击肽键的羰基碳,形成四联体过渡态(Ser195—OH、底物的酰基、底物的氨基、His的咪唑),敏感肽键断裂,底物中的胺成分通过氢键与酶的His57咪唑基相连,底物的羧基部分酯化到Ser195的羟基上。
第二阶段脱酰电荷中继网从水中吸收一个质子,结果产生的OH-攻击连在Ser195上底物的羧基碳原子,形成四联体过渡态,然后His57供出一个质子给Ser195上的氧原子,结果底物中的酸成分从Ser195上释放。
除胰凝乳蛋白酶外,在催化中具有Asp-His-Ser电荷中继网的还有胰蛋白酶,弹性蛋白酶,枯草杆菌蛋白酶等,但它们的底物结合部位不同,底物专一性也不同。
P288图4-32三种胰脏中的蛋白酶的底物结合部胰凝乳蛋白酶胰蛋白酶弹性蛋白酶可供芳香环及大 可供带电荷的只能让Ala等小分子的非极性侧链伸入Lys.、Arg进入进入第五节 多酶体系与酶活性的调节控制一,多酶体系
(一) 多酶体系及其分类细胞中的许多酶,常常在一个连续的反应链中起作用,前一个反应的产物是后一个反应的底物。
多酶体系:multienzyme system在完整细胞内的某一代谢途径中,由几个酶形成的反应链体系。
可分为三种类型:可溶性的(分散性的),结构化的(多酶复合体),在细胞结构上有定位关系的(结构化程度更高)。
P297 图4—42(分散性的多酶体系)图4-43 (多酶复合体)
(二) 多酶体系的自我调节
(1)大部分具有自我调节能力的多酶体系,第一步反应就是限速步骤,它控制着全部反应序列的总速度。
(2)反馈抑制与底物激活催化第一步反应的酶,大多都是别构酶,能被全部反应序列的最终产物所抑制,有时则是反应序列分叉处的酶受到最终产物的抑制,称为反馈抑制;有的被底物激活
P299 图4-45反馈抑制与底物激活
正调节物:一般是别构酶的底物,可以激活别构酶。
负调节物:可以抑制别构酶,一般是代谢序列的最终产物。
通过多酶体系的自我调节(反馈抑制和底物激活),可使代谢过程得以协调地、有条不紊地合理进行。
下面讨论具体到每个酶是怎样调节的二,酶活性的调节控制和调节酶调节酶:活性可被调节的酶,主要是别构酶和共价调节酶。
(一) 别构效应的调控别构效应:调节物(效应物)与别构酶分子中的别构中心(调节中心)结合后,诱导产生或稳定住酶分子的某种构象,使酶活性中心对底物的结合催化作用受到影响,从而调节酶促反应的速度。
(1),别构酶的结构特点和性质
(1) 已知的别构酶都是寡聚酶,含有两个或两个以上亚基
(2) 具有活性中心和别构中心(调节中心),活性中心负责底物结合和催化,别构中心负责调节酶反应速度。活性中心和别构中心处在不同的亚基上或同一亚基的不同部位上。
(3) 多数别构酶不止一个活性中心,活性中心间有同种效应,底物就是调节物:有的别构酶不止一个别构中心,可以接受不同的代谢物的调节。
(4) 别构酶由于同位效应和别构效应,不遵循米式方程,动力学曲线也不是典型的双曲线型,而是S型(同位效应为正协同效应)和压低的近双曲线(同位效应为负协同效应)。
(2),别构酶的动力学曲线
① 同位效应为正协同效应的别构酶是S型曲线
P303图4-46 4-47
这种S形曲线体现为,当底物浓度发生较小变化时,别构酶可以极大程度地控制反应速度,这是别构酶可以灵活地调节反应速度的原因。
米氏酶:[S]0.9/[S]0.1=81
别构酶:[S]0.9/[S]0.1=3
表明当底物浓度发生较小变化时,如上升3倍,别构酶的酶促反应速度可以从0.1Vmax升至0.9Vmax 。
当增加正调节物浓度时Km减小,亲和力增大,协同性减小:当增加负调节物的浓度时Km增加,亲和力减小,协同性增大(对底物浓度的反应灵敏度增加)。
② 同位效应为负协同效应的别构酶是近似双曲线
P304图4-48
负协同效应时酶的反应速度对底物浓度的变化不敏感
(3),别构酶调节活性的机理
① 序变模型:
酶分子中亚基结合底物后,构象逐个地依次变化。
② 齐变模型:
(4),别构酶的鉴定
① S型曲线是必要但不充分条件
② 脱敏作用
③ [S]0.9/[S]0.1
Rs=81 米氏酶
Rs<81 正协同
Rs>81 负协同
④ Hill系数法
(二) 可逆共价修饰的调控(共价调节酶)
共价调节酶:酶分子被其它的酶催化进行共价修饰,从而在活性形式与非活性形式之间相互转变。
举例:糖原磷酸化酶
P313图4-57
信号的级联放大:
1分子磷酸化酶激酶,活化生成几千个磷酶化酶a
1分子磷酸化酶a,催化生成几千个1-P-G
共价调节酶的两种常见类型
①磷酸化 去磷酸化 -OHATP
②腺苷酰化脱腺苷酰化腺苷酰基由ATP提供
(三) 酶原的激活具有不可逆性。属于此类的有消化系统中的酶(胰蛋白酶,胰凝乳蛋白酶,胃蛋白酶)和血液凝固系统中的酶。
(1),胰凝乳蛋白酶原的激活(由胰蛋白酶激活)
P314图4-58
(2),胰蛋白酶对胰脏蛋白酶原的激活
肠激酶
胰蛋白酶原 胰蛋白酶
胰凝乳蛋白酶原弹性蛋白酶原
胰蛋白酶胰凝乳蛋白酶弹性蛋白酶
羧肽酶原羧肽酶
(四) 专一性调控蛋白(调控因子)对酶活性的调节控制钙调蛋白、激素结合蛋白,促进或抑制特异的酶活性第六节 酶与抗体——抗体酶 abzyme(antibody enzyme)
参阅 P293
又称催化性抗体(catalytic antibody),是一种具有催化功能的抗体分子。
过渡态理论:酶与底物不是在基态,而是在过渡态结构互补,亲和力最强,释放出的结合能使过渡态结合物能级降低,利于反应物分子越过能垒,加速反应。
而抗体与抗原是基态结合。
第七节 同工酶、诱导酶
1,同工酶能催化同一种化学反应,但其酶蛋白本身的分子结构不同的一组酶,存在于生物的同一种属或同一个体的不同组织中,甚至同一组织、同一细胞中。
哺乳动物乳酸脱氢酶有5种
CH3CHOH-COO-+NAD+LDH CH3COCOO-+NADH+H+
均由4个亚基组成
HHHH 在心肌中占优势
HHHM
HHMM
HMMM
MMMM 在骨骼肌中占优势
2,诱导酶酶可相对地区分为结构酶和诱导酶。
结构酶:指正常细胞内存在的酶,它的含量较稳定,受外界因素影响很小。
诱导酶:在正常细胞中含量极少或没有,当细胞中加入特定诱导物后,诱导产生的酶,含量在诱导物存在下显著增高,诱导物往往是该酶的底物或底物类似物。
如:大肠杆菌中的β-半乳糖苷酶
E.coli在含Glc的培养基中
E.coli在只含乳糖的培养基中:Glc-β(1→4)Gal苷第八节 酶工程
计划:8学时
第六章 核 酸核酸是遗传物质
1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli
用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coli
DNA、RNA的分布(DNA在核内,RNA在核外)。
第一节 核酸的化学组成核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次: 核酸
核苷酸
磷酸核苷

戊糖 碱基组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)
P330 表5-1两类核酸的基本化学组成一,碱基
1,嘌呤碱:腺嘌呤鸟嘌呤
2,嘧啶碱: 胞嘧啶 尿嘧啶 胸腺嘧啶
P331 结构式
3,修饰碱基植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二,核苷核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷
P332结构式腺嘌呤核苷胞嘧啶脱氧核苷
DNA 的戊糖是:脱氧核糖
RNA 的戊糖是:核糖三,核苷酸核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1,构成DNA、RNA的核苷酸
P333表5-3
2,细胞内游离核苷酸及其衍生物
①核苷5’-多磷酸化合物
ATP、GTP、CTP、ppppA、ppppG
在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸
cAMP(3’,5’-cAMP) cGMP(3’,5’-cGMP)
它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物
ppGpppppGppppApp
④核苷酸衍生物
HSCoA,NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
第二节 DNA的结构一级:脱氧核苷酸分子间连接方式及排列顺序。
二级:DNA的两条多聚核苷酸链间通过氢键形成的双螺旋结构。
三级:DNA双链进一步折叠卷曲形成的构象。
一,DNA的一级结构
DNA的一级结构是4种脱氧核苷酸(dAMP、dGMP、dCMP、dTMP)通过3/、5/-磷酸二酯键连接起来的线形多聚体。3/、5/-磷酸二酯键是DNA、RNA的主链结构 。
P334图5-1
书写方法:5/ → 3/:
5’-pApCpTpG-3’,或5’…ACTG…3’(在DNA中,3/-OH一般是游离的)
在DNA分子中,不变的骨架成分磷酸二酯键被逐渐省略,真正代表DNA生物学意义的是碱基的排列顺序。
遗传信息贮存在DNA的碱基排列顺序中,生物界生物的多样性即寓于DNA分子4种核苷酸千变万化的精确的排列顺序中。
二,DNA的二级结构
1953年,Watson和Crick根据Chargaff 规律和DNA Na盐纤维的X光衍射数据提出了DNA的双螺旋结构模型。
1,Watson-Crick双螺旋结构建立的根据
①Chargaff 规律 1950年
a,所有DNA中,A=T,G=C且A+G=C+T。
P334表5—4。
b,DNA的碱基组成具有种的特异性,即不同生物的DNA皆有自己独特的碱基组成。
c,DNA碱基组成没有组织和器官的特异性。
d,年龄、营养状况、环境等因素不影响DNA的碱基组成。
② DNA的Na盐纤维和 DNA晶体的X光衍射分析。
相对湿度92%,DNA钠盐结晶,B—DNA。
相对湿度75%,DNA钠盐结晶,A—DNA。
Z—DNA。
生物体内DNA均为B—DNA。
Franklin 的工作
2,Watson-Crick双螺旋结构模型
P335 图5—2
a.两条反平行的多核苷酸链绕同一中心轴相缠绕,形成右手双股螺旋,一条5’→3’,另一条3’→5’
b.嘌呤与嘧啶碱位于双螺旋的内侧,磷酸与脱氧核糖在外侧。磷酸与脱氧核糖彼此通过3/、5/-磷酸二酯键相连接,构成DNA分子的骨架。
宽1.2 nm宽0.6nm
大沟小沟
深0.85nm 深0.75nm
c.螺旋平均直径2nm
每圈螺旋含10个核苷酸碱基堆积距离:0.34nm
螺距:3.4nm
d.两条核苷酸链,依靠彼此碱基间形成的氢链结合在一起。碱基平面垂直于螺旋轴。A=T、G=C
P336图5—4
碱基互补原则具有极重要的生物学意义,DNA的复制、转录、反转录等的分子基础都是碱基互补。
3,稳定双螺旋结构的因素
①碱基堆积力(主要因素) 形成疏水环境。
②碱基配对的氢键。GC含量越多,越稳定。
③磷酸基上的负电荷与介质中的阳离子或组蛋白的正离子之间形成离子键,中和了磷酸基上的负电荷间的斥力,有助于DNA稳定。
④碱基处于双螺旋内部的疏水环境中,可免受水溶性活性小分子的攻击。
三,DNA二级结构的不均一性和多型性
(一) DNA二级结构的不均一性
1,反向重复序列(回文序列)
DNA序列中,以某一中心区域为对称轴,其两侧的碱基对顺序正读和反读都相同,即对称轴一侧的片段旋转180°后,与另一侧片段对称重复。
较长的回文结构,在某些因素作用下,可形成茎环式的十字结构和发夹结构。功能还不完全清楚,但转录的终止作用与回文结构有关。
较短的回文序列,可作为一种特别信号,如限制性核酸内切酶的识别位点。
2,富含A T的序列高等生物中,A+T与C+G的含量差不多相等,但在它们的染色体的某一区域,A T含量可能很高。
在很多有重要调节功能(不是蛋白质编码区)的DNA区段都富含A T碱基对。特别是在复制起点和启动的Pribnow框的DNA区中,富含A T对。这对于复制和转录的起始十分重要,因为G C对有三个氢键,而A T对只有两个氢键,此处双键易解开。
(二) DNA二级结构的多型性
P339表5-6 A-、B-、Z-DNA的比较
1,B—DNA:典型的Watson-Crick双螺旋DNA
右手双股螺旋每圈螺旋10.4个碱基对每对螺旋扭角36°
螺距:3.32nm
碱基倾角:1°
2,A-DNA
在相对湿度75%以下所获得的DNA纤维。
A-DNA也是右手双螺旋,外形粗短。
RNA-RNA、RNA-DNA杂交分子具有这种结构。
3,Z-DNA
左手螺旋的DNA。
天然B-DNA的局部区域可以形成Z0-DNA。
4,DNA三股螺旋在多聚嘧啶和多聚嘌呤组成的DNA螺旋区段,序列中有较长的镜像重复时,可形成局部三股螺旋,称H-DNA。
镜像重复:
TAT配对
C+GC酸对
DNA的三链结构常出现在DNA复制、重组、转录的起始或调节位点,第三股链的存在可能使一些调控蛋白或RNA聚合酶等难以与该区段结合,从而阻遏有关遗传信息的表达。
四,环状DNA
生物体内有些DNA是以双链环状DNA的形式存在,包括:
某些病毒DNA
某些噬菌体DNA
某些细菌染色体DNA
细菌质粒DNA
真核细胞中的线粒体DNA、叶绿体DNA
1,环形DNA的不同构象
P340 图5-8松驰环、解链环、负超螺旋
(1),松弛环形DNA
线形DNA直接环化
(2),解链环形DNA
线形DNA拧松后再环化
(3),正超螺旋与负超螺旋DNA
线形DNA拧紧或拧松后再环化,成为超螺旋结构。
绳子的两股以右旋方向缠绕,如果在一端使绳子向缠紧的方向旋转,再将绳子两端连接起来,会产生一个左旋的超螺旋,以解除外加的旋转造成的胁变,这样的超螺旋叫正超螺旋。
如果在绳子一端向松缠方向旋转,再将绳子两端连接起来,会产生一个右旋的超螺旋,以解除外加的旋转所造成的胁变,这样的超螺旋称负超螺旋。
对于右手螺旋的DNA分子,如果每圈初级螺旋的碱基对数小于10.4,则其二级结构处于紧缠状态,是正超螺旋。
如果每圈初级螺旋的碱基对数大于10.4,则其二级结构处于松缠状态,是负超螺旋。
2,环形DNA的拓扑学特性以260bp组成的线形B-DNA为例,螺旋周数260/10.4=25。
P340图25-8松驰环、解链环、负超螺旋
①连环数(L)
DNA双螺旋中,一条链以右手螺旋绕另一条链缠绕的次数,以L表示。
松驰环:L=25
解链环:L=23
超螺旋:L=23
②缠绕数(T)
DNA分子中的Watson-Crick螺旋数目,以T表示松驰环T=25
解链环T=23
超螺旋T=25
③超螺旋周数(扭曲数W)
松驰环W=0
解链环W=0
超螺旋W= -2
L=T+W
④比连环差(λ)
表示DNA的超螺旋程度
λ=(L—L0)/L0
L0是指松驰环形DNA的L值天然DNA的超螺旋密度一般为-0.03~-0.09,平均每100bp上有3-9个负超螺旋。
负超螺旋DNA是由于两条链的缠绕不足引起,很易解链,易于参加DNA的复制、重组和转录等需要将两条链分开才能进行的反应。
3,拓扑异构酶此酶能改变DNA拓扑异构体的L值。
①拓扑异构酶酶I(拧紧)
能使双链负超螺旋DNA转变成松驰形环状DNA,每一次作用可使L值增加1,同时,使松驰环状DNA转变成正超螺旋。
②拓扑异构酶酶II(拧松)
能使松驰环状DNA转变成负超螺旋形DNA,每次催化使L减少2,同时能使正超螺旋转变成松驰DNA。
五,染色体的结构
1,大肠杆菌染色体大肠杆菌染色体是由4.2×106bp组成的双链环状DNA分子,约3000个基因。
大肠杆菌DNA结合蛋白: 每个细胞
H两个28KD的相同亚基 30000个二聚体
HU 两个各9KD的不同亚基40000个二体聚体
HLP1 17KD的亚基20000个单体
P 3KD的亚基未知
这些DNA结合蛋白,使4.2×106bp的E.coli染色体DNA压缩成为一个手脚架形结构,结构中心是多种DNA结合蛋白,DNA双螺旋分子有许多位点与这些蛋白结合,形成约100个小区,每个小区的DNA都是负超螺旋,一个小区的DNA有两个端点被蛋白质固定,每个小区相对独立。

用极微量的DNA酶I处理时,只能使少量小区的DNA成为松驰状态,而其它小区仍然保持超螺旋状态。
2,真核生物染色体主要由组蛋白和DNA组成。
组蛋白是富含碱性a.a(Lys、Arg)的碱性蛋白质,根据Lys/Arg比值不同,可分为H1、H2A、H2B、H3、H4五种,均为单链蛋白质,分子量11000-21000。
H2A、H2B、H3、H4各两分子对称聚集成组蛋白八聚体。
146bp长度的DNA双螺旋盘绕在八聚体上形成核小体。
核小体间DNA长度15-100bp(一般60bp)其上结合有H1

2H2A、2H2B、2H3、2H4组蛋白八聚体 146bpDNA 核小体
串联染色质 折叠染色体
DNA(直径2nm)
盘绕组蛋白八聚体上,结合H1,压缩比1/7
核小体(一级结构)
螺旋化,压缩比1/6
螺线管(二级结构)
再螺旋化,压缩比1/40
超螺线管(三级结构)
折叠,压缩比1/5
染色单体(四级结构)
总压缩比:1/8400~1/10000
六,DNA的生物学功能首次直接证明DNA的遗传功能的是Avery的肺炎双球菌转化实验。
P3421~4 Avery的肺炎双球菌转化实验第三节 RNA的结构一,RNA的一级结构
RNA是AMP、GMP、CMP、UMP通过3/、5/磷酸二酯键形成的线形多聚体。
P343图5-10RNA基本结构
① 组成RNA的戊糖是核糖
② 碱基中RNA的U替代DNA中的T,此外,RNA中还有一些稀有碱基。
③ 天然RNA分子都是单链线形分子,只有部分区域是A-型双螺旋结构。双螺旋区一般占RNA分子的50%左右。
二,RNA的类型细胞中的RNA,按其在蛋白质合成中所起的作用,主要可分为三种类型。
核糖体RNArRNA
转运RNAtRNA
信使RNA mRNA
此外,真核生物细胞中有少量核内小RNA(small nuclear RNA snRNA)
P344表5-7大肠杆菌中的RNA
沉降系数:单位离心场中的沉降速度,以S为单位,即10-13秒。
如23S rRNA,单位离心场中沉降23×10-13秒
5S rRNA,单位离心场中沉降 5×10-13秒三,tRNA的结构
tRNA约占全部RNA的15%
主要功能:在蛋白质生物合成过程中转运氨基酸。
已知一级结构的tRNA有160种,每种tRNA可运载一种特定的a.a,一种a.a可由一种或多种tRNA运载。
结构特点
①分子量在25kd左右,70-90b,沉降系数4S左右
②碱基组成中有较多稀有碱基

③3’末端为…CpCpA-OH,用来接受活化的氨基酸,此末端称接受末端。
④5’末端大多为pG…或pC…
⑤二级结构是三叶草形
P345图5-12tRNA的二级结构(三叶草模型)
1966年Crick对于tRNA能识别几种密码子的现象,提出碱基配对的“摆动学说”:
认为除A-U、G-C配对外,还有非标准配对,I-A、I-C、I-U,并强调密码子的5’端第1、2个碱基严格遵循标准配对,而第3个碱基可以非标准配对,具有一定程度的摆动灵活性。
四,mRNA的结构
mRNA是从DNA上转录而来的,其功能是依据DNA的遗传信息,指导各种蛋白质的生物合成,每一种蛋白质都由一种相应的mRNA编码,细胞内 mRNA种类很多,大小不一,每种含量极低。
从功能上讲,一个基因就是一个顺反子,原核生物的mRNA是多顺反子,真核mRNA是单顺反子。
顺反子:是由顺反试验所规定的遗传单位,相当于一种蛋白质的基因。
1,真核mRNA
(1),3’-端有一段约30-300核苷酸的polyA。
PolyA是转录后,经polyA聚合酶添加上,polyA聚合酶对mRNA专一。
原核mRNA一般无polyA。polyA与mRNA半寿期有关,新合成的mRNA,其polyA较长;而衰老的mRNA,其polyA较短。
polyA功能:
PolyA是mRNA由核进入胞质所必需的形式。
PolyA大大提高mRNA在胞质中的稳定性。
(2),5’-帽子帽子
5’末端的鸟嘌呤N7被甲基化,鸟嘌呤核苷酸经焦磷酸与相邻的一个核苷酸相连,形成5’-5’-磷酸二酯键。
P346 帽子结构
帽子的功能:
可抵抗5’核酸外切酶降解mRNA。
可为核糖体提供识别位点,使mRNA很快与核糖体结合,促进蛋白质合成起始复合物的形成。
2,原核mRNA(多顺反子)
原核mRNA由先导区、插入序列、翻译区和末端序列组成。没有5/帽子和3/polyA。
举列:MS2病毒mRNA,3569 b,有三个顺反子,分别编码A蛋白、外壳蛋白和复制酶三种蛋白质。
图MS2病mRNA
5’端先导区中,有一段富含嘌呤的碱基序列,典型的为5’-AGGAGGU-3’,位于起始密码子AUG前约10核苷酸处,此序列由Shine和Dalgarno发现,称SD序列。
SD序列和核糖体16S的rRNA的3’末端富含嘧啶碱基的序列互补,这种互补序列与mRNA对核糖体的识别有关。
原核mRNA代谢很快,半寿期几秒至十几分钟。
五,rRNA的结构
rRNA占总RNA的80%左右。
功能:rRNA是构成核糖体的骨架,与核糖体结合蛋白一起构成核糖体,为蛋白质的合成提供场所。
大肠杆菌中有三类rRNA(原核)
5S rRNA
16S rRNA
23S rRNA
真核细胞有四类rRNA
5S rRNA
5.8S rRNA
18S rRNA
28S rRNA
图原核核糖体(rRNA 部分)
图 真核核糖体(rRNA部分)
P346图5-14 大肠杆菌5S rRNA结构第四节 核酸的性质一,解离性质多聚核苷酸有两类可解离的基团:磷酸和碱基能发生两性解离。
磷酸是中等强度的酸,碱基的碱性较弱,因此,核酸等电点在较低的pH范围内。
DNA等电点4—4.5
RNA 等电点 2—2.5
RNA链中,核糖C’2-OH的氢能与磷酸酯中的羟基氧形成氢链,促进磷酸酯羟基氢原子的解离。
二,水解性质
1,碱水解室温,0.1mol/LNaOH可将RNA完全水解,得到2’-或3’-磷酸核苷的混合物。

在相同条件下,DNA不被水解。这是因为RNA中C’2-OH的存在,促进了磷酸酯键的水解。
DNA、RNA水解难易程度的不同具有极为重要的生理意义。
DNA稳定,遗传信息。
RNA是DNA的信使,完成任务后降解。
2,酶水解生物体内存在多种核酸水解酶
RNA水解酶RNase
DNA水解酶DNase
核酸外一切酶核酸内切酶最重要的:限制性核酸内切酶三,光吸收性碱基具有共轭双键,使碱基、核苷、核苷酸和核酸在240~290nm的紫外波段有强烈的光吸收,λmax=260nm
1,鉴定纯度纯DNA的A260/A280应为1.8(1.65-1.85),若大于1.8,表示污染了RNA。
纯RNA的A260/A280应为2.0。
若溶液中含有杂蛋白或苯酚,则A260/A280比值明显降低。
2,含量计算
1 ABS值相当于:50ug/mL双螺旋DNA
或:40ug/mL单螺旋DNA(或RNA)
或:20ug/mL核苷酸
3,增色效应与减色效应
P347图5-15DNA的紫外吸收光谱
增色效应:在DNA的变性过程中,摩尔吸光系数增大减色效应:在DNA的复性过程中,摩尔吸光系数减小。
四,沉降特性(DNA)
不同构象的核酸(线形、环形、超螺旋),起密度和沉降速率不同,用Cs-Cl密度梯度离心就可以将它们区分开来,这一方法常用于质粒DNA的纯化。
P348 图5—16Cs-Cl密度梯度离心纯化质粒DNA
相对沉降常数线型双螺旋分子1.00
松驰双链闭环1.14
切刻双链环1.14
单链环1.14
线型单链1.30
正超或负超螺旋双链环状1.41
坍缩3.0
五,变性、复性及杂交变性、复性是核酸的重要的物化性质,相对蛋白质来说,核酸可以耐受反反复复的变性、复性。这也是核酸研究技术的基础。
1,变性
(1),变性:
核酸双螺旋区的氢键断裂,变成单链,不涉及共价键断裂。多核苷酸骨架上共价键的断裂称核酸的降解。
DNA的变性是爆发式的,变性作用发生在一个很窄的温度范围内。
P350图5-18变性过程
热变性因素酸碱变性(pH小于4或大于11,碱基间氢键全部断裂)
变性剂(尿素、盐酸胍、甲醛)
260nm吸收值升高。
变性后 粘度降低,浮力密度升高。
二级结构改变,部分失活。?
(2),熔解温度(Tm)或称熔点:
DNA的双螺旋结构失去一半时对应的温度。DNA的Tm一般在70—85℃之间。
浓度50ug/mL时,双链DNAA260=1.00,完全变性(单链)A260= 1.37当A260增加到最大增大值一半时,即1.185时,对应的温度即为Tm。
(3),影响DNA的Tm值的因素
①DNA均一性 均一性高,熔解过程发生在很小的温度范围内。
②G-C含量与Tm值成正比,G-C含量高,则Tm越高,测定Tm,可推知G-C含量。。
G-C%=(Tm-69.3)×2.44
P351图5-19 图5-20 Tm值与GC含量的关系
③介质中离子强度其它条件不变,离子强度高,Tm高。
P351图5-21
2,复性变性DNA在适当(一般低于Tm20—25℃)条件下,两条链重新缔合成双螺旋结构。
变性DNA在缓慢冷却时(快速冷却可防止复性),可以复性。DNA片段越大,复性越慢;DNA浓度越大,复性越快。
复性速度可用Co·t衡量。
Co为变性DNA原始浓度mol·L-1,t为时间,以秒表示。
P352图5-22,不同DNA的复性时间。
A.1个核苷酸对(A.U)
图上查出Cot1/2=4×10-6mol.s/L
若浓度为Co=1.0m mol/L
则复性50%所需时间t=0.004秒若要全部复性,Cot=10-4t=0.1秒
B.E.coli4.2×106碱基对图上查出Cot1/2=10 mol.s/L
若浓度Co=1.0 umol/L则复性50%所需时间t=107秒,约115天。复性100%Cot=500 mol.s/L
t=5×108秒,5758天。
对于E.coli,4.2×106bp,浓度达到umol/L级时,浓度已很高。?
复性机制:10-20bp成、拉链
3,杂交(DNA—DNA,DNA—RNA)
将不同来源的DNA混合加热,变性后,慢慢冷却使它复性。若这些异源DNA之间,在某些区域有相同的序列,则复性时会形成杂交分子。
第五节 核酸研究技术一,核酸的分离纯化要求:尽可能保持其天然状态。
条件温和,防止过酸、过碱。
避免剧烈搅拌,抑制核酸酶。
1,DNA分离纯化真核DNA以核蛋白(DNP)形式存在,DNP溶于水或盐(1mol/L),但不溶于0.14mol/L Nacl中,利用此性质,可将DNP与RNA核蛋白分开,提取出DNP。
DNA核蛋白可用水饱和的酚抽提,去除蛋白质。还可用氯仿异戊醇去除蛋白质。
2,RNA的制备(重点介绍mRNA的分离、纯化)
用0.14mol/L Nacl使DNP沉淀,上清中即为RNA核蛋白(RNP)。
去蛋白:盐酸胍、苯酚等必须防止RNA酶对RNA的破坏。
二,核酸的凝胶电泳
1,琼脂糖电泳
① 核酸分子的大小,迁移率与分子量的对数成反比
② 凝胶浓度
③ DNA的构象,超螺旋最快,线形其次,环形最慢。
④ 电流,不大于5V/cm
2,PAGE电泳三,限制性核酸内切酶(1979年发现)
1,限制修饰系统

2,II型核酸内切酶核酸内切酶有I、II、III三种类型,其中II型酶在DNA克隆中十分有用。
II型酶的特点:限制和修饰活性分开,蛋白质结构是单一成分,辅助因子Mg2+,位点序列旋转对称(反向重复)。
II型酶的切割频率识别位点 4 44=256
6 46=4096
8 48=65536
Not IGCGGCCGC
限制酶的命名:E.coRI
第一位:属名E(大写)
第二、三位:种名的头两个字母小写co
第四位:菌株R
第五位:罗马字,从该细菌中分离出来的这一类酶的编号。
同裂酶:来源不同的限制酶(名称自然不同),识别同样的核苷酸靶序列,产生同样的切割,形成同样的末端。
BamH:GGATCC 同裂酶 BstI
识别位点相同,切割位点相同,产生同样的粘性末端。
同尾酶:来源各异,识别的靶序列不同,但都产生相同的粘性末端。
BamHI:GGATCC
同裂酶:BstI GGATCC
同尾酶:BclITGATCA BglIIAGATCT
MboIGATCSau3AGATC
星号活力:在一定条件下(低离子强度,碱性pH,或50%甘油),限制酶的特异性降低。结果,它的识别与切割所需的典型的核苷酸序列的数量和种类会发生变化。
例如HindIII AAGCTT
四,DNA物理图谱及构建
(限制酶切图谱、DNA酶切位点图谱)
在研究某一种DNA时,弄清该DNA分子有哪些限制酶切位点是很重要的。建立物理图谱是进一步分析此DNA的基础,末端标记法构建DNA物理图谱:
(1)单酶完全降解和部分降解
(2)双酶降解
图五,分子杂交
1,Southern Blotting
P353 图5-23
DNA样品酶切 电泳 变性 转膜固定 杂交 洗涤放射自显影变性(NaOH 0.5mol/L)
转膜(NC膜)
固定(80℃,4-6h)
杂交(高盐浓度,68℃,几小时)
Southern Blotting可用于DNA之间同源性分析,确定特异性DNA序列的大小和定位。
可用DNA或RNA探针。
2,Northern Blotting
研究对象是mRNA
检测可与探针DNA同源杂交的mRNA分子的存在,因而可以研究细胞内特定mRNA的产生,即特定基因的表达。
mRNA易形成局部二级结构,因此,总RNA或mRNA需在变性条件下电泳,乙二醛、甲醛可防止RNA形成二级结构。
3,Western Blotting
是研究克隆基因表达产物、鉴定克隆株的常用技术。
六,DNA序列分析
(一) 化学裂解法(Maxam-Gilbert 法)
DNA一级结构测定原理:
利用特异性的化学裂解法,制备出具有同一标记末端,而另一端是长度只差一个核苷酸的片段群,然后将此片段群在能够分辨长度只差一个核苷酸DNA片段的PAGE上分离。
一定浓度的特测片段
32P-GCTACGTA
特异性化学裂解在A处:32P-GCT和32P-GCTACGT
在G处:32p-GCTA
在C处:32P-G和 32P-GCTA
在T处:32P-GC和32P-GCTACG

硫酸二甲酯特异切割:G
甲酸特异切割:G和A
肼在Nacl条件下切割:C
肼在无 Nacl条件下切割:T和C
32P *ACTTCGACAA
硫酸二甲酯: *ACTTC
甲酸: *P
*ACTTC
*ACTTCG
*ACTTCGAC
*ACTTCGACA
肼(有Nacl):*A
*ACTT
*ACTTCGA
肼(无Nacl):*A
*AC
*ACT
*ACTT
*ACTTCGA
从下往上读:CTACGTA
末端G不能读出。
(二) 双脱氧终止法英国 Sanger
1955确定牛胰岛素结构
1958获诺贝尔化学奖
1980设计出DNA测序法
1980再获诺贝尔化学奖合成一段与待测DNA序列互补的DNA片段群。

胰岛素的基因工程:A链21a.a 63个核苷酸
B链30a.a 90个核苷酸
(三) 序列分析仪四色荧光基团标记的ddNTP
七,DNA合成(合成探针、引物、基因)
1,化学合成——DNA合成仪
DNA固相合成(亚磷酸三酯法)
合成方向:3’5’端
5’-OH用二对甲氧三苯甲基(DMT)保护,
碱基上氨基用苯甲酸保护
3’-OH用氨基磷酸化合物活化
P353合成过程
保护,5’-OH、活化3’-OH、保护所有NH2
2,DNA的酶合成——PCR
用DNA聚合酶I
必备条件:
①模板DNA(单链)
②引物
③DNA聚合酶
④dATP,dGTP、dCTP、dTTP
⑤一定浓度的Mg2+
链合成方向:5’3’端新的DNA链合成,从引物DNA的3’-OH开始。

链的增长反应是引物DNA的3’-OH,对脱氧核糖核苷三磷酸的α-磷原子亲核进攻的结果。
化学合成:方向3’ 5’,不需DNA模板,不用酶。
生物合成:方向5’ 3’,需模板,引物,用酶。
第七章激素第一节 概 论重点:分泌(来源)、化学本质、作用机理、常见激素的功能。
一,激素的概念
1,激素早期概念:由动物器官产生,通过血液到达靶器官,并产生特异激动效应的一类化合物。
现在概念:机体内一部分细胞产生,通过扩散、血液运送至另一部分细胞,并起代谢调节控制作用的一类微量化学信息分子。
广义概念:多细胞生物体内,协调不同细胞活动的化学信使。它使高等生物体的细胞、组织和器官,既分工又协作。
2,分泌特点《顾天爵》P 314
(1)内分泌:内分泌细胞分泌激素,进入血液循环,转运至靶细胞,产生激动效应。
(2)旁分泌:部分细胞分泌激素,通过扩散,作用于邻近的细胞。
(3)自分泌:细胞分泌的激素对自身或同类细胞发挥作用。
(4)外激素:从体内分泌,排出体外,通过空气、水等传插,引起同种生物产生生理效应。
二,激素分类(按化学本质分类)
P421~423 表8-1、8-2
1,含氮激素含氮激素是一大类激素,包括蛋白质、肽、儿茶酚等水溶性大分子,不易通过细胞膜。通过与膜受体结合,诱导生成第二信使,将信号转导入细胞内。
胺类激素:儿茶酚
a.a衍生物类激素:甲状腺素肽类激素:抗利尿素蛋白质类激素:生长素、胰岛素,促卵泡激素(FSH)、黄体生成素(LH)
垂体和下丘脑分泌的激素都是含氮激素(蛋白类、多肽类),甲状腺、甲状旁腺、肾上腺髓质、胰岛、肠黏膜、胃黏膜、等分泌的激素也是含氮激素。
2,甾体激素(甾醇类激素)
肾上腺皮质、性腺、胎盘等分泌的激素都属此类。类固醇激素、甲状腺素等小分子脂溶性激素,可通过细胞膜进入细胞内,与细胞质内受体结合,然后进入细胞核发挥作用。
3,脂肪族激素(脂肪酸衍生物激素)
主要是前列腺素PG,目前已知有几十种此类激素。
三,激素作用的特点
1,信号传递作用
2,级联放大作用极微量的激素,就可产生强烈的生理效应。在体内的水平一般在10-7-10-12mol/L(10-9—10-15 mol/L)
3,相对特异性激素与受体结合是专一的,受体在靶细胞膜表面或细胞内部,甾醇类激素可穿过细胞膜。
4,作用的时效性有些激素到达靶细胞后,几秒钟内起作用;另一些需几小时至几天才达到最大生理效应,在血液中寿命较短。
5,激素间的相互作用
几种激素之间有时相互协同,有时相互抑制。
第二节 激素的分泌与控制一,下丘脑分泌的激素(多肽,共有十种)
丘脑下部的神经细胞能分泌多种肽类激素,它们经垂体门静脉系统,到达腺垂体,促进或抑制腺垂体某些激素的释放下丘脑激素直接控制垂体激素的分泌,通过垂体间接控制其它外周内分泌腺的分泌。
下丘脑激素由下丘脑的某些神经细胞分泌,而这些细胞的分泌功能则由神经作用通过神经介质来调节。
P421
1,促甲状腺激素释放因子(TRF)
由焦谷—组—脯组成的三肽激素。
功能:促进促甲状腺激素(TSH)的分泌。
2,促黄体生成激素释放因子(LRF)
卵巢分泌的雌性激素(孕酮、雌二醇)对LRF的分泌有负反馈抑制作用。
3,促肾上腺皮质激素释放因子(CRF)
促进垂体前叶释放促肾上腺皮质激素(ACTH)
4,生长激素释放抑制因子(GRIF)
能抑制生长激素的分泌,且抑制胰高血糖素分泌,促进胰岛素分泌。
二,垂体分泌的激素(蛋白质)
(一) 垂体前叶激素
1,生长激素(GH)
是蛋白质,动物的生长激素分子量20000-50000不等,人的GH分子量 21500,191个a.a
功能:刺激骨骼生长,促进粘多糖及胶原的合成,影响蛋白质、糖、脂代谢,最终影响体重的增长。
2,促甲状腺激素(TSH)
功能:促进甲状腺的发育及分泌。
促甲状腺激素的分泌受下丘脑分泌的促甲状腺激素释放因子的促进。
3,促黄体生成激素(LH)
功能:促进卵泡发育成黄体,促进胆甾醇转变成孕酮并分泌孕酮,阻止排卵,抑制动情。
4,促卵泡激素(FSH)
功能:促使卵巢(精巢)发育,促进卵泡(或精子)的生成和释放。
5,催乳激素(LTH)
功能,刺激乳腺分泌乳汁,刺激并维持黄体分泌孕酮。
LTH大大促进乳腺中RNA及蛋白质的合成,还使乳腺中许多参与糖代谢、脂代谢的酶活力增大。
6,促肾上腺皮质激素(ACTH)
功能:促进体内储存的胆甾醇在肾上腺皮质中转化成肾上腺皮质酮,并刺激肾上腺分泌激素。
(二) 垂体后叶激素(由下丘脑合成,贮存在神经垂体中)
1,催产素
结构:P115图3-32
功能:使多种平滑肌收缩(特别是子宫收缩)。孕酮可抑制催产素的作用。
2,加压素(抗利尿素)
功能:使小动脉收缩,增高血压,并可减少排尿,调节水代谢。
三,腺体分泌的激素(外周内分泌腺)
P422—423
1,甲状腺、甲状旁腺
2,肾上腺(髓质)
3,胰岛
4,肾上腺(皮质)糖皮质、盐皮质
四,激素分泌的调节控制
P463
1,上级对下一级的调节
大脑皮层
丘脑下部
促激素释放(抑制)因子
垂 体
促激素
外周腺体
激素
外围激素

最终靶细胞
2,负反馈作用是机体对激素的产生和分泌进行调节的基本方式之一。能维持激素浓度的相对稳定,保持对激素效应的控制。
外围激素对下丘脑或垂体的调节称长负反馈,促激素对下丘脑的调节称短负调节。
下丘脑本身产生的激素对下丘脑的调节称超短负反馈。
3,酶的分步剪切调节有的激素经几个酶作用,在不同水平上被分步剪切,逐步被激活,激素的效应也就因酶的分步剪切而得到调节。
4,多元调节激素通远它们之间的相互制约、相互依赖而受到调控。
第三节 激素作用机理一,受体及特点 胞外受体、胞内受体
1,受体:
细胞中能识别配体(神经递质、激素、细胞因子)并与其特异结合,引起各种生物效应的分子,均称为受体。
受体的化学本质是蛋白质,在细胞表面的受体大多为糖蛋白。
激素、细胞因子和神经递质的浓度都很低,激素在10-9—10-15mol/L(10-7—10-12 mol/L)之间,而血液循环中具有相似结构的化合物(蛋白、氨基酸、固醇等)的浓度为10-3—10-5mol/L之间。
正是依赖高亲和力和特异性的受体,激素才能与特异靶细胞结合并发挥作用,而受体则成为细胞接受及传递信息的装置,在细胞间信息传递过程中起重要作用。
2,激素与受体结合的特点(细胞因子)
①高亲和力HR=H+R
激素(H)与受体(R)的亲和力可用其解离常数Kd 表示

Kd在10-9—10-11 mol/L
Kd越小,表明亲和力越高,激素的浓度很低也能与受体结合,引起生物效应。
②高特异性此特性由受体的结合域与配体的结构部位,以及受体与配体的构象决定。只有有相应受体的靶细胞,才对激素起反应。没有相应受体的细胞,同样也接触激素,但不会引起反应。细胞因子、神经递质与其受体产关系与此相似。
内分泌腺细胞血液靶细胞

③激素与受体结合是非共价的、可逆的当激素与受体分离后,激素的信使作用即中止。
=常数当[H]↓时则[HR]↓
④细胞的受体数目很大一般有数百至数千个,甚至数万个。激素生物效应的强弱通常与同受体结合激素的量成正比,但是当激素浓度升高至一定浓度时,由于受体的数目有限,激素与受体的结合曲线呈饱和状态。受体饱和以后,激素的生物效应就不再随激素浓度升高而增强。

3,受体的结构与功能激素与受体结合,是信息传递至细胞的第一步。随后,由受体构象的变化引起一系列信息传递过程,因此,所有受体包含二个功能部分。一个是与配体结合的结合域,结合域的构象或活性基团,决定其结合配体的特异性,另一个是功能部分,参与转导信息。
①受体—离子通道型受体本身构成离子通道,当其结合域与配体(激素)结合后,受体变构,使通道开放或关闭,引起或切断离子流动,从而传递信号。
例如:乙酰胆碱受体神经元的乙酰胆碱受体,由5个亚基在细胞膜内呈五边形排列,围成离子通道壁。当它与乙酰胆碱结合时,膜通道开放,膜外阳离子(Na+为主)内流,引起突触后膜电位变化。
②受体—G蛋白—效应蛋白型许多信息物质与细胞膜受体结合后,受体变构,激活相应的效应蛋白(如酶或其它功能蛋白)。酶被激活后,可催化生成一些小分子化学物质,后者进入胞液内,引起细胞产生相应的生物效应,称为第二信使。
在真核细胞中,鸟苷三磷酸(GTP)结合蛋白(简称G蛋白)在联系细胞膜受体与效应蛋白质中起重要作用。
③受体—酪氨酸蛋白激酶型胰岛素及一些细胞生长因子的受体,本身具有酪氨酸蛋白激酶活性。这些受体是跨膜糖蛋白,胞外部分构成结合域以结合配体,中间有20多个疏水aa,构成跨膜区,胞内有较多可以被磷酸化的酪氨酸残基。
④受体—转录因子型类固醇激素及甲状腺激素的受体位于细胞内,它们进入细胞内与细胞内受体结合后,生成活化的激素—受体复合物,该复合物转移入核内,与所调控基因的特定部位结合,然后启动转录。
二,激素的作用机理
(一) cAMP—蛋白激酶A途径反应快,几分钟。通过环核苷酸而起作用,大部分含氮激素都以这种方式起作用。
要点:
P424图8-1激素通过cAMP起作用的示意图
含氮激素作为第一信使与靶细胞膜上的特异受体结合,引发已结合在受体上的G蛋白生成Gs蛋白—GTP,Gs蛋白活化膜上的腺苷酸环化酶,活化的腺苷酸环化酶催化ATP转化成cAMP。cAMP自由扩散到整个细胞,对代谢酶起活化或抑制作用,间接控制细胞的代谢过程。cAMP激活依赖cAMP的蛋白激酶(蛋白激酶A、PKA),蛋白激酶A催化一些蛋白质的Ser、Thr的羟基磷酸化,从而改变这些酶的活性,调节代谢。
激素被称为第一信使。
cAMP被称为第二信使。
对一些关键酶的磷酸化是调节代谢途径的快速方式,蛋白激酶A能磷酸化的酶很多。
被磷酸化的酶活性改变代谢调节磷酸化酶b激酶激活 糖原分解,抑制糖原合成。
糖原合成酶抑制 抑制糖原合成丙酮酸激酶抑制 抑制糖酵解
(二) IP3、Ca2+—钙调蛋白激酶途径此途径的第二信使是:三磷酸肌醇IP3及Ca2+。
要点:激素(儿茶酚胺、血管舒张素Ⅱ、抗利尿素、5-羟色胺等)与细胞膜上相应受体结合,激活G蛋白,通过G蛋白介导,激活磷脂酶C(PLC,磷酸肌醇酶)。后者可将磷脂酰肌醇—4.5—二磷酸(PIP2)水解成二脂酰甘油DAG及IP3,这二者都是第二信使。
DAG可激活蛋白激酶C,活化的蛋白激酶C可将多种靶蛋白中的Ser、Thr残基磷酸化,调节酶活性。
IP3是小分子化合物,进入细胞液内,从而将信息传导至细胞内。在内质网膜表面有IP3受体,IP3受体是四聚体,其亚基的羧基部分构成钙通道。IP3与IP3受结合后,变构,钙通道打开,贮于内质网的Ca2+释放入细胞质内,使胞质Ca2+浓度升高。Ca2+升高可激活Ca2+/钙调蛋白依赖性蛋白激酶(CaM激酶)。CaM有4个结合Ca2+位点,当结合Ca2+后变构,一些依赖Ca2+/CaM的蛋白激酶就被激活,从而可使许多蛋白质的Ser、Thr残基磷酸化,使酶激活或失活。Ca2+/CaM复合物也可以直接地与靶酶起作用。
可被CaM 激酶磷酸化的酶有,
糖原合成酶、磷酸化酶激酶、丙酮酸羧化酶、丙酮酸脱氢酶等几十种。★ 钙调蛋白 EF手
P451图8-20EF手构象
螺旋区—泡区一螺旋区结构的钙传感器家族成员之一。
钙离子与许多生理活动有关,是许多信号传导途径中的细胞内信使,与细胞收缩、胞吐、胞饮、糖元代谢、神经递质释放、染色体运动、细胞死亡等都有密切关系。
★ 为什么选择钙离子:
①细胞内Ca2+浓度可以大幅度地发生变化,胞内有大量的磷酸酯,因此胞内Ca2+ 浓度很低。未被激动的细胞内,胞质中Ca2+ 水平为0.1 umol/L,比环境中的浓度低几个数量级。 种十分悬殊的浓度差为细胞提供了接受信号的机会:
为达到传递信号的目的,可瞬间打开质膜或细胞内膜中的钙通道,速迅升高胞质中Ca2+浓度。
②Ca2+ 与带负电荷的氧(Glu、Asp侧链)和不带电荷的氧(主链C=0)都能结合,可与6~8个氧原子配位结合,使Ca2+能和一个蛋白质的不同片段发生交联,诱导蛋白质构象变化。
★ 钙调蛋白的结构特点
①帕佛清蛋白(12kd)
有8个氧原子(三个Asp提供4个羧基氧,一个Glu提供2个羧基氧,一个主链羰基提供一个羰基氧,一分子水提供一个 氧),等同地与每个Ca2+结合。此蛋白具有两个相似的 Ca2+ 结合位点,在二级结构中,这种位点由此蛋白的E区(α-螺旋)和F区(α-螺旋)及结合Ca2+的泡区构成,它们的位置象右手的大姆指与食指夹着一个结合钙的泡区。这种螺旋区—泡区一螺旋区结构称为EF手
P451 图8—20
②牛脑的钙调蛋白
148个a.a残基,有4个可结合Ca2+的结构域。
当 Ca2+结合到E区和F区之间的泡区时,引起每个α-螺旋在它的轴线附近旋转并移位,这使钙调蛋白转变成一种对靶蛋白具有很高亲合力的构象。
★ 钙调蛋白只在结合Ca2+,形成Ca2+,CaM复合物后才能有生物活性。
①直接与靶酶起作用(蛋白激酶C)。
②活化依赖于Ca2+.CaM复合物的蛋白激酶,使靶酶磷酸化。
(三) 受体—酪氨酸蛋白激酶途径激素与受体—酪氨酸蛋白激酶(TPK)结合后,使原来无活性的TPK变为有活性的TPK,TPK催化受体分子自身Tyr残基磷酸化,并进一步提高TPK的活性,使其它底物蛋白磷酸化。
(四) 细胞内受体途径(基因表达学说)
反应慢,几小时到几天,这类激素的受体是DNA结合蛋白。
甾醇类激素及少数含氮激素,先进入细胞,在胞质中与各自的受体结合,生成激素—受体复合物,此复合物穿过核膜,与各自特定的基因调控序列结合,使DNA转录出大量的mRNA,并合成出大量的特异蛋白质(酶)。
作用过程:P425图8-2 P458 图8-25
此种作用方式的激素有:糖皮质激素、盐皮质激素(醛甾酮)、雌激素(雌二醇、孕酮)、雄激素(睾酮)、甲状腺素等。
受类固醇激素调控的基因中,与激素—受体复合物结合的部位称激素应答元件(hormone response element HRE)。
HRE往往是类似回文结构的序列糖皮质激素—受体复合物所结合的HRE,位于转录起始点上游几百个bp处。
P425表8-3一些激素的作用方式第四节 激素作用举例一,肾上腺素 cAMP方式属儿茶酚胺类化合物,生成后在囊泡内储存,在惊恐、低氧、血压降低等应激状态时,囊泡通过泡吐作用释放。
靶细胞:肌肉、脂肪、肝脏灭活:肝细胞
1,结构与功能肾上腺素及去甲肾上腺素均由Tyr转化而来(由肾上腺髓质分泌),对心脏、血管起作用时,可使心跳加快、血管收缩、血压上升。
它对糖代谢影响最大,在肝细胞中可加强肝糖元分解,迅速升高血糖。
此外,还能促进蛋白质、氨基酸、脂肪分解。
P426结构式
2,G蛋白(鸟苷酸结合蛋白)
G蛋白与激素受体偶连,将信息传递给腺苷酸环化酶(cAMP途径)或磷脂酶(Ca2+途径),从而产生胞内信使(第二信使:cAMP,Ca2+),因此,G蛋白是偶连胞外信使和胞内信使的桥梁。
&#61557;&#61472;G蛋白的活化与去活化过程,P428 图8-3、8-4
G蛋白是一个界面蛋白,处于细胞膜的内缘,与跨膜的激素受体偶连,信号转导过程就发生在细胞膜上,当细胞外的激素与跨膜的受体结合后引起受体构象变化,然后激素—受体复合物激活膜内的G蛋白。
无活性的G蛋白(G β γ α —GDP)发生GTP—GDP交换,形成有活性的G蛋白(Gs),其催化亚基Gα—GTP解离出来,扩散到细胞内,激活其效应子(腺苷酸环化酶、PLC、K+通道等)
每一个激素—受体复合物可以形成许多个分子Gα—GTP,由此给出“放大”的效应。
当激素停止分泌时,结合在受体上的激素就逐渐解离下来。Gα—GTP缓慢水解,释放掉GTP,Gα失去催化活性,与β γ 亚基重新形成无活性的G蛋白(G β γ α —GDP)。信号转导停止。
结合态GTP水解,表明G蛋白是一个GTPase,即这个调节蛋白具有一种内藏式的脱活作用,缺乏激素时,GTP,GDP交换反应速度降低,最终几乎所有的G 蛋白均以结合着GDP的无活性形式存在。β-肾上腺素受体的构象——跨膜七螺旋区
P 430 β-肾上腺素受体结构
许多与G蛋白偶连的受体都是跨膜蛋白,跨膜螺旋区结构是激活G蛋白的跨膜受体所具有的普遍特征。
4,蛋白激酶A
凡有cAMP的细胞,都有一类蛋白激酶(PKA),cAMP通过蛋白激酶A发挥它的作用。
&#61557;蛋白激酶A的活化P430图8-6cAMP激活蛋白激酶A
5,肾上腺素的作用方式(在促进糖元分解中的级联放大作用)
P 431 图8-7 肾上腺素对提高血糖的级联放大作用。
当肾上腺素以10-8—10-10mol/L的浓度到达肝细胞表面时,迅速与肝细胞表面的肾上腺素受体结合,使此局部构象变化,激活与受体偶连的G蛋白,从而激活膜上的腺苷酸环化酶,产生cAMP。
少量的肾上腺素(10-8-10-10mol/L),能引起强烈反应,产生5mmol/L葡萄糖。反应过程中信号逐级放大,共约300万倍,它在几秒钟内就可使磷酸化酶的活性达到最大。
一旦肾上腺素停止分泌,结合在肝细胞膜上的肾上腺素就解离下来,产生一系列变化:
cAMP不再生成,遗留的cAMP被磷酸二酯酶分解。蛋白激酶A的两种亚基又联结成无活性的复合体(催化亚基和调节亚基),有活性的磷酸化酶激酶的磷酸化形式遭到脱磷酸作用,变成无活性形式,磷酸化酶a受到磷酸酶作用,脱去磷酸变成无活性的磷酸化酶b,糖元分解停止。同时无活性的磷酸化形式的糖元合成酶经过脱磷酸作用,又变得活跃起来,继续合成糖元。
二,甲状腺素
1,结构含碘落氨酸衍生物。
在甲状腺中合成甲状腺球蛋白,每分子此球蛋白含2-4个T4分子。
当受促甲状腺激素刺激时,溶酶体中的蛋白酶水解甲状腺球蛋白,放出T4和T3。血浆中T3和T4绝大部分与血浆中的蛋白质结合运输,可防止T3、T4经肾丢失。
T3、T4在肝中失活,肝中有一种与甲状腺素亲合力极强的蛋白质,血流经过肝脏时,1/3的甲状腺素被肝细胞摄取,与葡萄糖醛酸或硫酸反应后失活,由胆汁排出。
还可脱氨、脱羧、脱碘而失活。
2,功能增强新陈代谢,引起耗氧量及产热量增加,促进智力与体质发育。
缺乏症:幼年发育迟缓,行动呆笨等
成年厚皮病、基础代谢降低过量:甲亢、基础代谢增高、眼球突出、心跳加快、消瘦、
神经系统兴奋提高,表现为神经过敏。
3,作用方式在线粒体中促进ATP氧化磷酸化过程,增加基础代谢。
增加RNA(tRNA、mRNA)的合成,促进个体生长发育。
三,胰岛素及胰高血糖素
1,结构
P128图3-38
①β-细胞胰岛素A链21 a.a残基B链30 a.a残基
②α-细胞胰高血糖素29 a.a残基
2,功能
①胰岛素:提高组织摄取葡萄糖的能力,抑制肝糖元分解,促进肝糖元及肌糖元合成,因此可降低血糖。
缺乏:血糖升高,尿中有糖,糖尿病。
过量:血糖过低,能量供应不足,影响大脑机能。
②胰高血糖素:增高血糖含量,促进肝糖元分解。
3,作用方式:
(1),胰岛素:受体—酪氨酸蛋白激酶途径
P442图8-14 P443图8-15
胰岛素的受体是跨膜的酪氨酸激酶,由α 2β 2组成,α 链处在细胞膜的外侧,β 链穿过细胞膜。
胰岛素结合到受体的膜外部分上时是如何诱导处受体的膜内部分的酪氨酸激酶的活性的?活化的受体对靶细胞中的哪些蛋白质进行磷酸化?磷酸化的靶蛋白如何地具有多重的促进生长效应和多冲的代谢效应?都不清楚
(2),胰高血糖素:cAMP途径与肾上腺素类似,通过cAMP途径,提高肝糖元磷酸化酶活性,促进肝糖原分解(并不促使肌糖原分解)。
第八章 糖代谢
自养生物
分解代谢
糖代谢包括 异养生物
自养生物
合成代谢
异养生物
能量转换(能源)
糖代谢的生物学功能
物质转换(碳源)
可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。
糖的磷酸衍生物可以构成多种重要的生物活性物质:NAD、FAD、DNA、RNA、ATP。
分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。
合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。
分解代谢和合成代谢,受神经、激素、别构物调节控制。
第一节 糖酵解glycolysis
一,酵解与发酵
1,酵解 glycolysis(在细胞质中进行)
酵解酶系统将Glc降解成丙酮酸,并生成ATP的过程。它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。
在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被彻底氧化成CO2和H2O,产生的NADH经呼吸链氧化而产生ATP和水,所以酵解是三羧酸循环和氧化磷酸化的前奏。
若供氧不足,NADH把丙酮酸还原成乳酸(乳酸发酵)。
2,发酵fermentation
厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。
若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。
有些动物细胞即使在有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。
二,糖酵解过程(EMP)
Embden-Meyerhof Pathway,1940
在细胞质中进行
1,反应步骤
P79图 13-1 酵解途径,三个不可逆步骤是调节位点。
(1),葡萄糖磷酸化形成G-6-P
反应式
此反应基本不可逆,调节位点。△G0= - 4.0Kcal/mol使Glc活化,并以G-6-P形式将Glc限制在细胞内。
催化此反应的激酶有,已糖激酶和葡萄糖激酶。
激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。
P 80 图13-2己糖激酶与底物结合时的构象变化
已糖激酶:专一性不强,可催化Glc、Fru、Man(甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。
葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成,
肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。
(2),G-6-P异构化为F-6-P
反应式:
由于此反应的标准自由能变化很小,反应可逆,反应方向由底物与产物的含量水平控制。
此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。
(3),F-6-P磷酸化,生成F-1.6-P
反应式:
此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。
磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶
(4),F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)
反应式:
该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。
该反应由醛缩酶催化,反应机理
P 83
(5),磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛反应式:(注意碳原子编号的变化)
由磷酸丙糖异构酶催化。
已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P
图解:
(6),3-磷酸甘油醛氧化成1.3—二磷酸甘油酸反应式:
由磷酸甘油醛脱氢酶催化。
此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。
反应机理:
P84图 13-43-磷酸甘油醛脱氢酶的催化机理
碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)
(7),1.3—二磷酸甘油酸转化成3—磷酸甘油酸和ATP
反应式:
由磷酸甘油酸激酶催化。
这是酵解过程中的第一次底物水平磷酸化反应,也是酵解过程中第一次产生ATP的反应。
一分子Glc产生二分子三碳糖,共产生2ATP。这样可抵消Glc在两次磷酸化时消耗的2ATP。
(8),3—磷酸甘油酸转化成2—磷酸甘油酸反应式:
磷酸甘油酸变位酶催化,磷酰基从C3移至C2。
(9),2—磷酸甘油酸脱水生成磷酸烯醇式丙酮酸反应式:
烯醇化酶
2—磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。
(10),磷酸烯醇式丙酮酸生成ATP和丙酮酸。
反应式:
不可逆,调节位点。
由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,
这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸
EMP总反应式:
1葡萄糖+2Pi+2ADP+2NAD+→2丙酮酸+2ATP+2NADH+2H++2H2O
2,糖酵解的能量变化
P87图13-5糖酵解途径中ATP的生成
无氧情况下:净产生2ATP(2分子NADH将2分子丙酮酸还原成乳酸)。
有氧条件下:NADH可通过呼吸链间接地被氧化,生成更多的ATP。
1分子NADH→3ATP
1分子FAD→2ATP
因此,净产生8ATP(酵解2ATP,2分子NADH进入呼吸氧化,共生成6ATP)。
但在肌肉系统组织和神经系统组织:一个Glc酵解,净产生6ATP(2+2*2)。
★甘油磷酸穿梭:
2分子NADH进入线粒体,经甘油磷酸穿梭系统,胞质中磷酸二羟丙酮被还原成3—磷酸甘油,进入线粒体重新氧化成磷酸二羟丙酮,但在线粒体中的3—磷酸甘油脱氢酶的辅基是FAD,因此只产生4分子ATP。
①:胞液中磷酸甘油脱氢酶。
②:线粒体磷酸甘油脱氢酶。
,罗纪盛》P 259P 260。
★苹果酸穿梭机制:
胞液中的NADH可经苹果酸脱氢酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸—2—酮戊二酸载休转运,进入线粒体内,由线粒体内的苹果酸脱氢酶催化,生成NADH和草酰乙酸。
而草酰乙酸经天冬氨酸转氨酶作用,消耗Glu而形成Asp。Asp经线粒体上的载体转运回胞液。在胞液中,Asp经胞液中的Asp转氨酶作用,再产生草酰乙酸。
经苹果酸穿梭,胞液中NADH进入呼吸链氧化,产生3个ATP。

苹果酸脱氢酶(胞液)
α—酮戊二酸转位酶苹果酸脱氢酶(线粒体基质)
谷—草转氨酶
Glu—Asp转位酶谷—草转氨酶草酰乙酸:
苹果酸:
α—酮戊二酸:
3,糖酵解中酶的反应类型
P88 表13-1糖酵解反应
氧化还原酶(1种):3—磷酸甘油醛脱氢酶转移酶(4种):己糖激酶、磷酸果糖激酶、磷酸甘油酸激酶、丙酮酸激酶裂合酶(1种):醛缩酶异构酶(4种):磷酸Glc异构酶、磷酸丙糖异构酶、磷酸甘油酸变位酶、烯醇化酶三,糖酵解的调节参阅 P120 糖酵解的调节糖酵解过程有三步不可逆反应,分别由三个调节酶(别构酶)催化,调节主要就发生在三个部位。
1,已糖激酶调节别构抑制剂(负效应调节物):G—6—P和ATP
别构激活剂(正效应调节物):ADP
2,磷酸果糖激酶调节(关键限速步骤)
抑制剂:ATP、柠檬酸、脂肪酸和H+
激活剂:AMP、F—2.6—2P
ATP:细胞内含有丰富的ATP时,此酶几乎无活性。
柠檬酸:高含量的柠檬酸是碳骨架过剩的信号。
H+:可防止肌肉中形成过量乳酸而使血液酸中毒。
3,丙酮酸激酶调节抑制剂:乙酰CoA、长链脂肪酸、Ala、ATP
激活剂:F-1.6-P、
四,丙酮酸的去路
1,进入三羧酸循环
2,乳酸的生成在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3—磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。
总反应:Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H2O
动物体内的乳酸循环 Cori 循环:

肌肉收缩,糖酵解产生乳酸。乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。
Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。
3,乙醇的生成酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。
总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H20
在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。
4,丙酮酸进行糖异生五,其它单糖进入糖酵解途径除葡萄糖外,其它单糖也可进行酵解
P 91图 13-6各种单糖进入糖酵解的途径
1.糖原降解产物G—1—P
2.D—果糖有两个途径
3.D—半乳糖
4.D—甘露糖
第二节 三羧酸循环葡萄糖的有氧氧化包括四个阶段。
①糖酵解产生丙酮酸(2丙酮酸,2ATP、2NADH)
②丙酮酸氧化脱羧生成乙酰CoA
③三羧酸循环(CO2、H2O、ATP、NADH)
④呼吸链氧化磷酸化(NADH-----ATP)
三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。
原核生物:①~④阶段在胞质中真核生物:①在胞质中,②~④在线粒体中一,丙酮酸脱羧生成乙酰CoA
1,反应式:
此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。
2,丙酮酸脱氢酶系丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。
E.coli丙酮酸脱氢酶复合体:
分子量:4.5×106,直径45nm,比核糖体稍大。
酶辅酶 每个复合物亚基数丙酮酸脱羧酶(E1) TPP24
二氢硫辛酸转乙酰酶(E2) 硫辛酸24
二氢硫辛酸脱氢酶(E3) FAD、NAD+ 12
此外,还需要CoA、Mg2+作为辅因子这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。
3,反应步骤
P 93 反应过程
(1)丙酮酸脱羧形成羟乙基-TPP
(2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基
(3)E2将乙酰基转给CoA,生成乙酰-CoA
(4)E3氧化E2上的还原型二氢硫辛酸
(5)E3还原NAD+生成NADH
4,丙酮酸脱氢酶系的活性调节从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。
(1)可逆磷酸化的共价调节丙酮酸脱氢酶激酶(EA)(可被ATP激活)
丙酮酸脱氢酶磷酸酶(EB)
磷酸化的丙酮酸脱氢酶(无活性)
去磷酸化的丙酮酸脱氢酶(有活性)
(2)别构调节
ATP、CoA、NADH是别构抑制剂
ATP抑制E1
CoA抑制E2
NADH抑制E3
5,能量
1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(3ATP)。二,三羧酸循环(TCA)的过程
TCA循环:每轮循环有2个C原子以乙酰CoA形式进入,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放12ATP。
1,反应步骤
P95 图13-9概述三羧酸循环
(1),乙酰CoA+草酰乙酸→柠檬酸反应式:
柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA的抑制;受乙酰CoA、草酸乙酸激活。
柠檬酸合酶上的两个His残基起重要作用:
一个与草酰乙酸羰基氧原子作用,使其易受攻击;另一个促进乙酰CoA的甲基碳上的质子离开,形成烯醇离子,就可与草酰乙酸缩合成C-C键,生成柠檬酰CoA,后者使酶构象变化,使活性中心增加一个Asp残基,捕获水分子,以水解硫酯键,然后CoA和柠檬酸相继离开酶。
氟乙酰CoA可与草酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。
图氟乙酸本身无毒,氟柠檬酸是乌头酸酶专一的抑制剂,氟柠檬酸结合到乌头酸酶的活性部位上,并封闭之,使需氧能量代谢受毒害。它存在于某些有毒植物叶子中,是已知最能致死的简单分子之一。LD50 为0.2mg/Kg体重,它比强烈的神经毒物二异丙基氟磷酸的LD50小一个数量级。
(2),柠檬酸→异柠檬酸反应式:
这是一个不对称反应,由顺鸟头酸酶催化
P 101 图13—12顺乌头酸酶与柠檬酸的不对称结合
顺乌头酸酶只能以两种旋光异构方式中的一种与柠檬酸结合,结果,它催化的第一步脱水反应中的氢全来自草酰乙酸部分,第二步的水合反应中的OH也只加在草酰乙酸部分。这种酶与底物以特殊方式结合(只选择两种顺反异构或旋光异构中的一种结合方式)进行的反应称为不对称反应。结果,TCA第一轮循环释放的CO2全来自草酰乙酸部分,乙酰CoA羰基碳在第二轮循环中释放,甲基碳在第三轮循环中释放50%,以后每循环一轮释放余下的50%。
柠檬酸上的羟基是个叔醇,无法进一步被氧化。因此,柠檬酸需转变成异柠檬酸,将不能被氧化的叔醇,转化成可以被氧化的仲醇。
90%柠檬酸、4%顺乌头酸、6%异柠檬酸组成平衡混合物,但柠檬酸的形成及异柠檬酸的氧化都是放能反应,促使反应正向进行。
(3),异柠檬酸氧化脱羧生成α-酮戊二酸和NADH
反应式:
这是三羧酸循环中第一次氧化脱羧反应,异柠檬酸脱氢酶,TCA中第二个调节酶:
Mg2+(Mn2+ )、NAD+和ADP可活化此酶,NADH和ATP可抑制此酶活性。
细胞在高能状态:ATP/ADP、NADH/NAD+比值高时,酶活性被抑制。
线粒体内有二种异柠檬酸脱氢酶,一种以NAD+为电子受体,另一种以NADP+为受体。前者只在线粒体中,后者在线粒体和胞质中都有。
(4),α-酮戊二酸氧化脱羧生成琥珀酰CoA和NADH
反应式:
α-酮戊二酸脱氢酶系,TCA循环中的第三个调节酶:受NADH、琥珀酰CoA、Ca2+、ATP、GTP抑制
α-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系相似(先脱羧,后脱氢)
(5),琥珀酰CoA生成琥珀酸和GTP
反应式:
琥珀酰CoA合成酶(琥珀酸硫激酶)
这是TCA中唯一的底物水平磷酸化反应,直接生成GTP。
在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。
在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。
(6),琥珀酸脱氢生成延胡索酸(反丁烯二酸)和FADH
反应式:
琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。
丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。
(7),延胡索酸水化生成L-苹果酸
反应式:
延胡索酸酶具有立体异构特性,OH只加入延胡索酸双键的一侧,因此只形成L-型苹果酸。
(8),L-苹果酸脱氢生成草酰乙酸和NADH
反应式:
L-苹果酸脱氢酶平衡有利于逆反应,但生理条件下,反应产物草酰乙酸不断合成柠檬酸,其在细胞中浓度极低,少于10-6mol/L,使反应向右进行。
2,TCA循环小结
(1),三羧酸循环示意图(标出C编号的变化)
P95图13-9
(2),总反应式:
丙酮酸 + 4NAD+ + FAD + GDP→4NADH + FADH2 + GTP + 3CO2 + H2O
乙酰CoA + 3NAD+ + FAD + GDP→3NADH + FADH2 + GTP + 2CO2 + H2O
(3),一次底物水平的磷酸化、二次脱羧反应,三个调节位点,四次脱氢反应。
3NADH、FADH2进入呼吸链
(4),三羧酸循环中碳骨架的不对称反应同位素标记表明,乙酰CoA上的两个C原子在第一轮TCA上并没有被氧化。
被标记的羰基碳在第二轮TCA中脱去。
在第三轮TCA中,两次脱羧,可除去最初甲基碳的50%,以后每循环一次,脱去余下甲基碳的50%
u 问题:标记Glucose的第二位碳原子,跟踪EMP、TCA途径,C2的去向。
3,一分子Glc彻底氧化产生的ATP数量
(在肝脏中)
反应 酶 ATP消耗 产生ATP方式 ATP数量 合计糖酵解 已糖激酶 1-1 8
磷酸果糖激酶 1-1
磷酸甘油醛脱氢酶NADH呼吸链氧化磷酸化 2×3
磷酸甘油酸激酶底物水平磷酸化 2×1
丙酮酸激酶底物水平磷酸化 2×1
TCA 丙酮酸脱氢酶复合物NADH 2×3 30
异柠檬酸脱氢酶NADH 2×3
α-酮戊二酸脱氢酶复合物NADH 2×3
琥珀酸脱氢酶FADH2 2×2
苹果酸脱氢酶NADH 2×3
琥珀酰CoA合成酶底物水平磷酸化 2×1
净产生:38ATP
在骨骼肌、脑细胞中,净产生:36ATP
甘油磷酸穿梭,1个NADH生成2个ATP
苹果酸穿梭,1个NADH生成3个ATP
4,三羧酸循环的代谢调节参阅P122 图 13-26三羧酸循环的调节
(1),柠檬酸合酶(限速酶)
受ATP、NADH、琥珀酰CoA及脂酰CoA抑制。
受乙酰CoA、草酰乙酸激活
(2),异柠檬酸脱氢酶
NADH、ATP可抑制此酶
ADP可活化此酶,当缺乏ADP时就失去活性。
(3),α-酮戊二酸脱氢酶受NADH和琥珀酰CoA抑制。
三,TCA的生物学意义
1,提供能量线粒体外的NADH,可通过3-磷酸甘油穿梭和苹果酸穿梭机制,运到线粒体内,经呼吸链再氧化,这两种机制在不同组织的细胞中起作用。
(1),磷酸甘油穿梭机制:
磷酸二羟丙酮+NADH+H+→3-磷酸甘油+NAD+
3-磷酸甘油进入线粒体,将2H交给FAD而生成FADH2,FADH2可传递给辅酶Q,进入呼吸链,产生2ATP(3-磷酸甘油脱氢酶的辅酶是FAD)。
(2),苹果酸穿梭机制:
胞液中NADH可经苹果酸酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸-α-酮戊二酸载体转运,进入线粒体,由线粒体内苹果酸脱氢酶催化,生成NADH和草酰乙酸,NADH进入呼吸链氧化,生成3ATP。(苹果酸脱氢酶的辅酶是NAD+)
1分子Glc在肝、心中完全氧化,产生38ATP,在骨骼肌、神经系统组织中,产生36ATP。
2,TCA是生物体内其它有机物氧化的主要途径,如脂肪、氨基酸、糖
3,TCA是物质代谢的枢纽一方面,TCA是糖、脂肪、氨基酸等彻底氧化分解的共同途径,
另一方面,循环中生成的草酰乙酸、α-酮戊二酸、柠檬酸、琥珀酰CoA和延胡索酸等又是合成糖、氨基酸、脂肪酸、卟啉等的原料,因而TCA将各种有机物的代谢联系起来。
TCA是联系体内三大物质代谢的中心环节,为合成其它物质提供C架。
四,TCA的回补反应三羧酸循环中间物的的回补在TCA循环中,有些中间产物是合成其它物质的前体,如卟啉的主要碳原子来自琥珀酰CoA,Glu、Asp可以从α-酮戊二酸和草酰乙酸衍生而成,一旦草酰乙酸浓度下降,则会影响TCA循环,因此这些中间产物必须不断补充,以维持TCA循环。
产生草酰乙酸的途径有三个:
(1),丙酮酸羧化酶催化丙酮酸生成草酰乙酸
P102反应式:
丙酮酸羧化酶是一个调节酶,乙酰CoA可以增加其活性。
需要生物素为辅酶
(2),磷酸烯醇式丙酮酸羧化激酶催化磷酸烯醇式丙酮酸转化成草酰乙酸
P102 反应式:
在脑、心脏中存在这个反应。
(3),Asp、Glu转氨可生成草酰乙酸和α-酮戊二酸
Ile、Val、Thr、Met也会形成琥珀酰CoA,最后生成草酰乙酸
五,乙醛酸循环三羧酸循环是所有生物共有的有氧化谢途径,某些植物和微生物除进行TCA外,还有一个乙醛酸循环,作为TCA的补充。
循环途径:
P 103图13-13
乙醛酸循环是通过一分子乙酰CoA和草酰乙酸缩合成柠檬酸,经异柠檬酸,由异柠檬酸裂解酶裂解成乙醛酸和琥珀酸。
琥珀酸经脱氢、水化、脱氢生成草酰乙酸,补偿开始消耗掉的草酰乙酸。
乙醛酸缩与另一分子乙酰CoA合成苹果酸,脱氢生成草酰乙酸。
过量的草酰乙酸可以糖异生成Glc,因此,乙醛酸循环可以使脂肪酸的降解产物乙酰CoA经草酰乙酸转化成Glc,供给种子萌发时对糖的需要。
植物中,乙醛酸循环只存在于子苗期,而生长后期则无乙醛酸循环。
哺乳动物及人体中,不存在乙醛酸循环,因此,乙酰CoA不能在体内生成糖和氨基酸。
总反应:
2乙酰CoA + NAD+ + 2H2O→琥珀酸 + 2CoA + NADH + 2H+
第三节 磷酸已糖支路(HMS)
也称磷酸戊糖途径,发生在胞质中。
细胞内Glc的氧化分解,除通过糖酵解,三羧酸循环和发酵外,还能直接氧化分解。即反应开始,在G-6-P上的C2原子上直接氧化,通过一系列转化被分解,此为磷酸戊糖途径。
两个事实:
①用碘乙酸和氟化物抑制糖酵解(磷酸甘油醛脱氢酶)发现Glc的消耗并不因此而受影响,证明葡萄糖还有其它的分解途径
②用14C分别标记Glc的C1和C6,然后分别测定14CO2生成量,发现C1标记的Glc比C6标记的Glc更快、更多地生成14CO2,如果糖酵解是唯一的代谢途径,那么14C1和14C2生成14CO2的速度应该相同。
一,反应过程
Glc经磷酸戊糖途径氧化分解可分为两个阶段。
第一阶段:6-磷酸葡萄糖氧化脱羧生成5-磷酸核糖第二阶段:磷酸戊糖分子重排,产生不同碳链长度的磷酸单糖
1,6-磷酸葡萄糖脱氢脱羧生成5-磷酸核酮糖
P104 反应式::
在此氧化脱羧阶段中,Glc经两次脱氢,一次脱羧,生成5-磷酸核酮糖及NADPH。
6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的调控酶,NADPH反馈抑制此酶活性。
2,磷酸戊糖异构生成5-磷酸核糖及5-磷酸木酮糖
P105 反应式:
5-磷酸木酮糖产率:2/3
5-磷酸核糖产率:1/3
3,磷酸戊糖通过转酮、转醛反应生成酵解途径的中间产物(F-6-P,3-磷酸甘油醛)
(1),转酮反应:
P105反应式:
5-磷酸木酮糖将自身的二碳单位(羟乙酰基)转到5-磷酸核糖的C1上,生成3-磷酸甘油醛和7-磷酸景天庚酮糖。
转酮酶需TPP为辅酶,作用机理与丙酮酸脱氢酶中的TPP类似。
(2),转醛反应
P106 反应式:
转醛酶将7-磷酸庚酮糖上的三碳单位(二羟丙酮基)转到3-磷酸甘油醛的C1上,生成4-磷酸赤鲜糖和6-磷酸果糖。
(3),转酮反应(转酮酶)
P107反应式:
4-磷酸赤鲜糖接受另一分子5-磷酸木酮糖上的二碳单位(羟乙酰基),生成6-磷酸果糖和3-磷酸甘油醛
磷酸戊糖分子重排的总结果是:
2个5-磷酸木酮糖+1个5-磷酸核糖→2个(F-6-P)+1个3磷酸甘油醛由于5-磷酸木酮糖可以由5-磷酸核糖经差向酶转化而来,所以上式可写成:
3个5-磷酸核糖→2个(F-6-P)+1个3磷酸甘油醛。
因此,在细胞中若形成过量的磷酸戊糖可以经磷酸戊糖途径转化为6-磷酸果糖及3-磷酸甘油醛,与糖酵解途径相连。
二,磷酸戊糖途径小结
1,通过此途径,可将G-6-P彻底氧化
G-6-P+12NADP++6H2O→12NADPH+12H++6CO2
相当于(36-1)个ATP
图磷酸已糖支路
第一阶段:

第二阶段

2,转酮酶(TPP)、转醛酶催化的反应是可逆的它们转移的是酮,受体是醛。
转酮酶转移的是二碳单位(羟乙酰基),转醛酶转移的是三碳单位(二羟丙酮基)。
3,磷酸戊糖途径的中间产物,可进入糖酵解途径的中间产物中,反之亦可。
主要是6-磷酸果糖和3-磷酸甘油醛。
4,碳的释放磷酸戊糖途径释放14C1
在TCA循环中:先释放:C3、C4(丙酮酸脱羧)
TCA第二轮后释放:C2、C5(乙酰CoA的羰基碳:CH3C*=O-CoA,100%)
TCA第三轮后释放:C1、C6(乙酰CoA的甲基碳:*CH3C=O-CoA,每循环一轮释放50%))
三,磷酸戊糖途径的调节
6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的限速酶,催化不可逆反应。其活性主要受NADP+/NADPH比例的调节。机体内,NAD+/NADH为700,而NADP+/NADPH仅为0.014,这就使NADPH可以进行有效地反馈抑制调节6-磷酸葡萄糖脱氢酶和6-磷酸葡萄糖酸脱氢酶的活性。只有NADPH被生物合成消耗后,才能解除抑制。
非氧化阶段戊糖的转变主要受控于底物的浓度。5-磷酸核糖过多时可以转化为6-磷酸果糖和3-磷酸甘油醛进行酵解。
四,磷酸戊糖途径与糖酵解途径的协调调节
G-6-P的流向取决于对NADPH、磷酸戊糖及ATP的需要。
(1)需要核糖-5-P(用于合成嘌呤核苷酸)的量比NADPH的量大得多时,大多数G-6-P转变成5-磷酸核糖。还可由转酮酶、转醛酶催化,将2分子F-6-P和一分子甘油醛-3-P转变成3分子核糖-5-P。
G-6-P+2NADP++H2O→核糖-5-P+2NADPH+2H+
2 果糖-6-P+甘油醛-3-P→3 核糖-5-P
(2)对NADPH和5-磷酸核糖的需要量平衡时,代谢就通过氧化阶段由G-6-P氧化脱羧,生成2个NADPH和1个核糖-5-P
反应:G-6-P+2NADP++H2O→核糖-5-P+2NADP+2H++CO2
(3)需要NADPH的量比5-磷酸核糖的量多得多时,G-6-P就完全氧化成CO2
反应式:6(G-6-P)+12NADP++6H2O→6(5-磷酸核糖)+12NADPH+12H++6CO2
生成的5-磷酸核糖通过非氧化重组及Glc异生作用,再合成G-P-6。
G-6-P+12NADP++6H2O→12NADPH+12H++6CO2
(4)需要 NADPH和 ATP更多时,G-6-P转化成丙酮酸磷酸戊糖途径→3-磷酸甘油醛+6-磷酸果糖→糖酵解
3(G-6-P)+6NADP++5NAD++5Pi+8ADP→
5丙酮酸+6NADPH+5NADH2+8ATP+2H2O+8H++3CO2
五,磷酸戊糖途径的生理意义
1,产生大量的NADPH,为细胞的各种合成反应提供主要的还原力。
NADPH作为主要的供氢体,为脂肪酸、固醇、四氢叶酸等的合成,非光合细胞中硝酸盐、亚硝酸盐的还原,及氨的同化等所必需。哺乳动物的脂肪细胞和红细胞中占50%,肝中占10﹪。
2,中间产物为许多化合物的合成提供原料产生的磷酸戊糖参加核酸代谢。
4-磷酸赤藓糖与糖酵解中的磷酸烯醇式丙酮酸(PEP)可合成莽草酸,经莽草酸途径可合成芳香族a.a。
3,是植物光合作用中CO2合成Glc的部分途径
4,NADPH主要用于还原反应,其电子通常不经电子传递链传递,一般不用于ATP合成。
如NADPH用于供能,需通过两个偶联反应,进行穿梭转运,将氢转移至线粒体NAD+上。
胞液内:α-酮戊二酸+CO2+NADPH+H+=异柠檬酸+NADP+
异柠檬酸能自由通过线粒体膜,传递氢。
线粒体内:异柠檬酸+NAD+=α-酮戊二酸+CO2+NADH+H+
一分子Glc经磷酸戊糖途径,完全氧化,产生12分子NADPH,可生成(36-1)=35ATP
第四节 糖醛酸途径
P109
糖醛酸途径:从G-1-P或G-6-P开始,经UDP-葡萄糖醛酸生成糖醛酸的途径。
在肝脏中糖醛酸可与(毒素、药物等)含-OH、-COOH、-NH2、-SH基的异物(毒素、药物等)结合,生成可溶于水的化合物,随尿排出,具有解毒作用。
一,糖醛酸途径:P108图13-15
二,糖醛酸的生理意义
1,在肝中糖醛酸与药物(含芳环的苯酚、苯甲酸)或含-OH、-COOH、-NH2、-SH基的异物结合成可溶于水的化合物,随尿、胆汁排出,起解毒作用。
2,UDP糖醛酸是糖醛酸基的供体,用于合成粘多糖(硫酸软骨素、透明质酸、肝素等)。
3,从糖醛酸可以转变成抗坏血酸(人及灵长动物不能,缺少L-古洛糖酸内酯氧化酶)
4.从糖醛酸可以生成5-磷酸木酮糖,可与磷酸戊糖途径连接。
第五节 糖的合成代谢糖的合成代谢有:光合作用,糖异生,单糖→多糖,结构多糖的生物合成一,光合作用:葡萄糖的生物合成卡尔文循环Calvin
由CO2和H2O合成已糖,是绿色植物光合作用的基本过程合成动力(能量)是叶绿素吸收的光能。
第一阶段:原初反应,吸收光能,并将光能转化成电能。
第二阶段:电子传递和光合磷酸化。将电能转化成化学能,推动ATP和NADPH的合成,后两者称为同化力。同时水被分解放出O2。
第三阶段:CO2的固定和还原,又称CO2同化。利用同化力将固定在1、5—二磷酸核酮糖(RuBP)上的CO2,通过一系列反应进行还原,最终产和F—6—P,再由此转化成果糖或Glc。
卡尔文循环生成的中间产物,大多是3碳至7碳糖的磷酸酯。
二,糖的异生作用糖异生是指从非糖物质合成Glc的过程。
植物利用光、CO2和H2O合成糖。
动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。
1,糖异生的证据及生理意义证据:大鼠禁食24h,肝糖原由7%降至1%。再喂乳酸、丙酮酸或TCA中间产物,肝糖原会增加。
意义:糖异生是一个十分重要的生物合成葡萄糖的途径。红细胞及大脑是以Glc为主要能量,成人每天需160克Glc,而其中120克Glc用于脑代谢。
糖异生主要在肝脏中进行,肾上腺皮质中也有,脑和肌肉细胞中很少。因此,在血中葡萄糖浓度降低时首先是脑受到伤害。
2,异生途径糖异生起源于细胞线粒体内。由丙酮酸生成Glc是糖异生的主要途径。
P112 图13—16 糖异生及降解途径。
从丙酮酸到葡萄糖的糖异生途径不是糖酵解的简单逆转,因为在糖酵解中有3步是不可逆步骤,糖异生时必须饶过这3步:①Glc到G-6-P,②F-6-P到F-1.6-P ③PEP到丙酮酸
(1),丙酮酸被羧化成草酰乙酸(线粒体内)
丙酮酸+CO2+ATP→草酰乙酸+ADP
丙酮酸羟化酶需要生物素为辅酶。
人和哺乳动物的丙酮酸羧化酶主要存在于肝脏和肾的线粒体内,所以细胞液中的丙酮酸要经过运载载体进入线粒体后才能羧化成草酰乙酸。
丙酮酸羧化酶还催化三羧酸循环的回补反应,所以,草酰乙酸既是糖异生的中间物,又是三羧酸循环的中间物,丙酮酸羧化酶联系着三羧酸循环和糖异生作用丙酮酸羧化酶是别构酶,受乙酰CoA和高比值ATP/ADP的激活。若细胞内ATP含量高,则三羧酸循环的速度降低,糖异生作用加强。
(2),草酰乙酸被还原成苹果酸(线粒体内)
该反应的逆反应就是TCA。
生成的苹果酸从线粒体内运到线粒体外。
(3),苹果酸被重新氧化成草酰乙酸(线粒体外)
(4)、? 草酰乙酸生成磷酸烯醇式丙酮酸
丙酮酸羧化激酶与草酰乙酸的Km值为9nM,高于细胞内的生理浓度,所以草酰乙酸的浓度可以调节反应速度和糖异生的速度
(5),磷酸烯醇式丙酮酸沿糖酵解的逆方向生成1.6—二磷酸果糖。
(6),F-1.6-P→ F-6-P
果糖二磷酸酶这是糖异生的关键反应,果糖二磷酸酶被AMP、2.6—二磷酸果糖强烈抑制,但被ATP、柠檬酸和3—磷酸甘油酸激活。
6-磷酸果糖异构化为6-磷酸葡萄糖
(7),6-磷酸葡萄糖生成葡萄糖
.
糖异生总反应:
2丙酮酸+4ATP+2GTP+2NADH+2H++4H20→Glc+2NAD++4ADP+2GDP+6Pi.
从2分子丙酮酸形成Glc共消耗6个ATP,2个NADH。
在糖异生中,有三步反应与糖酵解途径不同:
丙酮酸→磷酸烯醇式丙酮酸
1.6—二磷酸果糖→F—6—P。
G—6—P→Glc
3,糖异生途径的前体
P113图13—17糖异生途径的前体
凡是能生成丙酮酸或成草酰乙酸的物质都可以变成葡萄糖,如TCA中全部的中间产物,大多数氨基酸植物微生物经过乙醛酸循环,可将乙酰CoA转化成草酰乙酸,因此可以将脂肪酸转变成糖。
动物体中不存在乙醛酸循环,因此不能将乙酰CoA转变成糖。
非生糖氨基酸:Ile、Leu、Tyr、Trp
反刍动物胃、肠道细菌分解纤维素,产生乙酸、丙酸、丁酸等,其中奇数碳脂肪酸可转变成琥珀酰CoA,进入TCA,生糖。
4,糖异生和糖酵解的代谢协调调控P123
参阅 P123
糖异生和糖酵解在细胞中是两个相反的代谢途径,同时,又是协调的。
①高浓度G—6—P抑制已糖激酶,活化G—6—P酶,抑制酵解,促进异生。
②酵解和异生的控制点是F—6—P与F—1.6—2P的转化。
糖异生的关键调控酶是F—1.6—2P酶,而糖酵解的关键调控酶是磷酸果糖激酶。
ATP促进酵解,柠檬酸促进糖异生。
F-2.6-P是强效应物,促进酵解,减弱异生。
③丙酮酸到PEP的转化在糖异生中是由丙酮酸羧化酶调节,在酵解中被丙酮酸激酶调节。
乙酰CoA激活丙酮酸羧化酶的活性,抑制丙酮酸脱氢酶的活性,因此乙酰CoA过量时,可促进Glc 生成。
④酵解与异生途径,一个途径开放,另一途径就关闭,可避免无数循环。
无效循环:由不同酶催化的两个相反代谢,反应条件不一样,一个方向需ATP参加,另一方向则进行水解,结果使ATP水解,消耗能量,反应物无变化。
酵解和异生中有三个点可能产生无效循环:
P124
这种无效循环只能产生热量供自身需要。
⑤激素对酵解和异生的调控肾上腺素、胰高血糖素和糖皮质激素促进异生,胰岛素加强酵解。
三,糖原的合成与分解糖原是葡萄糖的储存形式,主要发生在肝脏、骨骼肌中。
(一) 糖原分解代谢
(二) 糖原合成代谢
(1),UDP葡萄糖焦磷酸化酶
G—1—P+UTP→UDP葡萄糖+ppi.
ppi水解,反应向右。
(2),糖原合成酶
a—OH,有活性。 B—O—P,少活性。
新的Glc残基加在糖原引物的非还原端的Glc残基的C4羟基上,形成α-1.4糖苷键,UDP被延长的糖原分子末端Glc残基C4上的羟基取代。
(3),分枝酶
(三) 糖原代谢的调节 P124
第九章 脂代谢脂类的生理功能
a,生物膜的骨架成分 磷脂、糖脂
b,能量贮存形式 甘油三酯
c,参与信号识别、免疫 糖脂
d,激素、维生素的前体 固醇类激素,维生素D、A、K、E
e,生物体表保温防护脂肪贮存量大,热值高,39KJ。
70kg人体,贮存的脂肪可产生:2008320kJ
蛋白质 105000kJ
糖原 2520kJ
Glc168kJ
脂肪的热值:1g脂肪产生的热量,是等量蛋白质或糖的2.3倍。
第一节 脂类的消化、吸收和转运一,脂类的消化和吸收
1,脂类的消化(主要在十二指肠中)
食物中的脂类主要是甘油三酯 80-90%
还有少量的磷脂 6-10%
胆固醇 2-3%
胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。脂肪间接刺激胆汁及胰液的分泌。胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。
胰腺分泌的脂类水解酶:
① 三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两个游离的脂肪酸。胰脏分泌的脂肪酶原要在小肠中激活)
②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)
③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)
④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)
2,脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。
小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。
二,脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。
脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。
载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。
脂蛋白的分类及功能:
P151表15-1各种脂蛋白的组成、理化性质、生理功能三,贮脂的动用皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。
血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。
贮脂的降解受激素调节。
促进:肾上腺素、胰高血糖素、肾上腺皮质激素抑制:胰岛素植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。
第二节 脂肪酸和甘油三酯的分解代谢一,甘油三酯的水解甘油三酯的水解由脂肪酶催化。
组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。
这三种酶是:
脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶)
甘油二酯脂肪酶甘油单酯脂肪酶
肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。
胰岛素、前列腺素E1作用相反,可抗脂解。
油料种子萌发早期,脂肪酶活性急剧增高,脂肪迅速水解。
二,甘油代谢在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。
P152反应式:
三,脂肪酸的氧化
(一) 饱和偶数碳脂肪酸的β氧化
1,β氧化学说早在1904年,Franz 和Knoop就提出了脂肪酸β氧化学说。
用苯基标记含奇数碳原子的脂肪酸,饲喂动物,尿中是苯甲酸衍生物马尿酸。
用苯基标记含隅数碳原子的脂肪酸,饲喂动物,尿中是苯乙酸衍生物苯乙尿酸。
结论:脂肪酸的氧化是从羧基端β-碳原子开始,每次分解出一个二碳片断。
产生的终产物苯甲酸、苯乙酸对动物有毒害,在肝脏中分别与Gly反应,生成马尿酸和苯乙尿酸,排出体外。
β-氧化发生在肝及其它细胞的线粒体内。
2,脂肪酸的β氧化过程脂肪酸进入细胞后,首先被活化成酯酰CoA,然后再入线粒体内氧化。
(1),脂肪酸的活化(细胞质)
RCOO-+ATP+CoA-SH→RCO-S-CoA+AMP+Ppi
生成一个高能硫脂键,需消耗两个高能磷酸键,反应平衡常数为1,由于PPi水解,反应不可逆。
细胞中有两种活化脂肪酸的酶:
内质网脂酰CoA合成酶,活化12C以上的长链脂肪酸线粒体脂酰CoA合成酶,活化4~10C的中、短链脂肪酸
(2),脂肪酸向线粒体的转运中、短链脂肪酸(4-10C)可直接进入线粒体,并在线粒体内活化生成脂酰CoA。
长链脂肪酸先在胞质中生成脂酰CoA,经肉碱转运至线粒体内。
肉(毒)碱:L-β羟基-r-三甲基铵基丁酸
P154.图15-1脂酰CoA以脂酰肉碱形式转运到线粒体内
线粒体内膜外侧(胞质侧):肉碱脂酰转移酶Ⅰ催化,脂酰CoA将脂酰基转移给肉碱的β羟基,生成脂酰肉碱。
线粒体内膜:线粒体内膜的移位酶将脂酰肉碱移入线粒体内,并将肉碱移出线粒体。
线粒体内:膜内侧:肉碱脂酰转移酶Ⅱ催化,使脂酰基又转移给CoA,生成脂酰CoA和游离的肉碱。
脂酰CoA进入线粒体后,在基质中进行β氧化作用,包括4个循环的步骤。
(3),脂酰CoA脱氢生成β-反式烯脂酰CoA
P154 反应式:
线粒体基质中,已发现三种脂酰CoA脱氢酶,均以FAD为辅基,分别催化链长为C4-C6,C6-C14,C6-C18的脂酰CoA脱氢。
(4),△2反式烯脂酰CoA水化生成L-β-羟脂酰CoA
P155反应式:
β-烯脂酰CoA水化酶
(5),L-β-羟脂酰CoA脱氢生成β-酮脂酰CoA
P155反应式:
L-β羟脂酸CoA脱氢酶
(6),β-酮脂酰CoA硫解生成乙酰CoA和(n-2)脂酰CoA
P155 反应式:
酮脂酰硫解酶
3,脂肪酸β-氧化作用小结
结合P154图15-1和P156图15-2,回顾脂肪酸β氧化过程。
(1) 脂肪酸β-氧化时仅需活化一次,其代价是消耗1个ATP的两个高能键
(2) 长链脂肪酸由线粒体外的脂酰CoA合成酶活化,经肉碱运到线粒体内;中、短链脂肪酸直接进入线粒体,由线粒体内的脂酰CoA合成酶活化。
(3) β-氧化包括脱氢、水化、脱氢、硫解4个重复步骤
(4) β-氧化的产物是乙酰CoA,可以进入TCA
4,脂肪酸β-氧化产生的能量以硬脂酸为例,18碳饱和脂肪酸胞质中:⑴活化:消耗2ATP,生成硬脂酰CoA
线粒体内:
⑵脂酰CoA脱氢:FADH2,产生2ATP
⑶β-羟脂酰CoA脱氢:NADH,产生3ATP
⑷β-酮脂酰CoA硫解:乙酰CoA→TCA,12ATP
(n-2)脂酰CoA → 第二轮β氧化活化消耗: -2ATP
β氧化产生: 8×(2+3)ATP=40
9个乙酰CoA: 9×12 ATP =108
净生成: 146ATP
饱和脂酸完全氧化净生成ATP的数量:(8.5n-7)ATP(n 为偶数)
硬脂酸燃烧热值:–2651 kcal
β-氧化释放:146ATP×(-7.3Kcal)=-1065.8Kcal
转换热效率
5,β-氧化的调节
⑴脂酰基进入线粒体的速度是限速步骤,长链脂酸生物合成的第一个前体丙二酸单酰CoA的浓度增加,可抑制肉碱脂酰转移酶Ⅰ,限制脂肪氧化。
⑵[NADH]/[NAD+]比率高时,β—羟脂酰CoA脱氢酶便受抑制。
⑶乙酰CoA浓度高时;可抑制硫解酶,抑制氧化(脂酰CoA有两条去路,①氧化。②合成甘油三酯)(二) 不饱和脂酸的β氧化
1,单不饱和脂肪酸的氧化
P157油酸的β氧化
△3顺—△2反烯脂酰CoA异构酶(改变双键位置和顺反构型)
(146-2)ATP
2,多不饱和脂酸的氧化
P158亚油酸的β氧化
△3顺—△2反烯脂酰CoA异构酶(改变双键位置和顺反构型)
β-羟脂酰CoA差向酶(改变β-羟基构型:D→L型)
(146—2—2)ATP
(三) 奇数碳脂肪酸的β氧化奇数碳脂肪酸经反复的β氧化,最后可得到丙酰CoA,丙酰CoA有两条代谢途径:
1,丙酰CoA转化成琥珀酰CoA,进入TCA。
详细过程P158
动物体内存在这条途径,因此,在动物肝脏中奇数碳脂肪酸最终能够异生为糖。
反刍动物瘤胃中,糖异生作用十分旺盛,碳水化合物经细菌发酵可产生大量丙酸,进入宿主细胞,在硫激酶作用下产丙酰CoA,转化成琥珀酰CoA,参加糖异生作用。
2,丙酰CoA转化成乙酰CoA,进入TCA
P159
这条途径在植物、微生物中较普遍。
有些植物、酵母和海洋生物,体内含有奇数碳脂肪酸,经β氧化后,最后产生丙酰CoA。
(四) 脂酸的其它氧化途径
1,α—氧化(不需活化,直接氧化游离脂酸)
植物种子、叶子、动物的脑、肝细胞,每次氧化从脂酸羧基端失去一个C原子。
RCH2COOH→RCOOH+CO2
α—氧化对于降解支链脂肪酸、奇数碳脂肪酸、过分长链脂肪酸(如脑中C22、C24)有重要作用
2,ω—氧化(ω端的甲基羟基化,氧化成醛,再氧化成酸)
动物体内多数是12C以上的羧酸,它们进行β氧化,
但少数的12C以下的脂酸可通过ω—氧化途径,产生二羧酸,如11C脂酸可产生11C、9C、和7C的二羧酸(在生物体内并不重要)。
ω—氧化涉及末端甲基的羟基化,生成一级醇,并继而氧化成醛,再转化成羧酸。
ω—氧化在脂肪烃的生物降解中有重要作用。泄漏的石油,可被细菌ω氧化,把烃转变成脂肪酸,然后经β氧化降解。
四,酮体的代谢脂肪酸β-氧化产生的乙酰CoA,在肌肉和肝外组织中直接进入TCA,然而在肝、肾脏细胞中还有另外一条去路:生成乙酰乙酸、D-β-羟丁酸、丙酮,这三种物质统称酮体。
酮体在肝中生成后,再运到肝外组织中利用。
1,酮体的生成酮体的合成发生在肝、肾细胞的线粒体内。
形成酮体的目的是将肝中大量的乙酰CoA转移出去,乙酰乙酸占30%,β—羟丁酸70%,少量丙酮。(丙酮主要由肺呼出体外)
肝脏线粒体中的乙酰CoA走哪一条途径,主要取决于草酰乙酸的可利用性。饥饿状态下,草酰乙酸离开TCA,用于异生合成Glc。当草酰乙酸浓度很低时,只有少量乙酰CoA进入TCA,大多数乙酰CoA用于合成酮体。
当乙酰CoA不能再进入TCA时,肝脏合成酮体送至肝外组织利用,肝脏仍可继续氧化脂肪酸。
酮体的生成途径:
P164图15-5酮体的生成过程
肝中酮体生成的酶类很活泼,但没有能利用酮体的酶类。因此,肝脏线粒体合成的酮体,迅速透过线粒体并进入血液循环,送至全身。
2,酮体的利用肝外许多组织具有活性很强的利用酮体的酶。
(1),乙酰乙酸被琥珀酰CoA转硫酶(β-酮脂酰CoA转移酶)活化成乙酰乙酰CoA
心、肾、脑、骨骼肌等的线粒体中有较高的酶活性,可活化乙酰乙酸。
乙酰乙酸+琥珀酰CoA→乙酰乙酰CoA+琥珀酸
然后,乙酰乙酰CoA被β氧化酶系中的硫解酶硫解,生成2分子乙酰CoA,进入TCA。
(2),β—羟基丁酸由β—羟基丁酸脱氢酶催化,生成乙酰乙酸,然后进入上述途径。
(3),丙酮可在一系列酶作用下转变成丙酮酸或乳酸,进入TCA或异生成糖。
肝脏氧化脂肪时可产生酮体,但不能利用它(缺少β—酮脂酰CoA转移酶),而肝外组织在脂肪氧化时不产生酮体,但能利用肝中输出的酮体。
在正常情况下,脑组织基本上利用Glc供能,而在严重饥饿状态,75%的能量由血中酮体供应。
3,酮体生成的生理意义酮体是肝内正常的中间代谢产物,是肝输出能量的一种形式。
酮体溶于水,分子小,能通过血脑屏障及肌肉毛细管壁,是心、脑组织的重要能源。脑组织不能氧化脂酸,却能利用酮体。长期饥饿,糖供应不足时,酮体可以代替Glc,成为脑组织及肌肉的主要能源。
正常情况下,血中酮体0.03~0.5 mmal/2。在饥饿、高脂低糖膳食时,酮体的生成增加,当酮体生成超过肝外组织的利用能力时,引起血中酮体升高,导致酮症酸(乙酰乙酸、β—羟丁酸)中毒,引起酮尿。
4,酮体生成的调节。
(1)饱食:胰岛素增加,脂解作用抑制,脂肪动员减少,进入肝中脂酸减少,酮体生成减少。
饥饿:胰高血糖素增加,脂肪动员量加强,血中游离脂酸浓度升高,利于β氧化及酮体的生成。
(2)肝细胞糖原含量及代谢的影响:
进入肝细胞的游离脂酸,有两条去路:一条是在胞液中酯化,合成甘油三酯及磷脂;一是条进入线粒体进行β氧化,生成乙酰CoA及酮体。
肝细胞糖原含量丰富时,脂酸合成甘油三酯及磷脂。
肝细胞糖供给不足时,脂酸主要进入线粒体,进入β—氧化,酮体生成增多。
(3)丙二酸单酰CoA抑制脂酰CoA进入线粒体乙酰CoA及柠檬酸能激活乙酰CoA羧化酶,促进丙二酰CoA的合成,后者能竞争性抑制肉碱脂酰转移酶Ⅰ,从而阻止脂酰CoA进入线粒体内进行β氧化。
第三节 脂肪酸及甘油三脂的合成代谢所有的生物都可用糖合成脂肪酸,有两种合成方式。
A,从头合成(乙酰CoA)——在胞液中(16碳以下)
B,延长途径——在线粒体或微粒体中高等动物的脂类合成在肝脏、脂肪细胞、乳腺中占优势。
一,饱和脂肪酸的从头合成合成部位:细胞质中合成的原料:乙酰CoA(主要来自Glc酵解)
NADPH (磷酸戊糖途径)
ATP
HCO3—
1,乙酰CoA的转运细胞内的乙酰CoA几乎全部在线粒体中产生,而合成脂肪酸的酶系在胞质中,乙酰CoA必须转运出来。
转运方式:柠檬酸-丙酮酸循环
P165 图15-6循环图示:乙酰CoA从线粒体内到胞液中的转运
2,丙二酸单酰CoA的生成(限速步骤)
脂肪合成时,乙酰CoA是脂肪酸的起始物质(引物),其余链的延长都以丙二酸单酰CoA的形式参与合成。
P165反应式:
所用的碳来自HCO3—(比CO2活泼),形成的羧基是丙二酸单酰CoA的远端羧基乙酰CoA羧化酶:(辅酶是生物素)为别构酶,是脂肪酸合成的限速酶,柠檬酸可激活此酶,脂肪酸可抑制此酶。
3,脂酰基载体蛋白(ACP)
脂肪酸合成酶系有7种蛋白质,其中6种是酶,1种是脂酰基载体蛋白(ACP),它们组成了脂肪酸合成酶复合体
ACP上的Ser羟基与4-磷酸泛酰巯基乙胺上的磷酸基团相连,4-磷酸泛酰巯基乙胺是ACP和CoA的共同活性基团。
P167 图15-8磷酸泛酰巯基乙胺是CoA和ACP的活性基团。
脂肪酸合成过程中的中间产物,以共价键与ACP辅基上的-SH基相连,ACP辅基就象一个摇臂,携带脂肪酸合成的中间物由一个酶转到另一个酶的活性位置上。
4,脂肪酸的生物合成步骤
P170图15-10 脂肪酸生物合成的程序
第一阶段:缩合第二阶段:还原第三阶段:释放
(1),原初反应:乙酰基连到β-酮脂酰ACP合成酶上
(2),丙二酸酰基转移反应:生成丙二酸单酰-S-ACP
此时一个丙二酸单酰基与ACP相连,另一个脂酰基(乙酰基)与β-酮脂酰-ACP合成酶相连。
(3),缩合反应:生成β-酮脂酰-S-ACP
同位素实验证明,释放的CO2来自形成丙二酸单酰CoA时所羧化的HCO3—,羧化上的C原子并未掺入脂肪酸,HCO3— 在脂酸合成中只起催化作用。
(4),第一次还原反应:生成β-羟脂酰-S-ACP
注意:形成的是D型β羟丁酰-S-ACP,而脂肪分解氧化时形成的是L型。
(5),脱水反应:形成β-烯脂酰-S-ACP
(6),第二次还原反应:形成(n+2)脂酰-S-ACP
第一次循环,产生丁酰-S-ACP。
第二次循环,丁酰-S-ACP的丁酰基由ACP转移至β-酮脂酰-ACP合成酶上,再接受第二个丙二酸单酰基,进行第二次缩合。
奇数碳原子的饱和脂肪酸也由相此途径合成,只是起始物为丙二酸单酰-S-ACP,而不是乙酰-S-ACP,逐加的二碳单位也来自丙二酸单酰-S-ACP。
多数生物的脂肪酸合成步骤仅限于形成软脂酸(16C)。经过7次循环后,合成的软脂酰-S-ACP经硫脂酶催化生成游离的软脂酸,或由ACP转到CoA上生成软脂酰CoA,或直接形成磷脂酸。
对链长有专一性的酶是β-酮脂酰ACP合成酶,它不能接受16C酰基。
由乙酰-S-CoA合成软脂酸的总反应:
8乙酰CoA + 14NADPH + 14H+ + 7ATP + H2O → 软脂酸 + 8CoASH + 14NADP++7ADP + 7Pi
5,各类细胞中脂肪酸合成酶系
(1),细菌、植物(多酶复合体)
P168 图15-9
6种酶 + ACP
(2),酵母(α6β6)
电镜下直径为25nm
α:β-酮脂酰合成酶、β-酮脂酰还原酶
β:脂酰转移酶、丙二酸单酰转移酶、β-羟脂酰脱水酶、β-烯脂酰还原酶
(3),哺乳动物(α2,多酶融合体)
P171 图15-11
结构域I:底物进入酶系进行缩合的单元,乙酰转移酶活性、丙二酸单酰转移酶、缩合酶结构域II:还原反应物的单元,ACP、β-酮脂酰还原酶、β-羟脂酰脱水酶、β-烯脂酰还原酶结构域III:释放软脂酸的单元,硫脂酶。
多酶融合体:许多真核生物的多酶体系是多功能蛋白,不同的酶以共价键连在一起,称为单一的肽连,称为多酶融合体。生物进化中,外显子跳动产生的结果。有利于酶的协同作用,提高催化效率。
多酶融合体对酶工程的启示:E1~~~~~E2~~~~~~E3
6,脂肪酸合成的化学计量(从乙酰CoA开始)
以合成软脂酸为例:(8个乙酰CoA)
14NADPH,7ATP
14*3+7=49ATP
7,乙酰CoA和NADPH的来源
⑴乙酰CoA
A.肉碱乙酰基转移酶P154
B.柠檬酸-丙酮酸、穿梭
⑵NADPH
60%来自磷酸戊糖支路
40%来自柠檬酸-丙酮酸穿梭
P165
8,脂肪酸合成的调节两种方式
(1),酶浓度调节(酶量的调节或适应性控制)
关键酶:
乙酰CoA羧化酶(产生丙二酸单酰CoA)
脂肪酸合成酶系苹果酸酶(产生还原当量)
饥饿时,这几种酶浓度降低3-5倍,进食后,酶浓度升高。
喂食高糖低脂膳食,这几种酶浓度升高,脂肪合成加快。
(2),酶活性的调节乙酰CoA羧化酶是限速酶。
别构调节:柠檬酸激活、软脂酰CoA抑制。
共价调节:磷酸化会失活、脱磷酸化会复活胰高血糖素可使此酶磷酸化失活,胰岛素可使此酶脱磷酸化而恢复活性。
9,脂肪酸氧化与合成途径的比较
P173 表15-3 软脂酸分解与合成代谢的区别。
合成(从乙酰CoA开始) 氧化(生成乙酰CoA)
细胞中部位 细胞质 线粒体酶 系 7种酶,多酶复合体或多酶融合体 4种酶分散存在酰基载体 ACP CoA
二碳片段 丙二酸单酰CoA 乙酰CoA
电子供体(受体) NADPH FAD、NAD
β-羟脂酰基构型 D型 L型对HCO3及柠檬酸的要求 要求 不要求能量变化 消耗7个ATP及14个NADPH,共49ATP。 产生(7FADH2+7NADH-2ATP)共33ATP
产物 只合成16碳酸以内的脂酸,延长需由别的酶完成。 18碳酸可彻底降解18碳酸可彻底降解
二,线粒体和内质网中脂肪酸碳链的延长
β-酮脂酰-ACP合成酶最多只能接受14碳的酰基,不能接受16碳酰基。因此,从头合成只能合成16C软脂酸。
1,线粒体脂肪酸延长酶系能够延长中、短链(4-16C)饱和或不饱和脂肪酸,延长过程是β-氧化过程的逆转,乙酰CoA作为二碳片段的供体,NADPH作为氢供体。
硫解→加氢→脱水→加氢
2,内质网脂肪酸延长酶系哺乳动物细胞的内质网膜能延长饱和或不饱和长链脂肪酸(16C及以上),延长过程与从头合成相似,只是以CoA代替ACP作为脂酰基载体,丙二酸单酰CoA作为C2供体,NADPH作为氢供体,从羧基端延长。
三,不饱和脂肪酸的合成在人类及多数动物体内,只能合成一个双键的不饱和脂肪酸(△9),如硬脂酸脱氢生成油酸,软脂酸脱氢生成棕榈油酸。
植物和某些微生物可以合成(△12)二烯酸、三烯酸,甚至四烯酸。
某些微生物(E,coli)、酵母及霉菌能合成二烯、三烯和四烯酸。
1,氧化脱氢(需氧)
一般在脂肪酸的第9、10位脱氢,生成不饱和脂肪酸。
如硬脂酸可在特殊脂肪酸氧化酶作用下,脱氢生成油酸。

2,β碳原子氧化脱水途径(β-羟脂酰ACP脱水)

大杨杆菌:棕榈油酸的合成是由β-羟癸脂酰-ACP开始。
动物:

植物和微生物:
由铁硫蛋白代替细胞色素b5

含2、3、4个双键的脂肪酸也能用类似方法合成。
但是,由于缺乏在脂肪酸的第四位碳原子以上位置引入不饱和双链的去饱和酶,人和哺乳动物不能合成足够的十八碳二烯酸(亚油酸)、十八碳三烯酸(亚麻酸)。必须由食物供给,称必须脂肪酸。
3,去饱和途径脂酰CoA去饱和酶,催化软脂酰CoA及硬脂酰CoA分别在C9-C10脱氢,生成棕榈油酸(△9 16:1)和油酸(△9 18:1)
4,其它转化途径
P175图15-15
低温时,脂肪酸去饱和
P176图15-16
四,三脂酰甘油的合成动物肝脏、脂肪组织及小肠粘膜细胞中合成大量的三脂酰甘油,植物也能大量合成三脂酰甘油,微生物合成较少。
P178 图15-17 哺乳动物肝脏甘油三脂的生物合成途径
合成原料,L-α-磷酸甘油(3-磷酸甘油)
脂酰CoA
L-α-磷酸甘油的来源
⑴磷酸二羟丙酮(糖酵解产物)还原生成L-α-磷酸甘油
⑵甘油磷酸化甘油激酶(只有肝中才有甘油激酶)
合成步骤
磷脂酸和甘油二酯是磷脂合成的原料。
五,各组织中脂肪代谢的相互关系
P179图15-18
六,脂代谢与糖代谢的关系
(1) 甘油→磷酸二羟丙酮→糖异生
(2) 植物及微生物:脂肪酸→乙酰CoA→琥珀酸→糖异生
(3) 动物:奇数碳脂肪酸→丙酰CoA→琥珀酰CoA→糖异生
(4) 糖→磷酸二羟丙酮→甘油→甘油脂
(5) 糖→乙酰CoA→脂肪酸第四节 甘油磷脂代谢磷脂 甘油磷脂(生物膜主要成分)
鞘氨醇磷脂它们的醇类物质分别是甘油和鞘氨醇。
本节讲述甘油磷脂的代谢一,甘油磷脂的水解以磷脂酰胆碱为例(卵磷脂)
磷脂能被不同的磷脂酶水解,可水解位点如下:
P181图15-19卵磷脂的酶促分解
1,磷脂酶A1
存在于动物细胞中,作用于①位置。生成二脂酰基甘油磷酸胆碱和一分子脂肪酸。
2,磷脂酶A2
大量存在于蛇毒、蝎毒、蜂毒中,动物胰脏中有此酶原,作用于②位,生成1-脂酰基甘油磷酸胆碱和脂肪酸。
3,磷脂酶C
存在于动物脑、蛇毒和细菌毒素中。
作用于③位,生成二酰甘油和磷酸胆碱。
4,磷脂酶D
主要存在于高等植物中,作用于④位,水解产物是磷脂酸和胆碱。
5,磷脂酶B
能同时水解①、②位磷脂经过酶促分解脱去一个脂肪酸分子形成溶血磷脂(带一个游离脂肪酸和一个磷酸胆碱),催化溶血磷脂水解的酶称溶血磷脂酶(L1L2)
磷脂酶的催化作用使磷脂分解,促使细胞膜不断更新、修复。
二,甘油磷脂的生物合成
1,磷脂酰乙醇胺的合成(脑磷脂)
参与血液凝结
(1)乙醇胺磷酸化
P182反应式:
(2)磷酸乙醇胺生成CDP-乙醇胺磷酸乙醇胺胞嘧啶核苷酸(CTP)转移酶

(3) CDP-乙醇胺与甘油二脂形成磷脂酰乙醇胺(脑磷脂)
甘油二酯的来源:甘油三酯合成的中间产物,还有磷酯酸磷酸酶(磷脂酶C)催化磷脂酸水解的产物。
2,磷酯酰胆碱的合成(卵磷脂)
(1),节约利用(主要是细菌)
由磷脂酰乙醇胺的氨基直接甲基化,甲基的供体是S-腺苷甲硫氨酸。
P183步骤详细讲解
磷脂酰乙醇胺甲基转移酶的辅基是四氢叶酸。
(2),从头合成(动物细胞)
此途径与形成磷脂酰乙醇胺的途径相同。
由胆碱开始,胆碱来源于食物或磷酯酰胆碱的降解。
a.胆碱+ATP胆碱激酶磷酸胆碱+ADP
b.磷酸胆碱+CTP磷酸胆碱胞嘧啶核苷酸转移酶CDP-胆碱+ppi
c.CDP-胆碱+甘油二酯 磷酸胆碱转移酶磷脂酰胆碱+CMP
3,磷脂酰丝氨酸的合成
(1),丝氨酸与磷脂酰乙醇胺的醇基酶促交换磷酯酰乙醇胺+丝氨酸→磷酯酰丝氨酸+乙醇胺
动物、大肠杆菌中,磷脂酰丝氨酸可脱羧生成磷脂酰乙醇胺。
(2),磷脂酸→CDP-二脂酰基甘油→磷脂酰丝氨酸(细菌中)
P184反应式
以上三个合成途径的关系:
糖原合成时,Glc的活性形式是UDP-葡萄糖(尿嘧啶核苷二磷酸-Glc)。
4,磷脂酰肌醇的合成第五节 鞘脂类的代谢第六节 胆固醇的代谢胞固醇的合成(自己看一下,不要求)
胞固醇中27个碳原子全部来源于乙酰CoA。
3、8—二氨基-5-乙基-6-苯基菲啶溴盐。
钙调蛋白 EF手
P451图8-20EF手构象
螺旋区—泡区一螺旋区结构的钙传感器家族成员之一。
钙离子与许多生理活动有关,是许多信号传导途径中的细胞内信使,与细胞收缩、胞吐、胞饮、糖元代谢、神经递质释放、染色体运动、细胞死亡等都有密切关系。
★ 为什么选择钙离子:
①细胞内Ca2+浓度可以大幅度地发生变化,胞内有大量的磷酸酯,因此胞内Ca2+ 浓度很低。未被激动的细胞内,胞质中Ca2+ 水平为0.1 umol/L,比环境中的浓度低几个数量级。 种十分悬殊的浓度差为细胞提供了接受信号的机会:
为达到传递信号的目的,可瞬间打开质膜或细胞内膜中的钙通道,速迅升高胞质中Ca2+浓度。
②Ca2+ 与带负电荷的氧(Glu、Asp侧链)和不带电荷的氧(主链C=0)都能结合,可与6~8个氧原子配位结合,使Ca2+能和一个蛋白质的不同片段发生交联,诱导蛋白质构象变化。
★ 钙调蛋白的结构特点
①帕佛清蛋白(12kd)
有8个氧原子(三个Asp提供4个羧基氧,一个Glu提供2个羧基氧,一个主链羰基提供一个羰基氧,一分子水提供一个 氧),等同地与每个Ca2+结合。此蛋白具有两个相似的 Ca2+ 结合位点,在二级结构中,这种位点由此蛋白的E区(α-螺旋)和F区(α-螺旋)及结合Ca2+的泡区构成,它们的位置象右手的大姆指与食指夹着一个结合钙的泡区。这种螺旋区—泡区一螺旋区结构称为EF手
P451 图8—20
②牛脑的钙调蛋白
148个a.a残基,有4个可结合Ca2+的结构域。
当 Ca2+结合到E区和F区之间的泡区时,引起每个α-螺旋在它的轴线附近旋转并移位,这使钙调蛋白转变成一种对靶蛋白具有很高亲合力的构象。
★ 钙调蛋白只在结合Ca2+,形成Ca2+,CaM复合物后才能有生物活性。
①直接与靶酶起作用(蛋白激酶C)。
②活化依赖于Ca2+.CaM复合物的蛋白激酶,使靶酶磷酸化。
(三) 受体—酪氨酸蛋白激酶途径激素与受体—酪氨酸蛋白激酶(TPK)结合后,使原来无活性的TPK变为有活性的TPK,TPK催化受体分子自身Tyr残基磷酸化,并进一步提高TPK的活性,使其它底物蛋白磷酸化。
(四) 细胞内受体途径(基因表达学说)
反应慢,几小时到几天,这类激素的受体是DNA结合蛋白。
甾醇类激素及少数含氮激素,先进入细胞,在胞质中与各自的受体结合,生成激素—受体复合物,此复合物穿过核膜,与各自特定的基因调控序列结合,使DNA转录出大量的mRNA,并合成出大量的特异蛋白质(酶)。
作用过程:P425图8-2 P458 图8-25
此种作用方式的激素有:糖皮质激素、盐皮质激素(醛甾酮)、雌激素(雌二醇、孕酮)、雄激素(睾酮)、甲状腺素等。
受类固醇激素调控的基因中,与激素—受体复合物结合的部位称激素应答元件(hormone response element HRE)。
HRE往往是类似回文结构的序列糖皮质激素—受体复合物所结合的HRE,位于转录起始点上游几百个bp处。
P425表8-3一些激素的作用方式第四节 激素作用举例一,肾上腺素 cAMP方式属儿茶酚胺类化合物,生成后在囊泡内储存,在惊恐、低氧、血压降低等应激状态时,囊泡通过泡吐作用释放。
靶细胞:肌肉、脂肪、肝脏灭活:肝细胞
1,结构与功能肾上腺素及去甲肾上腺素均由Tyr转化而来(由肾上腺髓质分泌),对心脏、血管起作用时,可使心跳加快、血管收缩、血压上升。
它对糖代谢影响最大,在肝细胞中可加强肝糖元分解,迅速升高血糖。
此外,还能促进蛋白质、氨基酸、脂肪分解。
P426结构式
2,G蛋白(鸟苷酸结合蛋白)
G蛋白与激素受体偶连,将信息传递给腺苷酸环化酶(cAMP途径)或磷脂酶(Ca2+途径),从而产生胞内信使(第二信使:cAMP,Ca2+),因此,G蛋白是偶连胞外信使和胞内信使的桥梁。
&#61557;&#61472;G蛋白的活化与去活化过程,P428 图8-3、8-4
G蛋白是一个界面蛋白,处于细胞膜的内缘,与跨膜的激素受体偶连,信号转导过程就发生在细胞膜上,当细胞外的激素与跨膜的受体结合后引起受体构象变化,然后激素—受体复合物激活膜内的G蛋白。
无活性的G蛋白(G β γ α —GDP)发生GTP—GDP交换,形成有活性的G蛋白(Gs),其催化亚基Gα—GTP解离出来,扩散到细胞内,激活其效应子(腺苷酸环化酶、PLC、K+通道等)
每一个激素—受体复合物可以形成许多个分子Gα—GTP,由此给出“放大”的效应。
当激素停止分泌时,结合在受体上的激素就逐渐解离下来。Gα—GTP缓慢水解,释放掉GTP,Gα失去催化活性,与β γ 亚基重新形成无活性的G蛋白(G β γ α —GDP)。信号转导停止。
结合态GTP水解,表明G蛋白是一个GTPase,即这个调节蛋白具有一种内藏式的脱活作用,缺乏激素时,GTP,GDP交换反应速度降低,最终几乎所有的G 蛋白均以结合着GDP的无活性形式存在。β-肾上腺素受体的构象——跨膜七螺旋区
P 430 β-肾上腺素受体结构
许多与G蛋白偶连的受体都是跨膜蛋白,跨膜螺旋区结构是激活G蛋白的跨膜受体所具有的普遍特征。
4,蛋白激酶A
凡有cAMP的细胞,都有一类蛋白激酶(PKA),cAMP通过蛋白激酶A发挥它的作用。
&#61557;蛋白激酶A的活化P430图8-6cAMP激活蛋白激酶A
5,肾上腺素的作用方式(在促进糖元分解中的级联放大作用)
P 431 图8-7 肾上腺素对提高血糖的级联放大作用。
当肾上腺素以10-8—10-10mol/L的浓度到达肝细胞表面时,迅速与肝细胞表面的肾上腺素受体结合,使此局部构象变化,激活与受体偶连的G蛋白,从而激活膜上的腺苷酸环化酶,产生cAMP。
少量的肾上腺素(10-8-10-10mol/L),能引起强烈反应,产生5mmol/L葡萄糖。反应过程中信号逐级放大,共约300万倍,它在几秒钟内就可使磷酸化酶的活性达到最大。
一旦肾上腺素停止分泌,结合在肝细胞膜上的肾上腺素就解离下来,产生一系列变化:
cAMP不再生成,遗留的cAMP被磷酸二酯酶分解。蛋白激酶A的两种亚基又联结成无活性的复合体(催化亚基和调节亚基),有活性的磷酸化酶激酶的磷酸化形式遭到脱磷酸作用,变成无活性形式,磷酸化酶a受到磷酸酶作用,脱去磷酸变成无活性的磷酸化酶b,糖元分解停止。同时无活性的磷酸化形式的糖元合成酶经过脱磷酸作用,又变得活跃起来,继续合成糖元。
二,甲状腺素
1,结构含碘落氨酸衍生物。
在甲状腺中合成甲状腺球蛋白,每分子此球蛋白含2-4个T4分子。
当受促甲状腺激素刺激时,溶酶体中的蛋白酶水解甲状腺球蛋白,放出T4和T3。血浆中T3和T4绝大部分与血浆中的蛋白质结合运输,可防止T3、T4经肾丢失。
T3、T4在肝中失活,肝中有一种与甲状腺素亲合力极强的蛋白质,血流经过肝脏时,1/3的甲状腺素被肝细胞摄取,与葡萄糖醛酸或硫酸反应后失活,由胆汁排出。
还可脱氨、脱羧、脱碘而失活。
2,功能增强新陈代谢,引起耗氧量及产热量增加,促进智力与体质发育。
缺乏症:幼年发育迟缓,行动呆笨等
成年厚皮病、基础代谢降低过量:甲亢、基础代谢增高、眼球突出、心跳加快、消瘦、
神经系统兴奋提高,表现为神经过敏。
3,作用方式在线粒体中促进ATP氧化磷酸化过程,增加基础代谢。
增加RNA(tRNA、mRNA)的合成,促进个体生长发育。
三,胰岛素及胰高血糖素
1,结构
P128图3-38
①β-细胞胰岛素A链21 a.a残基B链30 a.a残基
②α-细胞胰高血糖素29 a.a残基
2,功能
①胰岛素:提高组织摄取葡萄糖的能力,抑制肝糖元分解,促进肝糖元及肌糖元合成,因此可降低血糖。
缺乏:血糖升高,尿中有糖,糖尿病。
过量:血糖过低,能量供应不足,影响大脑机能。
②胰高血糖素:增高血糖含量,促进肝糖元分解。
3,作用方式:
(1),胰岛素:受体—酪氨酸蛋白激酶途径
P442图8-14 P443图8-15
胰岛素的受体是跨膜的酪氨酸激酶,由α 2β 2组成,α 链处在细胞膜的外侧,β 链穿过细胞膜。
胰岛素结合到受体的膜外部分上时是如何诱导处受体的膜内部分的酪氨酸激酶的活性的?活化的受体对靶细胞中的哪些蛋白质进行磷酸化?磷酸化的靶蛋白如何地具有多重的促进生长效应和多冲的代谢效应?都不清楚
(2),胰高血糖素:cAMP途径与肾上腺素类似,通过cAMP途径,提高肝糖元磷酸化酶活性,促进肝糖原分解(并不促使肌糖原分解)。
第十一章核酸的降解和核苷酸代谢核酸的生物功能 DNA、RNA
核苷酸的生物功能
①合成核酸
②是多种生物合成的活性中间物
糖原合成,UDP-Glc。磷脂合成,CDP-乙醇胺,CDP-二脂酰甘油。
③生物能量的载体ATP、GTP
④腺苷酸是三种重要辅酶的组分
NAD、FAD、CoA
⑤信号分子cAMP、cGMP
食物中的核酸,经肠道酶系降解成各种核苷酸,再在相关酶作用下,分解产生嘌呤、嘧啶、核糖、脱氧核糖和磷酸,然后被吸收。
吸收到体内的嘌呤和嘧啶,大部分被分解,少部分可再利用,合成核苷酸。
人和动物所需的核酸无须直接依赖于食物,只要食物中有足够的磷酸盐,、糖和蛋白质,核酸就能在体内正常合成。
核酸的分解代谢:
第一节 核酸和核苷酸的分解代谢一,核酸的酶促降解核酸是核苷酸以3’、5’-磷酸二酯键连成的高聚物,核酸分解代谢的第一步就是分解为核苷酸,作用于磷酸二酯键的酶称核酸酶(实质是磷酸二脂酶)。
根据对底物的专一性可分为:核糖核酸酶、脱氧核糖核酸酶、非特异性核酸酶。
根据酶的作用方式分:内切酶、外切酶。
1,核糖核酸酶只水解RNA磷酸二酯键的酶(RNase),不同的RNase专一性不同。
牛胰核糖核酸酶(RNaseI),作用位点是嘧啶核苷-3’-磷酸与其它核苷酸间的连接键。
核糖核酸酶T1(RNaseT1),作用位点是3’ -鸟苷酸与其它核苷酸的5’-OH间的键。

2,脱氧核糖核酸酶只能水解DNA磷酸二酯键的酶。DNase牛胰脱氧核糖核酸酶(DNaseI)可切割双链和单链DNA。产物是以5’-磷酸为末端的寡核苷酸。
牛胰脱氧核糖核酸酶(DNaseⅠ),降解产物为3’-磷酸为末端的寡核苷酸。
限制性核酸内切酶:细菌体内能识别并水解外源双源DNA的核酸内切酶,产生3ˊ-OH和5ˊ-P。

PstⅠ切割后,形成3ˊ-OH 单链粘性末端。
EcoRⅠ切割后,形成5ˊ-P单链粘性末端。
3,非特异性核酸酶既可水解RNA,又可水解DNA磷酸二酯键的核酸酶。
小球菌核酸酶是内切酶,可作用于RNA或变性的DNA,产生3’-核苷酸或寡核苷酸。
蛇毒磷酸二酯酶和牛脾磷酸二脂酶属于外切酶。
蛇毒磷酸二酯酶能从RNA或DNA链的游离的3’-OH逐个水解,生成5’-核苷酸。
牛脾磷酸二脂酶从游离的5’-OH开始逐个水解,生成3’核苷酸。
二,核苷酸的降解
1,核苷酸酶 (磷酸单脂酶)
水解核苷酸,产生核苷和磷酸。
非特异性磷酸单酯酶:不论磷酸基在戊糖的2’、3’、5’,都能水解下来。
特异性磷酸单酯酶:只能水解3’核苷酸或5’核苷酸(3’核苷酸酶、5’核苷酸酶)
2,核苷酶两种:
① 核苷磷酸化酶:广泛存在,反应可逆。
② 核苷水解酶:主要存在于植物、微生物中,只水解核糖核苷,不可逆
三,嘌呤碱的分解
P301图18-2嘌呤碱的分解首先在各种脱氨酶的作用下水解脱氨,脱氨反应可发生在嘌呤碱、核苷及核苷酸水平上。
P 299反应式
不同种类的生物分解嘌呤碱的能力不同,因此,终产物也不同。
排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类排尿囊素动物:哺乳动物(灵长类除外)、腹足类排尿囊酸动物:硬骨鱼类排尿素动物:大多数鱼类、两栖类某些低等动物能将尿素进一步分解成NH3和CO2排出。
植物分解嘌呤的途径与动物相似,产生各种中间产物(尿囊素、尿囊酸、尿素、NH3)。
微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲酸、乙酸、乳酸、等)。
四,嘧啶碱的分解
P302图18-3嘧啶碱的分解
人和某些动物体内脱氨基过程有的发生在核苷或核苷酸上。脱下的NH3可进一步转化成尿素排出。
第二节 嘌呤核苷酸的合成一,从头合成由5’-磷酸核糖-1’-焦磷酸(5’-PRPP)开始,先合成次黄嘌呤核苷酸,然后由次黄嘌呤核苷酸(IMP)转化为腺嘌呤核苷酸和鸟嘌呤核苷酸。
嘌呤环合成的前体:CO2,甲酸盐、Gln、Asp、Gly
P303图18-4 嘌呤环的元素来源及掺入顺序
A.Gln提供-NH2:N 9
B.Gly:C4、C5、N7
C.5.10-甲川FHFA:C8
D.Gln提供-NH2:N3
闭环
E CO2:C 6
F.Asp提供-NH2:N 1
G10-甲酰THFA:C 2
1,次黄嘌呤核苷酸的合成(IMP) P306图18-5
(1),磷酸核糖焦磷酸转酰胺酶(转氨)
5-磷酸核糖焦磷酸+Gln→ 5-磷酸核糖胺+Glu+ppi
使原来α-构型的核糖转化成β构型
(2),甘氨酰胺核苷酸合成酶
5-磷酸核糖胺+Gly+ATP→甘氨酰胺核苷酸+ADP+Pi
(3),甘氨酰胺核苷酸转甲酰基酶甘氨酰胺核苷酸+N 5 N 10-甲川FH4+H2O→ 甲酰甘氨酰胺核苷酸+FH4
甲川基可由甲酸或氨基酸供给。
(4),甲酰甘氨脒核苷酸合成酶甲酰甘氨酰胺核苷酸 + Gln + ATP + H2O → 甲酰甘氨脒核苷酸 + Glu + ADP + pi
此步反应受重氮丝氨酸和6-重氮-5-氧-正亮氨酸不可逆抑制,这两种抗菌素与Gln有类似结构。
P 304 结构式:重氮丝氨酸、6-重氮-5-氧-正亮氨酸
(5),氨基咪唑核苷酸合成酶甲酰甘氨脒核苷酸+ATP → 5-氨基咪唑核苷酸+ADP+Pi
(1)~(5)第一阶段,合成第一个环(6),氨基咪唑核苷酸羧化酶
5-氨基咪唑核苷酸+CO2→ 5-氨基咪唑-4羧酸核苷酸
(7),氨基咪唑琥珀基氨甲酰核苷酸合成酶
5-氨基咪唑-4-羧酸核苷酸+Asp+ATP → 5-氨基咪唑4-(N-琥珀基)氨甲酰核苷酸
(8),腺苷酸琥珀酸裂解酶
5-氨基咪唑-4-(N-琥珀基)氨甲酰核苷酸 → 5-氨基咪唑-4-氨甲酰核苷酸+延胡索酸
(9),氨基咪唑氨甲酰核苷酸转甲酰基酶
5-氨基咪唑-4-氨甲酰核苷酸+N10-甲酰FH4 → 5-甲酰胺基咪唑-4-氨甲酰核苷酸+FH4
(10),次黄嘌呤核苷酸环水解酶
5-甲酰胺基咪唑-4-氨甲酰核苷酸 → 次黄嘌呤核苷酸+H2O
总反应式:
5-磷酸核糖 + CO2 + 甲川THFA + 甲酰THFA + 2Gln + Gly + Asp + 5ATP →
IMP + 2THFA + 2Glu + 延胡索酸 + 4ADP + 1AMP + 4Pi + PPi
2,腺嘌呤核苷酸的合成(AMP) P306图18-5
从头合成:CO2,2个甲酸盐、2个Gln、1个Gly、(1+1)个Asp、(6+1)个ATP,产生2个Glu、(1+1)个延胡索酸。

Asp的结构类似物羽田杀菌素,可强烈抑制腺苷酸琥珀酸合成酶的活性,阻止AMP生成。
羽田杀菌素,N-羟基-N-甲酰-Gly(P307)
3,鸟嘌呤核苷酸的合成 (P307结构式)
4,AMP、GMP生物合成的调节P309图18-6
5-磷酸核糖焦磷酸转酰胺酶是关键酶,可被终产物AMP、GMP反馈抑制。
AMP过量可反馈抑制自身的合成。
GMP过量可反馈抑制自身的合成。
5,药物对嘌呤核苷酸合成的影响筛选抗肿瘤药物,肿瘤细胞核酸合成速度快,药物能抑制。
①羽田杀菌素与Asp竞争腺苷酸琥珀酸合成酶,阻止次黄嘌呤核苷酸转化成AMP。
②重氮乙酰丝氨酸、6-重氮-5-氧正亮氨酸,是Gln的结构类似物,抑制Gln参与的反应。
③氨基蝶呤、氨甲蝶呤结构P314
叶酸的结构类似物,能与二氢叶酸还原酶发生不可逆结合,阻止FH4的生成,从而抑制FH4参与的各种一碳单位转移反应。
二,补救途径利用已有的碱基和核苷合成核苷酸
1,磷酸核糖转移酶途径(重要途径)
嘌呤碱和5-PRPP在特异的磷酸核糖转移酶的作用下生成嘌呤核苷酸
2,核苷激酶途径(但在生物体内只发现有腺苷激酶)
腺嘌呤在核苷磷酸化酶作用下转化为腺嘌呤核苷,后者在核苷磷酸激酶的作用下与ATP反应,生成腺嘌呤核苷酸。
嘌呤核苷酸的从头合成与补救途径之间存在平衡。Lesch-Nyan综合症就是由于次黄嘌呤:鸟嘌呤磷酸核糖转移酶缺陷,AMP合成增加,大量积累尿酸,肾结石和痛风。
第三节嘧啶核苷酸的合成一,从头合成与嘌呤核苷酸合成不同,在合成嘧啶核苷酸时,首先合成嘧啶环,再与磷酸核糖结合,生成尿嘧啶核苷酸,最后由尿嘧啶核苷酸转化为胞嘧啶核苷酸和胸腺嘧啶脱氧核苷酸。
合成前体:氨甲酰磷酸、Asp(P309图18-7嘧啶环的元素来源)
1,尿嘧啶核苷酸的合成 P310图18-8
氨甲酰磷酸的合成
(1) 天冬氨酸转氨甲酰酶
(2) 二氢乳清酸酶
(3) 二氢乳清酸脱氢酶(辅基:FAD、FMN)
(4) 乳清苷酸焦磷酸化酶
(5) 乳清苷酸脱羧酶
2,胞嘧啶核苷酸的合成尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(植物)反应,生成胞嘧啶核苷三磷酸。
3,嘧啶核苷酸生物合成的调节(大肠杆菌)
P 311 图18-9大肠杆菌嘧啶核苷酸生物合成的调节
氨甲酰磷酸合成酶:受UMP反馈抑制天冬氨酸转氨甲酰酶:受CTP反馈抑制
CTP合成酶:受CTP反馈抑制
4,药物对嘧啶核苷酸合成的影响有多种嘧啶类似物可抑制嘧啶核苷酸的合成。
5-氟尿嘧啶抑制胸腺嘧啶脱氧核苷酸的合成。
5-氟尿嘧啶在人体内转变成相应的核苷酸,再转变成脱氧核苷酸,可抑制脱氧胸腺嘧啶核酸合成酶,干扰尿嘧啶脱氧核苷酸经甲基化生成脱氧胸苷的过程,DNA合成受阻。
二,补救途径
(1) 嘧啶核苷激酶途径(重要途径)
嘧啶碱与1-磷酸核糖生成嘧啶核苷,然后由尿苷激酶催化尿苷和胞苷形成UMP和CMP。
(2) 磷酸核糖转移酶途径(胞嘧啶不行)
第四节 脱氧核苷酸的合成脱氧核糖核苷酸是由相应的核糖核苷酸衍生而来的。
(1)腺嘌呤、鸟嘌呤和胞嘧啶核糖核苷酸经还原,将核糖第二位碳原子的氧脱去,即成为相应的脱氧核糖核苷酸。
(2)胸腺嘧啶脱氧核糖核苷酸:先由尿嘧啶核糖核苷酸还原形成尿嘧啶脱氧核糖核苷酸,然后尿嘧啶再经甲基化转变成胸腺嘧啶。
一,核糖核苷酸的还原
ADP、GDP、CDP、UDP均可分别被还原成相应的脱氧核糖核苷酸:dADP、dGDP、dCDP、dUDP等,其中dUDP甲基化,生成dTDP。
还原反应一般在核苷二磷酸(NDP)水平上进行,ATP、dATP、dTTP、dGTP是还原酶的变构效应物,个别微生物(赖氏乳菌杆菌)在核苷三磷酸水平上还原(NTP)。
1,核苷酸还原酶系P312 图示由硫氧还蛋白、硫氧还蛋白还原酶和核苷酸还原酶(B1、B2)三部分组成。
B1、B2亚基结合后,才具有催化活性。
B1上的巯基和B2上的酪氨酸残基是活性中心的催化基因。
另外核苷酸还原酶所需的还原当量还可来自谷胱甘肽。

①硫氧还蛋白-SH
②硫氧还蛋白还原酶、辅酶FAD
③谷胱甘肽氧还蛋白(酶)
④谷胱甘肽还原酶-SH
⑤核苷酸还原酶(RR)-SH
2,核苷酸还原酶结构模型及催化机理
(1),结构模型

B1亚基上有两个调节部位,一个影响整个酶的活性(一级调节部位),另一个调节对底物的专一性(底物结合部位)
一级调节部位:ATP是生物合成的信号分子,而dATP是核苷酸被还原的信号。
底物调节部位:.①与ATP结合,可促进嘧啶类的UDP、CDP还原成dUDP、dCDP;②与dTTP或dGTP结合,可促使GDP(ADP)还原成dGDP(dADP)
(2),催化机理自由基催化转换模型。
3,脱氧核苷酸的补救(脱氧核苷激酶途径)
脱氧核苷酸也能利用已有的碱基或核苷进行合成(补救途径),但只有脱氧核苷激酶途径,不存在类似的磷酸核糖转移酶途径
二,胸腺嘧啶脱氧核苷酸的合成由尿嘧啶脱氧核苷酸(dUMP)经甲基化生成。
Ser提供甲基,NADPH提供还原当量。
四氢叶酸是一碳的载体,参与嘌呤核苷酸和胸腺嘧啶脱氧核苷酸的合成。
氨基嘌呤、氨甲蝶呤是叶酸的类似物,能与二氢叶酸还原酶不可逆结合,阻止FH4的生成,从而抑制FH4参与的一碳单位的转移。可用于抗肿瘤。
三,核苷酸合成总结 P314图18-10
第五节 辅酶核苷酸的生物合成
NAD、NADP,FMN,FAD,CoA
一,烟酰胺核苷酸的合成(NAD,NADP)
NAD、NADP是脱氢辅酶,在生物氧化还原系统中传递氢。
合成途径:
(1)烟酸单核苷酸焦磷酸化酶
(2)脱酰胺-NAD 焦磷酸化酶
(3)NAD合成酶

NADP的合成:NAD激酶催化NAD与ATP反应,使NAD的腺苷酸残基的核糖2’-OH磷酸化,生成NADP。
二,黄素核苷酸的合成(FMN、FAD)

三,辅酶A的合成
CoA-SH P 317图18-11
前体:腺苷酸、泛酸、巯基乙胺、磷酸途径: (1)泛酸激酶
(2)磷酸泛酰半胱氨酸合成酶
(3)磷酸泛酰半胱氨酸脱羧酶
(4)脱磷酸辅酶A焦磷酸化酶
(5)脱磷酸辅酶A激酶
图代谢途径的相互联系 P420图22-1第十二章生物氧化第一节 生物能学的几个概念一,化学反应中的自由能变化及其意义
1,化学反应中的自由能自由能:在一个体系中,能够用来做有用功的那一部分能量称自由能,用符号G表示。
在恒温、恒压下进行的化学反应,其产生有用功的能力可以用反应前后自由能的变化来衡量。
自由能的变化:△G = G 产物 — G反应物 = △H_ T△S
△G 代表体系的自由能变化,△H代表体系的焓变化,T代表体系的绝对温度,△S代表体系的熵变化。
焓与熵都是体系的状态函数。
焓代表体系的内能与压力P*体积V之和:H = U + P*V dH=dU + P*dV + V*dP
熵代表体系中能量的分散程度,也就是体系的无序程度:△S=dQ/T,△S= △S体系+△S环境,只有△S≥0,过程才能自发进行。
2,△G是判断一个过程能否自发进行的根据
△G<0,反应能自发进行,能做有用功。
△G>0,反应不能自发进行,必须供给能量。
△G=0,反应处于平衡状态。
一个放热反应(或吸热反应)的总热量的变化(△H),不能作为此反应能否自发进行的判据,只有自由能的变化才是唯一准确的指标。
△G<0仅是反应能自发进行的必要条件,有的反应还需催化剂才能进行,催化剂(酶)只能催化自由能变化为负值的反应,如果一个反应的自由能变化为正值,酶也无能为力。
当△G为正值时,反应体系为吸能反应,此时只有与放能反应相偶联,反应才能进行。
二,标准自由能变化及其与化学反应平衡常数的关系
aA+bB → cC+dD
标准自由内能变化:在规定的标准条件下的自由能变化,用△G°表示。
标准条件:25℃,参加反应的物质的浓度都是1mol∕L(气体则是1大气压)。若同时定义pH =7.0,则标准自由能变化用△G°′表示。
对于一个溶液中的化学反应:
aA bB→cC+dD
当反应达到平衡时,△G = 0
K/是化学反应的平衡常数,因此,△G°/也是一个常数。
常见物质的标准生成自由能△G°′已经列在各种化学手册中,可以根据△G°′= -RT lnK的公式求出平衡常数K′。
P15 举例说明如何用K/求出△G o / 和△G
从例子可以看出△G o / 和△G实际上是两个不同条件下的自由能变化值。
(1) △G o /是标准条件下的自由能变化,既反应物A、B、C、D的起始浓度都为1mol/L,温度为25℃,pH=7.0时的△G。每一个化学反应都有其特定的标准自由能变化(既△G o /),是一个固定值,
△G是任意给定条件下的自由能变化,它是反应物A、B、C、D的起始浓度、温度、pH的状态函数,在一个自发进行的化学反应中,自由能总是在降低,△G总是负值,随着反应向平衡点的趋近,△G的绝对值逐渐缩小,直到为0。
(2) 从△G o / = -RT lnK/,可以求出K/及△G o /,根据△G o /、△G 与K/可以判断任何条件下反应进行的方向及程度。
三,自由能变化的可加和性。
在偶联的几个化学反应中,自由能的总变化等于每一步反应自由能变化的总和。
例如:Glc+ATP→G—6—P+ADP(总反应)
第一步,Glc+Pi→G—6—P+H2O,此反应不能自发进行。
第二步,ATP+H2O→ADP+Pi
总反应:Glc+ATP→G—6—P+ADP.
因此,一个热力学上不能进行的反应,可与其它反应偶联,驱动整个反应进行。此类反应在生物体内是很普遍的。
四,高能磷酸化合物高能化合物:水解时释放5000卡/mol及以上自由能的化合物。
高能磷酸化合物:水解每摩尔磷酸基能释放5000cal以上能量的磷酸化合物。
P21表10-2 某些磷酸化合物水解时的标准自由能变化。
(一) 高能化合物的类型P18—19
1,磷氧键型。
(1),酰基磷酸化合物。
3—磷酸甘油酸磷酸,乙酰磷酸,氨甲酰磷酸,酰基腺苷酸,氨酰腺苷酸。
(2),焦磷酸化合物。
无机焦磷酸,ATP,ADP
(3),烯醇式磷酸化合物。
磷酸烯醇式丙酮酸。
2,氮磷键型。
磷酸肌酸,磷酸精氨酸。
3,硫酯键型。
3’一磷酸腺苷一5’一磷酰硫酸,酰基辅酶A。
4,甲硫键型。
S一腺苷甲硫氨酸。
(二) ATP的特殊的作用。
1,是细胞内产能反应和需能反应的化学偶联剂。
2,在磷酸基转移中的作用 。
Glc进入血液中,唯一出路是磷酸化。G-6-P是Glc的一种活化形式。已糖激酶催化:Glc+ATP→G-6-P+ADP。
3一磷酸甘油是甘油的活化形式,能参与脂肪合成。甘油激酶:甘油+ATP→3一磷酸甘油+ADP。
(三) 磷酸肌酸、磷酸精氨酸的储能作用P23
磷酸肌酸是易兴奋组织(如肌肉、脑、神经)唯一的能起暂时储能作用的物质。
磷酸精氨酸是无脊椎动物肌肉中的储能物质第二节 生物氧化、氧化电子传递链和氧化磷酸化作用一,生物氧化的概念和特点。
糖,脂,蛋白质等有机物质在细胞中进行氧化分解,生成CO2,H2O并释放出能量,这个过程称生物氧化。
生物氧化是需氧细胞呼吸代谢过程中的一系列氧化还原作用,又称细胞氧化或细胞呼吸。
特点:反应条件温和,多步反应,逐步放能。
生物氧化在活细胞中进行,pH中性,反应条件温和,一系列酶和电子传递体参与氧化过程,逐步氧化,逐步释放能量,转化成ATP。
真核细胞,生物氧化多在线粒体内进行,在不含线粒体的原核细胞中,生物氧化在细胞膜上进行。
图示:生物氧化的三阶段
第一阶段:多糖,脂,蛋白质等分解为构造单位——单糖、甘油与脂肪酸、氨基酸,该阶段几乎不释放化学能。
第二阶段:构造单位经糖酵解、脂肪酸β氧化、氨基酸氧化等各自的降解途径分解为丙酮酸、乙酰CoA等少数几种共同的中间代谢物物,这些共同的中间代谢物在不同种类物质的代谢间起着枢纽作用。该阶段释放少量的能量。
第三阶段:丙酮酸、乙酰CoA等经过三羧酸循环彻底氧化为CO2、H2O。释放大量的能量。
在第二、第三阶段中,氧化脱下的电子(H—)经过一个氧化的电子传递过程(氧化电子传递链)最终传给O2,并生成ATP,以这种方式生成ATP的作用称为氧化磷酸化作用,它是一种很重要的将生物氧化和能量生成相偶连的机制。
生物氧化的终产物是CO2和H2O,CO2的形成是通过三羧酸循环过程,H2O则是在电子传递过程的最后阶段生成。
二,氧化电子传递过程生物氧化过程中形成的还原型辅酶(NADH和FADH2),通过电子传递途径,使其重新氧化,此过程称为电子传递过程。
在电子传递过程中,还原型辅酶中的氢以负质子(H — )形式脱下,其电子经一系列的电子传递体(电子传递链)转移,最后转移到分子氧上,质子和离子型氧结合生成H2O。
三,氧化电子传递链 P57图12-2
由NADH到O2的氧化电子传递链主要包括FMN、辅酶Q(CoQ)、细胞色素b、c1、c、a,a3及一些铁硫蛋白。
氧化电子传递链位于原核生物的质膜上,真核生物中位于线粒体的内膜上。
电子载体的标准势能△G o /是逐步下降的,电子沿着电势升高的方向流动。其中有三个部位的势能落差△G较大,足以形成ATP(ADP磷酸化需要的自由能=7.3Kal/mol.)。这三个部位正好是氧化磷酸化部位。
细胞内供能物质的彻底氧化产物是CO2、H2O其中CO2主要是在三羟酸循环中产生,水是在电子传递过程的最后阶段产生。
四,电子传递链的酶和电子载体呼吸链中的电子载体都是和蛋白质结合存在(包括NAD+、FMN、铁硫中心、细胞色素)。这些蛋白质大都是水不溶性的,嵌在线粒体的内膜上。
NAD+是许多脱氢酶的辅酶,FMN是NADH脱氢酶的辅酶。
1,NAD+和NADP+
脱氢酶分别与NAD+或NADP+结合,催化底物脱氢,这类酶称为与NAD(P)相关的脱氢酶,
多数脱氢酶以NAD+为辅酶,少数以NADP+为辅酶(如G-6-P脱氢酶)少数酶能以NAD+或NADP+两种辅酶(Glu脱氢酶)。
2,NADH脱氢酶以及其它黄素蛋白酶类
NADH脱氢酶含FMN辅基,铁-硫中心。
铁硫中心铁的价态变化(Fe3+→Fe2+)可以将电子从FMN辅基上转移到呼吸链下一成员辅酶Q上。
含有核黄素辅基的酶还包括琥珀酸脱氢酶、脂酰CoA脱氢酶等。
3,辅酶Q(泛醌)
电子传递链上唯一的非蛋白质成分。
辅酶Q在线粒体中有两种存在形式:膜结合型、游离型。
辅酶Q不仅可以接受FMN上的氢(NADH脱氢酶),还可以接受线粒体FADH2上的氢(如琥珀酸脱氢酶、脂酰CoA脱氢酶以及其它黄素酶类)。
4,细胞色素类。
细胞色素类是含铁的电子传递体,铁原子处于卟啉的结构中心,构成血红素。
细胞色素类是呼吸链中将电子从辅酶Q传递到O2的专一酶类。
线粒体的电子传递链至少含有5种不同的细胞色素:b、c、c1、.a、a3.
细胞色素b有两种存在形式:b562、b566
细胞色素c是唯一可溶性的细胞色素,同源性很强,可作为生物系统发生关系的一个指标。
细胞色素a、a3是以复合物的形式存在,又称细胞色素氧化酶,将电子从细胞色素c传到分子O2 。
五,电子传递抑制剂阻断呼吸链中某一部位的电子传递。
1,鱼藤酮、安密妥、杀粉蝶菌素都可阻断电子由NADH向CoQ传递。
2,抗霉素A
抑制电子从细胞色素b向细胞色素c1传递
3,氰化物、硫化氢、叠氮化物、CO等。
阻断电子从细胞色素aa3 向O2传递六,氧化磷酸化作用氧化磷酸化作用:电子沿着氧化电子传递链传递的过程中所伴随的将ADP磷酸化为ATP的作用,或者说是ATP的生成与氧化电子传递链相偶联的磷酸化作用。
底物水平磷酸化作用:是指ATP的形成直接与一个代谢中间物(如PEP)上的磷酸基团转移相偶联的作用。糖酵解中1,3-二磷酸甘油酸,磷酸烯醇丙酮酸。
1,方程式:
NADP+H++3ADP+3Pi+1/2O2→ NAD++3H2O+3ATP
三个ATP的形成获取了呼吸链中电子由NADH传递至氧所产生的全部自由能的42%。(21.9/52.7×100%)。
2,几个概念:
(1),P/O比一对电子通过呼吸链传至氧所产生的ATP的分子数。NADH→3ATP,FADH2→2ATP
(2),ATP生成部位:
三个部位由三个酶复合体催化:
部位Ⅰ:NADP与CoQ之间,NADH脱氢酶。
部位Ⅱ:CoQ与CytC之间,CytC还原酶。
部位Ⅲ:Cyta与O2之间,CytC氧化酶。
(3),呼吸控制
ADP作为关键物质,对氧化磷酸化的调节作用称为呼吸控制。
(4),解偶联剂,(2.4—硝基苯酚)
电子传递过程和ATP形成过程相分离,电子传递仍可进行,但不能形成ATP。
(5),氧化磷酸化抑制剂,
抑制O2的利用和ATP的形成。
七,氧化磷酸化的偶联机理
P71图12—4,跨膜质子移动示意图
(一) 化学渗透假说第十三章DNA的复制和修复生物体的遗传信息储存在DNA中,并通过DNA的复制由亲代传给子代。在子代的生长发育中遗传信息自DNA转录给RNA,然后翻译成蛋白质以执行各种生命功能,使后代表现出与亲代相似的遗传性状。
1958年,F.Crick提出中心法则:
(1)以原DNA分子为模板,合成出相同DNA分子的过程。
(2)以某一段DNA分子为模板,合成出与其序列对应的RNA分子的过程。
(3)以mRNA为模板,根据三联密码规则,合成对应蛋白质的过程。
中心法则揭示了生物体内遗传信息的传递方向。

DNA生物合成有两种方式:DNA复制和反转录
DNA体内复制涉及:原核、真核生物的染色体、细菌质粒(环状,双链)、真核细胞器DNA(线粒体、叶绿体)、病毒(双链,环状)
DNA的体外复制:分子克隆。
第一节 DNA的复制一,DNA半保留复制
1953年,Watson和Crick在提出DNA双螺旋结构模型时就推测DNA可能按照半保留机制进行自我复制。
P321 图191 Watson和Crick提出的DNA双螺旋复制模型在复制过程中,首先亲代双链解开,然后每条链作为模板,在其上合成互补的子代链,结果新形成的两个子代DNA与亲代DNA分子的碱基顺序完全一样,而且每个子代DNA分子中有一条链完全来自亲代DNA,另一条是新合成的。
1958年,Meselson和Stahl用15N标记E.coli,DNA,证明了DNA的复制是半保留复制。
P322 图19-2DNA的半保留复制。
1963年,Cairns用放射自显影法,在显微镜下首次观察到完整的正在复制的E,coli,染色体DNA。
P323 图 19-3
3H-脱氧胸苷标记E.coli,DNA,经过将近两代时间,用溶菌酶消化细胞壁,将E.coli,DNA转至膜上,干燥,压感光胶片,3H放出β粒子,还原银,在光学显微镜下观察。用这种方法证明了大肠杆菌染色体DNA是一个环状分子,并以半保留的形式进行复制。
DNA的半保留复制可以说明DNA在代谢上的稳定性。经过多代复制,DNA的多核苷酸链仍可以保持完整,并存在于后代而不被分解掉。
二,复制起点、单位和方向
DNA的复制是在起始阶段进行控制的,一旦复制起始,它就会继续下去直到整个复制子完成复制。
1,复制起点复制起点是以一条链为模板起始DNA合成的一段序列。有时,两条链的复制起点并不总是在同一点上(如D环复制)。
在一个完整的细胞周期中,每一个复制起点只使用一次,完成一次复制过程。
多数生物的复制起点,都是DNA呼吸作用强烈(甲醛变性实验)的区段,即经常开放的区段,富含A.T。
★环状DNA复制起点的确定方法
P325 图19-6
★复制起点的克隆和功能分析——重组质粒转化法大肠杆菌的复制起点oriC区1Kb的重组质粒在转化子中的复制行为与其染色体一样,受到严密控制,每个细胞只有1-2个拷贝,用核酸外切酶缩短oriC克隆片段的大小,最后得到245bp的基本功能区,携带它的质粒依然能够自我复制,拷贝数可以增加到20以上,这说明发动复制的序列在245bp的基本功能区,而决定拷贝数的序列在基本功能区之外和1Kb之间。
鼠伤寒沙门氏菌的起点位于一段296bp的DNA片段上,与大肠杆菌的复制起始区有86%同源性,而且有些亲缘关系较远的细菌,其复制起点在大肠杆菌中亦能起作用。因此,复制起始区的结构可能是很保守的。
起始序列含有一系列对称的反向重复和某些短的成簇的保守序列。
2,复制单位复制子(Replicon):Genome能独立进行复制的单位,每个复制子都含有一个复制起点。
原核生物的染色体和质粒、真核生物的细胞器DNA都是环状双链分子,它们都是单复制子,都在一个固定的起点开始复制,复制方向大多数是双向的,少数是单向复制。多数是对称复制,少数是不对称复制(一条链复制后才进行另一条链的复制)。
环状DNA的复制眼象θ,称θ形复制。
真核生物的染色体DNA是线形双链分子,含有许多复制起点,因此是多复制子,每个复制子约有100-200Kbp。人体细胞平均每个染色体含有1000个复制子。
病毒DNA多种多样,环状或线形,双链或单链,但都是单复制子。
3,复制方向定点起始,复制方向大多数是双向的(等速进行或异速进行),形成两个复制叉,少数是单向复制,形成一个复制叉。
★用放射自显影实验判断DNA的复制方向及速度低放射性3H-脱氧胸苷
高放射性3H-脱氧胸苷
a,单向
b,双向等速 三种结果图形
c,双向异速
E.coli.的一个温度敏感株,在42℃时,能使DNA在完成复制后,不再开始新的复制过程,而在25℃时复制功又能能恢复。
4,DNA的几种复制方式
(1),直线双向复制单点,双向,T7
多点,双向,真核染色体DNA
(2),θ型复制:环状双链DNA,单向或双向(E,coli.)
(3),滚环复制:环状单链DNA,Φx174
(4),D环复制:线粒体、叶绿体DNA
(5),多复制叉复制:
第一轮复制尚未完成,复制起点就开始第二轮的复制。
在E.coli.富营养时,可采取多复制叉复制方式。E.coli,DNA的复制最快可达50Kb/min,完全复制需40min,富营养时,20min分裂。而真核染色体要6-8小时。
三,与DNA复制有关的酶及蛋白质因子目前已发现30多种酶及蛋白质因子参与DNA复制
(一) DNA的聚合反应和聚合酶
DNA生物合成5,→3,,化学合成3,→5,
1,DNA聚合反应必备的条件
⑴ DNA聚合酶
⑵ DNA模板(反转录时用RNA模板)
⑶引物(DNA、RNA或蛋白质)
⑷ 4种dNTP
⑸ Mg2+
2,聚合反应过程及特点总反应式:
n1dATPDNA pol,dAMP
n2dGTP+DNA dGMPDNA+(n1+n2+n3+n4)PPi
n3dCTP Mg2+ dCMP
n4dTTP dTMP
P329 图19-10 P330图19-11
在链的延长过程中,链的游离3,-羟基,对进入的脱氧核糖核苷三磷酸α磷原子发生亲核攻击,生成3,.5,-磷酸二酯键,并脱下焦磷酸。
DNA聚合酶的反应特点:
⑴ 以4种dNTP为底物
⑵ 反应需要接受模板的指导,不能催化游离的dNTP的聚合。
⑶ 反应需有引物3,-羟基存在
⑷ 链生长方向5,→ 3,
⑸ 产物DNA的性质与模板相同
3,由DNA聚合酶催化的几种DNA聚合类型
P331图19-12
(1) 发荚环结构:加入单链DNA作为模板和引物,3'羟基端回折成引物链。
(2) 末端延伸聚合:加入双链DNA作为模板和引物,3’末端突出作为模板。
(3) 分枝型和切口平移型聚合:加入双链DNA,聚合发生在切口或末端单链区。
(4) 环形聚合:加入带引物的环形DNA作为模板。
4,E.coliDNA聚合酶
(1),E.coli,DNA pol.I(Kornberg酶,400 copy/cell)
单体酶,分子量109Kd,含一个Zn2+,每个细胞中含400个DNA pol.Ⅰ
催化活性:
5,→ 3,聚合活性
3,→ 5,外切活性
5,→ 3,外切活性用蛋白水解酶将DNA pol.Ⅰ部分水解可得:
大片段(Klenow),75Kd,活性:5,→ 3,聚合活性、3,→ 5,外切活性。
小片段,36Kd,活性:5,→ 3,外切活性(只作用于双链DNA的碱基配对部分,切除修复)。
Klenow片段的用途:
a 补齐DNA 3,隐缩未端
b,标记DNA片段未端
c.cDNA合成第二链
d.d DNA测序
(2),E.coli,DNA Pol.Ⅱ(100 copy/cell)
单体酶,分子量120Kd
催化活性:5,→ 3,聚合(活性很低)
3,→ 5,外切可能在DNA的修复中起某中作用。
(3)、?E.coli.DNA pol.Ⅲ(复制酶,10-20 copy/cell)
寡聚酶,全酶由10种共22个亚基组成,α、ε和θ三种亚基组成核心酶。
P334表10-3
DNA pol.Ⅲ是合成新链DNA主要的酶,又称复制酶(Replicase)
Pol.Ⅲ的5,→3,外切酶活性只作用于单链DNA。
P334 表19-2E.coli三种DNA聚合酶的性质比较
★DNA聚合酶有6个结合位点
⑴ 模板DNA结合位点
⑵ 引物结合位点
⑶ 引物3,-OH位点、反应位点
⑷ 底物dNTP结合位点
⑸ 5,→ 3,外切位点(pol.Ⅱ没有)
⑹ 3,→ 5,外切位点(校正)
5,真核生物DNA聚合酶
P334 表19-4真核生物DNA聚合酶
真核DNA聚合酶一般不具备外切活力,可能由另外的酶在DNA复制中起校正功能。
⑴ DNA聚合酶α,多亚基,功能与E.coli,pol.Ⅲ类似,是真核DNA复制酶。
⑵ DNA聚合酶β,主要在DNA损伤的修复中起作用。
⑶ DNA聚合酶γ,从线粒体得到,可能与线粒体DNA的复制有关。
⑷ DNA聚合酶δ,特点:有3,→ 5,外切活力
(二) 引物酶或RNA聚合酶(引发酶)
细胞内,DNA的复制需要引物(DNA或RNA),引物酶或RNA聚合酶可合成6-10个碱基的RNA引物。
★DNA复制为什么要用RNA引物?(为什么DNA聚合酶要用引物,RNA聚合酶不需要引物?)
P338
⑴从模板复制最初几个核酸时,碱基堆集力和氢键都较弱,易发生错配
⑵新复制的最初几个核苷酸,没有与模板形成稳定双链,DNA聚合酶的5,→3,校对功能难发挥作用。
(三) 解螺旋酶大肠杆菌的解螺旋酶Ⅰ、Ⅱ、Ⅲ与rep蛋白共同作用,将DNA两条链解开。
解螺旋酶I、II、III沿着模板链的5’→3’方向随着复制叉的前进而移动,而rep蛋白则在另一条模板链上沿3’→5’方向移动。
(四) DNA旋转酶属DNA拓扑异构酶Ⅱ,可引入负超螺旋,消除复制叉前进时带来的扭曲张力。
拓扑异构酶分两类:I和II,广泛存在于原核生物和真核生物。
拓扑异构酶I使DNA的一条链发生断裂和再连接,反应无须供给能量,主要集中在活性转录区,与转录有关。
拓扑异构酶Ⅱ使DNA的两条链同时断裂和再连接,当它引入超螺旋时需要由ATP供给能量。分布在染色质骨架蛋白和核基质部,与复制有关。
(五) 单链DNA结合蛋白(SSB)
复制叉上的解螺旋酶,沿双链DNA前进,产生单链区,大量的单链DNA结合蛋白与单链区结合,阻止复性和保护单链DNA不被核酸酶降解。
(六) DNA连接酶(ligase)
连接双链DNA上的切口。
大肠杆菌连接酶只能在模板上连接DNA缺口。T4DNA ligase即可连接粘性末端的DNA,又可连接平齐末端的双链DNA。
E.coli.和其它细菌的DNA ligase以NAD为能源,动物细胞和噬菌体DNA ligase以ATP为能源。
(七) DNA复制的拓扑结构
P338-339
四,DNA的半不连续复制
P336图19-15 DNA的半不连续复制
DNA聚合酶催化的方向是5,→3,。
前导链:
滞后链:
1968年,发现冈崎片段。长度:
细菌:1Kb-2Kb,相当于一个顺反子的大小。
真核:100-200bp,约等于一个核小体DNA的长度。
五,DNA复制过程(E.coli.)
P342图19-17大肠杆菌的复制体结构示意图
1,复制的起始引发:当DNA的双螺旋解开后,合成RNA引物的过程。
引发体:引物合成酶与各种蛋白质因子(dnaB、dnaC、n、n'n''I)构成的复合体,负责RNA引物的合成。
引发体沿着模板链5’→3’方向移动(与冈崎片段合成的方向正好相反,而与复制叉移动的方向相同),移到一定位置上即可引发RNA引物的合成。
E.coli.DNA复制原点ori C,由245bp组成,三组13bp重复序列(近5,端处),四组9 bp重复序列(另一端处)。

大肠杆菌复制原点起始复制所需蛋白质:
DNaA在原点处打开双螺旋
DNaB使DNA解旋
DNaCDNaB结合在原点所需
Hu 刺激起始引物酶(DNaG)合成RNA引物
SSB结合单链DNA
RNA聚合酶 促进DNaA活性旋转酶松驰DNA扭曲应力
20个DnaA结合在四组9bp重复区,形成起始复合物,DNA环绕此复合物。
三组13bp重复区依次变性,产生开放型复合物。
DnaB(在DnaC协助下)与开放复合物结合,进一步解链。
2,DNA链的延长反应前导链只需要一个RNA引物,后随链的每一个冈崎片段都需要一个RNA引物,链的延长反应由DNA pol.Ⅲ催化。
复制体:在DNA合成的生长点(既复制叉上)分布着许多与复制有关的酶和辅助因子,它们在DNA的模板链形成离散的复合物,彼此配合进行高度精确的复制,称为复制体。
复制体沿着复制叉方向前进就合成DNA。
3,RNA引物的切除及缺口补齐
DNA polⅠ的5,→ 3,外切活力,切除RNA引物。
DNApolⅠ的5,→ 3,合成活性补齐缺口。
4,DNA切口的连接
DNA ligase,动物、真核由ATP供能,原核由NAD供能。
5,DNA合成的终止环状DNA、线性DNA,复制叉相遇即终止。
u 小结:
⑴ DNA解螺旋酶解开双链DNA。
⑵ SSB结合于DNA单链。
⑶ DNA旋转酶引入负超螺旋,消除复制叉前进时带来的扭曲张力。
⑷ DNA引物酶(在引发体中)合成RNA引物。
⑸ DNA pol.Ⅲ在两条新生链上合成DNA。
⑹ DNA polⅠ切除RNA引物,并补上DNA。
⑺ DNA ligase连接一个冈崎片段。
DNA复制过程中,聚合酶对dTTP和dUTP的分辨能力高,有少量dUTP掺入DNA链中,此时,U-糖苷酶、AP内切酶、DNA polⅠ、DNA ligase共同作用,切除尿嘧啶,接上正确的碱基。
六,真核生物DNA的复制P343
1,复制起点和单位真核生物染色体DNA是多复制子,有多个复制起点,可以多点起始,分段进行复制。每个复制子大多在100-200bp之间,比细菌染色体DNA(单复制子)小得多。
★试验证据:5-氟脱氧胞苷标记
真核生物DNA复制叉移动的速度此原核的慢,如哺乳动物复制叉移动的速度每分钟1-3Kb,细菌每分钟5Kb。
真核生物染色体全部复制完成前,起点不再从新开始复制。而在快速生长的原核生物中,起点可以连续发动复制。真核生物在快速生长时,可采用更多的复制起点同时复制。如黑腹果蝇,早期胚胎细胞中相邻复制起点的平均距离为7.9kb,而在培养的成体细胞中,平均距离为40kb,成体细胞只利用一部分复制起点。
2,复制过程中组蛋白的装配核小体的结构(200bp左右)
在真核生物的复制子上,亲代染色体的核小体被逐个打开,组蛋白以完整的八聚体形式直接转移到子代DNA的前导链上,新合成的组蛋白与后随链组装成核小体。因此,DNA的复制是半保留的,而组蛋白则是全保留的。
★试验证据:环己酮亚胺抑制组蛋白合成,电子显微镜下观察
3,真核生物DNA复制的终止端粒:一段DNA序列与蛋白质形成的一种复合体,是真核细胞染色体末端所特有的结构。
功能:
⑴保证线性DNA的完整复制
⑵保护染色体末端
⑶决定细胞寿命,胚系细胞含端粒酶,体细胞不表达端粒酶。
端粒(telomeres)分布于线性真核染色体未端。酵母端粒约100bp的重复序列,形式为:5,(TxGy)n3,(AxCy) n,x和y一般为1—4。
端粒末端的重复序列,通过端粒酶(telomerase)将其加到染色体末端。
端粒酶含有RNA和蛋白质(起DNA聚合酶的作用)两种组分,RNA分子约159b,含有多个CyAx重复序列,RNA分子用作端粒TxGy链合成的模板。端粒酶是一种反转录酶,它只合成与酶自身的RNA模板互补的DNA片段。
人类体细胞的端粒长度,随个体年龄增加而逐渐缩短。细胞每分裂一次,端粒缩短50-200bp,短至1-4Kbp时,细胞就停止分裂。若能重建端粒,则细胞可以永远分裂。恶性肿瘤细胞端酶表达多。
⑴杂交

⑵聚合

⑶转位再杂交

⑷进一步聚合

⑸非标准GG配对


七,DNA复制的调控八,DNA复制的真实性
《杨岐生》P144
生物体DNA复制具有高度真实性,复制107-1011碱基对,只有一个错误碱基。
碱基对的自由能通常在4-13KJ/mol,这样的自由能相当于平均参入100个核苷酸就可能出现一次错配,仅靠Watson-Crick双螺旋的碱基配对原则,突变率将高达10-2 。
1,DNA聚合酶对碱基的选择作用酶的被动论:不同的核苷酸在聚合位点停留时间不同,正确的dNTP能长时间停留,而参与聚合。DNA聚合酶能依照模板的核苷酸,选择正确的dNTP掺入引物末端。
酶积极参与理论:DNA聚合酶对正确与错误的核苷酸,不仅亲和性不同,而且将它们插入DNA引物端的速度也不同。
动力学校正阅读:在新的磷酸二酯键未形成时,dNTP结合在酶与模板—引物复合物的聚合位点上,DNA聚合酶能识别正确与错误的dNTP。
DNA聚合酶对底物的识别作用,DNA聚合酶有两种底物,一种是DNA模板—引物,另一种是dNTP。
DNA聚合酶先识别DNA模板和引物的3,未端,再识别底物dNTP,是一种有序的识别过程。
2,3,→5,外切活性的校正阅读
E,coli,DNA pol.Ⅰ和pol.Ⅲ有3,→5,外切活性,可删除错误插入的核苷酸。
缺失3,→5,外切活性的E,coli,DNA pol.Ⅰ,催化DNA合成时,出现错误的几率增高5-50倍。因此,3,→5,外切活性可以使DNA复制的真实性,提高1-2个数量级。

3,影响DNA合成真实性的因素
⑴高浓度NMP(如3,-AMP,5,-GMP)
NMP竞争酶的dNTP结合位点,抑制3,→5,外切活性。
⑵某一种dNTP浓度银高,可使引物3,末端离开外切活性中心。
⑶dNTP 一般与二价阳离子结合成活化形式,Mg2+为主要的二价阳离子。当用其它二价阳离子(如Mn2+)代替Mg2+时,会改变酶的主体结构,影响聚合活性和3,→3,外切活性。
4,为什么用RNA引物
⑴从模板复制最初几个核酸时,碱基堆集力和氢键都较弱,易发生错配
⑵新复制的最初几个核苷酸,没有与模板形成稳定双链,DNA聚合酶的5,→3,校对功能难发挥作用。
第二节 DNA的损伤及修复
DNA的损伤,《罗纪盛》P428
一些物理化学因子如紫外线、电离辐射和化学诱变剂均可引起DNA损伤,破坏其结构与功能。然而在一定条件下,生物机体能使这种损伤得到修复。
紫外线可使DNA分子中同一条链上两个相邻的胸腺嘧啶碱基之间形成二聚体(TT),两个T以共价键形成环丁烷结构。CT、CC间也可形成少量二聚体(CT、CC),使复制、转录受阻。
P346图19-22
细胞内具有一系列起修复作用的酶系统,可以除去DNA上的损伤,恢复DNA的双螺旋结构。目前已知有4种酶修复系统:光复活、切除修复、重组修复、SOS反应诱导的修复,后三种不需要光,又称为暗修复。
一,直接修复
1949年已发现光复活现象,可见光(最有效400nm)可激活光复活酶,此酶能分解由于紫外线形成的嘧啶二聚体。高等哺乳动物没有此酶。
P347 图19-23 紫外线损伤的光复活过程
A形成嘧啶二聚体B,光复合酶结合于损伤部位 C酶被可见光激活D,修复后释放酶二,切除修复
P348 图19-24DNA损伤的切除修复过程
在一系列酶的作用下,将DNA分子中受损伤部分切除,并以完整的那一条链为模板,合成出切去部分,DNA恢复正常结构。
I、结构缺陷的修复:
(1)核酸内切酶识别DNA损伤部位,在其附近将其切开。
(2)核酸外切酶切除损伤的DNA。
(3)DNA聚合酶修复。
(4)DNA连接酶连接。

II、无嘌呤无嘧啶——碱基缺陷或错配——脱碱基(N-糖苷酶):
甲基磺酸甲酯可使鸟嘌呤第7位氮原子烷基化,活化β—糖苷键,造成脱嘌呤作用;酸也能使DNA脱嘌呤。
DNA复制时,DNA聚合酶对dTTP和dUTP分辨力不高,有少量dUTP掺入DNA链。细胞中的尿嘧啶-N-糖苷酶可以切掉尿嘧啶。腺嘌呤脱氨形成次黄嘌呤时也可以被次黄嘌呤-N-糖苷酶切掉次黄嘌呤。
对于无嘌呤无嘧啶的损伤有两种修复方法:
(1) AP核酸内切酶切开,核酸外切酶切除,DNA聚合酶修复,DNA连接酶连接。
(2) 插入酶插入正确碱基三,重组修复
P349图19—25重组修复的过程
切除修复发生在DNA复制之前,而当DNA发动复制时尚未修复的损伤部位,可以先复制,再重组修复。
在重组修复过程中,DNA链的损伤并未除去。
重组修复至少需要4种酶组分。
重组基因recA编码一种分子量为40000的蛋白质,它具有交换DNA链的活力。RecA蛋白被认为在DNA重组和重组修复中均起关键作用。
recB、recC基因分别编码核酸外切酶V的两个亚基。
此外,修复合成还需要DNA聚合酶和连接酶。
四,易错修复和应急反应(SOS反应)
诱导修复是细胞DNA受到严重损伤或DNA复制系统受到抑制的紧急情况下,为求得生存而出现的一系列诱导性修复。
SOS反应诱导的修复系统包括避免差错的修复(无差错修复)和倾向差错的修复。
避免差错的修复:SOS反应能诱导光复活切除修复和重组修复中某些关键酶和蛋白质的产生,从而加强光复活切除修复和重组修复的能力,这属于避免差错的修复。
倾向差错的修复:SOS反应还能诱导产生缺乏校对功能的DNA聚合酶,它能在DNA损伤部位进行复制而避免了死亡,可是却带来了高的突变率,这属于倾向差错的修复。
SOS反应是由RecA蛋白和LexA阻遏物相互作用引起的。RecA蛋白不仅在同源重组中起重要作用,而且它也是SOS反应的最初发动因子。在有单链DNA和ATP存在时,RecA蛋白被激活而表现出蛋白水解酶的活力,它能分解λ噬菌体的阻遏蛋白和LexA蛋白。LexA蛋白(22Kd)许多基因的阻遏物,当它被RecA的蛋白水解酶分解后就可以使一系列基因得到表达其中包括紫外线损伤的修复基因uvrA、uvrB、uvrC(分别编码核酸内切酶的亚基)以及recA和lexA基因本身,还有单链结合蛋白基因ssb,与λ噬菌体DNA整合有关的基因himA、与诱变作用有关的基因umuDC,与细胞分裂有关的基因sulA,ruv,和lon,以及一些功能不清楚的基因dinA,B,D,F等。
SOS反应广泛存在于原核生物和真核生物,它是生物在极为不利的环境中求得生存的一种基本功能。
然而癌变有可能也是通过SOS反应造成的,因为能引起SOS反应的作用剂通常都具有致癌作用,如X-射线,紫外线,烷化剂,黄曲霉素等,而某些不能致癌的诱变剂并不引起SOS反应,如5-溴尿嘧啶。目前,有关致癌物的一些简便检测方法就是根据SOS反应原理而设计的,既测定细菌的SOS反应。
第三节 RNA指导的DNA合成(反转录)
反转录(reversetranscription):以RNA为模板,合成DNA。与通常转录过程中遗传信息流从DNA到RNA的方向相反。
1970年,Temin 和Baltimore分别从致癌RNA病毒(劳氏肉瘤病毒和鼠白血病病毒)中发现发反转录酶。
致癌RNA病毒是一大类能引起鸟类、哺乳类等动物白血病、肉瘤以及其它肿瘤的病毒。这类病毒侵染细胞后并不引起细胞死亡,却可以使细胞发生恶性转化。经过改造后可以作为基因治疗的载体。
放线菌素D(抑制以DNA为模板的反应,复制和转录)能抑制致癌RNA病毒的复制,可见致癌RNA病毒的复制过程必然涉及DNA。
Bader 用嘌呤霉素(puromycin)来抑制静止细胞蛋白质的合成,发现这种细胞仍能感染劳氏肉瘤病毒(RSV),证实反转录酶是由反转录病毒带入细胞的,而不是感染后在宿主细胞中新合成的。
一,反转录酶由一个α亚基和一个β亚基组成,含有Zn2+,具有三种酶活力。
(1)RNA指导的DNA聚合酶活力(以RNA为模板,合成一条互补的DNA,形成RNA—DNA杂种分子)。
(2)RNase H酶活力,水解RNA—DNA杂种分子中的RNA,可沿3’→5’和5’→3’两个方向起外切酶作用。
(3)DNA指导的DNA聚合酶活力。
模板:RNA或DNA
以自身病毒类型的RNA为模板时,该酶的反转录活力最大,但是带有适当引物的任何种类的RNA都能作为合成DNA的模板。
引物:RNA或DNA
底物:dNTP
二价阳离子:Mg2+或Mn2+
真核mRNA3’端有polyA,加入oligo dT后,可以作为反转录酶的模板,合成cDNA。
二,病毒RNA的反转录过程所有已知的致癌RNA病毒都含有反转录酶,因此被称为反转录病毒(retrovirus),反转录病毒的复制需要经过一个DNA中间体(前病毒)。
1,反转录病毒的基因组结构
P353图19-27
(1) 反转录病毒基因组通常由两条相同的(+)RNA链组成。5’端附近区域以氢键结合在一起,全长7-10Kb。
(2) 每一条RNA链的两端具有相同的序列,形成正向重复序列。
(3) 5’端有帽子结构,3’端有polyA,与真核mRNA相似。
(4) 5’端带有1分子的宿主tRNA,作为反转录时的引物。某些鸟类反转录病毒携带的是tRNAtrp,鼠类是tRNApro
2,反转录过程。
当致癌RNA病毒侵染宿主细胞时,病毒RNA及反转录酶一起进入宿主细胞,病毒自身带入的反转录酶使RNA反转录成双链DNA。
(1) 以病毒(+)RNA为模板,合成互补的(-)DNA。
(2) 切除RNA—DNA杂种分子中的RNA。
(3) 以(-)DNA链为模板,合成(+)DNA链,最后形成两端带有LTR(长末端重复序列)的双链DNA。
反转录病毒只有整合到宿主染色体DNA后才能被转录,转录产物经拼接可以产生不同的病毒mRNA。LTR(长末端重复序列)对前病毒DNA整合到宿主染色体DNA以及整合后的转录均起着重要作用。
反转录病毒合成的过程:
图缺口的模板(基因组)RNA,在U3旁生成一个正链DNA的合成RNA的引物,而其余的模板RNA被降解。
正链DNA合成开始,复制。

3,反转录病毒的生活周期
P354 图19-29
(1) 病毒粒子侵染细胞,病毒RNA和反转录酶一起进入细胞。
(2) RNA被反转录成双链DNA(前病毒),环化,进入细胞核。
(3) 反转录病毒的DNA整合到宿主染色体DNA中。
(4) 前病毒DNA进行复制,转录出功能基因、基因组RNA和病毒蛋白。
(5) 基因组RNA和病毒蛋白在胞质中组装成新病毒粒子,转移到质膜,通过出芽方式释放新病毒粒子。
三,反转录的生物学意义。
1.反转录酶存在于所有致癌RNA病毒中,它的存在与RNA病毒引起细胞恶性转化有关。
2.艾滋病毒(AIDS)
人类免疫缺陷病毒(HIV),也是一种反转录病毒,主要感染T4淋巴细胞和B淋巴细胞。病毒粒子直径100nm,球状,粒子外包被两层脂质质膜,膜上有糖蛋白(gp120、gp41),另有两层衣壳蛋白p24、p18。
HIV基因组由两条单链正链RNA组成,每个链长9.7kb,RNA 5,端有帽子结构,3’端有PolyA,链上结合有反转录酶。
3.乙肝病毒
大蛋白、中蛋白、主蛋白(表面抗原)
核心抗原
双链环状DNA
乙肝病毒与反转录病毒的区别:
P355
4、真核生物正常细胞内也存在反转录过程真核生物的谈色体基因组中存在为数众多的逆假基因和逆基因。
逆假基因:无启动子和内含子,但有polyA的残基,推测是由mRNA反转录后整合到基因组中去的。
逆基因:具有启动子和转录功能,无内含子。可能是由于mRNA反转录后刚好整合到启动子的下游处,或者是带启动子的RNA序列反转录后整合到基因组中第四节 DNA合成技术一,cDNA合成
1,cDNA文库的构建
cDNA:以mRNA为模板,用反转录酶合成第一链,去除mRNA,合成的第二链。
cDNA文库是获得真核结构基因的最好方法,成熟的mRNA无内含子。
(1),真核mRNA的分离纯化特点:含量少,不均一,表达具有发育阶段性和组织特异性。
总RNA:rRNA80~85%
mRNA 1~5%
tRNA及其它小分子RNA 10~15%
不均一:在1~5%的mRNA中,有10000—30000种mRNA。
分离、纯化:
用Oligo dT纤维素柱(亲和层析法),加入总RNA,高盐洗脱,先流出非mRNA,降低盐浓度,加入Oligo dA竞争,可洗出mRNA 混合物。
免疫法可分离特定的mRNA。
(2),cDNA合成(反转录酶)
A,自身引物法(S1核酸酶降解法)

Oligo(dT)15-18个核苷酸
mRNA5’端序列有丢失。
B,取代合成法(较常用)

Oliyo(dT)与mRNA3’端AAA杂交作为引物,合成第一条DNA链。
RNaseH在mRNA上产生多个切口。
DNA pol.Ⅰ切口平移,DNA ligase连接,合成出第二条DNA链。
T4DNA pol.切去端头的RNA-DNA杂交链。
C,引物合成法可以合成全长cDNA,mRNA的5’端不丢失。

(3),cDNA与载体连接
(4),重组体的转化
(5),扩增、保存
2,获取特定mRNA的cDNA
(1)免疫法分离特定的mRNA
(2)PCR法二,PCR技术(聚合酶链式反应)
Polymerase chain Reaction
以目的基因或DNA片段为模板,在引物介导及Taq DNA聚合酶催化下,在体外用核苷酸大量合成目的基因或DNA片段。
它能快速、专一地扩增所希望得到的目的基因或DNA片段。
1,反应物
(1)模板单、双链DNA或cDNA都可以作为PCR的模板,若以RNA为起始材料,则须经反转录,获得第一条cDNA后才能用于PCR。
(2)Taq DNA聚合酶
DNA聚合酶是进行PCR扩增的关键,从水生栖热菌(Thermus aquaticns VT-1)分离出来。
Taq DNA聚合酶有很好的热稳定性,92.5℃处理130min,仍保留50%的酶活性,在74℃活性最高,错误掺入核苷酸的比率为1/7500。
(3)引物引物是决定PCR结果的关键,它由寡核苷酸组成,15-30个b
(4)核苷酸dNTP
dNTP的浓度50-200umul/L。
(5)镁离子Mg2+
2,PCR原理图
变性 95℃
复性 55℃
延伸 72℃
第十四章RNA的生物合成
RNA的生物合成包括转录和RNA的复制。
转录(transcription):以一段DNA的遗传信息为模板,在RNA聚合酶作用下,合成出对应的RNA的过程,或在DNA指导下合成RNA。
转录产物:mRNA,rRNA,tRNA、小RNA
除某些病毒基因组RNA外,绝大多数RNA分子都来自DNA转录的产物。
转录研究的主要问题
①RNA聚合酶 ②转录过程③转录后加工④转录的调控
①~③是基本内容,④是目前研究的焦点,转录调控是基因调控的核心。
转录与DNA复制的异同:
相同:要有模板,新链延伸方向5’→3’,碱基的加入严格遵循碱基配对原则。
相异:①复制需要引物,转录不需引物。
②转录时,模板DNA的信息全保留,复制时模板信息是半保留。
③转录时,RNA聚合酶只有5’→3’聚合作用,无5’→3’及3’→5’外切活性。
转录是基因表达的第一步,也是最关键的一步。
基因表达的终产物:①RNA②蛋白质转录过程涉及两个方面
①RNA合成的酶学过程
②RNA合成的起始信号和终止信号,即DNA分子上的特定序列。
DNA正链:与mRNA序列相同的DNA链。
负链:与正链互补的DNA链。
转录单位的起点核苷酸为+1,起点右边为下游(转录区),转录起点左侧为上游,用负数表示:-1,-2,-3。
第一节 DNA指导的RNA合成(转录)
RNA链的转录,起始于DNA模板的一个特定位点,并在另一位点终止,此转录区域称为一个转录单位。一个转录单位可以是一个基因(真核),也可以是多个基因(原核)。
基因的转录是有选择性的,细胞不同生长发育阶段和细胞环境条件的改变,将转录不同的基因。
转录的起始由DNA上的启动子区控制,转录的终止由DNA上的终止子控制,转录是通过DNA指导的RNA聚合酶来实现的。
一,RNA聚合酶
RNA合成的基本特征
①底物:NTP(ATP、GTP、CTP、UTP)
②RNA链生长方向:5’→3’
③不需引物
④需DNA模板反应:
1,E.coli RNA聚合酶(原核)
E.coli和其它原核细胞一样,只有一种RNA聚合酶,合成各种RNA(mRNA、tRNA、rRNA)。
一个E.coli细胞中约有7000个RNA聚合酶分子,在任一时刻,大部分聚合酶(5000左右)正在参与RNA的合成,具体数量依生长条件而定。
E.coli RNA聚合酶全酶|(holoenzyme)分子量46万Da,由六个亚基组成,α2ββ’ σω,另有两个Zn2+。
无σ亚基的酶叫核心酶,核心酶只能使已开始合成的RNA链延长,而不具备起始合成活性,加入σ亚基后,全酶才具有起始合成RNA的能力,因此,σ亚基称为起始因子。
E.coli RNA聚合酶各亚基的大小与功能:
亚基 亚基数 分子量(KD) 基因 功能
β’ 1 160 rpoC 与模板DNA结合
β 1 150 rpoB 与核苷酸结合,起始和催化部位。
σ 1 70 rpoD 起始识别因子
α 2 37 rpoA 与DNA上启动子结合
ω 1 9 ---- 不详不同的细菌,β’、β、α亚基分子量变化不大,σ亚基分子量变化较大,44KD~92KD。
σ亚基的功能:核心酶在DNA上滑动,σ亚基能增加酶与DNA启动子的结合常数,增加停留时间,使聚合酶迅速找到启动子并与之结合,σ亚基本身无催化活性。
不同的σ因子识别不同的启动子,从而表达不同的基因。
不同的原核生物,都具有相同的核心酶,但σ亚基有所差别,这决定了原核基因表达的选择性。
RNA聚合酶的催化活性:RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。
P360图20-1RNA聚合酶的活性中心
核心酶覆盖60bp的DNA区域,其中解链部分17bp左右,RNA-DNA杂合链约12bp。
纯的RNA聚合酶,在离体条件下可转录双链DNA,但在体内,DNA的两条链中只有一条可用于转录,这可能是由于RNA聚合酶在分离时丢失了σ亚基引起的。
解旋和重新螺旋化也是RNA聚合酶的内在特性,在酶的前端解螺旋,在后端以相反方向重新螺旋化,活体状况中,可能还有其它酶活性来帮助调整DNA的拓扑学性质。
37℃时,RNA聚合酶的聚合速度可达40~100个核苷酸/秒
2,真核生物RNA聚合酶真核生物的转录机制要复杂得多,有三种细胞核内的RNA聚合酶:RNA聚合酶I转录rRNA,RNA聚合酶II转录mRNA,RNA聚合酶III转录tRNA和其它小分子RNA。这三种RNA聚合酶分子量都在50万左右,亚基数分别为6-15。
P362表20-3真核生物RNA聚合酶的分类、分布及各自的功能
动物、植物、昆虫等不同来源的细胞,RNApolⅡ的活性都可被低浓度的α-鹅膏蕈碱抑制,而RNApolⅠ不受抑制。
动物RNApolⅢ受高浓度的α-鹅膏蕈碱抑制,而酵母、昆虫的RNApolⅢ不受抑制。
除了细胞核RNA聚合酶外,还分离到线粒体和叶绿体RNA聚合酶,它们的结构简单,能转录所有种类的RNA,类似于细菌RNA聚合酶。
3,噬菌体T3和T7编码的RNA聚合酶仅为一条分子量11KD的多肽链,这些聚合酶只需要识别噬菌体DNA的少数启动子,并无选择地与其作用,37℃时的聚合速度200nt/秒。
二,RNA聚合酶催化的转录过程(E.coli)
P361图20-2
1,起始
RNA聚合酶结合到DNA双链的特定部位,局部解开双螺旋,第一个核苷酸掺入转录起始位点,从此开始RNA链的延伸。
在新合成的RNA链的5’末端,通常为带有三个磷酸基团的鸟苷或腺苷(pppG或pppA),即合成的第一个底物是GTP或ATP。
起始过程中,σ因子起关键作用,它能使聚合酶迅速地与DNA的启动子结合,σ亚基与β’结合时,β’亚基的构象有利于核心酶与启动子紧密结合,。
正链:与mRNA序列相同的两、链。
负链:模板链。
转录起点是+1,上游是-1。
2,延长转录起始后,σ亚基释放,离开核心酶,使核心酶的β’亚基构象变化,与DNA模板亲和力下降,在DNA上移动速度加快,使RNA链不断延长。
转录起始后,σ亚基便从全酶中解离出来,然后nusA亚基结合到核心酶上,由nusA亚基识别序列序列。
3,终止
RNA聚合酶到达转录终止点时,在终止辅助因子的帮助下,聚合反应停止,RNA链和聚合酶脱离DNA模板链,nusA又被σ亚基所取代。。
由此形成RNA聚合酶起始复合物与终止复合物两种形式的循环三,启动子和转录因子启动子:RNA聚合酶识别、结合并开始转录所必需的一段DNA序列。
转录因子:RNA聚合酶在进行转录时,常需要一些辅助因子(蛋白质)参与作用,此类蛋白质统称为转录因子。
足迹法和DNA测序法确定启动子的序列结构。
P363
(一) 原核启动子结构与功能分析比较上百种启动子序列,发现不同的启动子都存在保守的共同序列,包括RNA聚合酶识别位点和结合位点。
(1),-10序列(Pribnow框)
在转录起点上游大约-10处,有一个6bp的保守序列TATAAT,称Pribnow框。此段序列出现在-4到-13bp之间,每个位点的保守性在45%-100%。
频度,T89 A89 T50 A65 A65 T100
据预测,Pribnow框中,一开始的TA和第6位最保守的T在结合RNA聚合酶时起十分重要的作用。
目前认为,Pribnow框决定转录方向。酶在此部位与DNA结合形成稳定的复合物,Pribnow框中DNA序列在转录方向上解开,形成开放型起始结构,它是RNA聚合酶牢固的结合位点,是启动子的关键部位。
RNA聚合酶的结合,诱导富含AT的Pribnow框的双链解开,然后进一步扩大成17个核苷酸长度的泡状物,在泡状物中RNA聚合酶从模板链开始转录RNA产物。
(2),-35序列(Sexfama box)(识别区域)
只含-10序列的DNA不能转录,在-10序列上游还有一个保守序列,其中心约在-35位置,称为-35序列,此序列为RNA酶的识别区域。
各碱基出现频率如下:T85 T83 G81 A61 C69 A52,其中TTG十分保守。
-35序列的功能:它是原核RNA聚合酶全酶依靠σ因子的初始识别位点。因此,-35序列对RNA聚合酶全酶有很高的亲和性。-35序列的核苷酸结构,在很大程度上决定了启动子的强度,RNA聚合酶易识别强的启动子。
-35序列提供RNA聚合酶识别信号,
-10序列有助于DNA局部双链解开,
启动子结构的不对称性决定了转录的方向。
P364图20-4原核型启动子的结构
(二) 真核启动子真核基因的转录十分复杂,对启动子的分析要比原核基因的困难得多。
真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA,这三类聚合酶的启动子各有其结构特点。
1,RNA聚合酶Ⅱ的启动子
RNA聚合酶Ⅱ的启动子有三个保守区:
(1),TATA框(Hogness框)
中心在-25至-30,长度7bp左右。
碱基频率:T82 A97 A85 A63 (T37 )A83 A50(T37 )(全为A-T,少数含有一个G-C对)。
此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。
TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA是绝大多数真核基因正确表达所必需的。
由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。
(2),CAAT框中心在-75处,9bp,共有序列GGT(G)CAATCT
功能:与RNA聚合酶结合。
(3),GC框在CAAT框上游,序列GGGCGG,与某些转录因子结合。
CAAT和GC框均为上游序列,对转录的起始频率有较大影响。
2,RNApolⅢ的启动子
RNApolⅢ的启动子在转录区内部。
P365图20-5 由RNA聚合酶III转录的三个基因的启动子四,终止子和终止因子终止子:提供转录终止信号的一段DNA序列。
终止因子:协助RNA聚合酶识别终止子的蛋白质辅助因子。
有些终止子的作用可被特异的因子所阻止,使酶越过终止子继续转录,称为通读,这类引起抗终止作用的蛋白质称为抗终止因子。
终止子位于已转录的序列中,DNA的终止子可被RNA聚合酶本身或其辅助因子识别。
P366图20-6
1,大肠杆菌中的两类终止子
P366图20-6
所有原核生物的终止子在终止点之前都有一个回文结构,它转录出来的RNA可以形成一个颈环式的发荚结构。
(1),不依赖于ρ的终止子(简单终止子)
简单终止子除具有发夹结构外,在终止点前有一寡聚U序列,回文对称区通常有一段富含GC的序列。
寡聚U序列可能提供信号使RNA聚合酶脱离模板。
(2),依赖ρ的终止子依赖ρ的终止子,必需在ρ因子存在时,才发生终止作用。终止点前无寡聚U序列,回文对称区不富含GC。
ρ因子是55KD的蛋白质,可水解三磷酸核苷。
2,抗终止作用通读往往发生在强启动子、弱终止子的基因上。
抗终止作用常见于某些噬菌体的时序控制。早期基因于后基因之间以终止子相隔开,通过抗终止作用可以打开后基因的表达。
λ噬菌体前早期(immediate early)基因的产物N蛋白就是一种抗终止因子。它与RNA聚合酶作用使其在左右两个终止子处发生通读,从而表达晚早期(delayed early)基因。晚早期基因的产物Q蛋白也是一种抗终止因子,它能使晚早期基因得以表达。
五,转录过程的调节控制参阅P367转录过程的调节控制、P450基因表达的调节
基因的表达是受到严格的调节控制的,转录水平的调控是关键的环节,转录调控主要发生在起始和终止阶段。
时序调控:生长、发育、分化、时间程序。
适应调控:细胞内外环境改变。可位于基因的上游或下游区或内含子中。
操纵子:原核生物基因表达的协调单位,包括结构基因、调节基因及由调节基因产物所识别的控制序列(启动子、操纵基因)。
增强子:真核生物、病毒的基因组内,对转录起增强作用的一段DNA序列。它具有长距离效应,与方向无关,只作用于同一条DNA链上的启动子。
转录水平的调控取决于调节因子(RNA或蛋白质)与启动子、增强子、终止子之间的相互作用。
(一) 原核生物的转录调控
1,操纵子模型调节基因的产物可以是负调节物(如阻遏蛋白),也可以是正调节物,它们与操纵基因作用,关闭或打开结构基因的表达
2,cAMP能促进许多原核生物的基因表达
cAMP可以活化环腺苷酸受体蛋白(cAMP receptorprotein,CRP),CRP作为一种广谱性的正调节物,结合于被调控的启动子上,促进RNA聚合酶与启动子的结合,从而促进转录的进行。
葡萄糖效应:培养基中葡萄糖含量较高时,细菌首先利用葡萄糖,阻遏利用其它底物的酶类的合成。
原因:葡萄糖的降解物可以抑制腺苷酸环化酶的活力,并激活磷酸脂酶,因而降低cAMP的水平,使这些酶的基因不能转录。
因此,CRP又称降解物基因活化蛋白(catabolite gene activator protein,CAP)。受cAMP-CRP调节的操纵子(既代谢降解物敏感的操纵子)包括许多负责糖类分解代谢的诱导性启动子,如乳糖操纵子,半乳糖操纵子。,阿拉伯糖操纵子等,以及负责氨基酸合成代谢的可阻遏的操纵子,如Ile-Val操纵子(iLV)。
调节子:受一种一种调节蛋白所控制的几个操纵子系统,这些操纵子通常都属于同一个代谢途径或与同一种功能有关。
综合性调节子:一种调节蛋白控制几个不同代谢途径的操纵子,如cAMP-CRP对各种分解代谢和合成代谢的调控系统。
3,衰减子的调控作用
(二) 真核生物的转录调控第二节 RNA转录后的加工
RNA聚合酶合成的原初转录产物,要经过剪切、修饰、拼接等过程,才能转变成成熟的RNA分子,此过程称RNA转录后的加工。
(1),原核、真核的tRNA、rRNA(稳定的RNA)
细胞内的tRNA、rRNA相对稳定,半衰期一般为几个小时。所有的tRNA、rRNA都不是原初转录产物,都要经过一系列的加工才能成为有活性的分子。
a,原初转录产物的5’是三磷酸(pppG、pppA),而成熟的tRNA、rRNA,5’是单磷酸。
b,成熟 tRNA、rRNA分子都比原初转录物小。
c,所有的tRNA分子,都有原初转录物所没有的稀有碱基(A、G、C、U以外的碱基)。
(2),真核的mRNA
单顺反子,多内含子。寿命比原核mRNA的长。
内含子、内元(intron):在原初转录物中,通过RNA拼接反应而被去除的RNA序列,或基因中与这种序列对应的DNA序列。
外显子、外元(exon):原初转录物通过RNA拼接反应后,而保留于成熟RNA中的序列,或基因中与成熟RNA对应的DNA序列。
(3),原核mRNA
多顺反子,半衰期只有几分钟。这是原核生物重要的调控机制,如果一种酶或蛋白质不再需要时,只需简单地关闭其mRNA的合成就行了。
一,原核生物RNA的加工在原核生物中,rRNA基因与某些tRNA基因组成混合操纵子,可提高效率、节省空间(增加有效信息)。其它的tRNA基因也成簇存在,并与编码蛋白质的基因组成操纵子,它们在形式多顺反子转录物后,断裂成为rRNA和tRNA的前体,然后进一步加工成熟。
1,原核rRNA前体的加工(E.coli)
P 370图20-7E.coli rRNA前体的加工
E.coli共有三种rRNA
5S rRNA120b
16S rRNA 1541b
23S rRNA 2904b
rRNA原初转录物含6300个核苷酸,约30S。
大肠杆菌有7个rRNA的转录单位(操纵子),它们分散在基因组的各处。每个转录单位由16SrRNA、23SrRNA、5SrRNSA以及一个或几个tRNA基因所组成。每个操纵子中tRNA基因的种类、数量和位置都各不相同。
RNAaseⅢ是一种rRNA、多顺反子mRNA加工的内切酶,识别特定的RNA双螺旋区。
RNAase E也可识别P5(5SrRNA前体)两端形成的双螺旋区。
2,原核tRNA前体的加工
P371图20-8
E.coli染色体基因组有60个tRNA基因,即某种a.a.的tRNA基因不止一个拷贝。
tRNA基因大多成簇存在,或与rRNA基因,或与蛋白质基因组成混合转录单位。
tRNA前体加工步骤
a,核酸内切酶(RNAaseP、RNAaseF)在tRNA两端切断。
b,核酸外切酶(RNAaseD)从3’端逐个切去附加序列。
c,在tRNA3’端加上-CCA-OH。tRNA核苷酰转移酶
d,核苷的修饰(修饰酶):甲基化酶 / S-腺苷蛋氨酸(SAM),假尿苷合成酶。
(1),RNAase P
能识别空间结构,很干净地切除tRNA前体的5’端。
含有蛋白质和RNA(M1 RNA)两部分。M1 RNA含375nt,在某些条件下,(提高[Mg2+]、或加入胺类),RNAase P的RNA能单独地切断tRNA前体的5’端序列。
(2),RNAaseF
不干净地切除tRNA前体的3’端序列,需要RNAase D进一步修剪。
3,原核mRNA前体的加工由单顺反子构成mRNA,一般不需加工,一经转录,即可直接进行翻译。有些多顺反子构成的mRNA,须由核酸内切酶切成较小的mRNA,然后再进行翻译。
例:核糖体大亚基蛋白L10、L7、L12与RNA聚合酶β、β’亚基的基因组成混合操纵子。
它在转录出多顺反子mRNA后,由RNAaseⅢ将核糖体蛋白质基因与聚合酶亚基基因的mRNA切开,然后各自翻译。
该加工过程的意义:可对mRNA的翻译进行调节,核糖体蛋白质的合成必须适应于rRNA的合成水平,而细胞内RNA聚合酶的合成水平则要低得多。两者切开,有利于各自的翻译调控。
二,真核生物RNA的加工真核rRNA、tRNA前体的加工过程与原核的很相似,但mRNA的加工过程与原核的有很大不同。
1、?真核rRNA前体的加工真核生物核糖体的小亚基含:16-18S rRNA,大亚基含:26-28S r RNA、5S rRNA、5.8S rRNA(特有)。
真核rRNA基因拷贝数较多,几十至几千个之间。
真核rRNA基因也成簇排列在一起,18S、5.8S、28S rRNA基因组成一个转录单位,彼此被间隔区分开,由RNA聚合酶I转录生成一个长的rRNA前体。5SrRNA基因也成簇排列,间隔区不被转录,由RNA聚合酶III转录后经适当加工。
哺乳动物:45SrRNA前体,含18S、5.8S、28S rRNA
果蝇:38SrRNA前体,含18S、5.8S、28S rRNA
酵母:37SrRNA 前体,17S、5.8S、26S rRNA
rRNA在成熟过程中可被甲基化,位点主要在核糖2’-OH上。真核rRNA甲基化程度比原核的高,约1-2%的核苷酸被甲基化。
真核生物的核仁是rRNA合成、加工和装配成核糖体的场所,大、小亚基分别组装后,通过核孔转移到胞质中参与核糖体循环。
2,真核tRNA前体的加工真核tRNA基因的数目比原核tRNA的要多的多。例如,E.coli有60个tRNA基因,啤酒酵母250个,果蝇850个,爪蟾1150个,人1300个。
真核tRNA基因也成簇排列,被间隔区分开,tRNA基因由RNA聚合酶Ⅲ转录。
真核tRNA前体的剪切、修饰过程与原核相似。
3,真核生物mRNA前体的加工
mRNA原初转录物是分子量很大的前体,在核内加工过程中形成分子大小不等的中间产物,它们被称为核内不均一RNA(hn RNA)。其中,约有25%可转变成成熟的mRNA。
hnRNA半寿期很短,比细胞质中的mRNA更不稳定,一般在几分钟至1小时。而细胞质mRNA的半寿期为1-10小时,神经细胞mRNA最长可达数年。
hnRNA转变成mRNA的加工过程主要包括:
a,5’末端形成帽子结构
b,3’末端切断并加上polyA
c,剪接除去内含子对应的序列
d,甲基化
(1),5’末端加帽反应步骤P 374
RNA三磷酸酶,mRNA鸟苷酰转移酶,mRNA(鸟嘌呤-7)甲基转移酶,mRNA(核苷-2’)甲基转移酶。
由于甲基化的程度不同,有三种类型的帽子:CAP O型,CAP I型,CAP II型。
★5’帽子也出现于hnRNA,说明加帽过程可能在转录的早期阶段或转录终止前就已完成。
★5’帽子的功能
a,在翻译过程中起信号识别作用,协助核糖体与mRNA结合,使翻译从AUG开始。
b,保护mRNA,避免5’端受核酸外切酶的降解。
(2),3’端加polyA
hnRNA链由RNAaseⅢ切断,由多聚腺苷酸聚合酶催化,加上polyA,ATP为供体。
加尾信号:AATAAA、YGTGTGYY(Y为嘧啶)。
高等真核生物和病毒的mRNA在靠近3’端区都有一段非常保守的序列AAUAAA,这一序列离多聚腺苷酸加入位点的距离在11-30nt范围之内。
核内hnRNA的3’端也有多聚腺苷酸,表明加尾过程早在核内已经完成。hnRNA中的poly(A)比mRNA略长,平均150-200nt。
polyA的功能
a,防止核酸外切酶对mRNA信息序列的降解,起缓冲作用。
b,与mRNA从细胞核转移到细胞质有关。
3’脱氧腺苷(既冬虫夏草素)是多聚腺苷酸化的特异抑制剂,但它不抑制hnRNA的转录。
(3),mRNA甲基化某些真核mRNA内部有甲基化的位点,主要是在N6-甲基腺嘌呤(m6A)。
三,RNA的拼接和催化作用(内含子的切除)
多数真核基因是断裂基因,其转录产物通过拼接,去除内含子,使编码区(外显子)成为连续序列。
有些内含子可以催化自身的拼接(self-splicing),有些内含子需要在有关酶的作用下才能拼接。
1,tRNA前体的拼接酵母tRNA约有400个基因,有内含子的基因约占1/10,内含子长度14-46bp,没有保守性。
切除内含子的酶识别的是tRNA的二级结构,而不是什么保守序列。
拼接过程:
第一步切除内含子,第二步RNA连接酶将两个tRNA半分子连接。
P375图20-9酵母tRNAPhe及其前体的结构
P376图20-10酵母和植物tRNA前体的拼接过程
2,四膜虫rRNA前体的自我拼接四膜虫35S rRNA前体,经加工可以生成5.8S,17S和26SrRNA。
某些品系的四膜虫在其26SrRNA基因中有一个内含子,35S rRNA前体需要拼接除去内含子。该拼接过程只需一价和二价阳离子和鸟苷酸(提供3’-OH),无需能量和酶。
P377图20-11四膜虫rRNA的拼接
3,mRNA前体的拼接真核生物所有编码蛋白质的核结构基因,其内含子的左端均为GT,右端均为AG。此规律称GT-AG规律(对于mRNA就是GU-AG,此规律不适合于线粒体、叶绿体的内含子,也不适合于tRNA和某些rRNA的核结构基因)
酵母核基因的内含子在靠近3’端还有一个保守序列,与5’端序列互补,称为TACTAAC box,也与拼接有关。
真核细胞内存在许多种类的小分子RNA,大小在100-300nt,有些由聚合酶III转录,有些由聚合酶II转录。
核内小RNA(snRNA)主要存在于核内,细胞质小RNA(scRNA)主要存在于细胞质。
重要的snRNA有U系列snRNA,因其尿嘧啶含量高而得名。U系列snRNA通常都与多肽或蛋白质结合形成核糖核蛋白颗粒(RNP)。U-snRNA参与hnRNA的拼接过程。U3-snRNA与rRNA前体的加工有关,U1、U2、U4、U5、U6可能都与hnRNA的加工有关。
P378 图20-12U1-snRNA的5’端序列与hnRNA内含子拼接处的序列互补
P379图20-13 hnRNA的拼接过程真核生物编码蛋白质的核基因的内含子属于II类内含子(反式剪接)
四,RNA的催化功能P377
1,I类内含子的自我剪接(顺式剪接)
I类内含子包括四膜虫rRNA的内含子,几种酵母线粒体的内含子,噬菌体T4胸苷酸合成酶的内含子等。这些内含子有较大的同源性,可自我拼接。
1981,Cech(美国),四膜虫rRNA前体(约6400nt)能自动切除413个nt的内含子,然后加工生成5.8S、17S、26S rRNA。
1984,Apirion(美国),噬菌体T4的RNA可以在没有蛋白质参与下自我断裂,由215nt前体链切下76nt 。
2,独具催化活性的小分子RNA
1984,Altman,Pace(美国),细菌加工tRNA前体的酶—RNAase P中的M1RNA(375nt)在高浓度的Mg2+或胺类存在时能单独切下tRNA前体的5’端。
1,4-α葡聚糖分支酶中的RNA(31nt)也单独具有分支酶活力。
真核的U-snRNA催化rRNA前体、hnRNA前体的加工。
第三节 RNA的复制有些RNA病毒,进入寄主细胞后,借助复制酶而进行RNA病毒的复制。
从感染RNA病毒的细胞中可以分离出RNA复制酶,这些RNA复制酶的模板特异性很强,只识别病毒自身的RNA,它以病毒RNA为模板,合成与模板性质相同的RNA。
一,噬菌体QβRNA的复制噬菌体Qβ:直径20nm,正十二面体,含30%RNA,其余为蛋白质,单链RNA,4500个核苷酸,编码3-4个蛋白质。
结构:5’端——成熟蛋白(A或A2蛋白)——外壳蛋白(或A1蛋白)——复制酶β亚基——3’端
Qβ复制酶:αβγδ四个亚基,只有β是自己编码,其余三个亚基来自寄主细胞。
P380 表20-4 Qβ复制酶亚基的性质和功能
进入E.coli细胞后,其RNA即为mRNA,可以直接合成与病毒繁殖有关的蛋白质(复制酶β亚基)。
QβRNA的复制过程:
P381图20-14噬菌体QβRNA的复制过程:
在Qβ特异的复制酶合成并装备好后就开始病毒RNA的复制。
QβRNA翻译和复制的自我调节:
P381图20-15
QβRNA的高级结构(尤其是双螺旋区的结构)参与翻译的调节控制:
(1) 只有刚复制的QβRNA,成熟蛋白基因才能翻译。
(2) 核糖体能直接启动外壳蛋白基因的翻译
(3) 复制酶β亚基基因只有在外壳蛋白合成时双链打开才能进行翻译。
QβRNA的翻译、复制受寄主细胞调节,以正链RNA为模板复制负链RNA时,另需寄主细胞的HFⅠ和HFⅡ因子。而以负链RNA 为模板复制正链RNA时,不需这两个因子,感染后期大量合成的是正链RNA。
二,病毒RNA复制的主要方式
1,正链RNA病毒(mRNA):噬菌体Qβ、灰质炎病毒等。
进入寄主细胞后,利用寄主的翻译系统,首先合成复制酶及有关的蛋白质,然后进行病毒RNA的复制,最后由病毒RNA和蛋白质装配成病毒颗粒。
2,负链RNA病毒(带有复制酶):狂犬病毒等此类病毒带有复制酶,侵入后,复制酶首先合成出正链RNA(mRNA),再以正链RNA为模板,合成负链RNA及蛋白质,然后装配。
3,双链RNA病毒(带有复制酶):呼肠孤病毒等以双链RNA为模板,在复制酶作用下先转录正链RNA(mRNA),从而翻译出蛋白质,然后合成负链RNA,形成双链RNA,再包装。
4,反转录病毒(含反转录酶):白血病病毒、肉瘤病毒等致癌RNA病毒正链RNA病毒,它们的复制需要经过DNA前病毒阶段。
不同RNA病毒合成mRNA的途径可以分4类:P382图20-16
第四节 RNA生物合成的抑制剂某些核酸代谢的拮抗物和抗生素可抑制核苷酸或核酸的合成,因而可以用于抗病毒或抗肿瘤药物,也可以用于核酸的研究一,嘌呤和嘧啶类似物抑制核苷酸的合成,还能掺入核酸分子中去,形成异常DNA、RNA,影响核酸功能。
主要有:6-巯基嘌呤、硫鸟嘌呤、2.6—二氨基嘌呤、8-氮鸟嘌呤、5-氟尿嘧啶,6-氮尿嘧啶碱基类似物进入体内后需转变成相应的核苷酸,才表现出抑制作用。
二,DNA模板功能的抑制剂此类化合物能与DNA结合,使DNA失去模板功能,从而抑制其复制与转录。
1,烷化剂氮芥(二(氯乙基)胺的衍生物)、磺酸酯、氮丙啶、乙撑亚胺类。它们带有活性烷基,使DNA烷基化。
烷化位点:鸟嘌呤N7,腺嘌呤N1、N3、N7,胞嘧啶N1
烷基化后,碱基易被水解下来,留下的空隙可干扰DNA复制或引起错误碱基掺入。带有双功能基团的烷化剂,可同时与DNA两条链结合,使双链DNA交联,从而失去模板功能。
环磷酰胺:肿瘤细胞中磷酰胺酶活化,生成活性氮芥。
苯丁酸氮芥:癌细胞酵解作用强,乳酸多,pH低,苯丁酸氮芥易进入。
2,放线菌素D(对真核、原核细胞都起作用)
有抗菌和抗癌作用。
它可与DNA形成非共价复合物,使其多肽部分在DNA的“浅沟”上如同阻遏蛋白一样,抑制DNA的转录和复制。
此类机理的放线菌素还有色霉素A3、橄榄霉素、光神霉素。
3,嵌入染料扁平芳香族染料,可插入双链DNA相邻碱基对之间。
溴化乙锭插入后,使DNA在复制时缺失或增添一个核苷酸,从而导致移码突变,并能抑制RNA链的起始及质粒的复制。此外还有原黄素、吖啶黄、吖啶橙等。
三,RNA聚合酶的抑制物
1,利福霉素包括其衍生物利福平,特异地抑制细菌RNA聚合酶的活性。
强烈抑制革兰氏阳性菌和结核杆菌,它主要抑制RNA合成的起始。
2,利链菌素与细菌RNA聚合酶β亚基结合,抑制转录过程中链的延长。
3,α-鹅膏蕈碱主要抑制真核RNA聚合酶Ⅱ和Ⅲ,对细菌的RNA聚合酶作用极小。第十六章细胞代谢和基因表达的调控细胞代谢包括物质代谢和能量代谢。细胞代谢是一个完整统一的网络,并且存在复杂的调节机制,这些调节机制都是在基因表达产物(蛋白质或RNA)的作用下进行的。
重点:物质代谢途径的相互联系,酶活性的调节。
第一节 物质代谢途径的相互联系细胞代谢的基本原则是将各类物质分别纳入各自的共同代谢途径,以少数种类的反应转化种类繁多的分子。不同代谢途径可以通过交叉点上关键的中间物而相互转化,其中三个关键的中间物是G-6-P、丙酮酸、乙酰CoA。
一,糖代谢与脂代谢的联系
1,糖转变成脂

糖经过酵解,生成磷酸二羟丙酮及丙酮酸。磷酸二羟丙酮还原为甘油,丙酮酸氧化脱羧转变成乙酰CoA,合成脂肪酸。
2,脂转变成糖
图甘油经磷酸化为3-磷酸甘油,转变为磷酸二羟丙酮,异生为糖。
在植物、细菌中,脂肪酸转化成乙酰CoA,后者经乙醛酸循环生成琥珀酸,进入TCA,由草酰乙酸脱羧生成丙酮酸,生糖。
动物体内,无乙醛酸循环,乙酰CoA进入TCA氧化,生成CO2和H2O。
脂肪酸在动物体内也可以转变成糖,但此时必需要有其他来源的物质补充TCA中消耗的有机酸(草酰乙酸)。
糖利用受阻,依靠脂类物质供能量,脂肪动员,在肝中产生大量酮体(丙酮、乙酰乙酸、β-羟基丁酸)。
二,糖代谢与氨基酸代谢的关系
1,糖的分解代谢为氨基酸合成提供碳架
图糖 → 丙酮酸 → α-酮戊二酸 + 草酰乙酸这三种酮酸,经过转氨作用分别生成Ala、Glu和Asp。
2,生糖氨基酸的碳架可以转变成糖
凡是能生成丙酮酸、α—酮戊二酸、琥珀酸、草酰乙酸的a.a,称为生糖a.a。
Phe、Tyr、Ilr、Lys、Trp等可生成乙酰乙酰CoA,从而生成酮体。
Phe、Tyr等生糖及生酮。
三,氨基酸代谢与脂代谢的关系氨基酸的碳架都可以最终转变成乙酰CoA,可以用于脂肪酸和胆甾醇的合成。
生糖a.a的碳架可以转变成甘油。
Ser可以转变成胆胺和胆碱,合成脑磷脂和卵磷脂。
动物体内脂肪酸的降解产物乙酰CoA,不能为a.a合成提供净碳架。
脂类分子中的甘油可以转变为丙酮酸,经TCA进一步转变为草酰乙酸、α—酮戊二酸,这三者都可以转变成氨基酸。
四,核苷酸代谢与糖、脂、氨基酸的关系核苷酸不是重要的碳源、氮源和能源。
各种氨基酸,如Gly,Asp,Gln是核苷酸的合成前体。
有些核苷酸在物质代谢中也有重要作用:
ATP供能及磷酸基团。
UTP参与单糖转变成多糖(活化单糖)。
CTP参与卵磷脂合成。
GTP为蛋白质合成供能。
五,物质代谢的特点
1,TCA是中心环节代谢途径交叉形成网络,主要联系物:丙酮酸、乙酰CoA、柠檬酸、α-酮戊二酸、草酰乙酸。
2,分解、合成途径往往是分开的,不是简单的逆反应。
在一条代谢途径中,某些关键部位的正反应和逆反应,往往由两种不同的酶催化,一种酶催化正反应,另一种酶催化逆反应。
以糖代谢为例:
P421
3,ATP是通用的能量载体乙酰CoA进入TCA后,完全氧化生成CO2、H2O,释放的自由能被ADP捕获转运。否则,自由能以热能形式散发到周围环境中。
4,分解为合成提供还原力和能量物质代谢的基本要略在于:生成ATP、还原力和结构单元用于体内生物合成。
NADPH专一用于还原性生物合成,NADH和FADH2主要功能是通过呼吸链产生ATP。
ATP来源:(1)底物水平磷酸化、(2)绿色植物和光合细菌的光合磷酸化、(3)呼吸链的氧化磷酸化。
NADPH来源:
(1)植物光合电子传递链
(2)磷酸戊糖途径
(3)乙酰CoA由线粒体转移到细胞质时伴随有NADH的氧化和NADP+的还原,所产生的NADPH可用于脂肪酸合成P422图22-4
有机物分解产生构造草料和能量大致可以分三个阶段:P423 图22-5
(1)将大分子分解为小分子单元,释放的能量不能被利用。
(2)将各种小分子单元分解为共同的降解产物乙酰CoA,产生还原力NADPH和少量ATP。
(3)乙酰CoA通过TCA被完全氧化成CO2,脱下的电子经氧化磷酸化产生大量的ATP。
5,分解、合成受不同方式调节单向代谢的反馈调节
顺序反馈控分枝代谢的反馈调节 对同工酶的反馈抑制
协同反馈抑制
第二节 代谢调节代谢调节是生物长期进化过程中,为适应环境的变化的而形成的一种适应能力。进化程度越高的生物,其代谢调节的机制越复杂、越完善。
生物代谢调节在三个水平上进行,即酶水平、细胞水平、多细胞整体水平(神经、激素)。酶和细胞水平的调节,是最基本的调节方式,为一切生物所共有。
神经水平调节
动物激素水平调节
植物
细胞水平调节
酶水平调节 单细胞生物

神经调节:整体的、最高级的调节。
激素调节:受神经调节控制。第二级调节。
酶调节:原始的、基本的调节。第三级调节。
酶水平的调节:酶活性调节(酶原激活、别构效应、共价修饰)和酶含量(基因表达调控)
一,酶水平的调节酶水平的调节,主要通过酶定位的区域化、酶活性的调节、酶含量的调节,这三个方面进行。
1,酶定位的区域化酶在细胞内有一定的布局和定位。催化不同代谢途径的酶类,往往分别组成各种多酶体系。多酶体系存在于一定的亚细胞结构区域中,或存在于胞质中,这种现象称为酶的区域化。
功能:浓缩效应,防止干扰,便于调节。
⑴多酶体系在细胞中区域化,为酶水平的调节创造了有利条件,使某些调节因素可以专一地影响细胞内某一部分的酶活性,而不致影响其它部位酶的活性。
⑵此外,酶定位的区域化,使它与底物和辅助在细胞器内一起相对浓缩,利于在细胞局部范围内快速进行各个代谢反应。
主要代谢途径酶系在细胞内的分布:
胞质:糖酵解,糖原合成,磷酸成糖途径,脂肪酸合成,部分蛋白质合成。
线粒体:脂肪酸β氧化,三羧酸循环,呼吸链,氧化磷酸化。
细胞核:核酸的合成、修饰。
内质网:蛋白质合成,磷脂合成。
胞质和线粒体:糖异生,胆固醇合成溶酶体:多种水解酶
2,酶活性的调节调节方式:酶原的激活
pH改变,如溶菌酶。pH7,无活性。pH5,活性高。
同工酶
共价修饰
反馈调节(生物体内最重要)
特点:调节快速、灵敏,数秒至数分钟可完成。
(1),共价修饰和级联放大P430图22-14
磷酸化/脱磷酸化腺苷酰化/脱腺苷酰化
(2),前馈和反馈调节前馈调节:底物对酶活性的调节,一般是前馈激活,但也可能是前馈抑制。当底物浓度过高时可避免该代谢途径的过分拥挤和产物的大量合成,如高浓度的乙酰CoA是乙酰CoA羧化酶的别构抑制剂,可避免丙二酸单酰CoA大量合成。
反馈调节:产物对酶活性的调节,一般是反馈抑制,但也有反馈激活。
a.反馈抑制单价反馈抑制
多价反馈抑制当序列终产物浓度积累过多时,会抑制初始反应的酶活性,使整个体系反应速度降低。
b,顺序反馈抑制
c,协同反馈抑制
d,累积反馈抑制
e,同工酶反馈抑制
f,反馈激活和前馈激活
(3),反馈激活,
(4),前馈激活:
如在糖酵解中,1.6—二磷酸果糖,可提高后面丙酮酸激酶的活性,加速磷酸烯醇式丙酮酸转变为丙酮酸。
如当丙酮酸不能经乙酰CoA进入TCA时,丙酮酸积累,磷酸烯醇式丙酮酸转化成草酰乙酸,后者可合成a.a和嘧啶核苷酸。合成出的嘧啶核苷酸,反馈激活磷酸烯醇丙酮酸羧化酶,促进草酰乙酸合成,保证TCA对草酰乙酸的需要。
3,酶合成的调节(基因表达的调节)
酶合成调节,是通过酶量的变化来调控代谢速率。
二,细胞水平的调节
(1)控制跨膜离子浓度剃度和电位梯度
(2)控制跨膜物质运输
(3)区隔化:浓缩作用,防止干扰,便于调节
(4)膜与酶可逆结合:
双关酶:能与膜可逆结合,通过膜结合型和可溶型的互变来调节酶的活性。双关酶大多是代谢途径的关键酶和调节酶,如糖酵解中的己糖激酶,磷酸果糖激酶,醛缩酶,3-磷酸甘油醛脱氢酶,氨基酸代谢的Glu脱氢酶,Tyr氧化酶:参与共价修饰的蛋白激酶,蛋白磷酸脂酶等。
三,激素水平的调节第三节 基因表达的调节基因表达有几个水平的调节
⑴转录水平
⑵翻泽水平
⑶加工水平转录后加工、翻译后加工
⑷蛋白质活性调节其中最关键的是⑴,基因表达的控制主要发生在转录水平,原核生物尤其如此。
时序调节适应调节一,原核生物基因表达的调节
1,纵子模型操纵子是基因表达的协调单位,它含有在功能上彼此有关的多个结构基因及控制位,控制部位由启动子和操纵基因组成。
一个操纵子的全部基因排列在一起,其中含多个结构基因,转录产物是单个多顺反mRNA,操纵子的控制部位可受调节基因产物的调节。
2,组成型基因和诱导型基因组成酶(构成酶),受环境影响小,正常代谢条件下表达。如糖酵解的酶。
诱导酶(适应型酶),对不同的生存环境有不同的表达。如半乳糖苷酶。
3,正调控和负调控在没有调节蛋白质存在时,基因是关闭的,加入调节蛋白后,基因活性被开启,此为正调控。
在没有调节蛋白存在时,基因是表达的,加入调节蛋白后基因表达活必被关闭,此为负调控。
在正调控中,调节蛋白称诱导蛋白。
在负调控中,调节蛋白称阻遇蛋白。
4,原核生物结构基因表达的4种控制模式。
负调控:诱导作用,应使阻遇蛋白解离DNA。
阻遇作用,应使阻遇蛋白结合DNA。
P451图22-25
正调控:诱导作用,应使诱导蛋白结合DNA。
阻遇作用,应使诱导蛋白解离DNA。
图片9-1,杨歧生,P272
5,大肠杆菌乳糖操纵子Lac操纵子结构图,P453 图22-26
LacZ、LacY、LacA为结构基因,上游依次为操纵基因、启动子和调节基因LacI。
当细胞内无诱导物(乳糖或IPTG)存在时,阻遏蛋白与操纵基因结合。由于操纵基因与启动子有一定程度重叠,妨碍了RNA聚合酶在-10序列上形成开放性启动子复合物。
当细胞内有诱导物(乳糖或IPTG)存在时,诱导物与阻遏蛋白结合,改变阻遏蛋白构象,使之迅速从操纵基因上解离下来。这样RNA聚合酶就能与启动子结合,并形成开放性启动子复合物,从而开始转录LacZYA结构基因。
图片8-3《孙乃恩》P 285
IPTG:异丙基-β-D硫代半乳糖苷(安慰诱导物),能对乳糖操纵子产生极强的诱导效应,是强诱导物。
6,色氨酸操纵子(trp)的转录调控
trp操纵子负责Trp的合成,通常是开放的,调节基因的产物使它关闭,这种调控作用称为可阻遏型的负调控。
⑴E.coli trp操纵子有5个结构基因,trpE-D-C-B-A。
⑵在trpE的上游有三个区段trpP-O-L,trpL是一段162bp序列,转录到mRNA中成为前导序列,对操纵子的转录起调控作用。
⑶在染色体90分区有trpR基因,编码12.5kd的阻遏蛋白亚基,能以四聚体形式结合到trpO。
TrpP与一般原核基因启动子一样,具有-10序列和-35序列,-10序列完全位于trpP之内。
E.coli trp操纵子的组成及基因产物的功能。
图片:
E.coli 具有合成各种a.a的能力。在多数情况下,只有在培养基不供应外源a.a时,才去合成产生该a.a所必须的酶系。
当细胞内Trp浓度较高时,Trp与阻遏蛋白(trpR基因产物)结合,产使它具有活性,从而与trpO基因结合,关闭转录。
当细胞内Trp浓度很低时,阻遏遇蛋白上的Trp解离出来,使阻遏蛋白失活,并失去与trpO结合的能力,开启转录。
图片:
7,trp操纵子的前导序列
trp mRNA分子一旦开始合成,在trpE基因开始转录之前,大多数mRNA会停止生长,这是因为前导序列(trpL)对操纵子调控发挥了重要作用。
trp mRNA的前导序列及前导肽。
结构基因上游具有:启动子—操纵基因—前导序列—衰减子区。
mRNA 5,端有162b,其中139个构成前导序列。前导序列由14个a.a的前导肽、4个互补区段和1个衰减子终止点构成。
衰减子:位于结构基因上游前导区的终止信号。
前导序列的特点:
⑴前导序列的某些区段富含GC。尾部有一个含8个U的区段,易极成不依赖于ρ的终止信号。(3区与4区构成终止信号的发夹结构)
⑵1区和2区构成第二个发夹结构,其中1区处于14个a.a的前导肽序列中。
⑶3区与2区也能形成另一个发夹结构,从而可阻止3区与4区形成终止发夹结构。
⑷前导序列RNA编码一段14a.a的前导肽,并有一终止密码子UGA
⑸前导序列中,并列二个Trp密码子.
在mRNA合成过程中,1区与2区若先配对,则3区与4区配对,终止转录.
图片:
阻遏和衰减机制,虽然都是在转录水平上进行调节,但是它们的作用机制完全不同,前者控制转录的起始,后者控制转录起始后是否继续下去。
氨基酸合成操纵子前导肽序列
P454表22-2
生长速度调节:严紧控制基因表达时序调节:
翻译水平调节:
二,真核基因表达的调节
c第十章 氨基酸代谢植物、微生物从环境中吸收氨、铵盐、亚硝酸盐、硝酸盐等无机氮,合成各种氨基酸、蛋白质、含氮化合物。
人和动物消化吸收动、植物蛋白质,得到氨基酸,合成蛋白质及含氮物质。
有些微生物能把空气中的N2转变成氨态氮,合成氨基酸。
第一节 蛋白质消化、降解及氮平衡一,蛋白质消化吸收哺乳动物的胃、小肠中含有胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶、羧肽酶、氨肽酶、弹性蛋白酶。经上述酶的作用,蛋白质水解成游离氨基酸,在小肠被吸收。
被吸收的氨基酸(与糖、脂一样)一般不能直接排出体外,需经历各种代谢途径。
肠粘膜细胞还可吸收二肽或三肽,吸收作用在小肠的近端较强,因此肽的吸收先于游离氨基酸。
二,蛋白质的降解人及动物体内蛋白质处于不断降解和合成的动态平衡。成人每天有总体蛋白的1%~2%被降解、更新。
不同蛋白的半寿期差异很大,人血浆蛋白质的t1/2约10天,肝脏的t1/2约1~8天,结缔组织蛋白的t1/2约180天,许多关键性的调节酶的t1/2 均很短。
真核细胞中蛋白质的降解有两条途径:
一条是不依赖ATP的途径,在溶酶体中进行,主要降解外源蛋白、膜蛋白及长寿命的细胞内蛋白。
另一条是依赖ATP和泛素的途径,在胞质中进行,主要降解异常蛋白和短寿命蛋白,此途径在不含溶酶体的红细胞中尤为重要。
泛素是一种8.5KD(76a.a.残基)的小分子蛋白质,普遍存在于真核细胞内。一级结构高度保守,酵母与人只相差3个a.a残基,它能与被降解的蛋白质共价结合,使后者活化,然后被蛋白酶降解。
三,氨基酸代谢库食物蛋白中,经消化而被吸收的氨基酸(外源性a.a)与体内组织蛋白降解产生的氨基酸(内源性a.a)混在一起,分布于体内各处,参与代谢,称为氨基酸代谢库。
氨基酸代谢库以游离a.a总量计算。
肌肉中a.a占代谢库的50%以上。
肝脏中a.a占代谢库的10%。
肾中a.a占代谢库的4%。
血浆中a.a占代谢库的1~6%。
肝、肾体积小,它们所含的a.a浓度很高,血浆a.a是体内各组织之间a.a转运的主要形式。
氨基酸代谢库

四,氮平衡食物中的含氮物质,绝大部分是蛋白质,非蛋白质的含氮物质含量很少,可以忽略不计。
氮平衡:机体摄入的氮量和排出量,在正常情况下处于平衡状态。即,摄入氮=排出氮。
氮正平衡:摄入氮>排出氮,部分摄入的氮用于合成体内蛋白质,儿童、孕妇。
氮负平衡:摄入氮<排出氮。饥锇、疾病。
第二节 氨基酸分解代谢氨基酸的分解代谢主要在肝脏中进行。
氨基酸的分解代谢一般是先脱去氨基,形成的碳骨架可以被氧化成CO2和H2O,产生ATP,也可以为糖、脂肪酸的合成提供碳架。
一,脱氨基作用主要在肝脏中进行
(一) 氧化脱氨基第一步,脱氢,生成亚胺。第二步,水解。
P219反应式:
生成的H2O2有毒,在过氧化氢酶催化下,生成H2O+O2↑,解除对细胞的毒害。
1,催化氧化脱氨基反应的酶(氨基酸氧化酶)
(1),L—氨基酸氧化酶有两类辅酶,E—FMN
E—FAD(人和动物)
对下列a.a不起作用:
Gly、β-羟氨酸(Ser,Thr)、二羧a.a( Glu,Asp)、二氨a.a (Lys,Arg)
真核生物中,真正起作用的不是L-a.a氧化酶,而是谷氨酸脱氢酶。
(2),D-氨基酸氧化酶E-FAD
有些细菌、霉菌和动物肝、肾细胞中有此酶,可催化D-a.a脱氨。
(3),Gly氧化酶E-FAD
使Gly脱氨生成乙醛酸。
(4),D-Asp氧化酶E-FAD
E-FAD 兔肾中有D-Asp氧化酶,D-Asp脱氨,生成草酰乙酸。
(5),L-Glu脱氢酶E-NAD+E-NADP+
P220 反应式:
真核细胞的Glu脱氢酶,大部分存在于线粒体基质中,是一种不需O2的脱氢酶。
此酶是能使a.a直接脱去氨基的活力最强的酶,是一个结构很复杂的别构酶。在动、植、微生物体内都有。
ATP、GTP、NADH可抑制此酶活性。
ADP、GDP及某些a.a可激活此酶活性。
因此当ATP、GTP不足时,Glu的氧化脱氨会加速进行,有利于a.a分解供能(动物体内有10%的能量来自a.a氧化)。
(二) 非氧化脱氨基作用(大多数在微生物的中进行)
P 221
①还原脱氨基(严格无氧条件下)

②水解脱氨基

③脱水脱氨基

④脱巯基脱氨基
⑤氧化-还原脱氨基两个氨基酸互相发生氧化还原反应,生成有机酸、酮酸、氨。
⑥脱酰胺基作用谷胺酰胺酶:谷胺酰胺+H2O → 谷氨酸+NH3
天冬酰胺酶:天冬酰胺+H2O → 天冬氨酸+NH3
谷胺酰胺酶、天冬酰胺酶广泛存在于动植物和微生物中
(三) 转氨基作用转氨作用是a.a脱氨的重要方式,除Gly、Lys、Thr、Pro外,a.a都能参与转氨基作用。
转氨基作用由转氨酶催化,辅酶是维生素B6(磷酸吡哆醛、磷酸吡哆胺)。转氨酶在真核细胞的胞质、线粒体中都存在。
转氨基作用:是α-氨基酸和α-酮酸之间氨基转移作用,结果是原来的a.a生成相应的酮酸,而原来的酮酸生成相应的氨基酸。
P223 结构式:
不同的转氨酶催化不同的转氨反应。
大多数转氨酶,优先利用α-酮戊二酸作为氨基的受体,生成Glu。如丙氨酸转氨酶,可生成Glu,叫谷丙转氨酶(GPT)。肝细胞受损后,血中此酶含量大增,活性高。肝细胞正常,血中此酶含量很低。
动物组织中,Asp转氨酶的活性最大。在大多数细胞中含量高,Asp是合成尿素时氮的供体,通过转氨作用解决氨的去向。
转氨作用机制 P224 图16-2
此图只画出转氨反应的一半。
(四) 联合脱氨基单靠转氨基作用不能最终脱掉氨基,单靠氧化脱氨基作用也不能满足机体脱氨基的需要,因为只有Glu脱氢酶活力最高,其余L-氨基酸氧化酶的活力都低。
机体借助联合脱氨基作用可以迅速脱去氨基 。
1,以谷氨酸脱氢酶为中心的联合脱氨基作用氨基酸的α-氨基先转到α-酮戊二酸上,生成相应的α-酮酸和Glu,然后在L-Glu脱氨酶催化下,脱氨基生成α-酮戊二酸,并释放出氨。
P225图16-3以谷氨酸脱氢酶为中心的联合脱氨基作用
2,通过嘌呤核苷酸循环的联合脱氨基做用
P 225结构式:次黄嘌呤核苷一磷酸(IMP)、腺苷酸代琥珀酸、腺苷酸
P226图16-4通过嘌呤核苷酸循环的联合脱氨基做用
骨骼肌、心肌、肝脏、脑都是以嘌呤核苷酸循环的方式为主二,脱羧作用生物体内大部分a.a可进行脱羧作用,生成相应的一级胺。
a.a脱羧酶专一性很强,每一种a.a都有一种脱羧酶,辅酶都是磷酸吡哆醛。
a.a脱羧反应广泛存在于动、植物和微生物中,有些产物具有重要生理功能,如脑组织中L-Glu脱羧生成r-氨基丁酸,是重要的神经介质。His脱羧生成组胺(又称组织胺),有降低血压的作用。Tyr脱羧生成酪胺,有升高血压的作用。
但大多数胺类对动物有毒,体内有胺氧化酶,能将胺氧化为醛和氨。
三,氨的去向氨对生物机体有毒,特别是高等动物的脑对氨极敏感,血中1%的氨会引起中枢神经中毒,因此,脱去的氨必须排出体外。
氨中毒的机理:脑细胞的线粒体可将氨与α-酮戊二酸作用生成Glu,大量消耗α-酮戊二酸,影响TCA,同时大量消耗NADPH,产生肝昏迷。
氨的去向:
(1)重新利用 合成a.a、核酸。
(2)贮存 Gln,Asn
高等植物将氨基氮以Gln,Asn的形式储存在体内。
(3)排出体外
排氨动物:水生、海洋动物,以氨的形式排出。
排尿酸动物:鸟类、爬虫类,以尿酸形式排出。
排尿动物:以尿素形式排出。
(一) 氨的转运(肝外→肝脏)
1,Gln转运 Gln合成酶、Gln酶(在肝中分解Gln)
Gln合成酶,催化Glu与氨结合,生成Gln。
Gln中性无毒,易透过细胞膜,是氨的主要运输形式。
Gln经血液进入肝中,经Gln酶分解,生成Glu和NH3。
2,丙氨酸转运(Glc-Ala循环)
肌肉可利用Ala将氨运至肝脏,这一过程称Glc-Ala循环。
丙氨酸在PH7时接近中性,不带电荷,经血液运到肝脏
在肌肉中,糖酵解提供丙酮酸,在肝中,丙酮酸又可生成Glc。
肌肉运动产生大量的氨和丙酮酸,两者都要运回肝脏,而以Ala的形式运送,一举两得。
(二) 氨的排泄
1,直接排氨排氨动物将氨以Gln形式运至排泄部位,经Gln酶分解,直接释放NH3。游离的NH3借助扩散作用直接排除体外。
2,尿素的生成(尿素循环)
排尿素动物在肝脏中合成尿素的过程称尿素循环
1932年,Krebs发现,向悬浮有肝切片的缓冲液中,加入鸟氨酸、瓜氨酸、Arg中的任一种,都可促使尿素的合成。
尿素循环途径(鸟氨酸循环):
P230图16-6
(1),氨甲酰磷酸的生成(氨甲酰磷酸合酶I)
肝细胞液中的a.a经转氨作用,与α-酮戊二酸生成Glu,Glu进入线粒体基质,经Glu脱氢酶作用脱下氨基,游离的氨(NH4+)与TCA循环产生的CO2反应生成氨甲酰磷酸。
氨甲酰磷酸是高能化合物,可作为氨甲酰基的供体。
氨甲酰磷酸合酶I:存在于线粒体中,参与尿素的合成。
氨甲酰磷酸合酶II:存在于胞质中,参与尿嘧啶的合成。
N-乙酰Glu激活氨甲酰磷酸合酶 I、II
(2),合成瓜氨酸(鸟氨酸转氨甲酰酶)
鸟氨酸接受氨甲酰磷酸提供的氨甲酰基,生成瓜氨酸。
P231反应式:
鸟氨酸转氨甲酰酶存在于线粒体中,需要Mg2+作为辅因子。
瓜氨酸形成后就离开线粒体,进入细胞液。
(3),合成精氨琥珀酸(精氨琥珀酸合酶)
P231结构式
(4),精氨琥珀酸裂解成精氨酸和延胡索素酸(精氨琥珀酸裂解酶)
精氨琥珀酸→ 精氨酸 + 延胡索素酸
P232 结构式
此时Asp的氨基转移到Arg上。
来自Asp的碳架被保留下来,生成延胡索酸。延胡索素酸可以经苹果酸、草酰乙酸再生为天冬氨酸,
(5),精氨酸水解生成鸟氨酸和尿素
P232结构式
尿素形成后由血液运到肾脏随尿排除。
尿素循环总反应:
NH4+ + CO2 + 3ATP + Asp + 2H2O→尿素 + 2ADP + 2Pi + AMP + Ppi + 延胡索酸
形成一分子尿素可清除2分子氨及一分子CO2,消耗4个高能磷酸键。
联合脱-NH2合成尿素是解决-NH2去向的主要途径。
尿素循环与TCA的关系:草酰乙酸、延胡素酸(联系物)。
肝昏迷(血氨升高,使α-酮戊二酸下降,TCA受阻)可加Asp或Arg缓解。
3,生成尿酸(见核苷酸代谢)
尿酸(包括尿素)也是嘌呤代谢的终产物。
四,氨基酸碳架的去向
20种aa有三种去路
(1)氨基化还原成氨基酸。
(2)氧化成CO2和水(TCA)。
(3)生糖、生脂。
20种a.a的碳架可转化成7种物质:丙酮酸、乙酰CoA、乙酰乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸。
它们最后集中为5种物质进入TCA:乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸。
234图 16-7 氨基酸碳骨架进入TCA的途径
1,转变成丙酮酸的途径
P236 图16-8 Ala、Gly、Ser、Thr、Cys形成丙酮酸的途径
(1),Ala经与α-酮戊二酸转氨(谷丙转氨酶)
(2),Gly先转变成Ser,再由Ser转变成丙酮酸。
Gly与Ser的互变是极为灵活的,该反应也是Ser生物合成的重要途径。
Gly的分解代谢不是以形成乙酰CoA为主要途径,Gly的重要作用是一碳单位的提供者。
Gly+FH4+NAD+→N5,N10-甲烯基FH4+CO2+NH4++NADH
(3),Ser 脱水、脱氢,生成丙酮酸(丝氨酸脱水酶)
P235反应式
(4),Thr 有3条途径P235
① 由Thr醛缩酶催化裂解成Gly和乙醛,后者氧化成乙酸→乙酰CoA。


(5),Cys 有3条途径
① 转氨,生成β-巯基丙酮酸,再脱巯基,生成丙酮酸。
② 氧化成丙酮酸
③加水分解成丙酮酸
2,转变成乙酰乙酰CoA的途径
P 237图16-9Phe、Tyr、Leu
(1),Phe → Tyr → 乙酰乙酰CoA
P238图16-10Phe、Tyr分解为乙酰乙酰CoA和延胡索酸的途径
(2),Tyr
产物:1个乙酰乙酰CoA(可转化成2个乙酰CoA。),1个延胡索酸,1个CO2,
(3),Leu P240图16-12
产物:1个乙酰CoA,1个乙酰乙酰CoA,相当于3个乙酰CoA。
反应中先脱1个CO2,后又加1个CO2,C原子不变 。
(4),LysP241图16-13
产物:1个乙酰乙酰CoA,2个CO2 。
在反应途中转氨:a,氧化脱氨,b,转氨
(5),TrpP 242图16-14
产物:1个乙酰乙酰CoA,1个乙酰CoA,4个CO2,1个甲酸。
3,α-酮戊二酸途径
P243图16-16 Arg、His、Gln、Pro、Glu形成α-酮戊二酸的途径
(1),ArgP244图16-17
产物:1分子Glu,1分子尿素
(2),His P244图16-18
产物:1分子Glu,1分子NH3,1分子甲亚氨基
(3),Gln 三条途径
①,Gln酶:Gln+H2O→Glu+NH3
② Glu合成酶:,Gln+α-酮戊二酸 + NADPH→2Glu+NADP+
③ 转酰胺酶:Gln+α-酮戊二酸 → Glu+r-酮谷酰氨酸→α-酮戊二酸+NH4+
(4),Pro P145图16-19
产物:Pro → Glu
Hpro → 丙酮酸+丙醛酸
4,琥珀酰CoA途径
P246图16-20 Met、Ile、Val转变成琥珀酰CoA
(1),MetP246图16-21
给出1个甲基,将-SH转给Ser(生成Cys),产生一个琥珀酰CoA
(2),IleP247图16-22
产生一个乙酰CoA和一个琥珀酰CoA
(3),Val P247图16-23
5,草酰乙酸途径
Asp和Asn可转变成草酰乙酸进入TCA,Asn先转变成Asp(Asn酶),Asp经转氨作用生成草酰乙酸.
6,延胡索酸途径
Phe、Tyr可生成延胡索酸(前面已讲过)。
五,生糖氨基酸与生酮氨基酸生酮氨基酸:Phe、Tyr、Leu、Lys、Trp。在分解过程中转变为乙酰乙酰CoA,后者在动物肝脏中可生成乙酰乙酸和β-羟丁酸,因此这5种a.a.称生酮a.a.
生糖氨基酸:凡能生成丙酮酸、α-酮戊二酸、琥珀酸、延胡索酸、草酰乙酸的a.a.都称为生糖a.a,它们都能生成Glc。
而Phe、Tyr是生酮兼生糖a.a。
六,由氨基酸衍生的其它重物质
1,由氨基酸产生一碳单位一碳单位:具有一个碳原子的基团,包括:亚氨甲基(-CH=NH),甲酰基( HC=O-),羟甲基(-CH2OH),亚甲基(又称甲叉基,-CH2),次甲基(又称甲川基,-CH=),甲基(-CH3)
一碳单位不仅与a.a.代谢密切相关,还参与嘌呤、嘧啶的生物合成,是生物体内各种化合物甲基化的甲基来源。
Gly、Thr、Ser、His、Met 等a.a.可以提供一碳单位。
一碳单位的转移靠四氢叶酸(5,6,7,8-四氢叶酸),携带甲基的部位是N 5、N 10
P249结构式:FH4与N 5、N 10-亚甲基FH4
2,氨基酸与生物活性物质
P251表16-1氨基酸来源的生物活性物质
(1),Tyr与黑色素
(2),Tyr与儿茶酚胺类可生成多巴、多巴胺、去甲肾上腺素、肾上腺素,这四种统称儿茶酚胺类。前二者是神经递质,后二者是激素
P252 图16-24Tyr形成多巴、多巴胺、去甲肾上腺素、肾上腺素
(3),Trp与5-羟色胺及吲哚乙酸
P252 图16-25 Trp形成5-羟色胺及吲哚乙酸
5-羟色胺是神经递质,促进血管收缩
(4),肌酸和磷酸肌酸(Arg、Gly、Met)
肌酸和磷酸肌酸,在贮存和转移磷酸键能中起重要作用。它们存在于动物的肌肉、脑、血液中。
P253图16-26Arg、Gly、Met形成磷酸肌酸
肌酸合成中的甲基化:S-腺苷Met
(5),His与组胺
His脱羧生成组胺,是一种血管舒张剂,在神经组织中是感觉神经的一种递质。
(6),Arg → 水解 → 鸟氨酸 → 脱羧 → 腐胺 → 亚精胺 → 精胺
(7),Glu与r-氨基丁酸
Glu本身就是一种兴奋性神经递质(还有Asp),在脑、脊髓中广泛存在。Glu脱羧形成的r-氨基丁酸是一种抑制性神经递质。
(8),牛磺酸和Cys P254-255
Cys 的SH氧化成-SO3-,并脱去-COO - 就形成了牛磺酸,牛磺酸与胆汁酸结合,乳化食物。
七,氨基酸代谢缺陷症
P255表16-2
苯丙酮尿症(PKU)
图第三节 氨基酸合成代谢一,氨基酸合成中的氮源和碳源
1,氮源(无机氮不行)
(1)生物固氨(微生物)
a.与豆科植物共生的根瘤菌
b.自养固氮菌 兰藻
在固氮酶系作用下,将空气中的N2固定,产生NH3

(2)硝酸盐和亚硝酸盐 (植物、微生物)

(3)各种脱氨基酸作用产生的NH3(所有生物)
前面已讲过
2,碳源直接碳源是相应的α-酮酸,植物能合成20种a.a.相应的全部碳架或前体。人和动物只能直接合成部分a.a.相应的α-酮酸。
主要来源:糖酵解、TCA、磷酸已糖支路。
必需氨基酸:Ile、Leu、Lys、Met、Phe、Thr、Trp、Val、(Arg、His)
3,植物、部分微生物a.a.合成方式
①α-酮戊二酸衍生类型Glu、Gln、Pro、Arg、Lys(蕈类、眼虫)
与a.a.分解进入α-酮酸的途径比较,少了一种a.a.,即His。
②草酰乙酸衍生类型Asp、Asn、Met、Thr、Ile(也可归入丙酮类)、Lys(植物、细菌)
经TCA中间产物(α-酮戊二酸、草酰乙酸)可合成10种a.a.,即Glu、Gln、Pro、Arg、Asp、Asn、Met、Thr、Ile、Lys。
③丙酮酸衍生类型Ala、Val(Ile)、Leu
④3-磷酸甘油酸衍生类型 Ser、Gly、Cys
经酵解中间产物(3-磷酸甘油酸、丙酮酸),可合成Ser、Cys、Gly,Ala、Val、Leu等6种a.a。
⑤经酵解及磷酸戊糖中间产物(磷酸烯醇丙酮酸、4-磷酸赤藓糖),可合成Phe、Tyr、Trp等3种芳香族a.a。
⑥His有自己独特的合成途径,与其它氨基酸之间没有关系二,脂肪族氨基酸生物合成途径
1,α-酮戊二酸衍生类型(Glu、Gln、Pro、Arg、Lys(蕈类、眼虫))
(1),Glu的合成由α-酮戊二酸与游离氨,经L-Glu脱氢酸催化。对于植物和微生物,氨的来源是Gln的酰胺基。
(2),Gln的合成由α-酮戊二酸形成Glu,由Glu可以进一步形成Gln,
Gln合酶是催化氨转变为有机含氮物的主要酶,活性受8种含氮物反馈调控:
氨基Glc-6-P、Trp、Ala,Gly,His和CTP,AMP、氨甲酰磷酸。
除Gly、Ala,其余含氮物的氮都来自Gln。
P282
(3),Pro的合成(Glu环化而成)P262 图17-2
(4),Arg合成P263 图17-3
(5),Lys合成
① α-酮戊二酸衍生型(蕈类、眼虫) P264图17-4
② 天冬氨酸、丙酮酸衍生型(植物、细菌) P267图17-5
2,草酰乙酸衍生类型(Asp、Asn、Met、Thr、Ile、Lys(植物、细菌))
(1),Asp合成
(2),Asn合成(转移酰胺基)
哺乳动物
(3),Met合成 P268图17-6
(4),Thr合成 P269图17-7
Lys、Met、Thr合成中,有一段共同途径,即生成Asp-β-半醛,是一个分枝点化合物。
(5),Ile合成 (与Val极为相似) P271图17-9
Ile的合成途径与Val极为相似。
6个C中4个来自Asp(Asp → Thr),2个来自丙酮酸,所以也可以归入丙酮酸衍生型。
(6),Lys(植物、细菌) P267 图17-5
3,丙酮酸衍生型(Ala、Val(Ile)、Leu)
4,3-磷酸甘油酸衍生型(Ser、Gly、Cys)
三,芳香族氨基酸及His的生成合成 P274
1,Phe、Tyr、Trp的合成
(自己看)不要求分枝酸,2磷酸烯醇丙酮酸,1个赤藓糖4-P
2,His合成四,氨基酸生物合成的调节最有效的调节是通过合成过程的终端产物,反馈抑制反应系列中第一个酶的活性,即通过别构效应调节第一个酶的活性。
1,通过终端产物对aa合成的反馈抑制
(1)简单的终端产物反馈抑制如由Thr合成Ile

(2)不同终端产物对共同合成途径的协同抑制

(3)不同分枝产物对多个同工酶的抑制

(4)顺序反馈抑制
图终端产物E和H,只分别抑制分道后自己的分支途径中第一个酶的活性。
2,通过酶量调节五,几种重要的 a.a.衍生物的生物合成
(1),谷光苷肽
(2),肌酸
(3),卟啉血红素、细胞色素、叶绿素。卟啉由Gly和琥珀酰CoA合成
(4),短杆菌肽
本章重点
脱氨的几种方式
氨的去路
尿素的合成
氨的转运脱氨后碳架的去向
a.a.合成中的碳源氮源
Gln、Glu合成一碳单位及作用