椅子能在不平的地面上放稳吗?
把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了.下面用数学语言证明.
模型假设对椅子和地面都要作一些必要的假设:
椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形.
地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面.
对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地.
二、模型建立中心问题是数学语言表示四只脚同时着地的条件、结论.
首先用变量表示椅子的位置,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度这一变量来表示椅子的位置.
其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要挪动位置说明这个距离是位置变量的函数.
由于正方形的中心对称性,只要设两个距离函数就行了,记A、C两脚与地面距离之和为,B、D两脚与地面距离之和为,显然、,由假设2知f、g都是连续函数,再由假设3知、至少有一个为0.当时,不妨设,这样改变椅子的位置使四只脚同时着地,就归结为如下命题:
命题 已知、是的连续函数,对任意,*=0,且,则存在,使,
三、模型求解将椅子旋转,对角线AC和BD互换,由可知.令,则,由f、g的连续性知h也是连续函数,由零点定理,必存在使,,由,所以.
四、评 注
模型巧妙在于用一元变量表示椅子的位置,用的两个函数表示椅子四脚与地面的距离.利用正方形的中心对称性及旋转并不是本质的,同学们可以考虑四脚呈长方形的情形.