?
cf

= ?41
1
O
O
O


sss1
2fff


???7
?B?
O
s
x 1.1_

E5
_
¥FEeE#

H¥s

pa2
pa?D
pb
FE¥
te?
{
? ?1 I
neE¥
b
?
?
¥
B?
O
B?S
a
?
O

{ ?
? ??
¥

``3
?S
B?
O

a(’?) = ’(a?)
``3
?
O
B?S

a£(kb) = k(a£b)
a¢(kb) = k(a¢b)
``3 ??
O
¥
?
1 è??
^?B è
a¢(b£c) ; a£(b£c) ; a¢(b¢c) ; a£(b¢c)
??
O
¥
 V? ??
O
¥
E5Z 7
x 1.2 ?
O
¥
ü?
B
8¥8
?

T?é?DBQM
?|
a¢(b£c) =
flfl
flfl
flfl
a1 a2 a3
b1 b2 b3
c1 c2 c3
flfl
flfl
flfl = b¢(c£a) = c¢(a£b)
=?a¢(c£b) =?b¢(a£c) =?c¢(b£a)
}w
~a; b; c
() a ¢ (b £ c) = 0 a; a; cB?
() a¢(a£c) = 0
1
x 1.3 ?
O
¥
O
O¥Z_
!c£(a£b) = f5fa; b
ü
 ODc?
ü
¥
g?<°; ?fa; b
ü

5 V[s31
?Z_c£(a£b) = (b¢c)¢a?(a¢c)¢b
(a£b)£c = (a¢c)¢b?(b¢c)¢a
}w
~
a£(ex £ey) = (a¢ey)¢ex?(a¢ex)¢ey = ay ¢ex?ax ¢ey
ex £(a£ey) = (ex ¢ey)¢a?(a¢ex)¢ey =?ax ¢ey
£
ü
O¥
T
} p£~
c£(a£b) = (b¢c)¢a?(a¢c)¢b
}£
ü~
!
f = c£(a£b) = c£d
#
d = (a2b3?a3b2)ex?(a1b3?a3b1)ey +(a1b2?a2b1)ez
f1 = c2d3?c3d2 = c2(a1b2?a2b1)+c3(a1b3?a3b1)
= a1(b2c2 +b3c3)?b1(a2c2 +a3c3)+(a1b1c1?b1a1c1)
= a1(b¢c)?b1(a¢c)
] ?
f2 = a2(b¢c)?b2(a¢c)
f3 = a3(b¢c)?b3(a¢c)
#N
f = (b¢c)¢a?(a¢c)¢b
x 1.4
O
s3
|
O
s31
?
O
¥ B"bZ_ =a; b
ü
 O<
°cZ_
a¢(b¢c) = (c¢a)¢b+c£(a£b) = (c¢a)¢b+(b£a)£c
a¢(b¢c) = (a¢b)¢c+b£(a£c) = (a¢b)¢c+(c£a)£b
}w
~
a = a¢(ex ¢ex) = (a¢ex)¢ex +(ex £a)£ex = ax ¢ex +ex £(a£ex)
2
x 1.5±s
0r
?]B?¥
O
1?r
0 μ±sa
O

×+?b
``3r
0¥vl1r
?
``3r
0¥Z_:_
r = ex ¢ @@x +ey ¢ @@y +ez ¢ @@z
r¢f = @fx@x + @fx@y + @fx@z
r£f = (@fz@y? @fy@z )¢ex +(@fx@z? @fz@x )¢ey +(@fy@x? @fx@y )¢ez
r’ = @’@x ¢ex + @’@y ¢ey + @’@z ¢ez
x 1.6 r
0
O
a±s+?¥w
a(’?) = ’(a?) )r(’?) = ’(r?)+?(r’)
a£(kb) = k(a£b) )r£(kb) = k(r£b)+rk£b
a¢(kb) = k(a¢b) )r¢(kb) = k(r¢b)+rk¢b
a¢(a£c) = 0 )r¢(r£c) = 0
a£(ka) = 0 )r£(rk) = 0
èB
} p3~
r(f ¢g) ; r£(f £g) ; r¢(f £g)
}3~
r(f ¢g) = r(f ¢gc)+r(fc ¢g)
! (gc ¢r)f +(f £r)£gc +(r¢fc)g+(g£r)£fc
= (gc ¢r)f +gc £(r£f)+(fc ¢r)g+fc £(r£g)
= (g¢r)f +(f ¢r)g+g£(r£f)+f £(r£g)
r£(f £g) = r£(f £gc)+r£(fc £g)
! (r¢gc)f?(r¢f)gc +(r¢g)fc?(r¢fc)g
= (gc ¢r)f?gc (r¢f)+fc (r¢g)?(fc ¢r)g
= (g¢r)f?(f ¢r)g+f (r¢g)?g(r¢f)
3
èB
?
r¢(f £g) = r¢(fc £g)+r¢(f £gc)
!?fc ¢(r£g)?gc ¢(f £r)
=?fc ¢(r£g)+gc ¢(r£f)
=?f ¢(r£g)+g¢(r£f)
è=
}?
TMD~
(f ¢r)g ; (f ¢r)’
}3~á
ì??
(f ¢r)g???
T
e?9è¨b M
Do
ˉb
(f ¢r)g = (fc ¢r)g = r(fc ¢g)?fc £(r£g)6=f (r¢ g)
(f ¢r)’ = f ¢r’
 è ?/
!k1è
O

(k¢r)r = k
(k¢r)r = r(k¢r)?k£(r£r) = r(k¢r) = k
(f ¢r)(’g) = g[(f ¢r)’]+’[(f ¢r)g]
Y
L
?i
O V?
(f ¢r)g = r¢(fg)?(r¢f)g
è ?
}?
TMD~
(f £r)£g ; (f £r)¢g ; (f £r)’
}3~???
T?z9
á
ì?¨
(f £r)£g = (fc £r)£g = r(fc ¢g)?fc (r£g)
(f £r)¢g = f ¢(r£g)
(f £r)’ = f £r’
4
x 1.7ˉf
¥±s
0
rf(u) = ru df(u)du
r¢A(u) = ru¢ dA(u)du
r£A(u) = ru£ dA(u)du
(a¢r)A(u) = (a¢r)u dA(u)du
}2
~
r = ru ddu
x 1.8Bt許s
r¢( rr3) = rr¢ ddr( rr3)
= rr¢ ddr(rerr3 ) = (rr¢er) ddr( 1r2)
=? 2r3

w?¥p?
r6=A(r)
}許s~
rr = er ; r1r =?err2
r¢r = 3 ; r¢er = 2r ; r¢( rr3) = 4…–(r)
r£r = 0 ; r£er = 0 ; r£( rr3) = 0
è
1
k¨

T£
ü
r¢( rrn) = 3?nrn + 4…rn?3–(r)
}£
ü~
r¢( rrn) = r¢( rr3 ¢ 1rn?3)
= r¢( rr3)¢ 1rn?3 +( rr3)¢r 1rn?3
= 4…rn?3–(r)+( rr3)¢[rr¢ 3?nrn?2 ]
= 4…rn?3–(r)+ 3?nrn
5
x 1.9?US"/¥±s
0
r? = @?@rer + 1r @?@ e + @?@zez
r¢f = 1r @@r(rfr)+ 1r @f @ + @fz@z
r£f = (1r @fz@? @f @z )er +(@fr@z? @fz@r )e +[1r @@r(rf )? 1r @fr@ ]ez
r2? = 1r @@r(r@?@r )+ 1r2 @
2?
@ 2 +
@2?
@z2
x 1.10?US/許s
rr = er ; rz = ez
r¢er = 1r ; r£er = 0
r¢e = 0 ; r£e = 1rez
r¢ez = 0 ; r£ez = 0
x 1.11 oUS"/¥±s
0
r? = @?@rer + 1r @?@ e + 1rsin @?@`e`
r¢f = 1r2 @@r(r2fr)+ 1rsin @@ (sin f )+ 1rsin @f`@`
r£f = 1rsin [ @@ (sin f`)? @f @` ]er + 1r[ 1sin @fr@`? @@r(rf`)]e
+ 1r[ @@r(rf )? @fr@ ]e`
r2? = 1r2 @@r(r2@?@r )+ 1r2 sin @@ (sin @?@ )+ 1r2 sin2 @
2?
@`2
x 1.12 oUS/許s
rr = er
r¢er = 2r ; r£er = 0
r¢e = 1rtan ; r£e = 1re`
r¢e` = 0 ; r£e` = 1rtan er? 1re
6
è?

@I (
s????1a¥í ké°?L
= p bWò?¥H? <
i?N9
H?¥èb
}3~D?L<°¥
ü
TB??1r¥????Là
b?
??#?

^?
p¤
??r > a
H
I
L
B¢dl = 2…rB =?0 I ) B =?0I2…re
#
r£B = r£(?0I2…re ) =?0I2… [r£(1re )]
=?0I2… [(r1r)£e + 1r(r£e )]
=?0I2… [rr ddr(1r)£e + 1r ezr ]
=?0I2… [? 1r2(er £e )+ 1r ezr ]
= 0
è?
?
??r < a
H
I
L
B¢dl = 2…rB =?0
ZZ
S
J ¢dS ) B =?0Ir2…a2e
#
r£B = r£(?0Ir2…a2e ) =?0I2…a2[r£(re )]
=?0I2…a2[(rr)£e +r(r£e )]
=?0I2…a2[(er £e )+rezr ]
=?0I…a2ez
=?0J
?=?f
?
x 2.1USMDD1y
 (Einstein) p??
?f
D bW#USMD
á MM1b ??
x
f bW
=2 5:
°?USMD/¥f

7
?
!§"?B?(x1;x2;x3)YVUS"¥?§0"?US1(x01;x02;x03)
5
x0i =
3X
j=1
fiijxj ; i = 1;2;3
? ?fiij = e0i ¢ej1US??¥Z_??? ?¥ ??1USM
D"
?b
}1y
 p??~f

?
T¥
[?C×ˉ/S
üi?"??·S p p|Pi??·S?-1?·Sb
??N

T' Ve?
x0i = fiijxj ; i = 1;2;3
USMDD1y
 (Einstein) p??
?
?
@
T(1)
 ? ??M¥L?MD?-1??MD
x0ix0i = xixi = const (1)
? bW?
???MDb "
?fiij1B?? ?
~fifi = I
? ?I1?ê ?b
x 2.2f
¥?l
}?l~ ?T
Bt ?
T ??2 58US"/?3n?μ?s
Tl¢¢¢m
í
i OüV?US"§?§0¥MDfiija
@ ?/1"
T0i¢¢¢j = fiil¢¢¢¢¢¢fijm| {z }Tl¢¢¢m
5??
T1n¨f
b
?
,¨f
S
USMD/?M ?é
aè?
T0 = T
?B¨f

O
 ?
a ?aè? <ar
??
T0i = fiijTj
@
@x0i =
@xj
@x0i
@
@xj = fiij
@
@xj
?ú¨f
?¨K¥
^=¨f

8
x 2.3=¨f

?=¨f
 ?f ?f
aè
1 a?8
aoèf
? T0 = ATA0
T0ij = fiilfijmTlm
?=¨f
 V[¨B? ? ?V
U Q-? ?
?f
¥clTijs
jZ_s
T¨/¥iZ_¥Q?rT
?f
¥1? ?B?f
? V[s31 ???s
3
S
Tii1?11
3í?f
Tij = Tji OTii = 01?15è
1
3Q?f
Tij =?Tji1?13
?f
¥???
USMD?M
?
?
O
¥i
O1=¨f
ab =?!T 6= ba ; Tij = aibj ?VrD·SVr
x 2.4 X
= X(Kronecker)?|–ij
9D?|
? X
= X?|–ij
–ij = 1 (i = j)
–ij = 0 (i 6= j)
???–ij = –ji
???M?–0ij = –ij
?9D?–ijvj = vi
??êf
v¢?!I =?!I ¢v = v
x 2.5 à?{ ?
ó(levi{civita)?|"ijk
?|
? à?{ ?
ó?|"ijk
?¨Q?f

"ijk = +1 (ijk = 123;231;312)
"ijk =?1 (ijk = 213;321;132)
"ijk = 0 (ijk = 112;233;¢¢¢)
?Q??"ijk =?"jik
???M?"0ijk = "ijk = "kij = "jki
?
?(a£b)i = "ijkajbk ; (r£A)i = "ijk@jAk
9
x 2.6f
¥
?f
M?Aij = Bij?i ?V
U
?f
FEAij +Bij = Cij£
üCij9
^?f

?S
Df
Me?!C = k?!A,Cij = kAij
?f
¥ie?!C =?!A?!B,Cijlm = AijBlm
``3B?7y?!A?!B 6=?!B?!A?!C¥¨
^?!Aa?!B¨
MF
?2
pDs

p
(?!A?!B)?!C =?!A(?!B?!C )
!A (?!B +?!C ) =?!A?!B +?!A?!C
(?!B +?!C )?!A =?!B?!A +?!C?!A
f
¥

?B
?
êi¨
Vn?n?2¥
oμn > 2
êi?μil =¨f
¥
êiü
^
``3n¨f
?!A/S(j¢¢¢k)¥
êi?l1
Bi¢¢¢l =
X
j
X
k
Ai¢¢¢j¢¢¢k¢¢¢l ¢–jk = Ai¢¢¢j¢¢¢k¢¢¢l ¢–jk
?
?f
¥
=
êi
``3
?f
?!AD?!B5ieaò |B/SS
êi¥
?1
=¤
?m+n?2¨f
b
``3 ?ê |¥/S
^M
#¥ V[:S?!C =?!A ¢?!B?i ?V
U
Cim = AijBlm–jl = AilBlm
``3 !A
^=¨f
?!B
^B¨f
]" V[¨ ?eEb
?

=
?f
5é?ie ?a
Q
êi?!C =?!A,?!B?=¨f
 

êi
1S

C = AijBlm–jl–im
f
¥

?=
?i
O??êi
O¥s3?ê
O
ei¥i
Oeiej
^=¨f
?1?ê
i
Ob
``3e1e2¥ ?V
U"
E12[??1-? (1
, eiejü
^=¨f

¥??b?!
T = Tijeiej
?i
O¥
=
a¢(bc) = (a¢b)c = a¢bc
(ab)¢c = a(b¢c) = ab¢c
ab,cd = (a¢d)(b¢c) = a¢(b¢cd) = (ab¢c)¢d
10
x 2.7i
O¥±s
r¢(fg) = (r¢f)g+(f ¢r)g
r¢?!T = @@x(ex ¢?!T )+ @@y(ey ¢?!T )+ @@z(ez ¢?!T )
r¢(EE) = (r¢E)E +(E¢r)E
r¢(?!IE2) = @@x(ex ¢?!IE2)+ @@y(ey ¢?!IE2)+ @@z(ez ¢?!IE2)
= ex@E
2
@x +ey
@E2
@y +ez
@E2
@z = rE
2
r¢(?!IE2) = (r¢?!I)E2 +(rE2)¢?!I = rE2
I
dS ¢?!T =
ZZZ
dV r¢?!T
I
dS¢(fg) =
ZZZ
dV r¢(fg)
11