KinematicsChapter 2&3
Chapter 2 & 3
Motion in One
Dimension,Two and
Three Dimensions
1,Reference Frames and Displacement
2,Velocity
3,Acceleration
4,Circular Motion
New Words
Reference Frames 参考系
Position 位置
Displacement 位移
Speed 速率
Velocity 速度
Acceleration 加速度
Circular Motion 圆周运动
Relative Motion 相对运动
Translational motion 平动
Particle 质点
KinematicsChapter 2&3
Mechanics(力学),
The Science of motion and its causes.
Kinematics(运动学)? description of
motion,(Chapter2 & 3,P16 - P76)
Dynamics( 动力学 )? causes of motion.
(Chapter4-11,P77 – P296)
Mechanics is customarily divided into two parts:
KinematicsChapter 2&3
2-1&3-6 Reference Frames (参考系)
and Displacement(位移) P17-18
The world,and everything in it,moves,Even
seemingly stationary things,such as a house
moves with the Earth,the Earth’s orbit around
the Sun,the Sun’s orbit around the center of
the Milky Way galaxy,and that galaxy’s
migration relative to other galaxies.
运动的绝对性绝对静止的物体是没有的 ——
KinematicsChapter 2&3
To describe the position of an object,the other
object referred to (Reference Frame 参照系 )
should be chosen,It is arbitrary.
为描述物体的运动而选择的标准物叫做参考系,
选取的参考系不同,对物体运动情况的描述不同,这就是运动描述的相对性,
1 Reference Frame 参考系
KinematicsChapter 2&3
2 Coordinate system (坐标系 )
x
^y^z
^x
·
z
y
z( t )
y( t )
x( t )
r( t )
P( t )
0
Rectangular-直角坐标系( x,y,z )
Natural-自然坐标系 ( s )
Origin O (坐标原点 )
x and y axes (x,y 轴 )
The x and y axes are
always perpendicular to
each other.
KinematicsChapter 2&3
一个具有质量而没有大小和形状的理想物体。
突出了质量和位置。
Every portion of object moves in the same
direction and the same rate.
3 Particle (质点 ),P16
It has only translational motion (平移运动 ).
KinematicsChapter 2&3
The location of a particle relative to the origin
(原点) of a coordinate system.
For a Cartesian system:r? *P
x
y
z x
z
y
o
j?
i?
k?
确定质点 P某一时刻在坐标系里的位置的物理量称位置矢量,简称位矢,r?
kzjyixr
式中,,分别为 x,y,z
方向的单位矢量,
i? j? k?
4 Position Vector(位置矢量 P52)
KinematicsChapter 2&3
P (x,y,z,t )
ik
j
x
y
z
(t0)
r(t)
(t?)
z
x
y
5 Motion Function (运动方程 ):
2 2 2r r x y z
位矢 的值为r?
ktzjtyitxtr )()()()(
)(txx?
)(tyy?
)(tzz?
分量式从中消去参数 得轨迹方程
0),,(?zyxf
t
KinematicsChapter 2&3
6 Displacement (位移矢量 p17,52)
x
y
o
B
Br
Ar
A r
Ar
B
Br
A r
x
y
o
BxAx
AB xx?
By
Ay AB
yy?
经过时间间隔 后,质点位置矢量发生变化,由始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的位移矢量,位移矢量也简称位移,
t?
r
A particle is changing in its position(描述质点空间位置变化的矢量 ).
r?Δ
KinematicsChapter 2&3
rrr AB AB rrr
Ar
B
Br
A r
x
y
o
BxAx
AB xx?
By
Ay AB
yy?
jyixr AAA
jyixr BBB
jyyixxr ABAB )()(
AB rrr
所以位移若质点在 三维 空间中运动,
则在直角坐标系 中其位移为
Oxyz
kzzjyyixxr ABABAB )()()(

KinematicsChapter 2&3
The displacement vector extends from the
head of the initial position vector to the head
of the later position vector.
Ar
B
Br
A r
x
y
o
BxAx
AB xx?
By
Ay AB
yy?
KinematicsChapter 2&3
Notes about Displacement:
Displacement depends only on the position of
head to tail,independent with the real path (与具体路径无关 ),状态量 ;
(i),Vector —— The magnitude of vector should
be the length of this vector,i.e.
(ii),Different from the path (路程 )
Path is the total lengths of the path curve,
scalar,过程量 。
2
12
2
12
2
12 )))|| ((( zzyyxxr
KinematicsChapter 2&3
位移与路程
( B) 一般情况,位移大小不等于路程,
r s
( D)位移是矢量,路程是标量,
s?
)( 1tr?
1p
)( 2tr?
2pr
x
y
O
z
's?
( C)什么情况?sr
不改变方向的直线运动 ; 当 时,0t sr
讨论
( A) P1P2 两点间的路程是 不唯一的,可以是 或而位移 是唯一的,r
s? 's?
KinematicsChapter 2&3
2-2,2-3&3-6,Velocity(速度 p19-22,52-54)
1,Average velocity(p18,p52):
r
)( ttr
B
)(tr?
A
x
y
o
s?
)()( trttrr
在 时间内,质点从点
A 运动到点 B,其位移为
t?
t? 时间内,质点的平均速度
jtyitx




t
rv
ji yx vvv或平均速度 与 同方向,rv
KinematicsChapter 2&3
ktzjtyitx
dt
d
dt
rd
t
r
v
t


)()()(
lim
0


2,Instantaneous velocity (瞬时速度 ) p19-22,p52:
)( tvkvjviv zyx
The velocity at any instant is obtained from the
average velocity by shrinking( 缩小 ) the time
intervalΔt closer and closer to 0.
The derivative of
position vector
with respect to time
KinematicsChapter 2&3
t
Sv
t?


l i m
0 t
S
d
d?
3,Average and Instantaneous Speed (速率 )P52:
4.The Relation between the Instantaneous
Velocity and Instantaneous Speed
The magnitude of instantaneous velocity equals
to instantaneous speed (瞬时速度的大小等于瞬时速率 ).
t
Sv
Average Speed:
Instantaneous Speed:
Average speed = total
distance / total time
KinematicsChapter 2&3
讨论 Speed and Velocity
Speed is simply a positive number,with units.
Velocity,on the other hand,is used to signify
both the magnitude (numerical value) of how
fast an object is moving and the direction in
which it is moving,Velocity is therefore a
vector.
KinematicsChapter 2&3
The change in velocity
divided by the time taken
to make this change.
2-4&2-5&3-6.Acceleration(加速度 ) p22-25,p53
1 Average Acceleration
Acceleration specifies how
rapidly the velocity of an
object is changing.( 反映速度变化快慢的物理量 )
a
t

v
Bv
B
Av
Bv
v
x
y
O
Av
A
与 同方向,?va
KinematicsChapter 2&3
2 Instantaneous Acceleration (瞬时 )加速度,P24,p53
Instantaneous acceleration is the limit of the
average acceleration as the time interval goes to
zero,That is the derivative( 导数 ) of the velocity
with respect to time.)
0
dl im
dt
a
tt

vv
2
2
dd
dd
ra
tt
v
加速度 j
tit
yx
d
d
d
d vv
加速度大小 22
0
lim yx
t
aa
t
a


v?
Second derivative of
position vector with
respect to time
KinematicsChapter 2&3
The component form in Cartesian(笛卡尔的 )
coordinate is:
x y za a i a j a k
2
2
2
2
2
2
dd
dd
d d
dd
dd
dd
x
x
y
y
x
a
tt
y
a
tt
a
tt



z
z
v
v
vz加速度大小
222
x y za a a a
质点作三维运动时加速度为
Component form
KinematicsChapter 2&3
★ In a natural coordinate ( 自然坐标系):
反映速度大小变化的快慢
--Tangential acceleration(切向加速度)
--Radial acceleration(法向加速度)
naτaa nt
2
2
dt
sd
dt
dva
t
R
va
n
2
反映速度方向的变化
KinematicsChapter 2&3
a is a constant vector
3 Constant acceleration,P25-27,p53,p34-35
已知一质点作平面运动,其加速度 为恒矢量,有
a?
jaiaa yx
ta d
d vv
v v

0 0
dd t ta
积分 integral可得 ta
0vv
ta yyy 0vv ta xxx 0vv写成分量式
KinematicsChapter 2&3
00?r?
x
y
o
2
2
1 ta?
r?t0v?
trr ttar 0 0 d)(d0
vtr dd v
2
00 2
1 tatrr v积分可得
jaiaa yx ta 0vv
2
00 2
1 tatyy
yy v
2
00 2
1 tatxx
xx v
写成分量式为
tx0v
ty0v
2
2
1 ta
x
2
2
1 ta
y
KinematicsChapter 2&3
3-7&3-8 Projectile Motion (P54-Pp62自学 )
In projectile motion,the horizontal ( 水平的 )
motion and the vertical( 竖直的 ) motion are
independent of each other.
当子弹从枪口射出时,
椰子刚好从树上由静止自 由 下 落,
试说明为什么子弹总可以射中椰子?
KinematicsChapter 2&3
),( 0 gvThe plane of motion is in the one made up by
● 初始条件:
co s00 vv?x?s i n00 vv?y
已知 时 000 yx,0 gaa yx 0?t
xv?
yv? v?
xv?
yv? v?0d
x
y
o
0v?
x0v?
y0v?
KinematicsChapter 2&3
3-9&5-4,Circular Motion:p62-64,p119-120
1,Uniform Circular Motion (P62-64):
Ra
A particle travels around a circular path at a
constant speed v,there is still an acceleration
and it is always directed radially inward,
centripetal or radial acceleration.
We denote it by
—— a constant
r
r
va
R?
2

KinematicsChapter 2&3
r
r
r
rr
||
(Radial Unit Vector)
The time for the particle to complete a circle is:
–—– period
v
rT?2?
Revolutions per second –—– frequency
T
f 1?
KinematicsChapter 2&3
AB vvv

:nv
Changes in direction
:tv
Changes in magnitude
A
B
O

Av?Bv?
v
nvtv
nv

tv

Av
Bv
2,Nonuniform Circular Motion (P119-120):
Both magnitude and direction of velocity change.

t
va
t Δ
Δlim



t
v
t
v t
t
n
t

l i ml i m
00
tn ana?
tn anaa
KinematicsChapter 2&3
Tangential Acceleration:
t
v
a t
tt
0
l i m
切向加速度 的大小在数值上等于瞬时速率对时间的变 化 率,It only indicates the change in
magnitude of speed.
,Tangential direction,andta?
t
vv AB
t 0
lim
t
v
t 0
lim
nt aa

t
v
d
d
Av?Bv?
v
nvtv
t
va
t d
d||
KinematicsChapter 2&3
an,normal acceleration ( 法向 加速度 ) is also
called aR,radial acceleration( 径向 加速度 ),
r
va
n
2
||
Normal Acceleration:
n?,Radial direction
KinematicsChapter 2&3
(i) The Acceleration in Natural Coordinate:
Descriptions:
o?
a?
ta
na
,Radius of curvature of
examine position。
(ii) For General Plane-curve Motion (平面曲线运动 ):
where
dt
dva
t? r
va
n
2
or 22
nt aaaa
)/a r c t a n (
nt aa
naaa nt
d
d?2
t
vnva
KinematicsChapter 2&3
一 平面极坐标
A
r?
x
y
o
设一质点在 平面内运动,某时刻它位于点 A,矢径 与 轴之间的夹角为,于是质点在点 A 的位置可由 来确定,),(?rA
Oxy
r? x
以 为坐标的参考系为 平面极坐标系,),(?r
s i n
c o s
ry
rx
它与直角坐标系之间的变换关系为
KinematicsChapter 2&3
二 圆周运动的角速度和角加速度
t
tt
d
)(d)(角速度角坐标 )(t?
角加速度
td
d
速 率
ttrtst0lim0limv x
y
o
r
)()(,dd trtts vv
A

B
KinematicsChapter 2&3
1v?
r?
o
三 圆周运动的切向加速度和法向加速度 角加速度
t
ee
t d
d
d
d tt vv

2v? tttd
d eree
t
s vv
ndd et
ta ddv

rtrta ddddt v
质点作变速率圆周运动时
1te?
2te?
切向加速度
1te?
2te?
te

t
e
t t0l i m
切向单位矢量的时间变化率
tedd t
法向单位矢量
KinematicsChapter 2&3
ntdd eeta
vv
切向加速度( 速度大小变化引起 )
2
2
t dddd t srtav
法向加速度( 速度方向变化引起 )
r
ra
2
2
n
vv
nntt eaeaa
圆周运动 加速度
22 nt aaa
1v?

2v?
v
1v?
r?
o
2v?
1te?
2te?
KinematicsChapter 2&3
v?
切向加速度
rta ddt v
ta
v,π2π,0减小增大 v,2π0,0
常量 v,2π,0?
te?
ne?
a?
a?
a?
t
n1t a n aa
π00na?
x
y
o
nntt eaeaa
KinematicsChapter 2&3
一般曲线运动(自然坐标)
ntd
d ee
ta

2vv

四 匀速率圆周运动和匀变速率圆周运动
tdd ets
v
dds?其中 曲率半径,
n2nn ereaa
1 匀速率圆周运动:速率 和角速度 都为常量,
v?
0t?a
2 匀变速率圆周运动 t 0
200 21 tt
)(2 0202如 时,0?t 00,
常量
KinematicsChapter 2&3
P72:54
KinematicsChapter 2&3
2-8,Relative Motion (P64-67)
KinematicsChapter 2&3
'zz
*
'yy
'xx
u?
'oo
0?tp 'p
u 'vv
速度变换
u
t
r
t
r

'
Drr '
位移关系
'rP
质点在相对作匀速直线运动的两个坐标系中的位移
tu?
u?
'xx
y 'y
z 'z tt
o
'o
r
Q 'Q
S 系系 )''''( zyxO
)(O xyz
'S
D 'p
KinematicsChapter 2&3
-----Galileo’s Velocity Transformation
牵连 相对绝对 vvv

KinematicsChapter 2&3
**Two kinds of questions in Kinematics:
)(ta?)(tr?
求导 求导积分 积分()tv
质点运动学两类基本问题一 由质点的运动方程可以求得质点在任一时刻的位矢、速度和加速度;
二 已知质点的加速度以及初始速度和初始位置,可求质点速度及其运动方程,
KinematicsChapter 2&3
P34,use of calculus,variable acceleration
Example 2-16
KinematicsChapter 2&3
1,第一类问题 a,v已知运动学方程,求
(1) t =1s 到 t =2s 质点的位移
(3) 轨迹方程
(2) t =2s 时 a,v
jir 21 jir 242
jijirrr 321)2(2)(412
已知一质点运动方程 jtitr )2( 2 2
求例解 (1) 由 运动方程得
jtitr

22ddv
ji 4 22v
(2)
当 t =2s 时 ja 2 2
jtt ra?

2dddd 2
2
v
222 tytx 4/2 2xy(3) 轨迹方程为
KinematicsChapter 2&3
2,第二类问题 已知加速度和初始条件,求 r, v
ttv d2d?
A particle moves along the direction of x axis,a=2t,At t =0,
x0=0,v0=0,What are its velocity and position at t =2s?
Solution,Acceleration,a=2t,is not constant.
)1(dd;d2d 2
00
ttxvttv tv
tx ttxttx 0 202 dd;dd )2(3
1; 3tx?
m67.238;m / s4 xv
So,
KinematicsChapter 2&3
Eliminate t from (1) and (2),we can also get:
3/2)3(;)( xvxvv
A particle moves along x direction,,
At t =0,x0=0,v0=0,What is its v(x)?
262 xa
Example:
KinematicsChapter 2&3
txvtva d)62(d;dd 2
vvxa dd?
t
v
t
va
d
d
d
d
x
vv
d
d?
xd
xd
Solution:
vx vvxx 00 2 dd)62( 23 21)(2 vxx
32 xxv
“-” no physical meaning
If a(v) is given,we may also find v(x) by
x
v
t
x
t
vva
d
d
d
d
d
d)(;
d
d
x
vv?
Note:
)(
dd
va
vvx?
KinematicsChapter 2&3
Example,P69:1
KinematicsChapter 2&3
KinematicsChapter 2&3
Summary for Chapter Two and Three
See P36 and 67
KinematicsChapter 2&3
Homework,
P69:6
P39,28
P41:66
P70:23