Chapter 10 & 11
Rotational Motion About
a Fixed Axis
Rigid Body
Rotational Inertia
Work and Rotational Kinetic Energy
Angular Momentum and
Conservation of Angular Momentum
刚体,在外力作用下,形状和大小都不发生变化的物体 。(任意两质点间距离保持不变的特殊质点组)
质元,刚体可以看成由许多质点组成,每一个 质点叫刚体的质元。
刚体这个质点系的特点是:在外力作用下各质元之间的相对位置不变 。 由于是质点系,有关质点的基本定律都可以使用 。
10-2 Several Concepts Related to Rotation:
1,Rigid Body (p234) is a body with a definite
shape that doesn’t change,(刚体是一种特殊的 质点系统 ).
2 Translational motion
is motion along a straight line.
平动,若刚体中所有点的运动轨迹都保持完全相同,
或者说刚体内任意两点间的连线总是平行于它们的初始位置间的连线,
平动的特点:刚体中各质点的运动情况相同。
ABrr BA
BA rr
BA vv
BA aa
A
B
A?
B?
A?
B?
3 Purely Rotational motion
Any point moves around one same axis.
转动,刚体中所有的质元都绕同一直线做圆周运动。转动又分定轴转动和非定轴转动 。定轴转动中,
各圆的园心都在一条固定不变的直线上,这条直线叫转轴 (axis of rotation:p234)。
4,The motion of a rigid body can be analyzed
as the translational motion of its center of mass
plus a rotational motion relative to center of
mass.(p234)
刚体的一般运动 质心的平动 绕质心的转动+
刚体的平面运动,
Z
A
B
A’
B’
The Features of Rotation about a Fixed Axis:
Every point of body moves in a circle whose
center lies on rotation axis and radius different.
Each rotation plane is
perpendicular to rotation axis.
Every point moves through
the same angle during a
particular time interval (各点的,?,? 相同 ).
x
1 Angular position
z
参考平面
)(t?
)()( ttt
角位移
)(t
角坐标
<0?
0>?
约定
r? 沿逆时针方向转动
r? 沿逆时针方向转动
ttt d
dlim
0
2 Angular velocity
方向,右手 螺旋方向
参考轴
10-1 Angular quantities of rotation for rigid body
角加速度
td
d
1) 每一质点均作圆周运动,圆面为转动平面;
2) 任一质点运动 均相同,但 不同;
3) 运动描述仅需一个坐标,
,,? a,v
定轴转动的 特点刚体 定轴 转动(一维转动)的转动方向可以用角速度的正负来表示,?
0>? 0<?
z z
3 Angular acceleration p236
10-6 Rotational Dynamics; Torque and
Rotational Inertia (Page:280-282)
external force ;
iF
if
internal force
Applying N-II law on?mi:
amfF iii
z
o
ir
if
iF
mi
iiitiitit rmamfF:
A rotational rigid body can be considered to be
constituted by many parts,The ith part has a mass?mi,
Resolving it into directions and,
n?
1,N-II Law for Rotation (定轴转动定律 ) (P244)
i
ii
i
iit
i
iit rmrfrF
2:s u m & ir?
0 iiniin rfrF?:?n 0
i
ii rf
and
So,we have
i
ii
i
iit rmrF
2
i
iitin e t rF
Let
—— Net torque about given axis,and
—— the moment of inertia or
rotational inertia (转动惯量 ) on the axis.
2ii rmI
In e t?Then,N-II Law for Rotation(p244)
—— Net torque on a rigid body equals to the
product of rotational inertia and angular
acceleration it causes about same axis.
Comparing with the translation,this equation
has the same importance like the Newton’s
second law for a single particle.
The moment of inertia I is a measure of the
rotational inertia of a body,which plays the
same role for rotational motion that mass does
for translational motion.(p245)
O
r? m
z
F?
tF
nF
s i nrFM?
mrmaF tt
2ie jjjj rmMM
2) 刚体质量元受 外 力,内 力
jFe
jFi
M?
1) 单个质点 与转轴刚性连接
m
外 力矩 内 力矩
2mrM?
2t mrrFM
O
z
jm?
jr
jFe
jFi
中文推导
O
z
jm?
jr
jFe
jFi
αrmMM jj
j
j
j
j
2
ie
0
j
ijjiij MMM?
) αrmM jj
j
j
2
e (
刚体定轴转动的角加速度与它所受的 合外力矩 成正比,与刚体的 转动惯量 成反比,
转动定律
IM?
2
j
j
j rmI
定义转动惯量
mrI d2
2,Moment of inertia (P244)
刚体的转动惯量与以下物理量有关:
①,与刚体质量有关。
②,与质量对轴的分布有关。
③,与轴的位置有关。
2
j
j
j rmI
转动惯量
mrI d2
mrIrmI j
j
j d,
22
物理 意义,转动惯性的量度,
质量离散分布刚体的转动惯量
2222112 rmrmrmI j
j
j
转动惯性的计算方法
质量连续分布刚体的转动惯量
mrrmI j
j
j d
22
:质量元md
3,The Calculation of Rotational Inertia of Body
(P245,P248-249)
对质量线分布的刚体:
:质量线密度
lm dd
对质量面分布的刚体:
:质量面密度
Sm dd
对质量体分布的刚体:
:质量体密度
Vm dd
:质量元md
质量连续分布刚体的转动惯量
mrrmJ j
j
j d
22
Page 245,example:10-6
This example illustrates two important points.
1 The moment of inertia of a given system is
different for different axes of rotation.
2 The mass close to the axis of rotation
contributes little to the total moment of
inertia.
例 2:长为 l、质量为 m 的匀质细杆,1)绕与杆垂直的质心轴转动,2)绕细杆一端轴转动。求转动惯量 I。
m l
o
解,1)细杆为线质量分布,单位长度的质量为:
l
m
建立坐标系,坐标原点选在质心处。 分割质量元 dm,长度为 dx,
x
2
l?
2
l
dm
dx
dxdm
x
dmxI
l
l
2
2/
2/
2/ 2/ 33 l lx
2
12
1 mlI
lm
绕细杆质心轴的转动惯量为
2
12
1 mlI?
3
12
1 l
dxx
l
l
2
2/
2/
dmrI 2
m l
o
x
2
l?
2
l
dm
dxx
解 2):细杆为线质量分布,单位长度的质量为:
l
m
建立坐标系,坐标原点选在边缘处。分割质量元 dm,长度为 dx,
x
l
m l
o
dm
dxx
dxdm
dmrI 2
dmxI
l
2
0
dmxI
l
2
0
lx 0 33 dxxl 2
0
3
3
1 l
2
3
1 mlI
lm
绕细杆边缘轴的转动惯量为
2
3
1 mlI?
)2,(
12
1 2
0
22
2
2
LL
Lc dIIormLdxxL
mI
2
0
2
3
1 mLdxx
L
mI L
o
Solution(1),dxdm
c
x
x
dmxdI 2?dxx?2 dx
L
mx 2
Try to find out I of a thin rod of mass
m,length L to (1) C and (2) O axes.
O x dm xLSolution(2):
EXAMPLE
in English:
例 3:半径为 R 质量为 M 的圆环,绕垂直于圆环平面的质心轴转动,求转动惯量 J。
R
M
o
解:
dm
dmRI
M
2
0
分割质量元 dm
圆环上各质量元到轴的距离相等,
dmR M 02 2MR?
绕圆环质心轴的转动惯量为 2MRI?
OR
R
4
0
3 π
2
dπ2 RrrJ R
rdr
例 3 一质量为,半径为 的均匀圆盘,求通过盘中心 O 并与盘面垂直的轴的转动惯量,
m R
解 设圆盘面密度为,
在盘上取半径为,宽为的圆环
r rd
2π Rm
而
rrm dπ2d圆环质量
2
2
1 mRJ?
所以
rrmrJ dπ2dd 32
圆环对轴的转动惯量转动惯量的大小取决于刚体的质量、形状及转轴的位置,
注意
Solution:
2R
m
r d rrdmrdI 222
2
0
3
2
12 mRdrrI R
o
Find I of a uniform circular disk (mass m,
radius R) to axes O in Fig,(a).
m
r
Rdr
o
(a)
EXAMPLE in English:
They are as same as the ones giving in
Figure 10-21,Page 246
一些均匀刚体的转动惯量 (p246)
薄圆盘转轴通过中心与盘面垂直
2
2
1 mrJ?
r2r
1
圆筒转轴沿几何轴
)(21 2221 rrmJ
l
r
圆柱体转轴沿几何轴
2
2
1 mrJ?
l
r
圆柱体转轴通过中心与几何轴垂直
124
22 mlmr
J
l
细棒转轴通过中心与棒垂直
12
2ml
J?
l
细棒转轴通过端点与棒垂直
3
2ml
J?
2r
球体转轴沿直径
5
2 2mrJ?
2r
球壳转轴沿直径
3
2 2mrJ?
4 Solving Problems in Rotational Dynamics (P247)
Step to solve problem with N-II Law for
Rotation Page 246:
1,As always,draw a clear and complete
diagram.
2,Draw a free-body diagram.
3,Identify the axis of rotation and calculate the
torques about it.
4,Apply Newton’s second law for rotation and
for translation.
5,Solve the resulting equations.
例:质量为 m1和 m2两个物体,跨在定滑轮上 m2
放在光滑的桌面上,滑轮半径为 R,质量为 M,求:
m1 下落的加速度,和绳子的张力 T1,T2。 1m
2m RM,
T1
T2
解:受力分析
1m以 为研究对象
amTgm 111( 1)
1m
gm1
1T
RM,
1T
2T
2T2m
2m以 为研究对象
amT 22? ( 2)
M以 为研究对象
JRTT )( 21 ( 3)
2
2
1 MRJ?
补充方程,?Ra? ( 4)
联立方程( 1) ---( 4)求解得
2/21
1
Mmm
gma
2/
)2/(
21
21
1 Mmm
gMmmT
2/21
21
2 Mmm
gmmT
讨论:当 M=0时
21
21
21 mm
gmmTT
例:质量为 m,长为 l 的细杆一端固定在地面的轴上可自由转动,问当细杆摆至与水平面
60o角和水平位置时的角加速度为多大 。
lm,
解:由转动定律
JM?
gm
231c o s2 mllmg?
l
g
2
c o s3
gl43 60 时
gl23 0 时
l
g
2
c o s3
lm,
gm
Similar Example 10-9,Page 248
Similar 10-8,Sample problem,page 248
Fig,Shows a uniform disk,with mass M=2.5kg and radius
R=20cm,mounted( 安放 ) on a fixed horizontal axle,A block
with mass m=1.2kg hangs from a mass-less cord that is wrapped
( 缠绕 ) around the rim of the disk,Find the acceleration of the
falling block,the angular acceleration of the disk,and the tension
in the cord,The cord does not slip and there is no friction at the
axle,(I=MR2/2)
Axis O
R
m
M
α
T
·R
mg
T = - T′
maM
For M,? = TR = I? (1)
For m,mg – T = ma (2)
a = R? (3)
From above equations,we find the answer:
a=4.8 m/s2
=24 rad/s2
T=6.0 N
Solution:
mg
T = - T′
ma
α
T
·RM
In fig.,two blocks with mass m1 and m2 (m1>m2),two
pulleys (with radius of RA and RB,mass of mA and mB)
are mounted in horizontal frictionless bearings,
assuming that the pulley is a disk,the cord is not
slipping,Please find the blocks’ acceleration.
m1 m2
mA mBR
A
RB
Solution,Draw free-diagram:
m2
m2g
T2
m1
m1g
T1
T1-m1g=m1a (1)
m2g-T2=m2a (2)
mB
RB
T
T2
mA R
A
T
T1
(T-T1)RA=IA?A (3)
(T2-T)RB=IB?B (4)
Where,a= RA?A = RB?B
m1 m2
mA mBR
A
RB
Solve equations (1)-(5),yields:
BA mmmm
gmma
2
1
2
1
)(
21
12
2
2
1
BBB RmI?
2
2
1
AAA RmI?
Page247,Example 10-7 and 10-8
There is a frictional torque
Homework,
P267,22,23(力矩)
P268,34,37 (转动定律)
P269,50(转动惯量)
10-9&11-5 Angular Momentum and its
conservation (P251-254)
1,Angular Momentum
1 刚体定轴转动的角动量
i
iiii
i
i rmrmL )(
2v
O ir?
im
iv
IL?
z
Summing over all the
particles to obtain:
dtLdn e t
Using the angular momentum principle of
particle’s system
For a rigid body,the component along the
rotation axis is:
dtdLa x i s
I
dt
dII
dt
d )(
刚体所受的外力矩等于刚体角动量的变化率。
2、刚体定轴转动的角动量定理 angular momentum
principle
3,Conservation of Angular Momentum (p251)
c o n st a n tL fi LL?
or,ffii II
If no net external torque acts on a rigid body,
IdtdLa x i s
The total angular momentum of a rotating
body remains constant if the net external torque
acting on it is zero,P251
花样滑冰运动员的“旋”动作,当运动员旋转时伸臂时转动惯量较大,转速较慢;收臂时转动惯量减小,转速加快。
再如:跳水运动员的,团身 --展体,动作,当运动员跳水时团身,转动惯量较小,转速较快;在入水前展体,转动惯量增大,转速降低,垂直入水 。
P252
o
1
o
2
例 3,人 与 转 盘 的 转 动 惯 量
J0=60kg·m2,伸臂时臂长为 1m,
收臂时臂长为 0.2m。 人站在摩擦可不计的自由转动的圆盘中心上,每只手抓有质量 m=5kg的哑铃 。 伸臂时转动角速度?1 = 3 s-1,
求收臂时的角速度?2,
解:整个过程合外力矩为 0,
角动量守恒,
2211 JJ?
2
101 2 mlJJ
215260
2
202 2 mlJJ
22.05260
2mkg70 2mkg4.60
2211 JJ?
2
11
2 J
J
由转动惯量的减小,角速度增加。
在此过程中机械能不守恒,因为人收臂时做功。
4.60
703
1-s5.3?
Reading:
Page 253-254
Vector Nature of Angular Momentum
力的空间累积效应 力的功,动能,动能定理,
力矩的空间累积效应 力矩的功,转动动能,动能定理,
A body rotating about an fixed axis is said to
have rotational kinetic energy,By analogy
with translational kinetic energy,we have
221 ii vmK 222 )(2121 iiii rmrm
Using equation of I, 2
ii rmI
.21 2 IK
1,The Kinetic Energy of Rotation,P255
10-10 Rotational Kinetic Energy (P254-256)
then,
2,Work-Kinetic Energy Theorem for Fixed-axis Rotation
o r?
v? F?
x
tF
r?d
d
d
ddd
t
t
rF
sFrFW
dd MW?
21 dMW
力矩的功力矩的功 p255
2
1
2
2 2
1
2
1d2
1
JJMW
21 dMW
合外力矩对绕定轴转动的刚体所作的功等于刚体转动动能的增量,p255
2
1
1
1
dd
d
d?
J
t
J
So,we get the work-kinetic energy theorem for
rigid body rotated about a fixed axis:
—– the work done on a rigid body during a
finite angular displacement equals to the
change of its rotational kinetic energy.
—– the power for rotational motion
dtddtdWP
By analogy,
KWKW
PFvP
IKmvK
dWF dxW
Im a F
Im
dtddtdva
dtddtdxv
x
n etn et
t h eorem en ergy
k n i et i c-w ork
f orce)-p ow er( c
en ergy k i n et i c
w ork
l aw 2n d
m ass
/ / onaccel erat i
/ / vel oci t y
p osi t i on
rot at i on p u re nt ran s l at i o p u re
22
2
1
2
1
Some corresponding relations between translation and
rotational motion:
1.确定研究对象。
2.受力分析,确定作功的力矩。
3.确定始末两态的动能,Ek0,Ek。
4.列方程求解。
应用转动动能定理解题方法例 2:一细杆质量为 m,长度为 l,一端固定在轴上,静止从水平位置摆下,求细杆摆到铅直位置时的角速度。 (page 255 example:10-18)
gm
o
lm,
解:以杆为研究对象,
只有重力产生力矩,且重力矩随摆角变化而变化。
重力矩作功:
900?MdW 重
900 c o s2 dlmg
m g l21?
始末两态动能,21 2?JE k?
由动能定理,0kk EEW
02121 2Jm g l
2
3
1 mlJ?
22 )
3
1(
2
1
2
1?mlm g l?
l
g3
0 0?kE,
gm
o
lm,
Solution:
As the Fig.,For the spring,k=2.0?103 N/m;
For the wheel,I=0.5 kg?m2,R=30cm;
m
R
k
What is the speed of the body (m=60kg),
when it falls 40cm,Initially,it is at rest
and the spring is not stretched.
maTmg
IkxRTR
Ra?
2/ RIm
kxmga
EXAMPLE:
x
RIm
kxmgvv hv d
/
d 0 20
m / s5.1
/
2
2
2
RIm
khmg hv
or,
2
2
1 kh m g h?221?I?221 mv?
,dd tva?,dd txv? vxav dd
2/ RIm
kxmga
.L c
o
dm
x
G?d
A uniform thin rod (L,m) is held vertically
with one end on the floor by a horizontal axle
O and is then allowed to fall,
Solution:
xLmm dd? gmG dd
The element of the torque to axle O:
s i n21ds i n0 m g LxxgLmL
Gx dd )s i n (s i nd xg
L
mx?
Find the angular
speed? ( (当杆与竖 直 方向成?角时,对轴的角速度?.
EXAMPLE:
.L c
o
dm
x
G?d
It is variable and as same as the one that mass is
at the center of mass C 与质量集中在质心 c 对轴的力矩相同
d
d
d
d
d
d
d
d
tt?
00 ds i n23d Lg
)co s1(3
L
g
from s i n
2
3
L
gI
s i n21 mg L?
KΔd
021ds i n21 20 Im g L
Solution,2
Solution,3
)co s1(3 Lg
021)c o s22( 2 ILLmg
2
2
1)c o s1(
2 I
Lmg )co s1(3
L
g
P145:例 5.3 一质量为,半径为 R 的圆盘,
可绕一垂直通过盘心的无摩擦的水平轴转动,
圆盘上绕有轻绳,一端挂质量为 m的物体,问物体在静止下落高度 h 时,其速度的大小为多少? 设绳的质量忽略不计,
'm
解 拉力 对圆盘做功,由刚体绕定轴转动的动能定理可得,拉力 的力矩所作的功为
TF
TF
oR
h
m'
m
m
o
TF
NF
'P?
TF?
P?
m
2
0
2
2
1
2
1 JJ
和,分别为圆盘终了和起始时的角坐标和角速度,
0?,? 0
dd
00
TT FRRF o
TF
NF
'P?
TF?
P?
m
2
0
2
TT 2
1
2
1dd
00
JJFRRF
TT FF
物体由静止开始下落 0,0
00v
解得
gh
m
2
)2'( m
m
2mm
m g h
2v
并考虑到圆盘的转动惯量
2
2
1 RmJ
2
0
2
T 2
1
2
1d
0
vv mmFRmg h
由质点动能定理
o
TF
NF
'P?
TF?
P?
m
Rv
例 3:质量为 m、半径为 R 的圆盘,以初角速度?0在摩擦系数为?的水平面上绕质心轴转动,
o Rm
0?
解:以圆盘为研究对象,只有摩擦力矩作功。
始末两态动能:,2
1 2
00?JE k?
摩擦力矩的功:将圆盘分割成无限多个圆环
0?kE
问:圆盘转动几圈后静止。
o R
m
0?
dr r
每个圆环产生的摩擦力矩,dmgrdM阻圆盘的面密度为:
2R
m
圆环的质量为:
dSdm
整个圆盘产生的摩擦力矩,
阻阻 dMM
Rmg?32
R d m g r0 R drrg0 22
rd r 2?
摩擦力矩的功,dMW 阻阻
Rdmg320
由动能定理,0kk EEW
Rmg
J
4
3 20?
则转过的角度:
则转过的圈数,?
2?n
2
02
1
3
2 JRmg 2
2
1 mRJ?
其中
Rmg32
g
R
16
3 20?
Homework,
P267,22,23(力矩)
P268,34,37 (转动定律)
P269,50(转动惯量)
P269,55(角动量及其守恒)
P270,63; 66(转动动能)
294,36 (角动量守恒)
Rotational Motion About
a Fixed Axis
Rigid Body
Rotational Inertia
Work and Rotational Kinetic Energy
Angular Momentum and
Conservation of Angular Momentum
刚体,在外力作用下,形状和大小都不发生变化的物体 。(任意两质点间距离保持不变的特殊质点组)
质元,刚体可以看成由许多质点组成,每一个 质点叫刚体的质元。
刚体这个质点系的特点是:在外力作用下各质元之间的相对位置不变 。 由于是质点系,有关质点的基本定律都可以使用 。
10-2 Several Concepts Related to Rotation:
1,Rigid Body (p234) is a body with a definite
shape that doesn’t change,(刚体是一种特殊的 质点系统 ).
2 Translational motion
is motion along a straight line.
平动,若刚体中所有点的运动轨迹都保持完全相同,
或者说刚体内任意两点间的连线总是平行于它们的初始位置间的连线,
平动的特点:刚体中各质点的运动情况相同。
ABrr BA
BA rr
BA vv
BA aa
A
B
A?
B?
A?
B?
3 Purely Rotational motion
Any point moves around one same axis.
转动,刚体中所有的质元都绕同一直线做圆周运动。转动又分定轴转动和非定轴转动 。定轴转动中,
各圆的园心都在一条固定不变的直线上,这条直线叫转轴 (axis of rotation:p234)。
4,The motion of a rigid body can be analyzed
as the translational motion of its center of mass
plus a rotational motion relative to center of
mass.(p234)
刚体的一般运动 质心的平动 绕质心的转动+
刚体的平面运动,
Z
A
B
A’
B’
The Features of Rotation about a Fixed Axis:
Every point of body moves in a circle whose
center lies on rotation axis and radius different.
Each rotation plane is
perpendicular to rotation axis.
Every point moves through
the same angle during a
particular time interval (各点的,?,? 相同 ).
x
1 Angular position
z
参考平面
)(t?
)()( ttt
角位移
)(t
角坐标
<0?
0>?
约定
r? 沿逆时针方向转动
r? 沿逆时针方向转动
ttt d
dlim
0
2 Angular velocity
方向,右手 螺旋方向
参考轴
10-1 Angular quantities of rotation for rigid body
角加速度
td
d
1) 每一质点均作圆周运动,圆面为转动平面;
2) 任一质点运动 均相同,但 不同;
3) 运动描述仅需一个坐标,
,,? a,v
定轴转动的 特点刚体 定轴 转动(一维转动)的转动方向可以用角速度的正负来表示,?
0>? 0<?
z z
3 Angular acceleration p236
10-6 Rotational Dynamics; Torque and
Rotational Inertia (Page:280-282)
external force ;
iF
if
internal force
Applying N-II law on?mi:
amfF iii
z
o
ir
if
iF
mi
iiitiitit rmamfF:
A rotational rigid body can be considered to be
constituted by many parts,The ith part has a mass?mi,
Resolving it into directions and,
n?
1,N-II Law for Rotation (定轴转动定律 ) (P244)
i
ii
i
iit
i
iit rmrfrF
2:s u m & ir?
0 iiniin rfrF?:?n 0
i
ii rf
and
So,we have
i
ii
i
iit rmrF
2
i
iitin e t rF
Let
—— Net torque about given axis,and
—— the moment of inertia or
rotational inertia (转动惯量 ) on the axis.
2ii rmI
In e t?Then,N-II Law for Rotation(p244)
—— Net torque on a rigid body equals to the
product of rotational inertia and angular
acceleration it causes about same axis.
Comparing with the translation,this equation
has the same importance like the Newton’s
second law for a single particle.
The moment of inertia I is a measure of the
rotational inertia of a body,which plays the
same role for rotational motion that mass does
for translational motion.(p245)
O
r? m
z
F?
tF
nF
s i nrFM?
mrmaF tt
2ie jjjj rmMM
2) 刚体质量元受 外 力,内 力
jFe
jFi
M?
1) 单个质点 与转轴刚性连接
m
外 力矩 内 力矩
2mrM?
2t mrrFM
O
z
jm?
jr
jFe
jFi
中文推导
O
z
jm?
jr
jFe
jFi
αrmMM jj
j
j
j
j
2
ie
0
j
ijjiij MMM?
) αrmM jj
j
j
2
e (
刚体定轴转动的角加速度与它所受的 合外力矩 成正比,与刚体的 转动惯量 成反比,
转动定律
IM?
2
j
j
j rmI
定义转动惯量
mrI d2
2,Moment of inertia (P244)
刚体的转动惯量与以下物理量有关:
①,与刚体质量有关。
②,与质量对轴的分布有关。
③,与轴的位置有关。
2
j
j
j rmI
转动惯量
mrI d2
mrIrmI j
j
j d,
22
物理 意义,转动惯性的量度,
质量离散分布刚体的转动惯量
2222112 rmrmrmI j
j
j
转动惯性的计算方法
质量连续分布刚体的转动惯量
mrrmI j
j
j d
22
:质量元md
3,The Calculation of Rotational Inertia of Body
(P245,P248-249)
对质量线分布的刚体:
:质量线密度
lm dd
对质量面分布的刚体:
:质量面密度
Sm dd
对质量体分布的刚体:
:质量体密度
Vm dd
:质量元md
质量连续分布刚体的转动惯量
mrrmJ j
j
j d
22
Page 245,example:10-6
This example illustrates two important points.
1 The moment of inertia of a given system is
different for different axes of rotation.
2 The mass close to the axis of rotation
contributes little to the total moment of
inertia.
例 2:长为 l、质量为 m 的匀质细杆,1)绕与杆垂直的质心轴转动,2)绕细杆一端轴转动。求转动惯量 I。
m l
o
解,1)细杆为线质量分布,单位长度的质量为:
l
m
建立坐标系,坐标原点选在质心处。 分割质量元 dm,长度为 dx,
x
2
l?
2
l
dm
dx
dxdm
x
dmxI
l
l
2
2/
2/
2/ 2/ 33 l lx
2
12
1 mlI
lm
绕细杆质心轴的转动惯量为
2
12
1 mlI?
3
12
1 l
dxx
l
l
2
2/
2/
dmrI 2
m l
o
x
2
l?
2
l
dm
dxx
解 2):细杆为线质量分布,单位长度的质量为:
l
m
建立坐标系,坐标原点选在边缘处。分割质量元 dm,长度为 dx,
x
l
m l
o
dm
dxx
dxdm
dmrI 2
dmxI
l
2
0
dmxI
l
2
0
lx 0 33 dxxl 2
0
3
3
1 l
2
3
1 mlI
lm
绕细杆边缘轴的转动惯量为
2
3
1 mlI?
)2,(
12
1 2
0
22
2
2
LL
Lc dIIormLdxxL
mI
2
0
2
3
1 mLdxx
L
mI L
o
Solution(1),dxdm
c
x
x
dmxdI 2?dxx?2 dx
L
mx 2
Try to find out I of a thin rod of mass
m,length L to (1) C and (2) O axes.
O x dm xLSolution(2):
EXAMPLE
in English:
例 3:半径为 R 质量为 M 的圆环,绕垂直于圆环平面的质心轴转动,求转动惯量 J。
R
M
o
解:
dm
dmRI
M
2
0
分割质量元 dm
圆环上各质量元到轴的距离相等,
dmR M 02 2MR?
绕圆环质心轴的转动惯量为 2MRI?
OR
R
4
0
3 π
2
dπ2 RrrJ R
rdr
例 3 一质量为,半径为 的均匀圆盘,求通过盘中心 O 并与盘面垂直的轴的转动惯量,
m R
解 设圆盘面密度为,
在盘上取半径为,宽为的圆环
r rd
2π Rm
而
rrm dπ2d圆环质量
2
2
1 mRJ?
所以
rrmrJ dπ2dd 32
圆环对轴的转动惯量转动惯量的大小取决于刚体的质量、形状及转轴的位置,
注意
Solution:
2R
m
r d rrdmrdI 222
2
0
3
2
12 mRdrrI R
o
Find I of a uniform circular disk (mass m,
radius R) to axes O in Fig,(a).
m
r
Rdr
o
(a)
EXAMPLE in English:
They are as same as the ones giving in
Figure 10-21,Page 246
一些均匀刚体的转动惯量 (p246)
薄圆盘转轴通过中心与盘面垂直
2
2
1 mrJ?
r2r
1
圆筒转轴沿几何轴
)(21 2221 rrmJ
l
r
圆柱体转轴沿几何轴
2
2
1 mrJ?
l
r
圆柱体转轴通过中心与几何轴垂直
124
22 mlmr
J
l
细棒转轴通过中心与棒垂直
12
2ml
J?
l
细棒转轴通过端点与棒垂直
3
2ml
J?
2r
球体转轴沿直径
5
2 2mrJ?
2r
球壳转轴沿直径
3
2 2mrJ?
4 Solving Problems in Rotational Dynamics (P247)
Step to solve problem with N-II Law for
Rotation Page 246:
1,As always,draw a clear and complete
diagram.
2,Draw a free-body diagram.
3,Identify the axis of rotation and calculate the
torques about it.
4,Apply Newton’s second law for rotation and
for translation.
5,Solve the resulting equations.
例:质量为 m1和 m2两个物体,跨在定滑轮上 m2
放在光滑的桌面上,滑轮半径为 R,质量为 M,求:
m1 下落的加速度,和绳子的张力 T1,T2。 1m
2m RM,
T1
T2
解:受力分析
1m以 为研究对象
amTgm 111( 1)
1m
gm1
1T
RM,
1T
2T
2T2m
2m以 为研究对象
amT 22? ( 2)
M以 为研究对象
JRTT )( 21 ( 3)
2
2
1 MRJ?
补充方程,?Ra? ( 4)
联立方程( 1) ---( 4)求解得
2/21
1
Mmm
gma
2/
)2/(
21
21
1 Mmm
gMmmT
2/21
21
2 Mmm
gmmT
讨论:当 M=0时
21
21
21 mm
gmmTT
例:质量为 m,长为 l 的细杆一端固定在地面的轴上可自由转动,问当细杆摆至与水平面
60o角和水平位置时的角加速度为多大 。
lm,
解:由转动定律
JM?
gm
231c o s2 mllmg?
l
g
2
c o s3
gl43 60 时
gl23 0 时
l
g
2
c o s3
lm,
gm
Similar Example 10-9,Page 248
Similar 10-8,Sample problem,page 248
Fig,Shows a uniform disk,with mass M=2.5kg and radius
R=20cm,mounted( 安放 ) on a fixed horizontal axle,A block
with mass m=1.2kg hangs from a mass-less cord that is wrapped
( 缠绕 ) around the rim of the disk,Find the acceleration of the
falling block,the angular acceleration of the disk,and the tension
in the cord,The cord does not slip and there is no friction at the
axle,(I=MR2/2)
Axis O
R
m
M
α
T
·R
mg
T = - T′
maM
For M,? = TR = I? (1)
For m,mg – T = ma (2)
a = R? (3)
From above equations,we find the answer:
a=4.8 m/s2
=24 rad/s2
T=6.0 N
Solution:
mg
T = - T′
ma
α
T
·RM
In fig.,two blocks with mass m1 and m2 (m1>m2),two
pulleys (with radius of RA and RB,mass of mA and mB)
are mounted in horizontal frictionless bearings,
assuming that the pulley is a disk,the cord is not
slipping,Please find the blocks’ acceleration.
m1 m2
mA mBR
A
RB
Solution,Draw free-diagram:
m2
m2g
T2
m1
m1g
T1
T1-m1g=m1a (1)
m2g-T2=m2a (2)
mB
RB
T
T2
mA R
A
T
T1
(T-T1)RA=IA?A (3)
(T2-T)RB=IB?B (4)
Where,a= RA?A = RB?B
m1 m2
mA mBR
A
RB
Solve equations (1)-(5),yields:
BA mmmm
gmma
2
1
2
1
)(
21
12
2
2
1
BBB RmI?
2
2
1
AAA RmI?
Page247,Example 10-7 and 10-8
There is a frictional torque
Homework,
P267,22,23(力矩)
P268,34,37 (转动定律)
P269,50(转动惯量)
10-9&11-5 Angular Momentum and its
conservation (P251-254)
1,Angular Momentum
1 刚体定轴转动的角动量
i
iiii
i
i rmrmL )(
2v
O ir?
im
iv
IL?
z
Summing over all the
particles to obtain:
dtLdn e t
Using the angular momentum principle of
particle’s system
For a rigid body,the component along the
rotation axis is:
dtdLa x i s
I
dt
dII
dt
d )(
刚体所受的外力矩等于刚体角动量的变化率。
2、刚体定轴转动的角动量定理 angular momentum
principle
3,Conservation of Angular Momentum (p251)
c o n st a n tL fi LL?
or,ffii II
If no net external torque acts on a rigid body,
IdtdLa x i s
The total angular momentum of a rotating
body remains constant if the net external torque
acting on it is zero,P251
花样滑冰运动员的“旋”动作,当运动员旋转时伸臂时转动惯量较大,转速较慢;收臂时转动惯量减小,转速加快。
再如:跳水运动员的,团身 --展体,动作,当运动员跳水时团身,转动惯量较小,转速较快;在入水前展体,转动惯量增大,转速降低,垂直入水 。
P252
o
1
o
2
例 3,人 与 转 盘 的 转 动 惯 量
J0=60kg·m2,伸臂时臂长为 1m,
收臂时臂长为 0.2m。 人站在摩擦可不计的自由转动的圆盘中心上,每只手抓有质量 m=5kg的哑铃 。 伸臂时转动角速度?1 = 3 s-1,
求收臂时的角速度?2,
解:整个过程合外力矩为 0,
角动量守恒,
2211 JJ?
2
101 2 mlJJ
215260
2
202 2 mlJJ
22.05260
2mkg70 2mkg4.60
2211 JJ?
2
11
2 J
J
由转动惯量的减小,角速度增加。
在此过程中机械能不守恒,因为人收臂时做功。
4.60
703
1-s5.3?
Reading:
Page 253-254
Vector Nature of Angular Momentum
力的空间累积效应 力的功,动能,动能定理,
力矩的空间累积效应 力矩的功,转动动能,动能定理,
A body rotating about an fixed axis is said to
have rotational kinetic energy,By analogy
with translational kinetic energy,we have
221 ii vmK 222 )(2121 iiii rmrm
Using equation of I, 2
ii rmI
.21 2 IK
1,The Kinetic Energy of Rotation,P255
10-10 Rotational Kinetic Energy (P254-256)
then,
2,Work-Kinetic Energy Theorem for Fixed-axis Rotation
o r?
v? F?
x
tF
r?d
d
d
ddd
t
t
rF
sFrFW
dd MW?
21 dMW
力矩的功力矩的功 p255
2
1
2
2 2
1
2
1d2
1
JJMW
21 dMW
合外力矩对绕定轴转动的刚体所作的功等于刚体转动动能的增量,p255
2
1
1
1
dd
d
d?
J
t
J
So,we get the work-kinetic energy theorem for
rigid body rotated about a fixed axis:
—– the work done on a rigid body during a
finite angular displacement equals to the
change of its rotational kinetic energy.
—– the power for rotational motion
dtddtdWP
By analogy,
KWKW
PFvP
IKmvK
dWF dxW
Im a F
Im
dtddtdva
dtddtdxv
x
n etn et
t h eorem en ergy
k n i et i c-w ork
f orce)-p ow er( c
en ergy k i n et i c
w ork
l aw 2n d
m ass
/ / onaccel erat i
/ / vel oci t y
p osi t i on
rot at i on p u re nt ran s l at i o p u re
22
2
1
2
1
Some corresponding relations between translation and
rotational motion:
1.确定研究对象。
2.受力分析,确定作功的力矩。
3.确定始末两态的动能,Ek0,Ek。
4.列方程求解。
应用转动动能定理解题方法例 2:一细杆质量为 m,长度为 l,一端固定在轴上,静止从水平位置摆下,求细杆摆到铅直位置时的角速度。 (page 255 example:10-18)
gm
o
lm,
解:以杆为研究对象,
只有重力产生力矩,且重力矩随摆角变化而变化。
重力矩作功:
900?MdW 重
900 c o s2 dlmg
m g l21?
始末两态动能,21 2?JE k?
由动能定理,0kk EEW
02121 2Jm g l
2
3
1 mlJ?
22 )
3
1(
2
1
2
1?mlm g l?
l
g3
0 0?kE,
gm
o
lm,
Solution:
As the Fig.,For the spring,k=2.0?103 N/m;
For the wheel,I=0.5 kg?m2,R=30cm;
m
R
k
What is the speed of the body (m=60kg),
when it falls 40cm,Initially,it is at rest
and the spring is not stretched.
maTmg
IkxRTR
Ra?
2/ RIm
kxmga
EXAMPLE:
x
RIm
kxmgvv hv d
/
d 0 20
m / s5.1
/
2
2
2
RIm
khmg hv
or,
2
2
1 kh m g h?221?I?221 mv?
,dd tva?,dd txv? vxav dd
2/ RIm
kxmga
.L c
o
dm
x
G?d
A uniform thin rod (L,m) is held vertically
with one end on the floor by a horizontal axle
O and is then allowed to fall,
Solution:
xLmm dd? gmG dd
The element of the torque to axle O:
s i n21ds i n0 m g LxxgLmL
Gx dd )s i n (s i nd xg
L
mx?
Find the angular
speed? ( (当杆与竖 直 方向成?角时,对轴的角速度?.
EXAMPLE:
.L c
o
dm
x
G?d
It is variable and as same as the one that mass is
at the center of mass C 与质量集中在质心 c 对轴的力矩相同
d
d
d
d
d
d
d
d
tt?
00 ds i n23d Lg
)co s1(3
L
g
from s i n
2
3
L
gI
s i n21 mg L?
KΔd
021ds i n21 20 Im g L
Solution,2
Solution,3
)co s1(3 Lg
021)c o s22( 2 ILLmg
2
2
1)c o s1(
2 I
Lmg )co s1(3
L
g
P145:例 5.3 一质量为,半径为 R 的圆盘,
可绕一垂直通过盘心的无摩擦的水平轴转动,
圆盘上绕有轻绳,一端挂质量为 m的物体,问物体在静止下落高度 h 时,其速度的大小为多少? 设绳的质量忽略不计,
'm
解 拉力 对圆盘做功,由刚体绕定轴转动的动能定理可得,拉力 的力矩所作的功为
TF
TF
oR
h
m'
m
m
o
TF
NF
'P?
TF?
P?
m
2
0
2
2
1
2
1 JJ
和,分别为圆盘终了和起始时的角坐标和角速度,
0?,? 0
dd
00
TT FRRF o
TF
NF
'P?
TF?
P?
m
2
0
2
TT 2
1
2
1dd
00
JJFRRF
TT FF
物体由静止开始下落 0,0
00v
解得
gh
m
2
)2'( m
m
2mm
m g h
2v
并考虑到圆盘的转动惯量
2
2
1 RmJ
2
0
2
T 2
1
2
1d
0
vv mmFRmg h
由质点动能定理
o
TF
NF
'P?
TF?
P?
m
Rv
例 3:质量为 m、半径为 R 的圆盘,以初角速度?0在摩擦系数为?的水平面上绕质心轴转动,
o Rm
0?
解:以圆盘为研究对象,只有摩擦力矩作功。
始末两态动能:,2
1 2
00?JE k?
摩擦力矩的功:将圆盘分割成无限多个圆环
0?kE
问:圆盘转动几圈后静止。
o R
m
0?
dr r
每个圆环产生的摩擦力矩,dmgrdM阻圆盘的面密度为:
2R
m
圆环的质量为:
dSdm
整个圆盘产生的摩擦力矩,
阻阻 dMM
Rmg?32
R d m g r0 R drrg0 22
rd r 2?
摩擦力矩的功,dMW 阻阻
Rdmg320
由动能定理,0kk EEW
Rmg
J
4
3 20?
则转过的角度:
则转过的圈数,?
2?n
2
02
1
3
2 JRmg 2
2
1 mRJ?
其中
Rmg32
g
R
16
3 20?
Homework,
P267,22,23(力矩)
P268,34,37 (转动定律)
P269,50(转动惯量)
P269,55(角动量及其守恒)
P270,63; 66(转动动能)
294,36 (角动量守恒)