Chapter32 Relativity
Two Postulates(狭义相对论的两个基本假设)
The relativity of simultaneity (同时性的相对性)
The relativity of time (时间间隔的相对性)
The relativity of length(长度收缩)
The Lorentz Transformation (洛仑兹变换式)
A new look at momentum,energy(相对论质量、
动量,能量)
Chapter 32 Special relativity(狭义相对论)
Chapter32 Relativity
What is relativity all about?
Newton's laws of motion give us a complete
description of the behavior moving objects at low
speeds.
Einstein's Special Theory of Relativity describes the
motion of particles moving at close to the speed of
light.
Special means that the theory deals only with inertial
reference frames。
Space and time are entangled(牵连),
相对论是关于物质运动与时间空间关系的理论。局限于惯性参考系的时空理论称为狭义相对论。
Chapter32 Relativity
Because most of us have little experience with objects
moving at speeds near the speed of light,Einstein‘s
predictions may seem strange,However,many years of
high energy physics experiments have thoroughly tested
Einstein’s theory and shown that it fits all results to date.
In fact,Einstein gives the correct laws of motion for
any particle,This doesn?t mean Newton was wrong,his
equations are contained within the relativistic( 相对论的 ) equations,For particles moving at slow speeds
(very much less than the speed of light),the differences
between Einstein?s laws of motion and those derived
( 导出 ) by Newton are tiny( 微小的 ),
Chapter32 Relativity
Key words:
The theory of relativity and quantum theory
Classical Physics and Modern Physics
Inertial reference frames(惯性参考系)
Event(事件)
Postulate(假设)
Simultaneity(同时性)
Time dilation(时间延缓)
Length contraction(长度收缩)
Chapter32 Relativity
32-8 Galilean Transformation 伽利略变换 (P746)
对于任何惯性参照系,牛顿力学的规律都具有相同的形式,这就是经典力学的相对性原理,
Examine in detail the mathematics of relating
quantities in one inertial reference frame to the
equivalent quantities in another.
牛顿力学的回答,
一 伽利略变换式 经典力学的相对性原理
Chapter32 Relativity
当 时0' tt
'oo 与 重合
txx v'
yy?'
zz?'
tt?'
位置坐标变换公式
Galilean transformation
equations
经典力学认为,1) 空间的量度是绝对的,与参考系无关;
2) 时间的量度也是绝对的,与参考系无关,
x
'x
y 'y
v?
o 'o
z 'z
'ss
*
)',','(
),,(
zyx
zyxP
x
'xtv
z 'z
'yy
Assume:
Chapter32 Relativity
zz aa?'
yy aa?'
xx aa?'
加速度变换公式
'aa
amF 'amF
v xx uu '
yy uu?'
zz uu?'
伽利略速度变换公式在两相互作匀速直线运动的惯性系中,牛顿运动定律具有相同的形式,
(Galilean Velocity Transformation
Equations)
Chapter32 Relativity
相对于不同的参考系,长度和时间的测量结果是一样的吗?
绝对时空概念:时间和空间的量度和参考系无关,长度和时间的测量是绝对的,
牛顿的绝对时空观 牛顿力学的相对性原理二 经典力学的绝对时空观注 意 牛顿力学的相对性原理,在宏观、低速的范围内,是与实验结果相一致的,
实践已证明,绝对时空观是不正确的,
Chapter32 Relativity
对于不同的惯性系,电磁现象基本规律的形式是一样的吗?
真空中的光速 m / s109 9 8.21 8
00
c
对于两个不同的惯性参考系,光速满足伽利略变换吗?
v cc ' x
'x
y 'y
v?
o
'o
z 'z
'ss
c?
Chapter32 Relativity
球投出前
c?
d
c
dt
1
21 ttv?
c dt 2
结果,观察者先看到投出后的球,后看到投出前的球,
试计算球被投出前后的瞬间,球所发出的光波达到观察者所需要的时间,(根据 伽利略变换 )
球投出后
vc
v?
Chapter32 Relativity
(1) The relativity postulate,the laws of physics are the
same for observers in all inertial reference frames.
No frame is preferred.( 相对性原理:物理规律对所有的惯性系都是一样的,没有特例,P737)
(2) The speed of light postulate,the speed of light in
vacuum has the same value c=2.998x108m/s in all
directions and in all inertial reference frames.( 光速不变原理 P737)
Einstein?s theory is based on the two postulates.
32-3 The two postulates( P736-737)
Chapter32 Relativity
说明同时具有相对性,时间的量度是相对的,
和 光速不变 紧密联系在一起的是:在某一惯性系中 同时 发生的两个事件,在相对于此惯性系运动的另一惯性系中观察,并 不一定是同时 发生的,
Chapter32 Relativity
32-4 Simultaneity (P737-739)
An event is something that happens,to which an
observer can assign( 指派 ) three space coordinates
and one time coordinate.
Event
An event does not,belong” to a particular inertial
reference frame,Anyone in any reference frame may
detect it and assign space-time coordinates to it.
Different observers will assign different space-time
coordinates to the same event.
Chapter32 Relativity
Suppose an event is described by two observers,one
in frame S(地面) and the other in frame S? (火车),S? is moving with constant velocity v relative
to S,
when a pulse of light leaves a light source in frame S?:
Chapter32 Relativity
事件 1,车厢 后 壁接收器接收到光信号,
事件 2,车厢 前 壁接收器接收到光信号,
Chapter32 Relativity
0''' 12 ttt
0''' 12 xxx
同时不同地事件 2
)',',','( 1111 tzyx
),,,( 2222 tzyx
系 (车厢参考系 )S 系 ( 地面参考系 )
),,,( 1111 tzyx事件 1
)',',','( 2222 tzyx
S'
v?
'x
'y
'o
1 2
12
3
6
9
12
3
6
9
'x
'y
'o
1 2
x
y
o
v?
12
3
6
9
12
3
6
9
12
3
6
9
Chapter32 Relativity
结论,沿两个惯性系运动方向,不同地点 发生的两个事件,在其中一个惯性系中是 同时 的,在另一惯性系中观察则 不同时,所以同时具有 相对 意义;
和 光速不变 紧密联系在一起的是:在某一惯性系中 同时 发生的两个事件,在相对于此惯性系运动的另一惯性系中观察,并 不一定是同时 发生的,
—Simultaneity is not an absolute concept but a
relative one,depending on the motion of the observer.
Chapter32 Relativity
32-5 The Dilation and the Twin Paradox
(时间延缓 P739-743)
The fact that two events simultaneous to one observer
may not be simultaneous to a second observer
suggests that time itself is not absolute.
For example:
Observer Sam on the train measures the time interval,
Observer Sally on the station measures the time
interval,?t
't?
Chapter32 Relativity
运 动 的 钟 走 得 慢
Chapter32 Relativity
s' 系 同一 地点 B 发生两事件在 S 系中观测两事件
),(),,( 2211 txtx
)',( 2'2 tx
)','( 1tx发射一光信号接受一光信号
cdttt 2''' 12时间间隔
22 )
2
(
tv
dl

x
y
o
s
d
12
3
6
9
12
3
6
9
1x 2x
12
3
6
9
'y
x
'x
y v?
o 'o
s's
d
B
12
3
6
9
Chapter32 Relativity
c
lt 2
x
y
o
s
d
12
3
6
9
12
3
6
9
1x 2x
12
3
6
9
22 )
2
(
2 tv
d
c

Combine this with the formula
cdttt 2''' 12
We find:
2
'
)/(1 cv
tt

Chapter32 Relativity
2
0
)/(1 cv
tt

0' tt
固有 时间,同一 地点发生的 两 事件的时间间隔,
When two events occur at the same location in an
inertial reference frame,the time interval between
them,measured in that frame,is called the proper
time interval or the proper time,P741
Chapter32 Relativity
Measurements of the same time interval from any
other inertial reference frame are always greater.
时间延缓,运动 的钟走得 慢,
We called this time dilation(时间延缓、动钟变慢),
0' ttt 固有时间
02
0
2
0
1)/(1
tt
cv
tt


1
1
1
2
2
c
v
固有时最短。
Chapter32 Relativity
Clocks moving relative to an observer are measured by
that observer to run more slowly (as compared to
clocks at rest,(p741)
Experiments have tested the time-dilation effect,and
have confirmed Einstein?s predictions,In 1971,for
example,extremely precise atomic clocks were flown
around the world in jet planes,The other is the
lifetime of a moving muon.
1971年美国科学家在地面对准精度为 10?9秒铯原子钟,把 4台原子钟放到喷气式飞机上绕地球飞行一圈,
然后返回地面与地面静止的比较,结果慢了 59毫微秒 。
与相对论值只差 10%,后来将原子钟放到飞船上实验精度进一步提高 。
Chapter32 Relativity
三,明确几点
①,运动的时钟变慢。不同系下事件经历的时间间隔不同。时间空间是相互联系的。
②,静止的时钟走的最快。固有时间最短。
③,低速空间相对论效应可忽略。
0tt
0tt
,cv 0' ttt
④,时钟变慢是相对的,S系看 S’系中的时钟变慢,
反之 S’系看 S系中的时钟也变慢。
,1
Chapter32 Relativity
例 3 设想有一光子火箭以 速率相对地球作直线运动,若火箭上宇航员的计时器记录他观测星云用去 10 min,则地球上的观察者测得此事用去多少时间?
c95.0?v
m i n01.32m i n
95.01
10
1
'
22

tt
运动的钟似乎走慢了,
解,设火箭为 系、地球为 S 系'S
m i n10' t
Chapter32 Relativity
a.,慢慢
.
.
Chapter32 Relativity
狭义相对论的时空观
1) 两个事件在不同的惯性系看来,它们的空间关系是相对的,时间关系也是相对的,只有将空间和时间联系在一起才有意义,
2) 时 —空不互相独立,而是不可分割的整体,
3) 光速 C 是建立不同惯性系间时空变换的纽带,
Chapter32 Relativity
例 2,?介子的寿命。
介子在静止时的寿命为 2.15?10 –6s,进入大气后? 介子衰变,
e
正电子或负电子 中微子 反中微子速度为 0.998c,从高空到地面约 10Km,问,?
介子能否到达地面。 P39,17)
Chapter32 Relativity
68 1015.2103998.0y )m(644?
还没到达地面,就已经衰变了。
但实际探测仪器不仅在地面,甚至在地下 3km
深的矿井中也测到了? 介子。
用相对论时空观? 介子所走路程
0998.0 cy
解:以地面为参照系? 介子寿命延长。
用经典时空观? 介子所走路程
Chapter32 Relativity
地面 S 系 观测? 介子运动距离
cy 99 8.0 86 103998.01034
)m(10 190?
完全能够到达地面。
由 地面 S 系 观测? 介子寿命
2
0
)/(1 cv?

0tt
s100.34 6
2
6
)/998.0(1
1015.2
cc?

Chapter32 Relativity
Example 32-1 page 741
Example 32-2 page 742
Chapter32 Relativity
Read and discuss two interesting
speculation on page 742
Space travel
twin paradox
Chapter32 Relativity
32-6 Length Contraction P743-744) 长度收缩
Not only time intervals are different in different
reference frames,Space intervals---lengths and
distances are difference as well.
Chapter32 Relativity
(a) A spaceship traveling as seen from Earth?s
frame of reference
(b) As viewed by an observer on the spaceship
Chapter32 Relativity
The distance between the
planets as measured by the
Earth observers is L0.
The time required for the trip,measured from Earth is,
vLt /0
tvL0
Chapter32 Relativity
The time between departure
of Earth and arrival of
Neptune is the proper time,
Because the two events occur
at the same point in space-on
the spacecraft.
2
0 )/(1 cvtt
L is the distance between two events as viewed by the
spacecraft observers,then
0tvL
Chapter32 Relativity
2
0
)/(1 cv
t
t

vLt /0
0tvL
22
0
22
0 /1/1 cvLcvtvtvL
22
0 /1 cvLL
Chapter32 Relativity
固有 长度 L0 (proper length),物体相对静止时所测得的长度,The length of the object-or distance between
two points whose positions are measured at the same
time-as determined by observers at rest with respect to
it.
结论:固有长度最长。
运动的棒长度收缩。
The Length of an object is measured to be shorter
when it is moving relative to the observer than when it
is at rest,
Chapter32 Relativity
明确几点
①,观察运动的物体其长度要收缩,收缩只出现在运动方向。 Length contraction occurs only
along the direction of motion.
20 )/(1 cvll
②,同一物体速度不同,测量的长度不同。物体静止时长度测量值最大。
③,低速空间相对论效应可忽略。
,cv 0ll?
④,长度收缩是相对的,S系看 S’系中的物体收缩,
反之,S’系看 S系中的物体也收缩。
Chapter32 Relativity
地球上宏观物体最大速度 103m/s,比光速小 5个数量级,
在这样的速度下长度收缩约 10?10,故可忽略不计。
Chapter32 Relativity
例 1,?介子的寿命。
介子在静止时的寿命为 2.15?10 –6s,进入大气后? 介子衰变,
e
正电子或负电子 中微子 反中微子速度为 0.998c,从高空到地面约 10Km,问,?
介子能否到达地面。
Chapter32 Relativity
68 1015.2103998.0y )m(644?
还没到达地面,就已经衰变了。
但实际探测仪器不仅在地面,甚至在地下 3km
深的矿井中也测到了? 介子。
用相对论时空观? 介子所走路程
0998.0 cy
解 1:以地面为参照系? 介子寿命延长。
用经典时空观? 介子所走路程
Chapter32 Relativity
地面 S 系 观测? 介子运动距离
cy 99 8.0 86 103998.01034
)m(10 190?
完全能够到达地面。
由 地面 S 系 观测? 介子寿命
2
0
)/(1 cv?

0tt
s100.34 6
2
6
)/998.0(1
1015.2
cc?

Chapter32 Relativity
解 2,以? 介子为参照系运动距离缩短。
S’ 系? 介子所走路程
/' yy? 20 )/(1 cvy
29 9 8.011 0 1 9 0 )m(644?
距离缩短,同样可到达地面。
Chapter32 Relativity
Example 32-3 painting?s contraction on page 744
Chapter32 Relativity
Read section 7 on page 745 together
Four-dimensional Space-Time