第十一章 稳恒磁场Chapter 25 Magnetism
Chapter 25 Magnetism
1,Magnet and Magnetic Field
2,Definition of Magnetic Field
3,Force on an Electric Charge
Moving in a Magnetic Field
4,Torque on a Current Loop
第十一章 稳恒磁场Chapter 25 Magnetism
New words and Expressions
magnetic monopole 磁单极
magnet 磁铁
magnetic phenomena 磁现象
north (south) pole 南 (北 )极
cyclotron frequency 回旋加速器
aurora borealis 极光
mass Spectrometer 质谱仪
Hall effect 霍尔效应
Hall EMF 霍耳电压
magnetic dipole moment 磁矩第十一章 稳恒磁场Chapter 25 Magnetism
25-1.Magnets and Magnetic Fields (P580-582)
Magnets used in,Compass; refrigerator-door;
microphone; computer disk; …
1 Magnetic phenomena
I
第十一章 稳恒磁场Chapter 25 Magnetism
Poles,the magnetic effect is strongest.
North (South) pole,The pole of a freely
suspended magnet that points to geographic
north (south).
There are force between poles.
Unlike poles attract,and unlike poles repel.
南极北极
2 Basic Concepts
第十一章 稳恒磁场Chapter 25 Magnetism
If you break a magnet in half,you don’t
obtain isolated north and south poles; instead,
two new magnets are produced,No magnetic
monopole has been observed.
第十一章 稳恒磁场Chapter 25 Magnetism
The direction of the
magnetic field is tangent
to a line at any point,
and the number of lines
per unit area is
proportional to the
strength of the magnetic
field.
Magnetic field lines:
第十一章 稳恒磁场Chapter 25 Magnetism
25-3,Definition of Electric Field (P583-586)
x
y
z
o
运动电荷运动电荷 磁场
0?F?
1 Definition of B?
+ v?
带电粒子在磁场中运动所受的力与运动方向有关,
实验发现带电粒子在磁场中沿某一特定直线方向运动时不受力,此直线方向与电荷无关,
v?
v? v?
第十一章 稳恒磁场Chapter 25 Magnetism
带电粒子在磁场中沿其他方向运动时 垂直于 与特定直线所组成的平面,
F?
v?
当带电粒子在磁场中垂直于此特定直线运动时受力最大,
FFF
m a x
vq
Fmax 大小与 无关v,q
磁感强度 的定义,当正电荷垂直于 特定直线运动时,受力 将 方向定义为该点的 的方向,B?
maxF? vmaxF
B?vqF?
m ax
第十一章 稳恒磁场Chapter 25 Magnetism
+q
v?
B?
maxF
磁感强度 的定义,当正 电荷垂直于特定直线运动时,受力 将 方向定义为该点的 的方向,B?
maxF? vmaxF
B?
vq
FB m a x?磁感强度大小
magnitude
运动电荷在磁场中受力
BqF v
—— Lorentz’s Force
第十一章 稳恒磁场Chapter 25 Magnetism
)g a u s s(G10T1 4?
地磁场 Bearth? 5?10-5 T
SI unit,Tesla (T),Gauss or N/(Am).
单位 特斯拉 mN / A1)T(1
2 Unit of Magnetic Field
第十一章 稳恒磁场Chapter 25 Magnetism
25-4,Force on an Electric Charge Moving
in Magnetic Field (page 586-589)
The charged particles moving in magnetic field
acted by magnetic force:
1,Lorentz’s Force
x y
z
o
BqF vm
+q
v?
B?
mF
The force acting on a
charged particle moving
mF
with velocity through a magnetic field
is always perpendicular to and,
B?v?
v? B?
第十一章 稳恒磁场Chapter 25 Magnetism
(when? = 0,F=0),
B?
v?
F?
q
Magnetic force only change moving direction WB=0.
BvqFq
BvqFq
,0;,0
BqF vm?s inBq v?
方向:即以右手四指 由经小于 的角弯向,
拇指的指向就是正电荷所受 洛仑兹力的方向,
B?v180
Right hand rule
第十一章 稳恒磁场Chapter 25 Magnetism
,particle straightly move
in constant velocity.
B?+
q v?
q- v
0?F?
(1) Particle moves parallel to,B?
2,The Motion of Charged Particle in Uniform,B?
(2) Particle moves perpendicular to,B?
Example 25-4,Electron’s path in a uniform
magnetic field.
第十一章 稳恒磁场Chapter 25 Magnetism
R
mBq
2
0
0
v
v?
qB
mR 0v?
B0v
maF?
We solve for R and find
第十一章 稳恒磁场Chapter 25 Magnetism
qB
mR
T
π2π2
0
v
m
qB
T
f
π2
1
The time T (period of rotation) required for a
particle of charge q moving with constant speed to
make one circular revolution in a uniform
magnetic field is:
The frequency of rotation is
是回旋加速器 (cyclotron )的原理,
第十一章 稳恒磁场Chapter 25 Magnetism
Note:
The frequency does not depend on the speed.
If speed is large,r is large for a given,but the
frequency is independent of and r.v?
B?
第十一章 稳恒磁场Chapter 25 Magnetism
电场力 EqF
e
磁场力 ( 洛仑兹力 ) BqF vm
BqEqF v
运动电荷在电场和磁场中受的力
3,Particle moves in electric and magnetic field p588
It is often called the Lorentz equation and is
considered one of the basic equation in physics.
第十一章 稳恒磁场Chapter 25 Magnetism
3,The application of particle moves in electric
and magnetic field
1) Cyclotron 回旋加速器
1932年劳伦斯研制第一台回旋加速器的 D型室,
此加速器可将质子和氘核加速到 1MeV的能量,
为此 1939年劳伦斯获得诺贝尔物理学奖,
第十一章 稳恒磁场Chapter 25 Magnetism
m
qBf
π2
m
q B R 0?v
2
k 2
1 vmE?
频率与半径无关到半圆盒边缘时
m
RBqE
2
2
0
22
k?回旋加速器原理图
N
S
B
2D 1D
O
~
第十一章 稳恒磁场Chapter 25 Magnetism
我国于
1994年建成的第一台强流质子加速器,
可产生数十种中短寿命放射性同位素,
第十一章 稳恒磁场Chapter 25 Magnetism
例 有一回旋加 速器,他 的交变 电压的 频率为,半圆形电极的半径为 0.532m,问 加速氘核所需的磁感应强度为多大? 氘核所能达到的最大动能为多大? 其最大速率有多大? (已知氘核的质量为,电荷为 ),
Hz1012 6?
kg103.3 27 C106.1 19
解 由粒子的回旋频率公式,可得
T56.1T
106.1
1012103.3ππ
19
627
22
B
q
mf
M e V7.16
2
2
0
22
k m
RBqE
170 sm1002.4
m
q B Rv
第十一章 稳恒磁场Chapter 25 Magnetism
2) A spiral path 磁聚焦 p588 example 25-5
( 洛仑兹力不做功 )
vvv //
θs invv
洛仑兹力 BqF v
m
与 不垂直B?v?
θc o svv //?
qB
mT π2?
qB
mR v
qB
md π2co s?vTv
//
螺距第十一章 稳恒磁场Chapter 25 Magnetism
应用 电子光学,电子显微镜等,
磁聚焦 在均匀磁场中某点 A 发射一束初速相差不大的带电粒子,它们的 与 之间的夹角不尽相同,但都较小,这些粒子沿半径不同的螺旋线运动,因螺距近似相等,都相交于屏上同一点,此现象称之为磁聚焦,
0v? B
第十一章 稳恒磁场Chapter 25 Magnetism
........,.,..
+
-
A A’
K
+
dL
.,...1p
2p
....
.
.
.
..
.
.
........
...
速度选择器
BeEe 0v
B
E?
0v
3) Velocity selector,or filter,Crossed E and B
fields,Example 25-7 Page 588电子比荷的测定第十一章 稳恒磁场Chapter 25 Magnetism
2
0e
2
1 2
1
2
1
v
L
m
eE
aty
0e v
v L
m
eEat
y
2
0e0
arct anarct an
vv
v
m
eE Ly
2
0e
2 t a n v
Ld
m
eEdy
1p
2p dL
+
-
1y
2y
o
y
x
0v
第十一章 稳恒磁场Chapter 25 Magnetism
2
0e
2
0e
21 2
1
vv
Ld
m
eEL
m
eE
yyy
2
0e
2 t a n v
Ld
m
eEdy2
0e
2
1 2
1
2
1
v
L
m
eE
aty
1p
2p dL
+
-
1y
2y
o
y
x
0v
第十一章 稳恒磁场Chapter 25 Magnetism
1p
2p dL
+
-
1y
2y
o
y
x
0v
2
2
2
0e
L
Ld
E
m
e
y
v
122
0
e 2
L
Ldy
Em
e v
B
E?
0v
上述计算的条件 cv 12
2
e 2
L
Ldy
B
E
m
e
电子比荷第十一章 稳恒磁场Chapter 25 Magnetism
4) Aurora borealis,(northern lights)
example 25-6 page 588
由于地磁场俘获带电粒子而出现的现象第十一章 稳恒磁场Chapter 25 Magnetism
在地磁两极附近,由于磁感线与地面垂直,外层空间入射的带电粒子可直接射入高空大气层内,它们和空气分子的碰撞产生的辐射就形成了极光,
绚丽多彩的极光第十一章 稳恒磁场Chapter 25 Magnetism
R
mBq
2v
v
v
RBqm
70 72 73 74 76
锗的质谱
.,,,,.,,.,,.,,.,,..,.,,,.
...,,.,....,,,,.,,.,.
.,.,,,.,.
.,,.,,
.,,.,,1p 2p +-
2s
3s
1s速度选择器照相底片质谱仪的示意图
5) Mass Spectrometer page 质谱仪 P595
第十一章 稳恒磁场Chapter 25 Magnetism
6),The Hall Effect (霍尔效应 )(P594)
A current-carrying
conductor (载流导体 )
is held in a magnetic
field,the field exerts a
放在磁场中,磁场垂直于电流方向,则在磁场与电流垂直方向出现横向电势差 (Hall emf)。
It is called Hall effect,the electric potential
arisen from it is Hall voltage,
sideways force on the charges moving in the
conductor.
第十一章 稳恒磁场Chapter 25 Magnetism
霍耳效应第十一章 稳恒磁场Chapter 25 Magnetism
Electric field due to the separation of charge is
called the Hall field,
d
B?
I
b
HU
d
IBRU
HH?
霍耳电压
BqqE dH v?
+ qdv?
+ + + + +
- - - - -
eF
mF
HEIn equilibrium,the force due to the electric field
is balanced by the magnetic force,
BE dH v?
第十一章 稳恒磁场Chapter 25 Magnetism
Hall EMF(霍耳电压 ) BbU
dH v?
n q d
IBU?
H nqR
1
H?
霍耳系数
bdqn dv?SqnI dv?
第十一章 稳恒磁场Chapter 25 Magnetism
I ++ + +
- - -
P 型半导体
+
-
HU
B?
mF
dv
霍耳效应的应用 p595
2) 测量磁场
d
IBRU
HH?
霍耳电压
1) 判断半导体的类型
mF
+ + +
- - -
N 型半导体
HU-
B?
I
+
-
dv
Hall effect can be used to find B,I,density,positive
or negative and drift speed of charged carriers….
第十一章 稳恒磁场Chapter 25 Magnetism
25-5.Torque on a Current Loop,Magnetic
Dipole Moment (P583-586,P589-591)
Freely choose a
short length dl,cross
area S,mass m,
charge e,then the
Lorentz’ force on
each particle:
1,Magnetic force on a current
ld
I
S
B?
mf
dv
lI?d
洛伦兹力
Bef dm v
第十一章 稳恒磁场Chapter 25 Magnetism
ld
I
S
B?
mf
dv
lI?d
s i ndm Bef v?
s i ndd d lBSneF v?
N=nS dl
SneI dv?
s ind lBI?
s indd lBIF?
where BlIF dd
安培定律 磁场对电流元的作用 力 BlIF dd
由于自由电子与晶格之间的相互作用,使导线在宏观上看起来受到了磁场的作用力,
第十一章 稳恒磁场Chapter 25 Magnetism
B?
lI?d
F?d有限长载流导线所受的安培力
BlIFF ll dd
意义 磁场对电流元作用的力,在数值上等于电流元 的大小,电流元所在处的磁感强度大小以及电流元和磁感应强度之间的夹角 的正弦之乘积,垂直于 和 所组成的平面,且与 同向,
lI?d B?
lI?d B?F?d F?d
BlId
lI?d
B?
F?d
Note,where is external magnetic field.B?
第十一章 稳恒磁场Chapter 25 Magnetism
Show that the resultant magnetic force on the
wire,no matter what its shape,is the same as
that on a straight wire connecting the two
points carrying the same current,
P
x
y
o
I
B?
L
F?d
P599:11例 求如图不规则的平面载流导线在均匀磁场中所受的力,已知 和,B? I
lI?d
A curved wire,connecting
two points O and P,lies in
a plane perpendicular to a
uniform magnetic field
and carries a current,
B?
I
I
第十一章 稳恒磁场Chapter 25 Magnetism
P
x
y
o
I
B?
L
F?d
0dd 00 yBIFF xx
jBIlFF y
B I lxBIFF lyy 0 dd
BlIF dd
s i nds i ndd lBIFF x
解 取一段电流元 lI?d
c o sdc o sdd lBIFF y
结论 任意平面载流导线在均匀磁场中所受的力,与其始点和终点相同的载流直导线所受的磁场力相同,
lI?d
第十一章 稳恒磁场Chapter 25 Magnetism
No magnetic force exerted on a current loop in
a uniform magnetic field,(均匀 磁场中 任意闭合 导线所受的磁场力 =0)
(1) The sum of magnetic force acted on a whole
curved wire = the one of straight wire with same
current connected from start to end points.
(2) If points O and P overlapping,then l=0,F=0,
(3) Magnetic force is always perpendicular to the
plane defined by length vector and magnetic field.
第十一章 稳恒磁场Chapter 25 Magnetism
2,Torque (力矩 ) on a Current Loop,p589
ne
M,N
O,P
B?
B?
M
N
O
P
I
ne
如图 均匀 磁场中有一矩形载流线圈 MNOP
12 lNOlMN
21 FF
21 B IlF?
43 FF
)s i n ( π13 B IlF
0
4
1
i
iFF
3F
4F
1F
1F
2F
2F
Magnetic force exerts
on a current loop
第十一章 稳恒磁场Chapter 25 Magnetism
BeIS n?
s inB IS?
12 lNOlMN
s i ns i n 1211 lB I llF
B?
1F
3F
M
N
O
P
I
ne
2F
4F
ne
M,N
O,P
B?
1F
2F
Torque:
第十一章 稳恒磁场Chapter 25 Magnetism
nN I S
Introducing the magnetic dipole moment of the coil
(线圈的磁矩 ),It is considered a vector:
This formula,derived here for a rectangular
coil,is valid for any shape of flat coil.
The direction of is perpendicular to the plane
of the coil consistent with the right-hand rule?
BBeIS n
第十一章 稳恒磁场Chapter 25 Magnetism
Homework,P599-603
8,14,20,27,36
Chapter 25 Magnetism
1,Magnet and Magnetic Field
2,Definition of Magnetic Field
3,Force on an Electric Charge
Moving in a Magnetic Field
4,Torque on a Current Loop
第十一章 稳恒磁场Chapter 25 Magnetism
New words and Expressions
magnetic monopole 磁单极
magnet 磁铁
magnetic phenomena 磁现象
north (south) pole 南 (北 )极
cyclotron frequency 回旋加速器
aurora borealis 极光
mass Spectrometer 质谱仪
Hall effect 霍尔效应
Hall EMF 霍耳电压
magnetic dipole moment 磁矩第十一章 稳恒磁场Chapter 25 Magnetism
25-1.Magnets and Magnetic Fields (P580-582)
Magnets used in,Compass; refrigerator-door;
microphone; computer disk; …
1 Magnetic phenomena
I
第十一章 稳恒磁场Chapter 25 Magnetism
Poles,the magnetic effect is strongest.
North (South) pole,The pole of a freely
suspended magnet that points to geographic
north (south).
There are force between poles.
Unlike poles attract,and unlike poles repel.
南极北极
2 Basic Concepts
第十一章 稳恒磁场Chapter 25 Magnetism
If you break a magnet in half,you don’t
obtain isolated north and south poles; instead,
two new magnets are produced,No magnetic
monopole has been observed.
第十一章 稳恒磁场Chapter 25 Magnetism
The direction of the
magnetic field is tangent
to a line at any point,
and the number of lines
per unit area is
proportional to the
strength of the magnetic
field.
Magnetic field lines:
第十一章 稳恒磁场Chapter 25 Magnetism
25-3,Definition of Electric Field (P583-586)
x
y
z
o
运动电荷运动电荷 磁场
0?F?
1 Definition of B?
+ v?
带电粒子在磁场中运动所受的力与运动方向有关,
实验发现带电粒子在磁场中沿某一特定直线方向运动时不受力,此直线方向与电荷无关,
v?
v? v?
第十一章 稳恒磁场Chapter 25 Magnetism
带电粒子在磁场中沿其他方向运动时 垂直于 与特定直线所组成的平面,
F?
v?
当带电粒子在磁场中垂直于此特定直线运动时受力最大,
FFF
m a x
vq
Fmax 大小与 无关v,q
磁感强度 的定义,当正电荷垂直于 特定直线运动时,受力 将 方向定义为该点的 的方向,B?
maxF? vmaxF
B?vqF?
m ax
第十一章 稳恒磁场Chapter 25 Magnetism
+q
v?
B?
maxF
磁感强度 的定义,当正 电荷垂直于特定直线运动时,受力 将 方向定义为该点的 的方向,B?
maxF? vmaxF
B?
vq
FB m a x?磁感强度大小
magnitude
运动电荷在磁场中受力
BqF v
—— Lorentz’s Force
第十一章 稳恒磁场Chapter 25 Magnetism
)g a u s s(G10T1 4?
地磁场 Bearth? 5?10-5 T
SI unit,Tesla (T),Gauss or N/(Am).
单位 特斯拉 mN / A1)T(1
2 Unit of Magnetic Field
第十一章 稳恒磁场Chapter 25 Magnetism
25-4,Force on an Electric Charge Moving
in Magnetic Field (page 586-589)
The charged particles moving in magnetic field
acted by magnetic force:
1,Lorentz’s Force
x y
z
o
BqF vm
+q
v?
B?
mF
The force acting on a
charged particle moving
mF
with velocity through a magnetic field
is always perpendicular to and,
B?v?
v? B?
第十一章 稳恒磁场Chapter 25 Magnetism
(when? = 0,F=0),
B?
v?
F?
q
Magnetic force only change moving direction WB=0.
BvqFq
BvqFq
,0;,0
BqF vm?s inBq v?
方向:即以右手四指 由经小于 的角弯向,
拇指的指向就是正电荷所受 洛仑兹力的方向,
B?v180
Right hand rule
第十一章 稳恒磁场Chapter 25 Magnetism
,particle straightly move
in constant velocity.
B?+
q v?
q- v
0?F?
(1) Particle moves parallel to,B?
2,The Motion of Charged Particle in Uniform,B?
(2) Particle moves perpendicular to,B?
Example 25-4,Electron’s path in a uniform
magnetic field.
第十一章 稳恒磁场Chapter 25 Magnetism
R
mBq
2
0
0
v
v?
qB
mR 0v?
B0v
maF?
We solve for R and find
第十一章 稳恒磁场Chapter 25 Magnetism
qB
mR
T
π2π2
0
v
m
qB
T
f
π2
1
The time T (period of rotation) required for a
particle of charge q moving with constant speed to
make one circular revolution in a uniform
magnetic field is:
The frequency of rotation is
是回旋加速器 (cyclotron )的原理,
第十一章 稳恒磁场Chapter 25 Magnetism
Note:
The frequency does not depend on the speed.
If speed is large,r is large for a given,but the
frequency is independent of and r.v?
B?
第十一章 稳恒磁场Chapter 25 Magnetism
电场力 EqF
e
磁场力 ( 洛仑兹力 ) BqF vm
BqEqF v
运动电荷在电场和磁场中受的力
3,Particle moves in electric and magnetic field p588
It is often called the Lorentz equation and is
considered one of the basic equation in physics.
第十一章 稳恒磁场Chapter 25 Magnetism
3,The application of particle moves in electric
and magnetic field
1) Cyclotron 回旋加速器
1932年劳伦斯研制第一台回旋加速器的 D型室,
此加速器可将质子和氘核加速到 1MeV的能量,
为此 1939年劳伦斯获得诺贝尔物理学奖,
第十一章 稳恒磁场Chapter 25 Magnetism
m
qBf
π2
m
q B R 0?v
2
k 2
1 vmE?
频率与半径无关到半圆盒边缘时
m
RBqE
2
2
0
22
k?回旋加速器原理图
N
S
B
2D 1D
O
~
第十一章 稳恒磁场Chapter 25 Magnetism
我国于
1994年建成的第一台强流质子加速器,
可产生数十种中短寿命放射性同位素,
第十一章 稳恒磁场Chapter 25 Magnetism
例 有一回旋加 速器,他 的交变 电压的 频率为,半圆形电极的半径为 0.532m,问 加速氘核所需的磁感应强度为多大? 氘核所能达到的最大动能为多大? 其最大速率有多大? (已知氘核的质量为,电荷为 ),
Hz1012 6?
kg103.3 27 C106.1 19
解 由粒子的回旋频率公式,可得
T56.1T
106.1
1012103.3ππ
19
627
22
B
q
mf
M e V7.16
2
2
0
22
k m
RBqE
170 sm1002.4
m
q B Rv
第十一章 稳恒磁场Chapter 25 Magnetism
2) A spiral path 磁聚焦 p588 example 25-5
( 洛仑兹力不做功 )
vvv //
θs invv
洛仑兹力 BqF v
m
与 不垂直B?v?
θc o svv //?
qB
mT π2?
qB
mR v
qB
md π2co s?vTv
//
螺距第十一章 稳恒磁场Chapter 25 Magnetism
应用 电子光学,电子显微镜等,
磁聚焦 在均匀磁场中某点 A 发射一束初速相差不大的带电粒子,它们的 与 之间的夹角不尽相同,但都较小,这些粒子沿半径不同的螺旋线运动,因螺距近似相等,都相交于屏上同一点,此现象称之为磁聚焦,
0v? B
第十一章 稳恒磁场Chapter 25 Magnetism
........,.,..
+
-
A A’
K
+
dL
.,...1p
2p
....
.
.
.
..
.
.
........
...
速度选择器
BeEe 0v
B
E?
0v
3) Velocity selector,or filter,Crossed E and B
fields,Example 25-7 Page 588电子比荷的测定第十一章 稳恒磁场Chapter 25 Magnetism
2
0e
2
1 2
1
2
1
v
L
m
eE
aty
0e v
v L
m
eEat
y
2
0e0
arct anarct an
vv
v
m
eE Ly
2
0e
2 t a n v
Ld
m
eEdy
1p
2p dL
+
-
1y
2y
o
y
x
0v
第十一章 稳恒磁场Chapter 25 Magnetism
2
0e
2
0e
21 2
1
vv
Ld
m
eEL
m
eE
yyy
2
0e
2 t a n v
Ld
m
eEdy2
0e
2
1 2
1
2
1
v
L
m
eE
aty
1p
2p dL
+
-
1y
2y
o
y
x
0v
第十一章 稳恒磁场Chapter 25 Magnetism
1p
2p dL
+
-
1y
2y
o
y
x
0v
2
2
2
0e
L
Ld
E
m
e
y
v
122
0
e 2
L
Ldy
Em
e v
B
E?
0v
上述计算的条件 cv 12
2
e 2
L
Ldy
B
E
m
e
电子比荷第十一章 稳恒磁场Chapter 25 Magnetism
4) Aurora borealis,(northern lights)
example 25-6 page 588
由于地磁场俘获带电粒子而出现的现象第十一章 稳恒磁场Chapter 25 Magnetism
在地磁两极附近,由于磁感线与地面垂直,外层空间入射的带电粒子可直接射入高空大气层内,它们和空气分子的碰撞产生的辐射就形成了极光,
绚丽多彩的极光第十一章 稳恒磁场Chapter 25 Magnetism
R
mBq
2v
v
v
RBqm
70 72 73 74 76
锗的质谱
.,,,,.,,.,,.,,.,,..,.,,,.
...,,.,....,,,,.,,.,.
.,.,,,.,.
.,,.,,
.,,.,,1p 2p +-
2s
3s
1s速度选择器照相底片质谱仪的示意图
5) Mass Spectrometer page 质谱仪 P595
第十一章 稳恒磁场Chapter 25 Magnetism
6),The Hall Effect (霍尔效应 )(P594)
A current-carrying
conductor (载流导体 )
is held in a magnetic
field,the field exerts a
放在磁场中,磁场垂直于电流方向,则在磁场与电流垂直方向出现横向电势差 (Hall emf)。
It is called Hall effect,the electric potential
arisen from it is Hall voltage,
sideways force on the charges moving in the
conductor.
第十一章 稳恒磁场Chapter 25 Magnetism
霍耳效应第十一章 稳恒磁场Chapter 25 Magnetism
Electric field due to the separation of charge is
called the Hall field,
d
B?
I
b
HU
d
IBRU
HH?
霍耳电压
BqqE dH v?
+ qdv?
+ + + + +
- - - - -
eF
mF
HEIn equilibrium,the force due to the electric field
is balanced by the magnetic force,
BE dH v?
第十一章 稳恒磁场Chapter 25 Magnetism
Hall EMF(霍耳电压 ) BbU
dH v?
n q d
IBU?
H nqR
1
H?
霍耳系数
bdqn dv?SqnI dv?
第十一章 稳恒磁场Chapter 25 Magnetism
I ++ + +
- - -
P 型半导体
+
-
HU
B?
mF
dv
霍耳效应的应用 p595
2) 测量磁场
d
IBRU
HH?
霍耳电压
1) 判断半导体的类型
mF
+ + +
- - -
N 型半导体
HU-
B?
I
+
-
dv
Hall effect can be used to find B,I,density,positive
or negative and drift speed of charged carriers….
第十一章 稳恒磁场Chapter 25 Magnetism
25-5.Torque on a Current Loop,Magnetic
Dipole Moment (P583-586,P589-591)
Freely choose a
short length dl,cross
area S,mass m,
charge e,then the
Lorentz’ force on
each particle:
1,Magnetic force on a current
ld
I
S
B?
mf
dv
lI?d
洛伦兹力
Bef dm v
第十一章 稳恒磁场Chapter 25 Magnetism
ld
I
S
B?
mf
dv
lI?d
s i ndm Bef v?
s i ndd d lBSneF v?
N=nS dl
SneI dv?
s ind lBI?
s indd lBIF?
where BlIF dd
安培定律 磁场对电流元的作用 力 BlIF dd
由于自由电子与晶格之间的相互作用,使导线在宏观上看起来受到了磁场的作用力,
第十一章 稳恒磁场Chapter 25 Magnetism
B?
lI?d
F?d有限长载流导线所受的安培力
BlIFF ll dd
意义 磁场对电流元作用的力,在数值上等于电流元 的大小,电流元所在处的磁感强度大小以及电流元和磁感应强度之间的夹角 的正弦之乘积,垂直于 和 所组成的平面,且与 同向,
lI?d B?
lI?d B?F?d F?d
BlId
lI?d
B?
F?d
Note,where is external magnetic field.B?
第十一章 稳恒磁场Chapter 25 Magnetism
Show that the resultant magnetic force on the
wire,no matter what its shape,is the same as
that on a straight wire connecting the two
points carrying the same current,
P
x
y
o
I
B?
L
F?d
P599:11例 求如图不规则的平面载流导线在均匀磁场中所受的力,已知 和,B? I
lI?d
A curved wire,connecting
two points O and P,lies in
a plane perpendicular to a
uniform magnetic field
and carries a current,
B?
I
I
第十一章 稳恒磁场Chapter 25 Magnetism
P
x
y
o
I
B?
L
F?d
0dd 00 yBIFF xx
jBIlFF y
B I lxBIFF lyy 0 dd
BlIF dd
s i nds i ndd lBIFF x
解 取一段电流元 lI?d
c o sdc o sdd lBIFF y
结论 任意平面载流导线在均匀磁场中所受的力,与其始点和终点相同的载流直导线所受的磁场力相同,
lI?d
第十一章 稳恒磁场Chapter 25 Magnetism
No magnetic force exerted on a current loop in
a uniform magnetic field,(均匀 磁场中 任意闭合 导线所受的磁场力 =0)
(1) The sum of magnetic force acted on a whole
curved wire = the one of straight wire with same
current connected from start to end points.
(2) If points O and P overlapping,then l=0,F=0,
(3) Magnetic force is always perpendicular to the
plane defined by length vector and magnetic field.
第十一章 稳恒磁场Chapter 25 Magnetism
2,Torque (力矩 ) on a Current Loop,p589
ne
M,N
O,P
B?
B?
M
N
O
P
I
ne
如图 均匀 磁场中有一矩形载流线圈 MNOP
12 lNOlMN
21 FF
21 B IlF?
43 FF
)s i n ( π13 B IlF
0
4
1
i
iFF
3F
4F
1F
1F
2F
2F
Magnetic force exerts
on a current loop
第十一章 稳恒磁场Chapter 25 Magnetism
BeIS n?
s inB IS?
12 lNOlMN
s i ns i n 1211 lB I llF
B?
1F
3F
M
N
O
P
I
ne
2F
4F
ne
M,N
O,P
B?
1F
2F
Torque:
第十一章 稳恒磁场Chapter 25 Magnetism
nN I S
Introducing the magnetic dipole moment of the coil
(线圈的磁矩 ),It is considered a vector:
This formula,derived here for a rectangular
coil,is valid for any shape of flat coil.
The direction of is perpendicular to the plane
of the coil consistent with the right-hand rule?
BBeIS n
第十一章 稳恒磁场Chapter 25 Magnetism
Homework,P599-603
8,14,20,27,36