Chapter 16 Kinetic Theory of Gases
1) 分子可视为质点; 线度间距 ;
,m10~ 10?d
rdr,m10~ 9
2) 除碰撞瞬间,分子间无相互作用力;
理想气体的微观模型
4) 分子的运动遵从经典力学的规律,
3) 弹性质点(碰撞均为完全弹性碰撞);
Chapter 16 Kinetic Theory of Gases
Chapter 16
Kinetic Theory of Gases
(气体动理论)
1,Molecular interpretation of Temperature
2,Distribution of Molecular Speed
3,Mean Free Path
Chapter 16 Kinetic Theory of Gases
Root mean square,方均根速率
Maxwell distribution of speeds
麦克斯韦速率分布率
Mean free path 平均自由程
Chapter 16 Kinetic Theory of Gases
§ 16-1 Molecular Interpretation of Temperature
(384-388)
This section is typical method of microscopic
research which is called kinetic theory of gases.
Kinetic theory is based on an atomic model of
matter,The basic assumption of kinetic theory
is that the measurable properties of gases
combined actions of countless numbers of
atoms and molecules.
Chapter 16 Kinetic Theory of Gases
1 Velocities based on statistics:
Statistical Hypotheses (统计假设 ):
(a) Velocities of molecules are
different,Each molecule has its
velocity,which may be changed due
to collisions;
(b) At equilibrium,the distribution of molecules
on the position is uniform,which means that the
density of number of molecules is the same
everywhere.
Chapter 16 Kinetic Theory of Gases
V
N
V
Nn
d
d分子按位置的 分布是均匀 的
(C) At equilibrium,velocity of each molecule has
the same probability to point to any directions,
That is,the distribution of velocity of molecules
is uniform in direction,which leads to the mean-
square speeds of all components of velocity are
same.
分子 各方向运动概率均等,即分子按方向的分布是均匀的。
Chapter 16 Kinetic Theory of Gases
0 zyx vvv
kji iziyixi vvvv
由于分子沿 x 轴正向和 x 轴负向的运动概率是相同的,因此,在 x 方向上分子的平均速度为 0 。
分子运动速度分子平均速度
021
N
Nxxx
x
vvvv?
同样有
,0?yv 0?zv
Chapter 16 Kinetic Theory of Gases

i
ixx N
22 1 vv
分子速度在 x方向的方均值,
同理,分子速度在 y,z方向的方均值:
mean-square speeds
N
x
2
Nx
2
2x vvv
2
1 i ixx N
22 1 vv
,1 22
i
iyy N vv
i
izz N
22 1 vv
Chapter 16 Kinetic Theory of Gases
2222
3
1 vvvv
zyx
各方向运动 概 率均等
There is no preference to one direction or another
由矢量合成 (combine)法则,分子速度的方均值为:
222
zyx vvv
22222 3
xzyx vvvvv

i
ixx N
222 1
3
1 vvv
Chapter 16 Kinetic Theory of Gases
2 Pressure Formula of Ideal Gases:
xvm?
xvm-?
2A
v?
o
y
z
x
y
z
x
1A v?
yv
xv?
zv?
o
设 边长分别为 x,y 及 z 的 长方体中有 N 个全同的质量为 m 的气体分子,计算 壁面所受压强,1A
Chapter 16 Kinetic Theory of Gases
则有单个 分子遵循力学规律
The change in momentum,which is the final
momentum minus the initial momentum.
ixixixix mmmp vvv 2
2,x方向动量变化
1.跟踪第 i个分子,它在某一时刻的速度 在 x方向的分量为,
iv
ixv

i
ixx N
222 1
3
1 vvv
Chapter 16 Kinetic Theory of Gases
3,分子与 A2面发生碰撞后,又与 A1面发生碰撞,相继两次对 A1面碰撞所用的时间:
The time it takes the molecule to travel across the box
and back again,a distance equal to 2x.
ixxt v2
4 器壁 所受冲力
The average force will be equal to the force
exerted during one collision divided by the time
between collisions:
xm
x
m
t
mF
x
x
x 2
2
2 v
v
vv

/
)(
1A
Chapter 16 Kinetic Theory of Gases
大量 分子总效应单位时间 N 个粒子对器壁 To calculate the force
due to all the molecules in the box,we have to
add the contribution of each,The net force on
the wall
2
2
2
2
x
ix
i
ix
i
ix
x
Nm
Nx
Nm
x
m
x
mF vvvv
i

器壁 所受平均冲力 xNmF
x2v?1A
统计规律
xyz
Nn? 22
3
1 vv?
x
Chapter 16 Kinetic Theory of Gases
pressure
22
33
vv
V
Nm
xyz
Nm
yz
Fp
分子平均平动动能 average kinetic energy
2
2
1 vmK?
Knp
3
2?
Knmnmnp 32213231 22 vv
3
2v
N
x
m
F?
p386
Chapter 16 Kinetic Theory of Gases
Knp 32?统计关系式宏观可测量量 微观量的统计平均值压强是大量分子对时间、对面积的统计平均结果,
表明压强具有统计意义,即它对于大量气体分子才有明确的意义。
分子数密度越大,压强越大;nP?
分子运动得越激烈,压强越大。KP?
压强的物理 意义
Chapter 16 Kinetic Theory of Gases
3 average translational kinetic energy of molecules:
we have the average translational kinetic
energy formula of a single atomic molecule of
an ideal gas is
n k Tp?Combine and
kTmK 2321 2 v
Knp
3
2?
ideal gas
equation
Chapter 16 Kinetic Theory of Gases
宏观可测量量微观量的统计平均值分子平均平动动能温度的微观意义
kTmK 2321 2 v
分子平均平动动能只和温度有关,并且与热力学温度成正比 。
The average translational kinetic energy of
molecules in an ideal gas is directly proportional
to the absolute temperature,(P386)
Chapter 16 Kinetic Theory of Gases
(2)热力学温度是分子平均平动动能的量度 。 温度反映了物体内部分子无规则运动的激烈程度 。
The higher the temperature,according to
kinetic theory,the faster molecules are moving
on the average.
(1) The macroscopic quantities,such as pressure
and temperature,of an ideal gas are
microscopically statistical average quantities of
motion of molecules.
Discussion
Chapter 16 Kinetic Theory of Gases
4 root-mean-square speed ( 方均根速率 )
mkT /32?v
kTm
2
3
2
1 2?v
μ
RT
m
kT 332
vv r m s
例 2:求 27?C 的空气方均根速率。(空气的摩尔质量为 29 g/mol )
解:
31029
3 0 031.83

m / s8.507?
Example 16-2 and 16-3 page 387
RT32
v
Chapter 16 Kinetic Theory of Gases
§ 16-2 Distribution of Molecular Speeds (388-390)
The speed of individual molecule is random;
the speeds of immense molecules must obey
some rules of distribution.
单个分子速度不可预知,但大量分子的速度分布遵循统计规律,是确定的,这个规律叫 麦克斯韦速度分布律,如果只考虑分子按速度的大小即速率的分布,
则相应的规律叫 麦克斯韦速率分布律 (Maxwell
distribution of speeds )。
Chapter 16 Kinetic Theory of Gases
Chapter 16 Kinetic Theory of Gases
麦克斯韦是 19世纪英国伟大的物理学家、数学家。
1831年 11月 13日生于苏格兰的爱丁堡,自幼聪颖,父亲是个知识渊博的律师,使麦克斯韦从小受到良好的教育。 10岁时进入爱丁堡中学学习,14岁就在爱丁堡皇家学会会刊上发表了一篇关于二次曲线作图问题的论文,已显露出出众的才华。 1847年进入爱丁堡大学学习数学和物理。 1850年转入剑桥大学三一学院数学系学习。 1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。 1860年到伦敦国王学院任自然哲学和天文学教授。 1861年选为伦敦皇家学会会员。
Chapter 16 Kinetic Theory of Gases
1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著
,论电和磁,,并于 1873年出版。 1871年受聘为剑桥大学新设立的卡文迪什实验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到 1879年 11月 5日在剑桥逝世。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、
光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是 19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。
Chapter 16 Kinetic Theory of Gases
1 The Maxwell Distribution,p388
In 1859,Scottish physicist James Clerk Maxwell showed
the speed distribution of gas molecules in equilibrium,
表示在速率 v 附近,单位速率区间内分子出现的概率,
即概率密度。
或表示在速率 v 附近,单位速率区间内分子数占总分子数的百分比。
vvvv vv d
d1lim1lim)(
00
N
N
N
NN
Nf?



Chapter 16 Kinetic Theory of Gases
Maxwell’s probability distribution function
2223
2
e)
π2
(π4)( vv
v
kT
m
kT
mf麦氏 分布函数
vv Nd
dNf?)(
Chapter 16 Kinetic Theory of Gases
分子速率分布图
N,分子总数
N? 为速率在 区间的分子数,vvv
)/( v NN
o vv vv
S?
表示速率在 区间的分子数占总数的百分比,NNS
vvv
Chapter 16 Kinetic Theory of Gases
The quantity represents the number of
molecules that have speed between
2 Physical Meaning:
vvv
vv
v
de
π2
π4 2223
2
kT
m
kT
m
N
dN )(
vv )d(d fNN?
vv)d(f
N,分子总数)/( v NN
o vv vv
S?
Chapter 16 Kinetic Theory of Gases
One of fundamental properties of any probability
function is the normalization,
3 Condition of Normalization (归一化 )
o v
)(vf
dvN d vdNdvvf 00 )( N dNN 01 1 NN
在 f(v)~v整个曲线下的面积为 1 ----- 归一化条件。
分子在整个速率区间内出现的概率为 1 。
Chapter 16 Kinetic Theory of Gases
4 Three kinds of special Speeds p389
(1) The Average Speed 平均速率,
m
kTf
π
8d)(
0

vvvv
m
kT60.1?v
例:求空气分子在 27oC时的平均速率。
解:由公式,300 KT?
31029
3 0 031.88


g/ m ol 29?m
m / s1.4 6 9?
m
kT
π
8?v
v
Chapter 16 Kinetic Theory of Gases
(2) The Root-Mean-Square Speed (方均根速率 ):
By the similar way,the root-mean-speed is:
0 22 d vvvv )(f
m
kT32?v
m
kT
m
kT 73.132
r m s vv
Chapter 16 Kinetic Theory of Gases
(3) The Most Probable Speed (最概然 速率 )vP:
It has the largest probability,It is the speed
occurs more than any others.
0
d
)(d
p
vvv
vf
v
)(vf
o pv
maxf
将 f(v) 对 v 求导,令一次导数为 0
2223
2
e)
π2
(π4)( vv
v
kT
m
kT
mf
Chapter 16 Kinetic Theory of Gases
ve kTmv 22/2 02
22/2 2?
kT
vmev kTmv
0
2
1
2

kT
mv
m
kT411,?
The Most Probable Speed
m
kT2
p?v
Chapter 16 Kinetic Theory of Gases
discussion
1,vP与温度 T的关系
pvT
曲线的峰值右移,由于曲线下面积为 1不变,
所以峰值降低。
12 TT?
m
kT2
p?v
1T
1pv 2pv
2T
v
)(vf
o
21 TT?
Chapter 16 Kinetic Theory of Gases
pvm
曲线的峰值左移,由于曲线下面积为 1不变,
所以峰值升高。
12 mm?
2,vP与 分子质量 m的关系
1M
1pv 2pv
2M
v
)(vf
o
12 MM?
m
kT2
p?v
Chapter 16 Kinetic Theory of Gases
同一温度下不同气体的速率分布
2H
2O
0pv pHv v
)(vf
o
N2 分子在不同温度下的速率分布
KT 3 0 01?
1pv 2pv
KT 12002?
v
)(vf
o
Chapter 16 Kinetic Theory of Gases
例 如图示两条 曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线,从图上数据求出氢气和氧气的最可几速率,
vv ~)(f
m
kT2
p?v
)O()H( 22 mm
)O()H( 2p2p vv
m / s2000)H( 2p v
4
2
32
)H(
)O(
)O(
)H(
2
2
2p
2p
m
m
v
v
m / s5 0 0)O( 2p v
)(vf
1sm/v2000o
Chapter 16 Kinetic Theory of Gases
Example:
Find out the average translation K and root-
mean-speed for molecules of N2 under (1)
t=1000?C; (2) t=0?C; (3) t=-150?C.
Solution:
Chapter 16 Kinetic Theory of Gases
JkTK 2023 106321 2 7 31013851231,.)(
13
3
2 1006.1
1028
1 2 7 331.833?

sm
M
RTv
m o l
JkTK 2123 106552 73101 3851232,.)(
1
3
2 4 93
1028
2 7331.833?

sm
M
RTv
m o l
JkTK 2123 1055212 31013 851233,.)(
1
3
2 3 31
1028
1 2331.833?

sm
M
RTv
m o l
Chapter 16 Kinetic Theory of Gases
三种速率的比较
m
kT2
p?v m
kT
π
8?v
m
kT32?v
在统计意义上都是说明大量分子的运动速率的典型值。
都与 成正比;与 成反比。T m
Chapter 16 Kinetic Theory of Gases
2
p vvv
Chapter 16 Kinetic Theory of Gases
§ 16-6 Mean Free Path (P396-397)
An important parameter for a given
situation is the mean free path,which is defined
as the average distance a molecule travels
between collisions.
We would expect that the greater the gas
density,and the larger the molecules,the shorter
the mean free path would be.
平均自由程,一个气体分子在连续两次碰撞之间所可能经过的各段自由路程的平均值。
Chapter 16 Kinetic Theory of Gases
Chapter 16 Kinetic Theory of Gases
Suppose our gas is made up of molecules which
are hard a spheres radius r.
We define the mean free path,lM,as the average
distance between collisions.
Hence the mean free path is
Typical value,10-8----10-7( m)
Pd
kT
22
Chapter 16 Kinetic Theory of Gases
Discussion
平均自由程与分子的有效直径的平方及分子密度成反比,而与平均速率无关。
一定时
p
1?
一定时 T?p
T
Chapter 16 Kinetic Theory of Gases
例 1:求空气分子在标准状态下的平均自由程。 (空气分子直径为 3?10?10m )
解:标准状态
Pa100 1 3.1,K2 7 3 500 PT
Pd
kT
22
5210
23
10013.1)103(2
2731038.1


m103.9 8
Chapter 16 Kinetic Theory of Gases
Homework,
Page 400,3,7,10