~ ?yvD ?Dy
uú?
Dv
^ù?M
#M
WG
?1"¥B
ê
D [?b
¥
= ? ?
Bí#íf
±sDa bW3+
aí k)
±sZ?b
uú?
Dv
?
q 176D
H
9 10Ds
uú?
Dv¥ù?ZE?1?¨
KEb
~ ?yvD ?Dy
?Bc
f
K ??
~ ?yvD ?Dy
?B?
f
~ ?yvD ?Dy
Ba'à
Q
" μ
?+??é¥
Yt¥98,
F???"¥
Yt?1?"¥í
í,
},,,{
21 n
aaaA L=
}{
μ¥+?xxM =
μK"
íK"
,Ma∈,Ma?
.,,¥0"
^ü
a5A ? BABxAx ∈∈
.BA?:T
~ ?yvD ?Dy
"s ?,N----1 ?
"
Z----?
"
Q----μ ?
" R----
L
"
"W¥1",
.,,RQQZZN
.,,M?Dü?" O ? BAABBA
)( BA =
},2,1{=A è ?
},023{
2
=+?= xxxC
.CA =5
?c ?í
í¥"?1 b",)(?:T
è ?,}01,{
2
=+∈ xRxx
?
=
b"1 ?"¥0",
~ ?yvD ?Dy
 uW
^·o?

?
L
-W¥ ?8
L
,
?
?
L
?S uW¥
?,
.,,baRba <∈? O
}{ bxax << ?1 7 uW,
),( ba:T
}{ bxax ≤≤ ?1> uW,
],[ ba:T
o xa
b
o xa
b
~ ?yvD ?Dy
}{ bxax <≤
}{ bxax ≤<
?1? 7 uW,
?1? 7 uW,
),[ ba:T
],( ba:T
}{),[ xaxa ≤=+∞
}{),( bxxb <=?∞
o xa
o
x
b
μK uW
íK uW
uW�l

?W¥  ? (L
¥é)?1 uW¥é,
~ ?yvD ?Dy

#×,0,>δδ O
^
?
L
D
! a
).,(
0
δaU:T
,?S?
#×¥??? a
.?S?
#×¥??δ
.}{),( δδδ +<<?= axaxaU
x
a
δ?a
δ+a
δδ
,
#×¥ ??¥? δa
.}0{),(
0
δδ <?<= axxaU
,}{
#×¥?1?
" δδ aaxx <?
~ ?yvD ?Dy
è
DM


V??
′ ??M¥
?1 è
,
?i

DM

^M,V?,7y¥,
Yè¨3
 a,b,c ?V
Uè
,
7
′M¥
?1 M
,

DM
¥V
UZE
¨3
 x,y,t ?V
UM
,
~ ?yvD ?Dy
 '′
<?

=
0
0
aa
aa
a
)0( ≥a

?é,;baab =;
b
a
b
a
=
.bababa +≤±≤?
)0( >≤ aax ;axa ≤≤?
)0( >≥ aax ;axax?≤≥ 
'′??
T,
~ ?yvD ?Dy
=af

Q
è ?
=¤?H?¥?é
n
nrS
n
π
= sin2
L,5,4,3=n
3
S 5
S
4
S
6
S
?
=¤? nH?
O
r
n
π
)
~ ?yvD ?Dy
yM
 1M

.)(,
000
)¥f
′1f
??
H? xxfDx ∈
.}),({ ?1f
¥′×
f
′ ?8F?¥
"
DxxfyyW ∈==
M
 y?vB?E59μ
??¥
′
?5? y
^ x¥f
:T
?l
! x y
^
?M

D
^B?ó?¥
"
" D?S??f
¥?l×
)( xfy =
?T?
?
Dx∈,
~ ?yvD ?Dy
(
(
)
)
0
x
)(
0
xf
1M

yM

?E5 f
f
¥
1
í ?l× D?E5,
x
y
D
W
??,?l×
^1M

|¥
P
Tμil
¥B M
L
′,
2
1 xy?= è ?
]1,1[,?D
2
1
1
x
y
= è ?
)1,1(,?D
~ ?yvD ?Dy
?l
.)(
}),(),{(
¥m?f
?1?"
xfy
DxxfyyxC
=
∈==
o x
y
),( yx
x
y
W
D
?T1M
?
l×
= ? |B?
′
H?¥f
′9
^oμB???f
?S?′f
?
5?D′f

 è ?
222
ayx =+
~ ?yvD ?Dy
(1) ?|f
<?
=
>
==
01
00
01
sgn
x
x
x
xy
?
?
?
+?+
y¥f
 è
1
-1
x
y
o
xxx?= sgn
~ ?yvD ?Dy
(2) |?f
y=[x]
[x]V
U??V ¥Kv?
1 2 3 4 5
-2
-4
-4 -3 -2 -1
4
3
2
1
-1
-3
x
y
o
¨0 wL
x
~ ?yvD ?Dy
==
^í ?
H?
^μ ?
H?
x
x
xDy
0
1
)(
μ ?
?í ?
?
1
x
y
o
(3) 3 ? X ?f
~ ?yvD ?Dy
(4) |K′f
)}(),(max{ xgxfy =
)}(),(min{ xgxfy =
y
x
o
)(xf
)(xg
y
x
o
)(xf
)(xg
~ ?yvD ?Dy
≤?
>?
=
0,1
0,12
)(,
2
xx
xx
xf è ?
12?= xy
1
2
= xy
1M
¥?]MS??,?E5¨?]¥
T0 ?V
U¥f
,?1s
f
,
~ ?yvD ?Dy
è

?
3 á
3B?? ??

, o? ?m
U,èa UD
HW ¥f
1"
T,)0( ≥tt
3
U
t
o
E
),
2
( E
τ
)0,(τ
2
τ
,]
2
,0[
H?
τ
∈t
t
E
U
2
τ
= ;
2
t
E
τ
=
? ??

?|¥èa
,],
2
(
H? τ
τ
∈t
),(
2
0
0 τ
τ?
τ
=? t
E
U )(
2
τ?
τ
= t
E
U'
~ ?yvD ?Dy
,),(
H? +∞τ∈t,0=U
Vr
T1
^B?s
f
,)(tUU =∴
+∞τ∈
τ
τ
∈τ?
τ
τ

τ
=
),(,0
],
2
(),(
2
]
2
,0[,
2
)(
t
tt
E
tt
E
tU
U
t
o
E
),
2
( E
τ
)0,(τ
2
τ
~ ?yvD ?Dy
è
.)3(,
212
101
)( ¥?l× pf
! +
≤<?
≤≤
= xf
x
x
xf
3
≤+<?
≤+≤
=+∴
2312
1301
)3(
x
x
xf
≤<?
≤≤
=
212
101
)(
x
x
xfQ
≤<
≤≤?
=
122
231
x
x
]1,3[,
f
D
#
~ ?yvD ?Dy
1f
¥???,
,,)( DIDxf ∈ uW¥?l×1
!f
,,
2121
H?#
 ?i
? ?T? uW xxxxI <;)(

^??9F¥ uW5?f
Ixf
),()()1(
21
xfxf <μ
)(xfy =
)(
1
xf
)(
2
xf
x
y
o
I
?af
¥??é
~ ?yvD ?Dy
)(xfy =
)(
1
xf
)(
2
xf
x
y
o
I;)(

^??h
¥ uW5?f
Ixf
,,)( DIDxf ∈ uW¥?l×1
!f
,,
2121
H?#
 ?i
? ?T? uW xxxxI <
),()()2(
21
xfxf >μ
~ ?yvD ?Dy
2f
¥ 
}?,
}f
μ?1?e??
!,,DxD ∈?
)()( xfxf =?
y
x
)( xf?
)( xfy =
ox-x
)(xf;)( 1
}f
? xf
~ ?yvD ?Dy
μ?1?e??
!,,DxD ∈?
)()( xfxf?=?;)( 1 f
? xf
f
)( xf?
y
x
)(xf
o x
-x
)( xfy =
~ ?yvD ?Dy
3f
¥?
ù?,

Yè
a?
ùf
¥?
ù
^· Kl? ?
ù ,
2
l
2
l
2
3l
2
3l
,)( Dxf ¥?l×1
!f
?TiB??1
,¥
)()( xflxf =+ O
1?5? )(xf
.)(,,DlxDxl ∈±∈
P¤? ?B
.)(,¥?
ù?1
ùf
xfl.? ?
~ ?yvD ?Dy
M
-M
y
x
o
y=f(x)
X
μ? í?
M
-M
y
x
o
X
0
x
,)(,,0,? ?μ ? MxfXxMDX ≤∈?>
4f
¥μ??,
..)( ?5?í?
μ?5?f
Xxf
~ ?yvD ?Dy
1af
¥
1af
¥
15
)0)(( )(/)(,)()(,)()( ≠± Xgxgxfxgxfxgxf
!
D
^
s
Y
?
l
?
D
(gffgD=D
sY?1f
D ¥Fahaea"
b
)(xg)(xf

H9 V1
gfgfgf /,,±

ìüè I
n?
1?
f
?�Yb
~ ?yvD ?Dy
2aQf
0
x
0
y
0
x
0
y
x
y
D
W
)(xfy =f
o
x
y
D
W
)( yx?=Qf
o
~ ?yvD ?Dy
)( xfy =°¤f
x
y
o
),( abQ
),( baP
)(xy?=Qf
°¤f
DQf
¥m?1?°L ?,
xy =
~ ?yvD ?Dy
?a'?f
1a
af
)(
^è
μ=
μ
xy
o
x
y
)1,1(
1
1
2
xy =
xy =
x
y
1
=
xy =
~ ?yvD ?Dy
2a·
f
)1,0( ≠>= aaay
x
x
ay =
x
a
y )
1
(=
)1( >a
)1,0(
x
ey =
~ ?yvD ?Dy
3a
f
)1,0(log ≠>= aaxy
a
xy ln=
xy
a
log=
xy
a
1
log=
)1( >a
)0,1(
~ ?yvD ?Dy
4a ??f
??f
xy sin=
xy sin=
~ ?yvD ?Dy
xy cos=
xy cos=
??f
~ ?yvD ?Dy
? Mf
xy tan=
xy tan=
~ ?yvD ?Dy
xy cot=
? Mf
xy cot=
~ ?yvD ?Dy
?éf
xy sec=
xy sec=
~ ?yvD ?Dy
xy csc=
?éf
xy csc=
~ ?yvD ?Dy
5aQ ??f
xy arcsin=
xy arcsin=Q??f
~ ?yvD ?Dy
xy arccos=
xy arccos=Q??f
~ ?yvD ?Dy
xy arctan=
xy arctan=Q? Mf
~ ?yvD ?Dy
af
,·
f
,
f
, ??f
Q
??f
d?1 '?f
,
xy cot=Q? Mf
arc
xy cot=arc
~ ?yvD ?Dy
Baˉf
?f
1aˉf
,uy =
!
,1
2
xu?=
2
1 xy?=
?l,
!f
)(ufy = ¥?l×
f
D,7f
)( xu?= ¥′×1
Z, ≠∩
ZD
f
,5?
f
)]([ xfy?= 1 x¥ˉf
,
,1M
←x,?WM
←u
,yM
←y
~ ?yvD ?Dy
?i 
1.?
^ ?
?f
? V[ˉ?B?ˉ
f
¥ ;
,arcsin uy = è ?;2
2
xu +=
)2arcsin(
2
xy +≠
2.ˉf
V[?
?[
¥f
üVˉ
?,
,
2
cot
x
y = è ?,uy =
,cot vu =,
2
x
v =
2a?f
?è
'?f
üVμKQ
15
μKQ¥f
ˉ??
?i V¨
B?
T0V
U ¥f
,?1 ?f
,
~ ?yvD ?Dy
è
3
,
0
1
)(


=
Qx
Qx
xD
!
.))(().21(),
5
7
( ¥?éi)
p xDDDD
,1)
5
7
( =?D,0)21( =?D
,1))(( ≡xDD
o
x
y
1
?′f
,μ?f
,
}f
,
?
ùf
(íKl??
ù )
?
^??f
,
~ ?yvD ?Dy
è
)].([
,
0,1
0,2
)(,
1,
1,
)(
2
xf
xx
xx
x
xx
xe
xf
x
≥?
<+
=?

<
=
p
!
3

<?
=?
1)(),(
1)(,
)]([
)(
xx
xe
xf
x
,1)(1
0
H? <? x
,0<x
,12)( <+=? xx;20 <≤ x
,0≥x,11)(
2
<?=? xx;1?<x
~ ?yvD ?Dy
,1)(2
0
H? ≥? x
,0<x
,12)( ≥+=? xx;2≥x
,0≥x,11)(
2
≥?=? xx;01 <≤? x
8

.
2,1
20
01
1
,
,2
,
)]([
2
1
2
2
≥?
<≤
<≤?
<
+
=
+
xx
x
x
x
e
x
e
xf
x
x
~ ?yvD ?Dy
*
ta
wf
DQ
wf
*
2
xx
ee
shx
=
w??
chxy =
shxy =
),,(,+∞?∞D
f
,
2
xx
ee
chx
+
=
w??
),,(,+∞?∞D
}f
,
1a
wf
x
ey
2
1
=
x
ey
=
2
1
~ ?yvD ?Dy
xx
xx
ee
ee
chx
shx
thx
+
==
w? M
f
,
),(,+∞?∞D
μ?f
,
~ ?yvD ?Dy
wf
è¨
T;)( chxshyshxchyyxsh ±=±;)( shxshychxchyyxch ±=±;1
22
=? xshxch;22 shxchxxsh =
.2
22
xshxchxch +=
~ ?yvD ?Dy
2aQ
wf
f
,
),(,+∞?∞D
.),(
=??9F +∞?∞;arshxy =Q
w??
).1ln(
2
++=
=
xx
arshxy
arshxy =
~ ?yvD ?Dy
.),1[
=??9F +∞
),1[,+∞D
=yQ
w??
arch
).1ln(
2
+=
=
xx
archxy
x
archxy =
~ ?yvD ?Dy
.
1
1
ln
2
1
x
x
+
=
)1,1(,?D
f
,
.)1,1(
=??9F?
=yQ
w? M arthx
arthxy =
arthxy =
~ ?yvD ?Dy
?al2
'à
Q
", uW,
#×,è
DM
, '′,
f
¥à
Q
f
¥+?
μ??
???

}?
?
ù?
Qf