~ ?yvD ?Dy
? 3 ?
f
K
f
K
15
~ ?yvD ?Dy
Ba1M
t_μK′
Hf
¥K
ù5f
)(xfy =
0
xx → ¥V??,?
f
′ )(xf íKtí???′ A.;)()( ?ilV
U AxfAxf?ε<?
.0
00
¥V?V
U xxxx →<?< δ
x
0
xδ?
0
x
δ+
0
x
δδ
,
0
#×¥??? δx
.
0
?¤í8C xxδ
~ ?yvD ?Dy
?l?T??ió?¥?
ε ?
1l
9i?
δ
P¤?
a??
T
δ<?<
0
0 xx ¥BM x
?¥f
′ )(xf ?
@??
T ε<? Axf )(
*
è
Aü?f
)(xf ?
0
xx →
H¥K
:T
)()()(lim
0
0
xxAxfAxf
xx
→→=
→
?
?l"" δ?ε
.)(
,0,0,0
0
ε<?
δ<?<>δ?>ε?
Axf
xx
μ
H
P?
1a?l
~ ?yvD ?Dy
2a+3
d,
)(xfy =
ε?A
ε+A
A
δ?
0
x δ+
0
x
0
x
δ
δ
x
y
o
.2
,
)(,
0
¥{?u×
= z1
1??LL
m???
[°
f
×
H
#¥???
ε
=
=
δ
Ay
xfy
xx
?i;)(.1
0
^?μ?lí1?f
KD xxf
..2 μ1D?ió?¥?
εδ
.,,lzas?B?A? δδ
~ ?yvD ?Dy
è 1 ).(,lim
0
1è
£
ü CCC
xx
=
→
£
Axf?)(
CC?=,? ?ε<
,0>ε?ó
0=
.lim
0
CC
xx
=∴
→
,0>δ?|
,0
0
H? δ<?< xx
è 2
.lim
0
0
xx
xx
=
→
£
ü
£
,)(
0
xxAxf?=?Q
,0>ε?ó
,ε=δ|
,0
0
H? ε=δ<?< xx
0
)( xxAxf?=?
,? ?ε<
.lim
0
0
xx
xx
=∴
→
~ ?yvD ?Dy
è 3,2
1
1
lim
2
1
=
→
x
x
x
£
ü
£
2
1
1
)(
2
=?
x
x
AxfQ
,0>ε?ó
,ε=δo1|
,0
0
H? δ<?< xx
f
? x=1)
àμ?l,
1?= x
,)( ε<? Axf1
P
,2
1
1
2
ε<?
x
x
üμ
.2
1
1
lim
2
1
=
∴
→
x
x
x
~ ?yvD ?Dy
è 4
.lim
0
0
xx
xx
=∴
→
£
0
)( xxAxf?=?Q
,0>ε?ó
},,min{
00
ε=δ xx|
,0
0
H? δ<?< xx
0
0
xx
xx
+
=
,)( ε<? Axf1
P
,
0
ε<? xxüμ
,
0
0
x
xx?
≤
.
00
O?|μ′o1 ε<? xxx
.lim,0:
00
0
xxx
xx
=>
→
H?£
ü
~ ?yvD ?Dy
3a?§K,
è?,
.1)(lim
0,1
0,1
)(
0
2
=
≥+
<?
=
→
xf
xx
xx
xf
x
£
ü
!
?f ?sY)
s 00 <> xx
,
0
xxVP§íKtí ;0
0
→ xx:T
,
0
xxV·§íKtí ;0
0
+→ xx:T
y
o x
1
xy?= 1
1
2
+= xy
~ ?yvD ?Dy
PK
.)(
,,0,0
00
ε<?
<<δ?>δ?>ε?
Axf
xxx
μ
H
P?
·K
.)(
,,0,0
00
ε<?
δ+<<>δ?>ε?
Axf
xxx
μ
H
P?
}0{}0{
}0{:
00
0
<?<δ?δ<?<=
δ<?<
xxxxxx
xxx
U
?i
.)0()(lim
0
)(
0
0
0
AxfAxf
xx
xx
=?=
→
→
:T
.)0()(lim
0
)(
0
0
0
AxfAxf
xx
xx
=+=
+
→
+→
:T
~ ?yvD ?Dy
.)0()0()(lim:
00
0
AxfxfAxf
xx
=+==
→
? ?
.lim
0
?i£
x
x
x→
y
x
1
1?
o
x
x
x
x
xx
=
→?→ 00
limlim
P·Ki??M?,
.)(lim
0
?ixf
x→
∴
è 5
£
1)1(lim
0
=?=
→x
x
x
x
x
xx 00
limlim
++→
=
11lim
0
==
+→x
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
lb
lb
~ ?yvD ?Dy
ù5f
)(xfy = ∞→x ¥V??,?
f
′ )(xf íKtí???′ A.;)()( ?ilV
U AxfAxf?ε<?
.¥V?V
U ∞→> xXx
.0
sin
)(,íK¤í?íK9v
H?
x
x
xfx =
YV
U
L¥43,
ù5,
?¨
D?y Yf
,íK¤í,.
~ ?yvD ?Dy
?l?T??ió?¥?
ε ?
1l
9i"?
X
P¤?
a??
T Xx > ¥B
M x
?¥f
′ )(xf ?
@??
T
ε<? Axf )(
*
è
Aü?f
)(xf ? ∞→x
H
¥K
:T
)()()(lim ∞→→=
∞→
xAxfAxf
x
?
?l"" X?ε
.)(,,0,0 ε<?>>?>ε? AxfXxXμ
H
P?
=
∞→
Axf
x
)(lim
a?l
~ ?yvD ?Dy
:.1
0
f?+∞→x
.)(,,0,0 εε <?>>?>? AxfXxXμ
H
P?
:.2
0
f∞→x
Axf
x
=
∞→
)(lim
.)(,,0,0 εε <<>?>? AxfXxXμ
H
P?
Axf
x
=
+∞→
)(lim
2a
6
?f?,
=
∞→
Axf
x
)(lim:? ?
.)(lim)(lim AxfAxf
xx
==
∞→+∞→
O
~ ?yvD ?Dy
x
x
y
sin
=
3a+3
d,
ε?
ε
X? X
.2,
)(,
¥{?u×
= z11??L°L
m???
[f
H?
ε=
=>?<
Ay
xfyXxXx
A
~ ?yvD ?Dy
x
x
y
sin
=
è 6
.0
sin
lim =
∞→
x
x
x
£
ü
£
x
x
x
x sin
0
sin
=?Q
x
1
<
X
1
<
,ε=
,0>ε?
,
1
ε
=X|
Hμ5? Xx >
,0
sin
ε<?
x
x
.0
sin
lim =
∞→
x
x
x
#
.
)(,)(lim:
¥m?¥
£
üvíL
^f
5°L?T?l xfycycxf
x
===
∞→
~ ?yvD ?Dy
?af
K¥?é
1.μ??
? ??
?V?/
)(xf μK
5i
V?¥B?
H Y
N
H Y[a )(xf μ?
2.·B?
? ? ? )(lim xf i,5K·B,
~ ?yvD ?Dy
w
).()(),,(,0
,)(lim,)(lim
0
0
00
xgxfxUx
BABxgAxf
xxxx
<∈?>?
<==
→→
μ5
O
!
δδ
3.??
T?é
? ? ??
.),()(),,(,0
.)(lim,)(lim
0
0
00
BAxgxfxUx
BxgAxf
xxxx
≤≤∈?>?
==
→→
5μ?
!
δδ
~ ?yvD ?Dy
).0)((0)(,),(,0
),0(0,)(lim
0
0
0
<>δ∈>δ?
<>=
→
xfxfxUx
AAAxf
xx
H?5
O?? ? |?
).0(0),0)((0)(
,),(,0,)(lim
0
0
0
≤≥≤≥
δ∈>δ?=
→
AAxfxf
xUxAxf
xx
5
H?O?
w
~ ?yvD ?Dy
4.0
l ?? (f
KD
K¥1" )*
{ }
.
)(),(,),(),(,)(
.),(
),,(
21
000
H¥0
?
1f
'
5?
H
P¤μ
? V[
^
!V?
ax
xfxfxfxfxf
axnax
xxxaax
nn
nn
→
→∞→≠
→
+
LL
?l
.)(lim,
)()(,)(lim
Axf
axxfxfAxf
n
n
n
ax
=
→=
∞→
→
5μ
H¥B?0
?
^
?? ?
~ ?yvD ?Dy
£
.)(
,0,0,0
0
ε<?
δ<?<>δ?>ε?∴
Axf
xxμ
H
P?
Axf
xx
=
→
)(lim
0
Q
.0
,,0,0
0
δ<?<
>>?>δ∴
xx
NnN
n
μ
H
P?
,)( ε<? Axf
n
V7μ
.)(lim Axf
n
n
=
∞→
#
,lim
00
xxxx
nn
n
≠=
∞→
O? Q
~ ?yvD ?Dy
è?,
x
x
y
sin
=
1
sin
lim
0
=
→
x
x
x
,1
1
sinlim =
∞→
n
n
n
,1
1
sinlim =
∞→
n
n
n
1
1
sin
1
lim
2
2
=
+
+
∞→
n
n
n
n
n
f
KD
K¥1"
f
Ki¥ 1Hq
^
¥?0
¥
K?i
OM?
~ ?yvD ?Dy
x
y
1
sin=
è 7
.
1
sinlim
0
?i£
ü
x
x→
£
{},
1
π
=
n
x
n
|
,0lim =
∞→
n
n
x;0≠
n
xO
{},
2
14
1
π
+
=
′
n
x
n
|
,0lim =
′
∞→
n
n
x;0≠
′
n
xO
~ ?yvD ?Dy
πn
x
n
n
n
sinlim
1
sinlim
∞→∞→
=7
,1=
π
2
14
sinlim
1
sinlim
+
=
′
∞→∞→
n
x
n
n
n
7
1lim
∞→
=
n
=??M?,
.
1
sinlim
0
?i#
x
x→
,0=
~ ?yvD ?Dy
1af
K
E5
? ?
.0,
)(
)(
lim)3(;)]()(lim[)2(;)]()(lim[)1(
,)(lim,)(lim
≠=
=?
±=±
==
B
B
A
xg
xf
BAxgxf
BAxgxf
BxgAxf
?
5
!
£ *,)(lim,)(lim BxgAxf ==Q
.0,0.)(,)( →β→αβ+=α+=∴ ?BxgAxf
?íkl
E5,¤
~ ?yvD ?Dy
)()]()([ BAxgxf ±?±β±α=,0→
.)1( ? ?∴
)()]()([ BAxgxf ABBA?β+α+= ))((
αβ+α+β= )( BA,0→
.)2( ? ?∴
B
A
xg
xf
)(
)(
B
A
B
A
β+
α+
=
)( β+
β?α
=
BB
AB
.0→β?α ABQ
,0,0 ≠→β BQ?
,0>δ?
,0
0
H? δ<?< xx
,
2
B
<β
β?≥β+∴ BB BB
2
1
> B
2
1
=
~ ?yvD ?Dy
w
).(lim)](lim[
,,)(lim
xfcxcf
cxf
=
51è
7i?T
è
y0 V[4?K:|?
,
.)]([lim)](lim[
,,)(lim
nn
xfxf
nxf
=
5
^??
7i?Tw
,
2
1
)(
2
BBB >β+∴
,
2
)(
1
2
BBB
<
β+
#
μ?
.)3( ? ?∴
~ ?yvD ?Dy
?apKZE è
è
.
53
1
lim
2
3
2
+?
→
xx
x
x
p
3
)53(lim
2
2
+?
→
xx
x
Q
5lim3limlim
22
2
2 →→→
+?=
xxx
xx
5limlim3)lim(
22
2
2 →→→
+?=
xxx
xx
5232
2
+=
,03 ≠=
53
1
lim
2
3
2
+?
∴
→
xx
x
x
)53(lim
1limlim
2
2
2
3
2
+?
=
→
→→
xx
x
x
xx
.
3
7
=
3
12
3
=
~ ?yvD ?Dy
l2 5μ
!,)(.1
1
10 n
nn
axaxaxf +++=
L
n
n
xx
n
xxxx
axaxaxf +++=
→→→
L
1
10
)lim()lim()(lim
000
n
nn
axaxa +++=
L
1
0100
).(
0
xf=
5μO
!,0)(,
)(
)(
)(.2
0
≠= xQ
xQ
xP
xf
)(lim
)(lim
)(lim
0
0
0 xQ
xP
xf
xx
xx
xx
→
→
→
=
)(
)(
0
0
xQ
xP
= ).(
0
xf=
.,0)(
0
5
¥E5?
?¨? =xQ
~ ?yvD ?Dy
3
è
.
32
1
lim
2
2
1
+
→
xx
x
x
p
.,,1 s
¥K?
^
,s0
H→x
.1apK5???1
,¥y0?x
)1)(3(
)1)(1(
lim
32
1
lim
1
2
2
1
+
+
=
+
→→
xx
xx
xx
x
xx
3
1
lim
1
+
+
=
→
x
x
x
.
2
1
=
)
0
0
( ?
(h?
,y0E )
~ ?yvD ?Dy
è
.
147
532
lim
23
23
+
++
∞→
xx
xx
x
p
3,,,s
¥K??is0
H∞→x
)( ?
∞
∞
.,,
3
pKsíkl?"s0s
5¨ x
3
3
23
23
14
7
53
2
lim
147
532
lim
xx
xx
xx
xx
xx
+
++
=
+
++
∞→∞→
.
7
2
=
~ ?yvD ?Dy
l2 1dμ?
Hμ? nmba,0,0
00
≠≠
<∞
>
=
=
+++
+++
∞→
,,
,,0
,,
lim
0
0
1
10
1
10
mn
mn
mn
b
a
bxbxb
axaxa
n
nn
m
mm
x
?
?
?
L
L
íklsE [s
?1M
¥KúQ
a"s
0,s
,[síkl,?apK,
~ ?yvD ?Dy
è ).(lim,
0,1
0,1
)(
0
2
xf
xx
xx
xf
x→
≥+
<?
= p
!
y
o x
1
xy?= 1
1
2
+= xy
3
??§K1
^f
¥s
?,0=x
)1(lim)(lim
00
xxf
xx
=
→→
,1=
)1(lim)(lim
2
00
+=
++
→→
xxf
xx
,1=
P·KiOM?,
.1)(lim
0
=
→
xf
x
#
~ ?yvD ?Dy
.)(lim)]([lim
)]([
)(lim)(
)(lim
)(
0
0
0
0
0
Aufxf
xxxf
Aufaxx
axaxx
xu
auxx
au
xx
==
→
=≠
=→
=
→→
→
→
H¥K9iO?5ˉf
?¥
??
#×
=??
'
H¥KiO???
E5
!f
? ?
ˉf
¥K
)]([lim
0
xf
xx
→
)(lim uf
au→
)(xu?=
7
)(lim
0
xa
xx
→
=
il
~ ?yvD ?Dy
è,lim
3
33
ax
ax
ax
→
p
3
ax
axax
ax
=
→
3
2
33
)()(
lime
T
3 2
3
3 2
3
2
)(
lim
aaxx
ax
ax
++
=
→
0=
3 2
3 2
0
3
lim
a
u
u→
axu?=
7
~ ?yvD ?Dy
Bal2
1af
K¥dB?l;)(lim Anf
n
=
∞→;)(lim Axf
x
=
∞→;)(lim Axf
x
=
+∞→;)(lim Axf
x
=
∞→;)(lim
0
Axf
xx
=
→;)(lim
0
Axf
xx
=
+
→
.)(lim
0
Axf
xx
=
→
.)(
,,,0)(lim
ε
ε
<?
>=
Axf
Axf
μ
VN
H Y[a
H Y
(n/V )
~ ?yvD ?Dy
V?
H Y
VN
H Y[a
∞→n ∞→x +∞→x?∞→x
N
Nn>
Nx >
Nx > Nx?<
)(xf
ε<? Axf )(
0
xx →
δ
δ<?<
0
0 xx
+
→
0
xx
→
0
xx
δ<?<
0
0 xx
0
0
<?<δ? xx
V?
H Y
VN
H Y[a
)(xf
ε<? Axf )(
~ ?yvD ?Dy
2af
K¥
15
E5#w;
3af
KpE ;
a.[
TDs
Tf
}?EpK ;
b.h?
,y0EpK ;
c.y0sEpK ;
d. ?¨P·Kps
f
K,
4aˉf
¥K
E5
~ ?yvD ?Dy
± I5
kùf
<+
=
>
=
0,5
0,10
0,
1
sin
)(
2
xx
x
x
x
x
xf 0=x )
¥Pa·K
^?i$? 0→x
H )(xf ¥
K
^?i$
~ ?yvD ?Dy
± I53s
=
→
)(lim
0
xf
x
,5)5(lim
2
0
=+
→
x
x
PKi,
=
+
→
)(lim
0
xf
x
,0
1
sinlim
0
=
+
→
x
x
x
·Ki,
≠
→
)(lim
0
xf
x
Q )(lim
0
xf
x
+
→
)(lim
0
xf
x→
∴
?i,
~ ?yvD ?Dy
.01.01
______1
3
1
2
2
2
<?>
→
+
=∞→
yzx
z
x
x
yx
Aμ
Ho1
|ù?
Ha?
.001.0420
___421
2
<?<?<
→=→
yx
xyx
Aμo1
H|ù?
Ha?
δ
δ
£
ü=a¨f
K¥?l
BaA b5,
0
sin
lim2
2
12
41
lim1
2
2
1
=
=
+
+∞→
→
x
x
x
x
x
x
a
a
5
~ ?yvD ?Dy
.
)(:
0
Kò1iiOM?A1Hq
^PKa·
HKi¥ s?f
?a
k£ xxxf →
0)(
i
H¥K
^?
1a)
f
→= x
x
x
xφ
~ ?yvD ?Dy
Baa a 397
1a?i
5s?
~ ?yvD ?Dy
± I5
?V??? μK
íK
*
1
^?μK$1
I
1$
)(xf
)(xg
)()( xgxf +
~ ?yvD ?Dy
± I53s
àμK
L
! μK
)()( xgxf +
)(xfQ μK
?K
E5 V?
[ ] )()()()( xfxgxfxg?+= AμK
DX?
±
#L
!p
~ ?yvD ?Dy
.__________
1
sinlim5
2
0
=
→
x
x
x
a
.__________
3
3
lim1
3
2
=
→
x
x
x
a
BaA b5,
.__________
1
1
lim2
3
1
=
→
x
x
x
a
.__________)
11
2)(
1
1(lim3
2
=+?+
∞→
xxx
x
a
.__________
5
)3)(2)(1(
lim4
3
=
+++
∞→
n
nnn
n
a
.__________
cos
lim6 =
+
+∞→
xx
x
ee
x
a
5
~ ?yvD ?Dy
.__________
23
24
lim7
2
24
0
=
+
+?
→
xx
xxx
x
a
.__________
)12(
)23()32(
lim8
50
3020
=
+
+?
∞→
x
xx
x
a
=ap/
òK,
)
2
1
...
4
1
2
1
1(lim1
n
n
++++
∞→
a
h
xhx
h
22
0
)(
lim2
+
→
a
)
1
3
1
1
(lim3
3
1
xx
x
→
a
~ ?yvD ?Dy
3
8
2
31
lim4
x
x
x
+
→
a
)(lim5 xxxx
x
++
+∞→
a
14
12
lim6
+
+∞→
x
x
x
a
2
lim7
1?+
→
nm
nm
x xx
xx
a
~ ?yvD ?Dy
Baa a a a
5
1
a a a
2
1
a
30
)
2
3
(
=aa a x2 a a
a
2
1
a a
nm
nm
+
5s?
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
? 3 ?
f
K
f
K
15
~ ?yvD ?Dy
Ba1M
t_μK′
Hf
¥K
ù5f
)(xfy =
0
xx → ¥V??,?
f
′ )(xf íKtí???′ A.;)()( ?ilV
U AxfAxf?ε<?
.0
00
¥V?V
U xxxx →<?< δ
x
0
xδ?
0
x
δ+
0
x
δδ
,
0
#×¥??? δx
.
0
?¤í8C xxδ
~ ?yvD ?Dy
?l?T??ió?¥?
ε ?
1l
9i?
δ
P¤?
a??
T
δ<?<
0
0 xx ¥BM x
?¥f
′ )(xf ?
@??
T ε<? Axf )(
*
è
Aü?f
)(xf ?
0
xx →
H¥K
:T
)()()(lim
0
0
xxAxfAxf
xx
→→=
→
?
?l"" δ?ε
.)(
,0,0,0
0
ε<?
δ<?<>δ?>ε?
Axf
xx
μ
H
P?
1a?l
~ ?yvD ?Dy
2a+3
d,
)(xfy =
ε?A
ε+A
A
δ?
0
x δ+
0
x
0
x
δ
δ
x
y
o
.2
,
)(,
0
¥{?u×
= z1
1??LL
m???
[°
f
×
H
#¥???
ε
=
=
δ
Ay
xfy
xx
?i;)(.1
0
^?μ?lí1?f
KD xxf
..2 μ1D?ió?¥?
εδ
.,,lzas?B?A? δδ
~ ?yvD ?Dy
è 1 ).(,lim
0
1è
£
ü CCC
xx
=
→
£
Axf?)(
CC?=,? ?ε<
,0>ε?ó
0=
.lim
0
CC
xx
=∴
→
,0>δ?|
,0
0
H? δ<?< xx
è 2
.lim
0
0
xx
xx
=
→
£
ü
£
,)(
0
xxAxf?=?Q
,0>ε?ó
,ε=δ|
,0
0
H? ε=δ<?< xx
0
)( xxAxf?=?
,? ?ε<
.lim
0
0
xx
xx
=∴
→
~ ?yvD ?Dy
è 3,2
1
1
lim
2
1
=
→
x
x
x
£
ü
£
2
1
1
)(
2
=?
x
x
AxfQ
,0>ε?ó
,ε=δo1|
,0
0
H? δ<?< xx
f
? x=1)
àμ?l,
1?= x
,)( ε<? Axf1
P
,2
1
1
2
ε<?
x
x
üμ
.2
1
1
lim
2
1
=
∴
→
x
x
x
~ ?yvD ?Dy
è 4
.lim
0
0
xx
xx
=∴
→
£
0
)( xxAxf?=?Q
,0>ε?ó
},,min{
00
ε=δ xx|
,0
0
H? δ<?< xx
0
0
xx
xx
+
=
,)( ε<? Axf1
P
,
0
ε<? xxüμ
,
0
0
x
xx?
≤
.
00
O?|μ′o1 ε<? xxx
.lim,0:
00
0
xxx
xx
=>
→
H?£
ü
~ ?yvD ?Dy
3a?§K,
è?,
.1)(lim
0,1
0,1
)(
0
2
=
≥+
<?
=
→
xf
xx
xx
xf
x
£
ü
!
?f ?sY)
s 00 <> xx
,
0
xxVP§íKtí ;0
0
→ xx:T
,
0
xxV·§íKtí ;0
0
+→ xx:T
y
o x
1
xy?= 1
1
2
+= xy
~ ?yvD ?Dy
PK
.)(
,,0,0
00
ε<?
<<δ?>δ?>ε?
Axf
xxx
μ
H
P?
·K
.)(
,,0,0
00
ε<?
δ+<<>δ?>ε?
Axf
xxx
μ
H
P?
}0{}0{
}0{:
00
0
<?<δ?δ<?<=
δ<?<
xxxxxx
xxx
U
?i
.)0()(lim
0
)(
0
0
0
AxfAxf
xx
xx
=?=
→
→
:T
.)0()(lim
0
)(
0
0
0
AxfAxf
xx
xx
=+=
+
→
+→
:T
~ ?yvD ?Dy
.)0()0()(lim:
00
0
AxfxfAxf
xx
=+==
→
? ?
.lim
0
?i£
x
x
x→
y
x
1
1?
o
x
x
x
x
xx
=
→?→ 00
limlim
P·Ki??M?,
.)(lim
0
?ixf
x→
∴
è 5
£
1)1(lim
0
=?=
→x
x
x
x
x
xx 00
limlim
++→
=
11lim
0
==
+→x
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
lb
lb
~ ?yvD ?Dy
ù5f
)(xfy = ∞→x ¥V??,?
f
′ )(xf íKtí???′ A.;)()( ?ilV
U AxfAxf?ε<?
.¥V?V
U ∞→> xXx
.0
sin
)(,íK¤í?íK9v
H?
x
x
xfx =
YV
U
L¥43,
ù5,
?¨
D?y Yf
,íK¤í,.
~ ?yvD ?Dy
?l?T??ió?¥?
ε ?
1l
9i"?
X
P¤?
a??
T Xx > ¥B
M x
?¥f
′ )(xf ?
@??
T
ε<? Axf )(
*
è
Aü?f
)(xf ? ∞→x
H
¥K
:T
)()()(lim ∞→→=
∞→
xAxfAxf
x
?
?l"" X?ε
.)(,,0,0 ε<?>>?>ε? AxfXxXμ
H
P?
=
∞→
Axf
x
)(lim
a?l
~ ?yvD ?Dy
:.1
0
f?+∞→x
.)(,,0,0 εε <?>>?>? AxfXxXμ
H
P?
:.2
0
f∞→x
Axf
x
=
∞→
)(lim
.)(,,0,0 εε <<>?>? AxfXxXμ
H
P?
Axf
x
=
+∞→
)(lim
2a
6
?f?,
=
∞→
Axf
x
)(lim:? ?
.)(lim)(lim AxfAxf
xx
==
∞→+∞→
O
~ ?yvD ?Dy
x
x
y
sin
=
3a+3
d,
ε?
ε
X? X
.2,
)(,
¥{?u×
= z11??L°L
m???
[f
H?
ε=
=>?<
Ay
xfyXxXx
A
~ ?yvD ?Dy
x
x
y
sin
=
è 6
.0
sin
lim =
∞→
x
x
x
£
ü
£
x
x
x
x sin
0
sin
=?Q
x
1
<
X
1
<
,ε=
,0>ε?
,
1
ε
=X|
Hμ5? Xx >
,0
sin
ε<?
x
x
.0
sin
lim =
∞→
x
x
x
#
.
)(,)(lim:
¥m?¥
£
üvíL
^f
5°L?T?l xfycycxf
x
===
∞→
~ ?yvD ?Dy
?af
K¥?é
1.μ??
? ??
?V?/
)(xf μK
5i
V?¥B?
H Y
N
H Y[a )(xf μ?
2.·B?
? ? ? )(lim xf i,5K·B,
~ ?yvD ?Dy
w
).()(),,(,0
,)(lim,)(lim
0
0
00
xgxfxUx
BABxgAxf
xxxx
<∈?>?
<==
→→
μ5
O
!
δδ
3.??
T?é
? ? ??
.),()(),,(,0
.)(lim,)(lim
0
0
00
BAxgxfxUx
BxgAxf
xxxx
≤≤∈?>?
==
→→
5μ?
!
δδ
~ ?yvD ?Dy
).0)((0)(,),(,0
),0(0,)(lim
0
0
0
<>δ∈>δ?
<>=
→
xfxfxUx
AAAxf
xx
H?5
O?? ? |?
).0(0),0)((0)(
,),(,0,)(lim
0
0
0
≤≥≤≥
δ∈>δ?=
→
AAxfxf
xUxAxf
xx
5
H?O?
w
~ ?yvD ?Dy
4.0
l ?? (f
KD
K¥1" )*
{ }
.
)(),(,),(),(,)(
.),(
),,(
21
000
H¥0
?
1f
'
5?
H
P¤μ
? V[
^
!V?
ax
xfxfxfxfxf
axnax
xxxaax
nn
nn
→
→∞→≠
→
+
LL
?l
.)(lim,
)()(,)(lim
Axf
axxfxfAxf
n
n
n
ax
=
→=
∞→
→
5μ
H¥B?0
?
^
?? ?
~ ?yvD ?Dy
£
.)(
,0,0,0
0
ε<?
δ<?<>δ?>ε?∴
Axf
xxμ
H
P?
Axf
xx
=
→
)(lim
0
Q
.0
,,0,0
0
δ<?<
>>?>δ∴
xx
NnN
n
μ
H
P?
,)( ε<? Axf
n
V7μ
.)(lim Axf
n
n
=
∞→
#
,lim
00
xxxx
nn
n
≠=
∞→
O? Q
~ ?yvD ?Dy
è?,
x
x
y
sin
=
1
sin
lim
0
=
→
x
x
x
,1
1
sinlim =
∞→
n
n
n
,1
1
sinlim =
∞→
n
n
n
1
1
sin
1
lim
2
2
=
+
+
∞→
n
n
n
n
n
f
KD
K¥1"
f
Ki¥ 1Hq
^
¥?0
¥
K?i
OM?
~ ?yvD ?Dy
x
y
1
sin=
è 7
.
1
sinlim
0
?i£
ü
x
x→
£
{},
1
π
=
n
x
n
|
,0lim =
∞→
n
n
x;0≠
n
xO
{},
2
14
1
π
+
=
′
n
x
n
|
,0lim =
′
∞→
n
n
x;0≠
′
n
xO
~ ?yvD ?Dy
πn
x
n
n
n
sinlim
1
sinlim
∞→∞→
=7
,1=
π
2
14
sinlim
1
sinlim
+
=
′
∞→∞→
n
x
n
n
n
7
1lim
∞→
=
n
=??M?,
.
1
sinlim
0
?i#
x
x→
,0=
~ ?yvD ?Dy
1af
K
E5
? ?
.0,
)(
)(
lim)3(;)]()(lim[)2(;)]()(lim[)1(
,)(lim,)(lim
≠=
=?
±=±
==
B
B
A
xg
xf
BAxgxf
BAxgxf
BxgAxf
?
5
!
£ *,)(lim,)(lim BxgAxf ==Q
.0,0.)(,)( →β→αβ+=α+=∴ ?BxgAxf
?íkl
E5,¤
~ ?yvD ?Dy
)()]()([ BAxgxf ±?±β±α=,0→
.)1( ? ?∴
)()]()([ BAxgxf ABBA?β+α+= ))((
αβ+α+β= )( BA,0→
.)2( ? ?∴
B
A
xg
xf
)(
)(
B
A
B
A
β+
α+
=
)( β+
β?α
=
BB
AB
.0→β?α ABQ
,0,0 ≠→β BQ?
,0>δ?
,0
0
H? δ<?< xx
,
2
B
<β
β?≥β+∴ BB BB
2
1
> B
2
1
=
~ ?yvD ?Dy
w
).(lim)](lim[
,,)(lim
xfcxcf
cxf
=
51è
7i?T
è
y0 V[4?K:|?
,
.)]([lim)](lim[
,,)(lim
nn
xfxf
nxf
=
5
^??
7i?Tw
,
2
1
)(
2
BBB >β+∴
,
2
)(
1
2
BBB
<
β+
#
μ?
.)3( ? ?∴
~ ?yvD ?Dy
?apKZE è
è
.
53
1
lim
2
3
2
+?
→
xx
x
x
p
3
)53(lim
2
2
+?
→
xx
x
Q
5lim3limlim
22
2
2 →→→
+?=
xxx
xx
5limlim3)lim(
22
2
2 →→→
+?=
xxx
xx
5232
2
+=
,03 ≠=
53
1
lim
2
3
2
+?
∴
→
xx
x
x
)53(lim
1limlim
2
2
2
3
2
+?
=
→
→→
xx
x
x
xx
.
3
7
=
3
12
3
=
~ ?yvD ?Dy
l2 5μ
!,)(.1
1
10 n
nn
axaxaxf +++=
L
n
n
xx
n
xxxx
axaxaxf +++=
→→→
L
1
10
)lim()lim()(lim
000
n
nn
axaxa +++=
L
1
0100
).(
0
xf=
5μO
!,0)(,
)(
)(
)(.2
0
≠= xQ
xQ
xP
xf
)(lim
)(lim
)(lim
0
0
0 xQ
xP
xf
xx
xx
xx
→
→
→
=
)(
)(
0
0
xQ
xP
= ).(
0
xf=
.,0)(
0
5
¥E5?
?¨? =xQ
~ ?yvD ?Dy
3
è
.
32
1
lim
2
2
1
+
→
xx
x
x
p
.,,1 s
¥K?
^
,s0
H→x
.1apK5???1
,¥y0?x
)1)(3(
)1)(1(
lim
32
1
lim
1
2
2
1
+
+
=
+
→→
xx
xx
xx
x
xx
3
1
lim
1
+
+
=
→
x
x
x
.
2
1
=
)
0
0
( ?
(h?
,y0E )
~ ?yvD ?Dy
è
.
147
532
lim
23
23
+
++
∞→
xx
xx
x
p
3,,,s
¥K??is0
H∞→x
)( ?
∞
∞
.,,
3
pKsíkl?"s0s
5¨ x
3
3
23
23
14
7
53
2
lim
147
532
lim
xx
xx
xx
xx
xx
+
++
=
+
++
∞→∞→
.
7
2
=
~ ?yvD ?Dy
l2 1dμ?
Hμ? nmba,0,0
00
≠≠
<∞
>
=
=
+++
+++
∞→
,,
,,0
,,
lim
0
0
1
10
1
10
mn
mn
mn
b
a
bxbxb
axaxa
n
nn
m
mm
x
?
?
?
L
L
íklsE [s
?1M
¥KúQ
a"s
0,s
,[síkl,?apK,
~ ?yvD ?Dy
è ).(lim,
0,1
0,1
)(
0
2
xf
xx
xx
xf
x→
≥+
<?
= p
!
y
o x
1
xy?= 1
1
2
+= xy
3
??§K1
^f
¥s
?,0=x
)1(lim)(lim
00
xxf
xx
=
→→
,1=
)1(lim)(lim
2
00
+=
++
→→
xxf
xx
,1=
P·KiOM?,
.1)(lim
0
=
→
xf
x
#
~ ?yvD ?Dy
.)(lim)]([lim
)]([
)(lim)(
)(lim
)(
0
0
0
0
0
Aufxf
xxxf
Aufaxx
axaxx
xu
auxx
au
xx
==
→
=≠
=→
=
→→
→
→
H¥K9iO?5ˉf
?¥
??
#×
=??
'
H¥KiO???
E5
!f
? ?
ˉf
¥K
)]([lim
0
xf
xx
→
)(lim uf
au→
)(xu?=
7
)(lim
0
xa
xx
→
=
il
~ ?yvD ?Dy
è,lim
3
33
ax
ax
ax
→
p
3
ax
axax
ax
=
→
3
2
33
)()(
lime
T
3 2
3
3 2
3
2
)(
lim
aaxx
ax
ax
++
=
→
0=
3 2
3 2
0
3
lim
a
u
u→
axu?=
7
~ ?yvD ?Dy
Bal2
1af
K¥dB?l;)(lim Anf
n
=
∞→;)(lim Axf
x
=
∞→;)(lim Axf
x
=
+∞→;)(lim Axf
x
=
∞→;)(lim
0
Axf
xx
=
→;)(lim
0
Axf
xx
=
+
→
.)(lim
0
Axf
xx
=
→
.)(
,,,0)(lim
ε
ε
<?
>=
Axf
Axf
μ
VN
H Y[a
H Y
(n/V )
~ ?yvD ?Dy
V?
H Y
VN
H Y[a
∞→n ∞→x +∞→x?∞→x
N
Nn>
Nx >
Nx > Nx?<
)(xf
ε<? Axf )(
0
xx →
δ
δ<?<
0
0 xx
+
→
0
xx
→
0
xx
δ<?<
0
0 xx
0
0
<?<δ? xx
V?
H Y
VN
H Y[a
)(xf
ε<? Axf )(
~ ?yvD ?Dy
2af
K¥
15
E5#w;
3af
KpE ;
a.[
TDs
Tf
}?EpK ;
b.h?
,y0EpK ;
c.y0sEpK ;
d. ?¨P·Kps
f
K,
4aˉf
¥K
E5
~ ?yvD ?Dy
± I5
kùf
<+
=
>
=
0,5
0,10
0,
1
sin
)(
2
xx
x
x
x
x
xf 0=x )
¥Pa·K
^?i$? 0→x
H )(xf ¥
K
^?i$
~ ?yvD ?Dy
± I53s
=
→
)(lim
0
xf
x
,5)5(lim
2
0
=+
→
x
x
PKi,
=
+
→
)(lim
0
xf
x
,0
1
sinlim
0
=
+
→
x
x
x
·Ki,
≠
→
)(lim
0
xf
x
Q )(lim
0
xf
x
+
→
)(lim
0
xf
x→
∴
?i,
~ ?yvD ?Dy
.01.01
______1
3
1
2
2
2
<?>
→
+
=∞→
yzx
z
x
x
yx
Aμ
Ho1
|ù?
Ha?
.001.0420
___421
2
<?<?<
→=→
yx
xyx
Aμo1
H|ù?
Ha?
δ
δ
£
ü=a¨f
K¥?l
BaA b5,
0
sin
lim2
2
12
41
lim1
2
2
1
=
=
+
+∞→
→
x
x
x
x
x
x
a
a
5
~ ?yvD ?Dy
.
)(:
0
Kò1iiOM?A1Hq
^PKa·
HKi¥ s?f
?a
k£ xxxf →
0)(
i
H¥K
^?
1a)
f
→= x
x
x
xφ
~ ?yvD ?Dy
Baa a 397
1a?i
5s?
~ ?yvD ?Dy
± I5
?V??? μK
íK
*
1
^?μK$1
I
1$
)(xf
)(xg
)()( xgxf +
~ ?yvD ?Dy
± I53s
àμK
L
! μK
)()( xgxf +
)(xfQ μK
?K
E5 V?
[ ] )()()()( xfxgxfxg?+= AμK
DX?
±
#L
!p
~ ?yvD ?Dy
.__________
1
sinlim5
2
0
=
→
x
x
x
a
.__________
3
3
lim1
3
2
=
→
x
x
x
a
BaA b5,
.__________
1
1
lim2
3
1
=
→
x
x
x
a
.__________)
11
2)(
1
1(lim3
2
=+?+
∞→
xxx
x
a
.__________
5
)3)(2)(1(
lim4
3
=
+++
∞→
n
nnn
n
a
.__________
cos
lim6 =
+
+∞→
xx
x
ee
x
a
5
~ ?yvD ?Dy
.__________
23
24
lim7
2
24
0
=
+
+?
→
xx
xxx
x
a
.__________
)12(
)23()32(
lim8
50
3020
=
+
+?
∞→
x
xx
x
a
=ap/
òK,
)
2
1
...
4
1
2
1
1(lim1
n
n
++++
∞→
a
h
xhx
h
22
0
)(
lim2
+
→
a
)
1
3
1
1
(lim3
3
1
xx
x
→
a
~ ?yvD ?Dy
3
8
2
31
lim4
x
x
x
+
→
a
)(lim5 xxxx
x
++
+∞→
a
14
12
lim6
+
+∞→
x
x
x
a
2
lim7
1?+
→
nm
nm
x xx
xx
a
~ ?yvD ?Dy
Baa a a a
5
1
a a a
2
1
a
30
)
2
3
(
=aa a x2 a a
a
2
1
a a
nm
nm
+
5s?
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K
~ ?yvD ?Dy
.
sin
H¥Mt
]?43f
∞→x
x
x
=a1M
t_íkv
Hf
¥K