计算机操作基础和程序设计电信工程学院计算机技术中心课程教学目的
本课程是计算机的入门课程,主要是使同学掌握在现代社会中进行工作,学习和生活所必须具有的计算机基本知识和基本操作 。 为进一步学习其他的计算机课程打好坚实的基础 。
本课程也应开始培养同学通过自学和实践来学习计算机知识和技能,掌握正确的学习方法 。
本课程基本要求
了解计算机在现代社会和现代科学发展中的作用;
掌握计算机系统组成和基本工作原理;
了解操作系统的基本概念和功能,对常见的操作系统有一个总体的了解;
掌握 Windows 2000的基本操作;
熟悉以下 Office办公软件的使用方法和基本操作 。
Word,PowerPoint,Excel
掌握计算机网络的基本知识,初步掌握 Internet的使用 。
★ 计算机基础知识
★ 微型计算机系统
★ 操作系统的功能和分类
★ Windows2000基本操作
★ Word2000的使用
★ Excel2000的使用
★ Powerpoint2000的使用
★ 计算机网络基础和 Internet应用第一章 计 算 机 基础 知 识一、电子计算机的定义二、计算机发展简史三、计算机的主要应用领域四、计算机系统的主要技术指标五、未来计算机的发展趋势第一节 计算机概述电子计算机是一种能够 高速计算,
具有内部 存储能力,由 程序控制 其操作过程的电子设备。
特点:
u 速度快
u 精度高
u 具有记忆和逻辑判断能力
u 具有存储和自动执行程序的能力
u 通用性强分类,
电子计算机根据运算速度、存储能力、功能强弱、配套设备与软件系统的丰富程度等因素可划分为巨型机、大型机、中型机、小型机、
微型机、服务器和工作站。
国内研制的“神威”巨型机,共耗资 1亿人民币建成。
NEC的小型机康柏的服务器
DELL的工作站
Altair 8800(1975)
Apple 1
联想天麒电脑联想笔记本一、机械式计算器时代最早的机械式计算器 --算盘石器时代结绳记事
1642年法国数学家 Pascal 在计算尺基础上发明了的机械式计算器。
1823年英国人 Charles Babbage设计了差分机和分析机,
提出了利用卡片输入程序和数据的设计。
分析机 (analytial engine)1842年 Augusta Ada Byron翻译了分析机的使用,成为世界上第一个程序员二,电子计算器时代
1906年美国人 Lee De Forest发明了电子管。
这为电子计算机的发展奠定了基础。
第一台通用可编程计算机 -ENIAC
第一个通用可编程电子计算机于 1946年于宾夕法尼亚大学开发成功,这一计算机叫做 ENIAC(Electronics Numerical
Integrator and Calculator)
计算机必须有 存储器,控制器,运算器 和 输入输出 设备 这种思想是由冯 ·诺依曼
(John Von Neumann)等人于
1946年提出,因此称为冯 ·诺依曼型计算机或存储程序式计算机 。 冯 ·诺依曼的设计思想被誉为计算机发展史上的里程碑 。 冯 ·诺依曼 1903年生于匈牙利,是一位数学家,
计算物理学家和计算机科学家 。 1930年到美国,1957年去世 。
冯.诺依曼计算机科学界最重要的人物是图灵 (Alan Mathison
Turing)。他是英国人,世界著名的科学家,1912年出生,1954年去世,年仅 42岁。
The whole thinking process is still
rather mysterious to us,but I believe
that a thinking machine will help us
greatly in finding out how we
think ourselves,
Alan Turing,May 1951
1936年,图灵发表了著名的论文,论可计算数及其在密码问题的应用,,首次提出逻辑机的通用模型 ——
图灵机 的概念,为可计算性理论奠定了基础。 1945年,
图灵以极大的热情投入电子计算机的设计工作。他起草了关于自动计算机器 ACE(Automatic Computing Engine)
的报告,描述了存储程序概念在计算机中的应用,阐明了用子程序实现某些运算而程序员不必知道机器细节的情况,这就预言了以后对高级语言的开发。
图灵在曼彻斯特 (1951)
鉴于他在计算机理论方面的创造性的奠基工作,而被称为 计算机科学之父 。为纪念图灵对计算机科学做出的奠基性的贡献,ACM(美国计算机协会 )专门设立了图灵奖,并于 1966年开始颁发。图灵奖是计算机界的最高奖。
第一代计算机 (1946~1957) —— 电子管计算机时代
IBM 701计算机 ( 50年代初设计制造 ) 中用来存储二进制信息的电子管特点,运算速度仅为每秒数千到几万次;
仅支持机器语言和汇编语言。
第二代计算机 (1958~1964) —— 晶体管计算机时代特点,运算速度提高到每秒几万次到几十万次 ;产生了高级语言和编译系统,操作系统得到快速发展。
第三代计算机 (1965~1971) —— 集成电路时代
1958年,第一片集成电路问世特点,运算速度达每秒几十万次到几百万次;出现了微程序、
多道程序及并行处理等新技术;操作系统趋于成熟。
1971年,第一个微处理器 Intel4004出现 (
这是当时在 Electronic News上的广告 )
第四代计算机 (1972~1990) —— 大规模集成电路时代特点,广泛采用大规模和超大规模集成电路;出现了软件工程的标准化;微型计算机发展迅速。
第五代计算机 (1991~今 ) —— 超大规模集成电路时代特点,超大规模集成电路计算机( 1991-至),使用高密度高速度芯片,出现了因特网,发 展了 Java语言,分布式操作系统,万维网。
一、巨型化研制巨型机是现代科学技术、尤其是国防尖端技术发展的需要。巨型机的研制水平、生产能力及其应用程度已成为衡量一个国家经济实力和科技水平的重要标志。
二,微型化计算机微型化是因大规模集成电路的出现而发展最迅速的的技术之一。由于微型机可以渗透到仪表、家电、导弹头等这些中小型机难以进入的领域,其发展十分迅速。
三、网络化计算机网络就是将分散的多台计算机用通讯线路连接起来,形成一个有机的网络系统,实现网上的计算机之间互相通讯、共享系统资源,
从而提高计算机系统资源的综合利用率。
四、智能化智能化就是使计算机具有人工智能,即研究如何用计算机来“模仿”人的智能,让计算机具有“推理”和“学习”的功能。
1971年 1月,Intel公司的霍夫研制成功世界上第一块 4
位微处理器芯片 Intel 4004,标志着第一代微处理器问世,
微处理器和微机时代从此开始。
在 4.2mmX3.2mm的硅片上集成了 2250个晶体管,构成了 CPU,,再加上一片 RAM、一片 ROM和一片寄存器,构成了
Intel4004微处理器。
第一代( 1974- 1977年)
以 8位微处理 Intel8008,ZilogZ80,Motorola
6502为代表的微型计算机。
1972年 4月,霍夫等人开发出第一个 8位微处理器 Intel 8008。
73年 8月 8080
处理器问世
1975年第一台微型计算机
Altair 8800
1976年 3月,微型计算机
Apple I问世第二代( 1978- 1981年)
以 16位微处理 Intel8086,8088,80286为代表的微型计算机。 IBM PC微型计算机。
1981年 IBM公司在纽约宣布第一台 IBM PC诞生 --80286微机
80286芯片第三代 ( 1985- 1988年 )
以 32位微处理 Intel 80386,80486、
为代表的微型计算机 。
80386芯片第四代 ( 1989-现在 )
以 32位微处理 ( 586),PentiumⅡ,
PentiumⅢ 为代表的奔腾计算机 。
Intel于 1993年 3月推出奔腾 ( Pentium) 处理器
1,科学计算也称数值计算,是指用计算机来解决科学研究和工程技术中所提出的复杂的数学问题 。
2,数据处理也称信息据处理,计算机可以在短时间内对大量数据及各种各样的数据进行处理,以满足信息时代的要求 。
大 学 生 活
3,自动控制自动控制是指在工业生产过程中,对控制对象进行自动控制和自动调节的控制方式,又叫过程控制 。
4,计算机辅助设计利用计算机来辅助人们设计和制造产品。
5,计算机网络将在不同地理位置上的计算机或终端连接起来,实现计算机资源共享和通信。
6,娱乐可以用微型计算机进行各种娱乐活动。
如游戏、听音乐、看电影、新闻等。
1.字长
2.运算速度
3.内存容量
4.主频
5.外设配置指计算机一次能直接处理的二进制数据的位数。如一台 PentiumⅢ 的 CPU字长为 32位,表示其一次能处理的最大二进制数为 232。字长的位数越多,计算机的运算能力越强,精度越高。
1,字长
2,运算速度运算速度是指计算机每秒钟内执行指令的数目,单位用 MIPS(Million of Instructions Per
Second,百万条指令/秒 )表示 。 目前微机的运算速度已达到几千万次加减法指令 /每秒 。
巨型机目前可达到 12.5万亿次加减法指令 /秒 。
3,内存容量主存储器简称内存 。 内存越大,则运算或处理信息的速度更快和容量更多 。 但内存容量越大,机器价格也越高 。
存储容量一般 KB,MB和 GB为单位,B ( Byte) 为字节,8位 (bit)二进制数为一个字节,
1B = 8bit
1KB= 1024B
1MB= l024KB
1GB= 1024MB。
4,主频主频是指 CPU的时钟频率,即 CPU在单位时间 ( 秒 ) 内平均,操作,的次数 。
例如,Pentium Ⅲ 的主频有 500,733,赛扬 400A等 。 主频的单位是兆赫兹 (MHz)。 目前微型计算机的主频都在 800MHz~ 1GHz以上 。 提高 CPU的主频也是提高计算机性能的有效手段 。
5,外设配置外设是指计算机的输入/输出设备以及外存储器,如硬盘、键盘、显示器与显示卡、音箱、声卡、打印机、磁盘驱动器、鼠标等。
硬盘早期鼠标 光驱五、未来计算机的发展趋势有可能引发计算机革命的新技术至少有三种:
1.光子计算机
2.生物计算机
3.量子计算机
1,光子计算机在光子计算技术中,光能够像电一样传送信息,甚至传送效果更好 。
优点,光传输速度快,光器件能耗低。预计,光子计算机的运算速度可能比今天的超级计算机快 1000。
难点,光学晶体管 的制造技术还不成熟。
2,生物计算机自本世纪 70 年代以来,人们开始研究生物计算机(也叫分子计算机),研究 了解并操纵制造大脑的基因学机制 。
3,量子计算机潜在的运算速度是无止境的。
一,进位计数制二,不同数制之间的转换三,计算机中数据的单位四,数据的编码五,字符的编码第二节 计算机的数与编码
1,十进制数
0,1,2,3,4,5,6,7,8,9
2,二进制数的表示
0,1
3.十六进制数的表示
0- 9,A,B,C,D,E,F
1,十进制数逢,十,进位的 。 例如,999.99
999.99=9× 102 + 9× 101 + 9× 100 + 9× 10-1 +
9× 10-2
2,二进制数的表示逢,二,进位的 。 例如,11010.001
(11010.001)2=1× 24 + 1× 23 + 0× 22 +1× 21
+0× 20 +0× 2-1+0× 2-2+1× 2-3
3.十六进制数的表示逢,16”进位 。 例如,43D
(43D)16= 4× 162+ 3× 161+ D× 160
进制数的规律任意一个进制数
J =Jn-1Jn-2… J1J0,J–1J–2… J-m
J = Jn-1× Rn-1 + Jn-2× Rn-2 + ··· + J1× R1
+ J0× R0 + J-1× R-1 + J-2× R-2 +···+
J-m × R-m
n,m为正整数,n为小数点左边的位数,m为小数点右边的位数; R为基数,
可以是 10,2,16。
二,不同数制之间的转换
1,十进制数与二进制数的转换
( 1) 整数的转换方法:除 2取余,逆序读数例如:将十进制数 28转换为二进制数 。
即,( 28 )D= ( 11100 )B
( 2) 小数的转换方法:乘 2取整,顺序读数例如:将十进制 0.125转换为二进制数即 ( 0.125 )D=( 0.001 )B
( 3) 二进制数转换成十进制数方法:把每一位二进制数乘以其相应位的位权值,
然后将各乘积相加 。
例如:将 (101.11)2转换成十进制数 。
B=1× 22+ 0× 21+ 1× 20+ 1× 2-1+ 1× 2-2
=(5.75)D
即,(101.11)B=(5.75)D
2,二进制数与十六进制数的转换
( 1) 十六进制数转换成二进制数方法:将每一位十六进制数用 4位二进制数代替,小数点不动 。
例如:将十六进制 7A8E.6C转换成二进制数
7 A 8 E,6 C
0111 1010 1000 1110,0110
1101
(7A8E.6C)H=( 111101010001110.01101101 )B
( 2) 二进制数转换成十六进制数方法:从小数点开始,向左或向右每 4位二进制数分成一组 ( 不足 4位补 0),然后按对应位置写出每组二进制数等值的十六进制数及对应的小数点,即可得到转换后的十六进制数 。
例如:将二进制数 11010111.1011转换成十六进制数 。
1101 0111,1011
D 7,B
即,( 11010111.1011 )B=( D7.B )H
3,十进制数与十六进制数的转换
( 1) 十进制整数转换成十六进制数方法,除 16取余,逆序读数 。
例如,将十进制 4586转换成十六进制数 。
即,( 4586 )D=( 11DA )H
( 2) 十进制小数转换成十六进制数方法:乘 16取整,顺序读数 。
例如:将十进制 0.32转换成十六进制数 。
即,( 0.32 )D=( 0.08 )H
( 3) 十六进制数转换成十进制数方法,把每一位的二进制数码乘以其相应位的位权值,然后将各乘积相加 。
例如,将十六进制数 5EA.11转换成十进制数
( 5EA.11) H=5× 162+14× 161+10× 160
+1× 16-1+1× 16-2=(1514.0664062)D
即,(5EA.11)H=(1514.0664062)D
三、计算机中数据的单位
计算机中数据的常用单位有位 bit
字节 byte
字 word
byte = 8 bit
1,位 ( bit)
计算机中数据的最小单位是位 。 位是指一位二进制数,英文名称是 bit。 计算机只识别二进制数 。
一位二进制数只能表示两种状态
,0”或,1”
两位二进制数能表示 4种状态
00,10,01,11
2,字节 ( Byte)
计算机数据中的所有字符 ( 包括各种符号,
数字,字母等 ),大约在 128到 256个,需要用
7到 8位二进制数表示 。 因此,人们选定 8位为 1
个字节 。
字节是计算机中用来表示存储空间大小的最基本的容量单位 。
1KB=1024B
1MB=1024KB
1GB=1024MB
3,字 ( Word)
数据的另一个单位就是计算机的字长 。 字是由整数倍个字节构成,是计算机进行数据处理和运算的单位 。
按计算机的字长可分为
8位机 ( 如苹果 II,中佛学习机 )
16位机 ( 如 286机 )
32位机 ( 如 386,486机 )
64位机 ( 如 PentiumⅡ,PentiumⅢ ) 等 。
四,数据的编码
计算机中数的存储和运算都使用二进制数,但前面提到的二进制数均未涉及符号,因而是一种 无符号数 。
那么计算机中正负数怎样表示呢?
1.原码
2.反码
3.补码
1.原码原码最高位是其符号位,0表示正数,
1表示负数 。
例如:十进制数 76,转换成二进制数为,( 76 )D= (1001100 )B,于是
+76=01001100
-76=11001100
2,反码正数的反码与其原码相同 。
负数的反码是除符号位外按位取反求得 。
例如:
( +5 )反 = 00000101
( -5 )反 = 11111010
( +0 )反 = 00000000
( -0 )反 = 11111111
( +127 )反 = 01111111
( -127 )反 = 10000000
3,补码正数的补码与其原码相同 。
负数的补码是在其反码的最低位上加 1得到 。
例如:
( +5 )补 = 00000101
( -5 )补 = 11111011
( +0 )补 = ( -0 )补 = 00000000
( +127 )补 = 01111111
( -127 )反 = 10000001
4,补码运算引入补码的主要目的在于简化减法运算,
可以把减法运算用补码加法来实现 。 计算机中就只有加法计算 。
补码运算定律:
( x + y )补 = ( x )补 + ( y )补
例如:
正数 x和负数 y相加,|x|>|y|。 x=3DH,
y=-21H
(x)补 +(y)补 = (00111101)补 +(10100001)补
= 00111101+11011111
= 00011100
(x+y)补 = (00111101- 00100001)补
= (00011100)补
= 00011100
所以,( x + y )补 = ( x )补 + ( y )补
注意:
补码是有一定范围的 。 对于 8位补码来说,其范围是 +127 ~ -128。 当运算结果超出该范围时,
答案就不正确了,称为溢出 。
例如
64+67=131=10000011
补码为 10000111的数,值为 –01111101=-125,
显然出错了 。 因为 131>127了,称为正向溢出 。
同样道理,如果两个负数之和小于 -128,就会产生负向溢出 。
5.定点数和浮点数定点小数定点整数浮点数(对应科学计数法)
计算机中的浮点数:阶码 + 尾数阶符 阶码 + 数符,尾数例如:
110.011(B)= 0.110011× 2+11
尾数 阶码
-0.000110011(B)= -0.110011× 2-11
尾数 阶码五,字符的编码
1,ASCII编码
ASCII码是美国标准信息交换码 (American
standard code for Information
Interchange),是微型计算机中表示字符的常用编码 。 标准的 ASCII码是占 一个字节,最高位置为,0”,用 7位二进制数编码,总共可以表示 128个字符 。
ASCII码的新版本是把原来的 7位码扩展成 8
位码,因此它可以表示 256个字符 。
A的 ASCII
码 41H
000010000
000101000
001000100
010000010
011111110
010000010
010000010
010000010
ASCII码字符的显示例:字符 A的显示字体小于 24号,一般使用点阵表示字形,大于 24号,主要采 用贝塞尔曲线表示:
[X1,Y1] [X2,Y2] 贝塞尔公式
2,汉字的编码汉字编码包括:
( 1) 汉字的输入码
( 2) 机器内码
( 3) 字形码 ( 汉字库 ) 。
( 1)汉字的输入码:
汉字输入码也称外码,它是专门用来向计算机输入汉字的编码 。
例如全拼编码,双拼编码等,五笔字型码 。
( 2) 汉字的机内码:
汉字的内码是供计算机系统内部处理、
存储、传输时使用的代码。目前使用最广泛的一种国标码是 GB2312-80。
国标码将 7000多个汉字全部按照 2
字节编码。但为了与 ASCII码区分,汉字机内码的每个字节的高位置为 1。
例如:计算机的机内码计 算 机
BCC6 CBE3 BBFA
( 3) 字的字形码:
汉字字形一般是以 数字化的方式 存储在计算机的存储器中,将汉字图象预先分割为许多小方块,组成一个 "点阵 "。 若用 "0"表示白点,"1"表示黑点,这个点阵字形就很容易地用二进制表示了,
这种方法我们称为点阵 。
表示字形的二进制代码称为汉字字形码 。
一般地说,表示汉字时,使用的点阵(有
16X16,24X24,32X32,64X64等 ),点阵越大,
则汉字质量越好,存储空间也越大。
例如:
存储一个 16X16的 汉字需要 32字节。
16*16 = 256 bit = 32字节这种形式存储的汉字字形信息的集合称为汉字库。
3,BCD码由于人们日常使用的是十进制,而机器内使用的是二进制,所以,需要把十进制数表示成二进制码 。
一位十进制数字,用 4位二进制编码来表示可以有多种方法,但常用的是 BCD码。四位二进制数表示 24即 16种状态。只取前 10种状态来表示 0~ 9,从左到右的每位二进制数的权分别为 8,4,2,1,因此又叫 8421码 。
1001 0111 0101.0001
9 7 5,1
补充二进制运算规则:
加法,1+1=0(进位 1)
0+0=0
1+0=0+1=1
减法,0-1=1 (借位 1)
1-0=1
1-1=0
0-1=0
二进制运算规则:
乘法,1*1=1(进位 1)
0*0=0
1*0=0*1=0
除法,0/1=0
1/1=1
逻辑运算规则:与、或、非、异或运算与运算 AND 或运算 OR
异或运算 XOR 非运算 NOT
作业:
每班小学号为 1-10号的学生下次课后交
1,X = -1CH,Y = -64H,分别计算 (X补 +Y补 )
和 (X+Y)补 的值。
2,已知 X补 = E3H,求 X原 和 X反 。
3,使用补码按照 8位二进制数计算时,
-64D-67D的值是多少?
4,存储 24× 24点阵的一个汉字信息,需要的字节数为多少?
1、
X补 =(-0011100)补 =(10011100)补
=11100100
Y补 =(-1100100)补 =(11100100)补
=10011100
X补 +Y补 = 10000000
(X+Y)补 = (10000000)补 = 10000000
2、
X补 = E3H=11100011
X原 = 10011101
X反 = X补 – 1= 11100010
3、
(-64D )补 = (-1000000)补 = 11000000
( -67D )补 = (-1000011)补 = 10111101
( -64D-67D )补 = (-64D )补 +( -67D )补
= 01111101
= 125
两个负数之和小于 -128,负向溢出。
4、
24*24 bit /8 =72Byte