Chapter 2
The Modigliani-Miller theorem
“When capital markets are perfect and complete, corporate
decisions are trivial.”
2.1 Arrow-Debreu model with assets
2.1.1 Primitives
(?,F,P)
X = {x : ?→ R | x is F-measurable}
h =1,...,|H|
z
h
∈ X
i =1,2,...,|I|
X
i
? X,e
i
∈ X
i
,θ
i
∈R
J
+
,u
i
: X
i
→ R
j =1,2,...,|J|
Y
j
? X
2.1.2 Arrow-Debreu model
We begin by reviewing the Arrow-Debreu model.
There is a finite set of states of nature ω ∈ ? and a single good in each
state. The commodity space is R
?
.Thereisafinite set of firms j ∈ J,each
characterized by a production set Y
j
?R
?
.Thereisafinite set of consumers
i ∈ I, each characterized by a consumption set X
i
,anendowment e
i
∈ X
i
,
and a utility function u
i
: X
i
→ R. Each agent i owns a fraction θ
ij
of firm
j.
1
2 CHAPTER 2. THE MODIGLIANI-MILLER THEOREM
An allocation is an array (x,y)=
3
{x
i
}
i∈I
,{y
j
}
j∈J
′
such that x
i
∈ X
i
for every i and y
j
∈ Y
j
for every j. An allocation (x,y) is attainable if
X
i
x
i
=
X
i
e
i
+
X
j
y
j
.
A price system or price vector is a non-zero element p ∈ R
?
.AnWalrasian
equilibrium consists of an attainable allocation (x,y) and a price system such
that, for every j,
y
j
∈ argmax{p · y
j
: y
j
∈ Y
j
},
and for every i,
x
i
∈ argmax{u
i
(x
i
):x
i
∈ X
i
,p· x
i
≤ p ·
?
e
i
+
X
j
θ
ij
y
j
!
.
Note that unlike the standard model, we assume that consumers receive
cash flowsineachstatedirectly.
Note that shareholders unanimously want the firm to adopt profitmaxi-
mization as its objective function.
Under well known conditions, every competitive equilibrium is Pareto-
e?cient and every Pareto-e?cient allocation is a competitive equilibrium
with lump-sum transfers.
2.1.3 Securities
Nowweintroduceafinite set of securities h ∈ H each represented by a
vector of returns z
h
∈ R
?
. Securities are in zero net supply. The vector
of securities prices is denoted by q ∈ R
H
where q
h
is the price of security
h.Let(x,y,p) be a Walrasian equilibrium and suppose that consumers and
firms are allowed to trade securities at the prices q.Letα
j
(resp. α
i
)denote
firm j’s (resp. consumer i’s) portfolio excess demand for securities. Firm j’s
profitisnow
p ·
?
y
j
+
X
h
α
jh
z
h
!
?q · α
j
and consumer i’s budget constraint is now
p · x
i
+ q · α
i
≤ p ·
?
e
i
+
X
j
θ
ij
y
j
+
X
h
α
ih
z
h
!
.
2.1. ARROW-DEBREU MODEL WITH ASSETS 3
Equilibrium requires that
q
h
= p · z
h
,?h ∈ H.
Otherwise firms could increase profits without bound. But under this condi-
tion, any portfolio is optimal. Thus equilibrium with securities requires only
that attainability be satisfied:
X
i
α
i
+
X
j
α
j
=0.
We can do the same thing with traded equity. If equity is fairly priced, there
is no reason for anyone to trade it.
2.1.4 Irrelevance of capital structure
a
i
=(x
i
,α
i
,β
i
) ∈ A
i
≡ X
i
×R
H
×R
J
a
j
=(y
j
,α
j
) ∈ A
j
≡ Y
j
×R
H
a =(a
i
)
i∈I
× (a
j
)
j∈J
Definition 1 An allocation a =(a
i
)
i∈I
× (a
j
)
j∈J
is attainable if
X
i∈I
x
i
=
X
j∈J
y
j
X
i∈I
α
i
+
X
j∈J
α
j
=0
X
i∈I
α
i
= 1.
Definition 2 An attainable allocation a =(a
i
)
i∈I
×(a
j
)
j∈J
is weakly e?cient
if there does not exist an attainable allocation a
0
=(a
0
i
)
i∈I
× (a
0
j
)
j∈J
such
that u
i
(x
i
) <u
i
(x
i
) for all i. An attainable allocation a =(a
i
)
i∈I
× (a
j
)
j∈J
is (strongly) e?cient if there does not exist an attainable allocation a
0
=
(a
0
i
)
i∈I
× (a
0
j
)
j∈J
such that u
i
(x
i
) ≤ u
i
(x
i
) for all i and u
i
(x
i
) <u
i
(x
i
) for
some i.
Definition 3 A Walrasian equilibrium consists of an attainable allocation
a =(a
i
)
i∈I
×(a
j
)
j∈J
and a price vector (p,q) ∈ X ×R
H
such that, for every
j, a
j
∈ A
j
maximizes the value of the firm
V
j
= v
j
?
X
h
q
h
α
jh
= p ·
?
y
j
+
X
h
α
jh
z
h
!
?
X
h
q
h
α
jh
4 CHAPTER 2. THE MODIGLIANI-MILLER THEOREM
and, for every i, a
i
∈ A
i
maximizes u
i
(x
i
) subject to the budget constraint
p · x
i
+
X
h
α
ih
q
h
+
X
j
β
ij
v
j
≤ p · e
i
+
X
j
θ
ij
V
j
+p ·
?
X
h
α
i
z
h
+
X
j
β
ij
?
y
j
+
X
h
α
jh
z
h
!!
.
Theorem 4 Let (a,p,q) ∈ X×R
H
∈ A×X×R
H
be a Walrasian equilibrium
and let (α
0
j
)
j∈J
be an arbitrary allocation of portfolios for firms. Then there
exists a Walrasian equilibrium (a
0
,p,q) such that
a
0
=(a
0
i
)
i∈I
× (a
0
j
)
j∈J
a
0
i
=(x
i
,α
0
i
,β
0
i
),?i
a
0
j
=(y
j
,α
0
j
),?j.
Note also that, by the previous argument, V
j
= V
0
j
for every j.
There are two aspects to the Modigliani-Miller theorem: one says that
the firm’s choice of financial strategy α
j
has no e?ect on the value of the
firm (or shareholder’s welfare); the other says that the choice of α
j
has no
essential impact on equilibrium. Here we are making the second (stronger)
claim.
2.2 Equilibrium with incomplete markets
To simplify, and avoid some thorny issues about the objective function of the
firm, we assume that production sets are singletons:
Y
j
= {ˉy
j
},?j ∈ J.
We start by assuming that firms do not trade in securities α
j
=0.Thereare
no Arrow securities, so that consumption bundles can only be achieved by
trading securities.
x
i
= e
i
+
X
j
θ
ij
y
j
+
X
h
α
ij
z
h
+
X
j
β
ij
y
j
.
2.2. EQUILIBRIUM WITH INCOMPLETE MARKETS 5
Since firms have no decision to make, equilibrium is achieved if consumers
maximize their utility subject to the budget constraint:
max u
i
(x
i
)
s.t.
P
j
β
ij
v
j
+ q · α
i
≤
P
j
θ
ij
v
j
;
and markets for shares and securities clear:
X
i
α
i
=0
and
X
i
β
i
=(1,...,1).
Now change α
j
=0to ?α
j
, change v
j
to ?v
j
= v
j
+ q · α
j
,andchangeα
i
to
?α
i
= α
i
?
P
j
β
ij
?α
j
. Checking the optimality of the consumers problem and
the attainability conditions we see that the economy is still in equilibrium.
Definition 5 An equilibrium with incomplete markets consists of an attain-
able allocation a =(a
i
)
i∈I
×(a
j
)
j∈J
∈ A and a price vector (q,v) ∈R
H
×R
J
such that, for every j, a
j
∈ A
j
maximizes the value of the firm
V
j
= v
j
?
X
h
q
h
α
jh
=max
i
(
μ
i
·
?
y
j
+
X
h
α
jh
z
h
!)
?
X
h
q
h
α
jh
and, for every i, a
i
∈ A
i
maximizes u
i
(x
i
) subject to the budget constraint
X
h
α
ih
q
h
+
X
j
β
ij
v
j
≤
X
j
θ
ij
V
j
,
where
x
i
= e
i
+
X
h
α
ih
z
h
+
X
j
β
ij
?
y
j
+
X
h
α
jh
z
h
!
.
Theorem 6 Let (a,q,v) ∈ A×R
H
×R
J
be an equilibrium with incomplete
markets and let (α
0
j
)
j∈J
be an arbitrary allocation of portfolios for firms. Then
there exists an equilibrium with incomplete markets (a
0
,q,v
0
) such that
a
0
=(a
0
i
)
i∈I
× (a
0
j
)
j∈J
a
0
i
=(x
i
,α
0
i
,β
0
i
),?i
a
0
j
=(y
j
,α
0
j
),?j.
6 CHAPTER 2. THE MODIGLIANI-MILLER THEOREM
Note that the space of commodity bundles that can be spanned by trading
equity and securities is exogenous, but only because we have assumed the
firm’s choice of production plan is exogenous. In other words, there is no
financial innovation. This assumption is crucial for the MM theorem.
2.3 Default
2.3.1 Default with complete markets
For simplicity we assume there is a single firm j =1with a single feasible
production plan y(ω) > 0, and a single security with payo?s z(ω)=1.
Limited liability raises the possibility of default and risky debt. Let ?z(α
j
,ω)
denote the return to risky debt and ?y(α
j
,ω) the return to equity in a firm
with risky debt. Then
?z(α
j
,ω)=
?
z(ω) if y(ω)+α
j
z(ω) ≥ 0
y(ω)/(?α
j2
) if y(ω)+α
j
z(ω) < 0.
and
?y(α
j
,ω)=
?
y(ω)+α
j
z(ω) if y(ω)+α
j
z(ω) ≥ 0
0 if y(ω)+α
j
z(ω) < 0.
If there are complete markets, the value of the risky debt is
?q = p · ?z(α
j
)
and the value of equity is
?v = p · ?y(α
j
).
The value of the firm to the original shareholders is
?
V =?v +?qα
j
= p · ?y(α
j
)+α
j
p · ?z(α
j
)
= p · y.
So default doesn’t add value to the firm.
Assume that there is a single type of firm j consisting of a continuum of
identical firms. These firms choose di?erent levels of risky debt. The number
of securities may be great enough to span the entire commodity space R
?
.
For example, suppose y(ω)=ω and choose α
ω
j
= ?ω +1for ω =1,...,|?|.
2.3. DEFAULT 7
Then ?y
3
α
|?|
j
′
pays one unit if ω = |?| and nothing otherwise, that is, it is
an Arrow security for the state ω = |?|. A portfolio consisting of one unit
of ?y
3
α
|?|?1
j
′
and minus two units of ?y
3
α
|?|
j
′
will yield one unit in state
ω = |?| ? 1 and nothing otherwise, that is, it is an Arrow security for the
state ω = |?|?1. Continuing in this way we can generate Arrow securities
for each state. This is a case where capital structure is irrelevant for the
individual firm, but not for the equilibrium.
2.3.2 Default with incomplete markets
To define an equilibrium, we assume that consumers can hold the firm’s debt
but cannot issue debt or sell short the firm’s equity. (This isn’t necessary,
but simplifies the story).
Definition 7 An equilibrium with incomplete markets and default consists
of an attainable allocation a =(a
i
)
i∈I
× (a
j
) ∈ A and a price vector (q,v) ∈
R
H
×R such that a
j
∈ A
j
maximizes the value of the firm
V
j
= v
j
?qα
j
=max
i
{μ
i
· (y
j
(α
j
)+α
j
?z(α
j
))}?qα
j
and, for every i, a
i
∈ A
i
maximizes u
i
(x
i
) subject to the budget constraint
α
i
q + β
i
v ≤ θ
i
V,
where
x
i
= e
i
+ α
i
?z(α
j
)+β
i
(y
j
(α
j
)+α
j
?z(α
j
)).
In this case, we have to deal with the valuation problem explicitly: be-
cause markets are incomplete, individuals may disagree in their valuation of
a security. Only those who value it most highly will hold a positive quantity
of a security or equity in equilibrium.
2.3.3 Related issues
With complete markets, all shareholders agree that value maximization is
the right objective function for the firm. With incomplete markets, this
may not be the case. The firm’s choice of y
j
and α
j
has two e?ects, on
the value of the firm V
j
and on the risk sharing that can be achieved by
8 CHAPTER 2. THE MODIGLIANI-MILLER THEOREM
holding shares and risky debt. One solution to this problem: if the firm’s
cash stream can be spanned by other firms’ cash streams, the contribution
to risk sharing is redundant and only the value of the firm matters. See
Bell Journal Symposium (Ekern and Wilson (1974), Leland (1974), Radner
(1974)). Another solution: if there is a large number of identical firms, each
typeofconsumercanholdsharesinaversionofthefirm that uniquely
optimizes his needs for risk sharing. See Hart (1979). When these are not
available, for example, because the number of firms is finite, the theory of
the firm becomes very di?cult (see for example, Dreze (1974), Grossman
and Hart (1979)). Perhaps for this reason, much fo the theory of general
equilibrium with incomplete markets has been developed for pure exchange
models. For the valuation problem in general, see Allen and Gale (1988) or
the Allen and Gale (1994). For an analysis of the Modigliani-Miller Theorem
with default in a partial equilibrium setting, see Stiglitz (1969) and Hellwig
(1981).
2.4 Bibliography
Allen, F. and D. Gale, (1988). “Optimal Security Design,” Review of Finan-
cial Studies 1, 229-263.
– (1992). “Arbitrage, Short Sales, and Financial Innovation” Economet-
rica 59, 1041-68.
– (1994). Financial Innovation and Risk Sharing.Cambridge,MA:MIT
Press.
Arrow, K. (1964). “The Role of Securities in the Optimal Allocation of
Risk-Bearing,” Review of Economic Studies 31, 91-96.
Arrow, K. and G. Debreu (1954). “Existence of equilibrium for a com-
petitive economy,” Econometrica 22, 265-290.
Dammon, R. and R. Green (1987). “Tax Arbitrage and the Existence of
Equilibrium Prices for Financial Assets,” Journal of Finance 42, 1143-66.
Du?e, J. D. and W. Shafer (1985). “Equilibrium in Incomplete Markets:
I—A Basic Model of Generic Existence,” Journal of Mathematical Economics
14, 285-300.
– (1986). “Equilibrium in Incomplete Markets: II; Generic Existence in
Stochastic Economies,” Journal of Mathematical Economics 15, 199-216.
Dreze, J. (ed.) (1974). Allocation under Uncertainty: Equilibrium and
Optimality; proceedings from a workshop sponsored by the International
2.4. BIBLIOGRAPHY 9
Economic Association. New York: Wiley.
Ekern, Steinar and Robert Wilson (1974). “On the Theory of the Firm in
an Economy with Incomplete Markets Bell Journal of Economics 5, 171-80.
Grossman, S. and O. Hart (1979). “A Theory of Competitive Equilibrium
in Stock Market Economies,” Economtrica 47, 293-329.
Hart, O. (1975). “On the Optimality of Equilibrium when the Market
Structure is Incomplete,” Journal of Economic Theory 11, 418-43.
–(1979). “OnShareholderUnanimityinLargeStockMarketEconomies,”
Econometrica 47, 1057-83.
Hellwig, M. (1981) “Bankruptcy, Limited Liability, and the Modigliani-
Miller Theorem,” American Economic Review 71, 155-70.
Leland, H. (1974). “Production Theory and the Stock Market,” Bell
Journal of Economics 5, 125-44.
Magill, M. and M. Quinzii (1996). Theory of Incomplete Markets, Volume
1. Cambridge MA: MIT Press.
Radner, R. (1972). “Existence of Equilibrium of Plans, Prices, and Price
Expectations in a Sequence of Markets,” Econometrica 40, 289-303.
– (1974). “A Note on Unanimity of Stockholders’ Preferences among
Alternative Production Plans: A Reformulation of the Ekern-Wilson Model”
Bell Journal of Economics 5, 181-84.
Stiglitz, J. (1969) “ARe-Examination of the Modigliani-Miller Theorem,”
American Economic Review 59,784-93.