1
?"'w
? ?? Tamhane? Dunlop
?÷?l
¥?tc
?§??1? Elizabeth Newton(
?
7 ?yDy )
?T?B?s? (B,v
D )?T b
2
?
?98¥ (′?Zμ¥w
?¨
? _y<V? (′[??V?
^?)? e?-
/ b
? YV |Zμ9
?
L
iN?
¥ú b
? ??uW??§uW
^VB?98?é???
9¥ZE b
P¨??K? ? (CLT)v"'f ?/
?
?98¥ (′¥wV? V[ ?Z?d?
?
98¥ (′w
b
3
(′¥w
v"'
? ¥w
^["' (′ 1$
^
μZμ ¥íê9′ b
? v"'? n CLTá
?á
ì í
?
? s?'
P98?
^?
?
¥ b
? v¥ n-
{"μ¥-4/"
'Zμ s
2
V[ A?
^? ¥B??¥
9
b?T n 30á
ì V[
T?
L
! b
4
×?
? ?l [' 413: Casella & Berger b
? è?
?
?á
ì?
?
/??uW b
5
(′¥??uWv"'
? ú
n [' 56:m 2.15
6
(′¥??uW
/K¥??uW
K¥??uW
^ (′¥Sμ b
7
S-Plus?¥??uW
t.test(lottery.payoff)
One-sample t-Test
data: lottery.payoff
t = 35.9035, df= 253, p-value = 0
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
274.4315 306.2850
sample estimates:
mean of x
290.3583
??mV
^
P¨ S-PLUS
Rèqá
3 ?¥ S-PLUS(R)
^ Insightful
3¥B??¨
S b
8
zuW"'?¥??
? L
!á
ì1p ¥B?
£ü¥
?_??
uW{μH=μ E¥uW
? b
?
!p3n¤ b
?
!9¨
??9
?*
1 ¥"'9
^¤
??¥ b
? ¥9 V[YV??4?′¥S?i|
1
?s¤? b
?L
!?
?? 95
¥43′
? ¥
uW= b
9
è 7.1
t b
l?
n [' 239: è 7.1 “t b
l? ” b
10
è 7.2?
¥<
n [' 240: è 7.2 b
11
?á Z_¥<9
?
" P[_ ' H
0
| ]
9
?
a
ü/B
: b
_
?á z_÷ú
£
ü<f
?¥w?n
['Z? 7.7 b
12
?á Z_¥<9
?
n [' 243:
m 7.1
¥à
q
áf
?m
13
<f
?wL
n [' 243:m 7.2 b
?i
?
^??÷?^¥_?D ¥?
v?]¥ b
14
è 7.3
SATT
<9
?
n [' 244: è 7.3 b
15
?á_¥<9
?
n [' 245:m 7.3
16
?á_¥<wL
n [' 246:
m 7.4 b
÷^?OYDeL
!¥u
Y b
÷v¥"'¤?÷μr¥
_ b
17
c n? ¥<f
?
¨ S-Plus¥f
?i
jm
18
?á z_¥"'???
? ??"'?
Pù?μ s¥< ?
a
ü μ
L=il×1
¥T¨