Chapter 1
Neoclassical Economics
Micro Theory, 2005
1. Producer Theory
1.1. Technology
y
?
i
=input of good i, y
+
i
=output of good i, y
i
≡ y
+
i
? y
?
i
=net output, y =
(y
1
,y
2
,...,y
n
) is a production plan.
Production possibility set:
Y =
null
technologically feasible production plans y ∈ R
n
null
.
y ∈ Y is technologically e?cient ifthereisnoy
0
∈ Y s.t. y
0
>y.
Production frontier =
null
technological e?cient production plans
null
.
y ∈ Y is economically e?cient if it maximizes profit.
Proposition 1.1. Economic e?ciency implies technological e?ciency.
Consider a single output y ∈ R
+
. Denote x ∈ R
n
+
as the firm’s inputs and define the
production function f : R
n
+
→ R
+
as
f(x) ≡ max
(y,?x)∈Y
y.
Proposition 1.2. For y ∈ R
+
, (y,?x) is technologically e?cient =? y = f(x)
1—1
Isoquant:
Q(y) ≡
null
x ∈ R
n
+
| y = f(x)
null
.
Marginal rate of transformation:
MRT(x) ≡
f
x
1
(x)
f
x
2
(x)
.
MRT(x) is the slope of the isoquant.
Example 1.1. Cobb-Douglas Technology. For 0 ≤ α ≤ 1, consider Y ≡
null
(y,?x
1
,?x
2
) ∈ R
+
×R
2
?
| y ≤ x
α
1
x
1?α
2
null
.
For production function f : R
n
+
→ R
+
, it exhibits
global constant returns to scale (CRS) if f(tx)=tf(x);
global increasing returns to scale (IRS) if f(tx) >tf(x);
global decreasing returns to scale (DRS) if f(tx) <tf(x),
? x ∈ R
n
+
,t>1.
Example 1.2. Consider f(x
1
,x
2
)=Ax
a
1
x
b
2
.
Elasticity of scale at x :
e(x) ≡
dlogf(tx)
dlogt
null
null
null
null
t=1
.
e(x)=percentage increase in output for 1% increase in scale.
At x, we say that f exhibits
local constant returns to scale (CRS) if e(x)=1;
local increasing returns to scale (IRS) if e(x) > 1;
local decreasing returns to scale (DRS) if e(x) < 1.
1—2
Proposition 1.3. (Returns to Scale).
1. For x ∈ R
n
, we have
global IRS =? local IRS or CRS, ?x
global CRS =? local CRS, ?x
global DRS =? local DRS or CRS, ?x
2. For x ∈ R
+
, we have
e(x)=
x · f
0
(x)
f(x)
,
implying
local IRS ?? f
0
(x) >
f(x)
x
local CRS ?? f
0
(x)=
f(x)
x
local DRS ?? f
0
(x) <
f(x)
x
.
3. For x ∈ R
n
and y = f(x), we have
e(x)=
AC(y)
MC(y)
,
implying
local IRS ?? AC > MC,
local CRS ?? AC = MC,
local DRS ?? AC < MC.
Elasticity of substitution:
σ ≡?
? log
x
1
(w,y)
x
2
(w,y)
? log
w
1
w
2
.
σ isthepercentagechangein
x
?
1
x
?
2
for 1% increase in
w
1
w
2
.
1—3
1.2. The Firm’s Problem
The firm maximizes its profit or expected profit.
profit = total revenue?total cost.
The cost is the economic cost or opportunity cost. The revenue is the money
received from sales.
For n actions a ∈ R
n
, the firm’s problem is
π ≡ max
a
R(a) ?C(a).
FOC:
?R(a
?
)
?a
i
=
?C(a
?
)
?a
i
or MR= MC, ? i. (2.1)
Assume competitive firms (price takers) and a single output. Profitfunctionis
π(p,w) ≡ max
x
pf(x) ?w · x. (2.2)
Demand function: x
?
= x(p,w). Supply function: y(p,w) ≡ f[x(p,w)]. We have
FOC : pDf(x
?
)=w,
SOC : D
2
f(x
?
) ≡
null
?
2
f(x
?
)
?x
i
?x
j
null
≤ 0.
Cost function:
c(w,y) ≡ min
x
{w · x | y ≤ f(x)}. (2.3)
Conditional demand function: x
?
= x(w,y). Lagrange function is L(x,λ)=w ·x+
λ[y ?f(x)]. Then,
FOC: w = λDf(x
?
)
or
w
i
w
j
=
f
x
i
(x
?
)
f
x
j
(x
?
)
, ? i, j. (2.4)
The SOC for (2.3) is
h
0
D
2
x
f(x
?
)h ≤ 0, for all h satisfying Df(x
?
) · h =0.
An equivalent problem of (2.2) is
max
y
py ?c(w,y). (2.5)
1—4
Then,
FOC : p =
?c(w,y
?
)
?y
,
SOC :
?
2
c(w,y
?
)
?y
2
≥ 0.
Example 1.3. Consider
c(w,y)=min
x
1
,x
2
w
1
x
1
+ w
2
x
2
s.t. Ax
a
1
x
b
2
= y.
The solution is
x
1
(w
1
,w
2
,y)=A
?
1
a+b
null
aw
2
bw
1
null b
a+b
y
1
a+b
,
x
2
(w
1
,w
2
,y)=A
?
1
a+b
null
bw
1
aw
2
null a
a+b
y
1
a+b
.
Thus,
c(w
1
,w
2
,y)=A
?
1
a+b
null
null
a
b
null b
a+b
+
null
a
b
null
?
a
a+b
null
w
a
a+b
1
w
b
a+b
2
y
1
a+b
.
Example 1.4. In Example 1.3,
c(w
1
,w
2
,y) ≡ c(w
1
,w
2
)y
1
a+b
.
Profit maximization:
max
y
py ?c(w
1
,w
2
)y
1
a+b
.
Solution:
y(p,w
1
,w
2
)=
null
p
a + b
c(w
1
,w
2
)
null a+b
1?a?b
,
if a + b null=1. Then,
π(p,w
1
,w
2
)=
null
1
a + b
?1
null
(a + b)
1
1?a?b
p
1
1?a?b
c(w
1
,w
2
)
?
a+b
1?a?b
.
If a + b =1, profit maximization:
max
y
[p?c(w
1
,w
2
)]y.
1—5
Solution:
y
s
=
?
?
?
?
?
?
?
?
?
?
?
∞ if p>c(w
1
,w
2
),
[0, ∞ ]ifp = c(w
1
,w
2
),
0 if p<c(w
1
,w
2
).
Example 1.5. CES production function:
y = f(x
1
,x
2
)=(a
1
x
ρ
1
+ a
2
x
ρ
2
)
1
ρ
, ρ ∈ [?∞ , 1].
We find
σ ≡?
?(x
1
(w,y)/x
2
(w,y))
?(w
1
/w
2
)
(w
1
/w
2
)
(x
1
/x
2
)
=
1
1 ?ρ
.
If ρ =1 or σ = ∞ , linear production function:
y = a
1
x
1
+ a
2
x
2
.
If ρ =0 or σ =1, assume a
1
+ a
2
=1. We have
y = lim
ρ→0
(a
1
x
ρ
1
+ a
2
x
ρ
2
)
1
ρ
= x
a
1
1
x
a
2
2
,
which is the Cobb-Douglas Production Function.
If ρ = ?∞ or σ =0, assuming a
1
= a
2
null=0, we have
y =lim
ρ→?∞
(a
1
x
ρ
1
+ a
2
x
ρ
2
)
1
ρ
=min(x
1
,x
2
),
which is the Leontief Production Function.
1.3. Properties
Proposition 1.4. If the production function is homogenous of degree α,c(w,y)=
y
1
α
c(w,1).
Proposition 1.5. (Cost Function). c(w,y) is
(1) increasing in w.
(2) linearly homogeneous in w.
(3) concave in w.
1—6
And,if c(w,y) is continuous, the three conditions are su?cient for c(w,y) to be a cost
function.
What causes concavity in cost?
Proposition 1.6. (Profit Function). π(p,w) is
(1) increasing in p, decreasing in w;
(2) linearly homogeneous in (p,w);
(3) convex in (p,w).
Proposition 1.7. (Hotelling’s Lemma). If x
i
(p,w) is an interior solution,
y(p,w)=
?π(p,w)
?p
,x
i
(p,w)=?
?π(p,w)
?w
i
, ? i.
Proposition 1.8. (Shephard’s Lemma). If x
i
(w,y) is an interior solution,
x
i
(w,y)=
?c(w,y)
?w
i
, ? i.
Proposition 1.9. (Conditional Demand). If x(w,y) is twice continuously di?eren-
tiable,
(1) x(w,y) is zero homogeneous in w;
(2) substitution matrix D
w
x(w,y) ≤ 0;
(3) symmetric cross-price e?ects:
?x
i
(w,y)
?w
j
=
?x
j
(w,y)
?w
i
;
(4) x
i
(w,y) is decreasing in w
i
.
Proposition 1.10. (Demand and Supply). If x(p,w) and y(p,w) are twice contin-
uously di?erentiable,
(1) x(p,w) and y(p,w) are zero homogeneous in (p,w);
(2) x
i
(p,w) is decreasing in w
i
,y(p,w) is increasing in p;
(3) symmetric cross-price e?ects:
?x
i
(p,w)
?w
j
=
?x
j
(p,w)
?w
i
.
1—7