Proposition 1.11. (The LeChatelier Principle).
?y(p,w)
?p
≥
?y(p,w,z)
?p
null
null
null
null
z=z(p,w)
,
null
null
null
null
?x
i
(p,w)
?w
i
null
null
null
null
≥
null
null
null
null
null
?x
i
(p,w,z)
?w
i
null
null
null
null
z=z(p,w)
null
null
null
null
null
.
1.4. Production Plans with Multiple Outputs
Let y ≡ (y
1
,y
2
,...,y
m
) be a net output vector, Y ?R
m
be a convex set, G : Y → R
be twice di?erentiable.
Production possibility set: {y ∈ Y | G(y) ≤ 0}.
Assumption 1.1. G
y
i
(y) > 0, ? i, y ∈ Y.
Proposition 1.12. Production frontier {y ∈ Y | G(y)=0} contains technologically
e?cient production plans.
Definition 1.1. Marginal rate of transformation:
MRT
ij
≡?
?y
i
?y
j
null
null
null
null
G=0
=
G
y
j
G
y
i
.
Assumption 1.2. G is quasi-convex.
Proposition 1.13. Under Assumption 1.1, G is quasi-convex i?
null
null
null
null
null
null
null
null
null
null
null
0 G
y
1
G
y
2
G
y
1
G
y
1
y
1
G
y
1
y
2
G
y
2
G
y
2
y
1
G
y
2
y
2
null
null
null
null
null
null
null
null
null
null
null
≤ 0, ...,
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
0 G
y
1
··· G
y
n
G
y
1
G
y
1
y
1
··· G
y
1
y
n
.
.
.
.
.
.
.
.
.
G
y
n
G
y
n
y
1
··· G
y
n
y
n
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
≤ 0.
Example 1.6. Let y = f(x) be a production function, f : R
n
+
→ R
+
. The production
possibility set:
P =
null
(?x,y) ∈R
n+1
| f(x) ≥ y
null
.
Let y
1
≡?x, y
2
≡ y, G(y
1
,y
2
) ≡ y
2
?f(?y
1
). Then,
P =
null
(y
1
,y
2
) ∈R
n+1
| G(y
1
,y
2
) ≤ 0,y
1
≤ 0,y
2
≥ 0
null
1—8
and
G
y
1
(y
1
,y
2
)=f
0
(?y
1
)=f
0
(x),G
y
2
(y
1
,y
2
)=1,
and
null
null
null
null
null
null
null
null
null
null
null
0 G
y
1
G
y
2
G
y
1
G
y
1
y
1
G
y
1
y
2
G
y
2
G
y
2
y
1
G
y
2
y
2
null
null
null
null
null
null
null
null
null
null
null
= f
00
(x).
Thus, if f
0
> 0 and f
00
< 0, Assumptions 1.1 and 1.2 are satisfied.
Consider
π(p) ≡ max
y
p · y
s.t. G(y) ≤ 0.
(2.9)
By Assumption 1.1,
π(p) ≡ max
y
p · y
s.t. G(y)=0.
Let L(λ,y) ≡ p · y +λG(y).
FOC: p +λDG(y
?
)=0.
By the quasi-convexity of G, the FOC guarantees optimality.
1—9
2. Consumer Theory
2.1. Existence of Utility Function
Given consumption set X ?R
k
, the consumer has preferences null over X.
Reflexivity. x null x.
Transitivity. x null y and y null z ? x null z.
Completeness. ? x, y ∈ X, either x null y or x ? y.
Continuity. ? x
0
∈ X, {x ∈ X | x null x
0
} and {x ∈ X | x null x
0
} are closed sets in X.
Afunctionu : X → R represents the preferences if
1. u(x) ≥ u(y) i? x null y;
2. u(x)=u(y) i? x ~ y.
u is called a utility function on (X,null).
Proposition 1.14. (Existence of Utility Function). If null is reflexive, transitive,
complete, and continuous, then there exists a continuous utility function u on (null,X).
Proposition 1.15.
(1) If u is a utility function, for any strictly increasing ? : R → R,v≡ ??u is also
a utility function for the same preference relation.
(2) The utility function is unique up to a strictly increasing transformation.
1—10
2.2. Consumer’s Problem
Theconsumer’sproblem:
?
?
?
?
?
?
v(p,I) ≡ max
x∈R
n
+
u(x)
s.t. p · x ≤ I.
x
?
= x
?
(p,I) is the ordinary demand function or Marshallian demand function.
v(p,I) is the indirect utility function.
FOC :
u
x
i
(x
?
)
u
x
j
(x
?
)
=
p
i
p
j
.
SOC : h
0
· D
2
u(x
?
) · h ≤ 0 for p · h =0.
Remark 1.1. If u is continuous, x
?
exists.
Remark 1.2. Strict quasi-concavity of u ? unique x
?
.
Remark 1.3. x
?
is independent of utility representation.
The dual problem of utility maximization is expenditure minimization:
?
?
?
?
?
e(p,u) ≡ min p · x
s.t. u(x) ≥ u
The solution ˉx =ˉx(p,u) is the compensated demand function or Hicksian demand
function. e(p, u) is the expenditure function.
normal good:
?x
?
i
?I
≥ 0, inferior good:
?x
?
i
?I
< 0;
luxury good:
I
x
?
i
?x
?
i
?I
>1, necessary good: 0 ≤
I
x
?
i
?x
?
i
?I
< 1;
gross substitutes:
?x
?
i
?p
j
> 0, gross complements:
?x
?
i
?p
j
< 0;
net substitutes:
?ˉx
i
?p
j
> 0, net complements:
?ˉx
i
?p
j
< 0;
Gi?en good:
?x
?
i
?p
i
> 0, usual good:
?x
?
i
?p
i
≤ 0;
elastic: ?
p
i
x
?
i
?x
?
i
?p
i
> 1, inelastic: 0 ≤?
p
i
x
?
i
?x
?
i
?p
i
< 1.
1—11
2.3. Properties
Proposition 1.16. (Indirect Utility Function). v(p,I) is
(1) decreasing in p, increasing in I;
(2) zero homogeneous in (p,I);
(3) quasi-convex in p.
Proposition 1.17. (Expenditure Function). e(p,u) is
(1) increasing in p;
(2) linearly homogeneous in p;
(3) concave in p.
Proposition 1.18.
(1) e[p, v(p,I)] = I;
(2) v[p, e(p,u)] = u;
(3) x
?
i
(p,I)=ˉx
i
[p, v(p,I)];
(4) ˉx
i
(p,u)=x
?
i
[p, e(p,u)].
Proposition 1.19. (Shephard’s Lemma).
ˉx
i
(p, u)=
?e(p,u)
?p
i
, ? i.
Proposition 1.20. (Roy’s Identity). For p>>0,I>0,
x
?
i
(p, I)=?
v
p
i
(p,I)
v
I
(p,I)
, ? i.
Example 1.7. For u(x
1
,x
2
)=(x
ρ
1
+ x
ρ
2
)
1/ρ
, verify Roy’s identity.
Proposition 1.21. (Slutsky Equation).
?x
?
j
(p,I)
?p
i
=
?ˉx
j
[p, v(p,I)]
?p
i
?
?x
?
j
(p,I)
?I
· x
?
i
(p,I).
1—12