Solution 6.8.2.2
T
c
(s)=
K(s + )
(s + ;j!
d
)(s + + j!
d
)
:
= !
n
=0:85=4
!
d
= !
n
q
1;
2
=50:6=3:
Werstnd to set the desired steady state error to a ramp, namely 0.1.
Wehave
e
ss
=
1
;j!
d
+
1
+ j!
d
;
1
=
2
2
+ !
2
d
;
1
:
For nonzero steady state error to a ramp wehave
2
2
+ !
2
d
;
1
= ;;
where is the steady state error. Then
1
=
2
2
+ !
2
d
; =
2 ;(
2
+ !
2
d
)
2
+ !
2
d
;;
or
=
2
+ !
2
d
2 ;(
2
+ !
2
d
)
:
For zero steady state error to a step input wemust have
T
c
(0) = 1;;
or
K(s + )
(s + ;j!
d
)(s + + j!
d
)
s=0
=1;;
or
K
2
+ !
2
d
=1;;
yielding
K =
2
+ !
2
d
1
substituting our value for obtained earlier wehave
K =
2
+ !
2
d
2
+ !
2
d
2;(
2
+ !
2
d
)
=2;(
2
+ !
2
d
):
Then, for this problem
=
3
2
+4
2
24;0:1(3
2
+4
2
)
=4:5455
K = 2 ;(
2
+ !
2
d
)=24;0:1(3
2
+4
2
)=5:5
The MATLAB program
omegan = 5
zeta = 0.8
sigma = omegan * zeta
omegad = omegan * sqrt(1 - zeta^2)
delta = (sigma^2 + omegad^2)/(2*sigma)
K=2*sigma
tc = zpk([-delta],[-sigma+j*omegad -sigma-j*omegad],K)
step(tc)
print -deps sr6822.eps
t =0:0.01:1;;
u=t
lsim(tc,u,t)
print -deps rr6822.eps
generates the step and ramp responses shown in Figure 1 and 2 respectively.
2
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 1: Step response of closed loop system
Time (sec.)
A
mp
li
tu
d
e
Linear Simulation Results
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Figure 2: Ramp response of closed loop system
3