Solution 6.8.2.5
T
c
(s)=
K(s + )
(s + ;j!
d
)(s + + j!
d
)(s +
)
:
1 = !
n
=
p
2=210 = 7:07
!
d
= !
n
q
1;
2
=10
p
2=2=7:071:
=20:
We rst nd to set the desired steady state error to a ramp, namely zero.
Wehave
e
ss
=
1
;j!
d
+
1
+ j!
d
+
1
;
1
=
2
2
+ !
2
d
+
1
;
1
:
For zero steady state error to a ramp wehave
2
+
2
+ !
2
d
(
2
+ !
2
d
)
;
1
=0;;
or
=
(
2
+ !
2
d
)
2
+
2
+ !
2
d
For zero steady state error to a step input wemust have
T
c
(0) = 1;;
or
K(s + )
(s + ;j!
d
)(s + + j!
d
)(s +
)
s=0
=1;;
or
K
(
2
+ !
2
d
)
=1;;
yielding
K =
(
2
+ !
2
d
)
1
substituting our value for obtained earlier wehave
K =
(
2
+ !
2
d
)
(
2
+ !
2
d
)
2
+
2
+ !
2
d
=2
+
2
+ !
2
d
:
Then, for this problem
=
20(7:071
2
+7:071
2
)
27:07120 + 7:071
2
+7:071
2
=5:2241
K = 2
+
2
+ !
2
d
= 27:07120+7:071
2
+7:071
2
=382:8427
The MATLAB program
omegan = 10
zeta = sqrt(2)/2
sigma = omegan * zeta
gamma = 20
omegad = omegan * sqrt(1 - zeta^2)
delta = gamma*(sigma^2 + omegad^2);;
delta = delta/(2*sigma*gamma + sigma^2 + omegad^2)
K=2*sigma*gamma + sigma^2 + omegad^2
tc = zpk([-delta],[-sigma+j*omegad -sigma-j*omegad -gamma],K)
step(tc)
print -deps sr6825.eps
t=0:0.01:1;;
u=t;;
lsim(tc,u,t)
print -deps rr6825.eps
generates the step and ramp responses shown in Figure 1 and 2 respectively.
2
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.16 0.32 0.48 0.64 0.8
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 1: Step response of closed loop system
Time (sec.)
A
mp
li
tu
d
e
Linear Simulation Results
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Figure 2: Step response of closed loop system
3