Solution 6.8.2.8
T
c
(s)=
K(s + )
(s + ;j!
d
)(s + + j!
d
)(s +
)
:
= !
n
=0:65=3
!
d
= !
n
q
1;
2
=50:8=4:
= 20:
We rst nd to set the desired steady state error to a ramp, namely zero.
Wehave
e
ss
=
1
;j!
d
+
1
+ j!
d
+
1
;
1
=
2
2
+ !
2
d
+
1
;
1
=
2
+
2
+ !
2
2
+ !
2
d
;
1
:
For nonzero steady state error to a ramp wehave
2
+
2
+ !
2
d
(
2
+ !
2
d
)
;
1
= ;;
or
2
+
2
+ !
2
d
(
2
+ !
2
d
)
; =
1
;;
or
2
+
2
+ !
2
d
;(
2
+ !
2
d
)
(
2
+ !
2
d
)
=
1
:
Then nally
=
(
2
+ !
2
d
)
2
+(1;)(
2
+ !
2
d
)
For zero steady state error to a step input wemust have
T
c
(0) = 1;;
or
K(s + )
(s + ;j!
d
)(s + + j!
d
)(s +
)
s=0
=1;;
1
or
K
(
2
+ !
2
d
)
=1;;
yielding
K =
(
2
+ !
2
d
)
substituting our value for obtained earlier wehave
K =
(
2
+ !
2
d
)
(
2
+ !
2
d
)
2
+(1;)(
2
+!
2
d
)
=2
+(1;)(
2
+ !
2
d
):
Then, for this problem
=
20(3
2
+4
2
)
2320+ (1;0:01)(3
2
+4
2
)
=3:4542
K = 2
+(1;)(
2
+ !
2
d
)
= 2320+ 3
2
+4
2
=144:75:
The MATLAB program
omegan = 5
zeta = 0.6
sigma = omegan * zeta
gamma = 20
eps = 0.01
omegad = omegan * sqrt(1 - zeta^2)
delta = gamma*(sigma^2 + omegad^2);;
delta = delta/(2*sigma*gamma +(1 -eps)* (sigma^2 + omegad^2) )
K=2*sigma*gamma + (1 -eps)*( sigma^2 + omegad^2)
tc = zpk([-delta],[-sigma+j*omegad -sigma-j*omegad -gamma],K)
step(tc)
print -deps sr6828.eps
t=0:0.01:1;;
u=t;;
lsim(tc,u,t)
print -deps rr6828.eps
generates the step and ramp responses shown in Figure 1 and 2 respectively.
2
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 1: Step response of closed loop system
Time (sec.)
A
mp
li
tu
d
e
Linear Simulation Results
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 2: Step response of closed loop system
3