Solution 6.8.3.6
Im(s)
Re(s)
-20 -0.2-1
Figure 1: Root locus
The root locus is shown in Figure 1.
The MATLAB program
z=1
p1 =0
p2 = 0.2
p3 = 20
zeta = 1/sqrt(2)
omegan =linspace(1.2,1.4,200);;
s=-zeta*omegan + j* omegan *sqrt(1-zeta^2);;
ang = (angle(s + z)-angle(s + p1)-angle(s+p2)-angle(s+p3))*180/pi;;
plot(omegan,ang)
print -deps 6836a.eps
creates the plot shown in Figure 2. Wesee that the root locus crosses the
1
1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4
-186
-185
-184
-183
-182
-181
-180
-179
-178
-177
Figure 2: Angle versus real part of s
rayofconstantdamping ratio =1=
p
2ats = ;0:9338+ j0:9338 Indeed,
at s = ;0:9338+ j0:9338, where the net angle is 180:01
.
Then the gain to place closed loop poles at s = ;0:9338+ j0:9338 is
K = jsjjs+2js +20jj
s=;0:9338+j0:9338
=31:981:
The natural frequency of the closed loop poles is
!
n
=
p
0:9338
2
+0:9338
2
=1:3206:
The MATLAB program
z=1
p1 =0
p2 = 0.2
p3 = 20
zeta = 1/sqrt(2)
omegan =linspace(1.2,1.4,200);;
s=-zeta*omegan + j* omegan *sqrt(1-zeta^2);;
ang = (angle(s + z)-angle(s + p1)-angle(s+p2)-angle(s+p3))*180/pi;;
plot(omegan,ang)
print -deps 6836a.eps
2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
T
N2
T
C
Figure 3: Comparison of step responses
s=-zeta*omegan(121) + j*omegan(121)*sqrt(1-zeta^2)
K=(abs(s + p1)*abs(s+p2)*abs(s+p3))/abs(s+z)
omegana = omegan(121)
sc = conj(s)
tn2 = zpk([],[s sc],omegana^2)
g=zpk([-z],[-p1 -p2 -p3],K)
tc = feedback(g,1)
T=linspace(0,5,200);;
[Yn2,T] = step(tn2,T);;
[Ytc,T] = step(tc,T);;
plot(T,Yn2,'k-',T,Ytc,'k--')
print -deps sr6836.eps
Prints and plots the step responses of T
c
(t) and T
N2
(t) shown in Figure 3
3