Solution 6.8.3.7
The root locus is shown in Figure 1. Eventually two limbs of the root locus
Im(s)
Re(s)
-30
-4
Figure 1: Root locus
will cross into the right half plane. The MATLAB program
p1 =0
p2 = 4
p3 = 30
zeta = 1/sqrt(2)
omegan =linspace(2.6,2.7,400);;
s=-zeta*omegan + j* omegan *sqrt(1-zeta^2);;
ang = (angle(s + p1)+angle(s+p2)+angle(s+p3))*180/pi;;
plot(omegan,ang)
print -deps 6837a.eps
creates the plot shown in Figure 2. Wesee that the root locus crosses the
1
2.6 2.65 2.7
179
79.5
180
80.5
181
81.5
Figure 2: Angle versus !
n
rayofconstantdamping ratio =1=
p
2ats = ;1:6874+ j1:8674 Indeed,
at s = ;1:6874+ j1:8674, where the net angle is 180:00
.
Then the gain to place closed loop poles at s = ;1:6874+ j1:8674 is
K = jsjjs +4js +30jj
s=;1:6874+j1:8674
=211:0605:
The natural frequency of the closed loop poles is
!
n
=
p
1:8674
2
+1:8674
2
=2:6409:
The MATLAB program
p1 =0
p2 = 4
p3 = 30
zeta = 1/sqrt(2)
omegan =linspace(2.6,2.7,400);;
s=-zeta*omegan + j* omegan *sqrt(1-zeta^2);;
ang = (angle(s + p1)+angle(s+p2)+angle(s+p3))*180/pi;;
plot(omegan,ang)
print -deps 6837a.eps
s=-zeta*omegan(164) + j*omegan(164)*sqrt(1-zeta^2)
K=abs(s + p1)*abs(s+p2)*abs(s+p3)
2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 3: Comparison of step responses
omegana = omegan(164)
sc = conj(s)
tn2 = zpk([],[s sc],omegana^2)
g=zpk([],[-p1 -p2 -p3],K)
tc = feedback(g,1)
T=linspace(0,5,200);;
[Yn2,T] = step(tn2,T);;
[Ytc,T] = step(tc,T);;
plot(T,Yn2,'k-',T,Ytc,'k--')
print -deps sr6837.eps
Prints and plots the step responses of T
c
(t) and T
N2
(t) shown in Figure 3
3