Solution 6.8.3.5
The root locus is shown in Figure 1. The real part of the complex poles is
Im(s)
Re(s)
-2
s + 2
s
Figure 1: Root locus
-1 the imaginary part is
!
d
= !
n
q
1;
2
=
p
1;
2
= 1:333:
!
n
=
1
:6
=1:6667
The gain that places the poles at s = ;1 j1:3333 is
K = jsjjs+2jj
s=;1+j1:3333
=2:7778:
The closed loop transfer function is exactly T
N2
(s)sothe plots will be
identical. The MATLAB dialogue
EDU>g = zpk([],[0 -2 ], 2.7778)
Zero/pole/gain:
2.7778
1
-------
s(s+2)
EDU>h = 1
h=
1
EDU>tc = feedback(g,h)
Zero/pole/gain:
2.7778
------------------
(s^2 + 2s+2.778)
EDU>step(tc)
EDU>print -deps sr6835f.eps
EDU>
plots and saves the step response shown in Figure 2 shown in Figure 2 The
partial fraction expansion for the step response is
C(s)=
1
s
+
0:625
6
2:4981
s +1+j1:3333
+
0:625
6
2:4981
s +1+j1:3333
Then the time response is
c(t)=[1+1:25e
;t
cos(1:3333t+2:4981)]1(t):
2
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 1 2 3 4 5 6
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 2: Step response
3