Solution 6.8.3.4
The root locus is shown in Figure 1. Eventually two limbs of the root locus
Im(s)
Re(s)
-10
-2 -1
Figure 1: Root locus
will cross into the right half plane. The MATLAB program
alpha = atan(0.75/19)*180/pi
p1 =0
p2 = 1
p3 = 10
zeta = 0.2
omegan =linspace(2.5,3,200);;
s=-zeta*omegan + j* omegan *sqrt(1-zeta^2);;
ang = (angle(s + p1)+angle(s+p2)+angle(s+p3))*180/pi;;
plot(omegan,ang)
print -deps 6834a.eps
1
2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
174
175
176
177
178
179
180
181
182
183
184
Figure 2: Angle versus real part of s
creates the plot shown in Figure 2. Wesee that the root locus crosses the
rayofconstantdamping ratio =0:8ats = ;0:5598+ j2:7424 Indeed, at
s = ;0:5598+ j2:7424, where the net angle is 180:03
.
Then the gain to place closed loop poles at s = ;0:5598+ j2:7424 is
K = jsjjs +1jjs +10jj
s=;0:5598+j2:7424
=85:2322:
The natural frequency of the closed loop poles is
!
n
=
p
0:5598
2
+2:7424
2
=2:799:
The MATLAB program
alpha = atan(0.75/19)*180/pi
p1 =0
p2 = 1
p3 = 10
zeta = 0.2
omegan =linspace(2.5,3,200);;
s=-zeta*omegan + j* omegan *sqrt(1-zeta^2);;
ang = (angle(s + p1)+angle(s+p2)+angle(s+p3))*180/pi;;
plot(omegan,ang)
2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Figure 3: Comparison of step responses
print -deps 6834a.eps
s=-zeta*omegan(120) + j*omegan(120)*sqrt(1-zeta^2)
K=abs(s + p1)*abs(s+p2)*abs(s+p3)
omegana = omegan(120)
sc = conj(s)
tn2 = zpk([],[s sc],omegana^2)
g=zpk([],[-p1 -p2 -p3],K)
tc = feedback(g,1)
T=linspace(0,5,200);;
[Yn2,T] = step(tn2,T);;
[Ytc,T] = step(tc,T);;
plot(T,Yn2,'k-',T,Ytc,'k--')
print -deps sr6834.eps
Prints and plots the step responses of T
c
(t) and T
N2
(t) shown in Figure 3
3