Solution 10.8.8.3
The MATLAB program
w=logspace(-2,4,200);;
s=j*w;;
K=100
p1 = 0
p2 = 0
p3 = 6
p4 = 20
hold off
mag = 20*log10( abs( ( K )
./ ( (s + p1).*(s + p2).*(s +p3).*(s + p4) ) ) );;
phase = ( -angle(s + p1)-angle(s + p2)-angle(s + p3)
-angle(s + p4) )*180/pi;;
plot(phase,mag);;
grid on
axis([-260,-140,-60 80])
print -deps 10883logmag.eps
g=zpk([],[-p1 -p2 -p3 -p4],100)
K=0.1
maga = 20*log10( abs( ( K ) ./ ( (s + p1).*(s + p2).*(s +p3).*(s + p4) ) ) );;
phasea = ( -angle(s + p1)-angle(s + p2)-angle(s + p3)-angle(s + p4) )*180/pi;;
plot(phase,mag,'k-',phasea,maga,'k--');;
grid on
axis([-260,-140,-60 80])
print -deps 10883logmaga.eps
K=linspace(0,1600,500);;
[P,K] = rlocus(g,K);;
plot(real(P),imag(P),'k.')
grid on
print -deps 10882rl.eps
pause
subplot(2,1,1),semilogx(w,mag)
grid on
axis([0.1 1000 -100 40])
subplot(2,1,2), semilogx(w,phase)
grid on
axis([0.1 1000 -380 -160])
print -deps 10882bodema.eps
draws the log magnitude plot shown in Figure 1 With K =100the plot
passes above the point(;1;;0) on the plot. This eauivalenttoanencir-
clementintheGH plane. At rst glance it would seem that lowering the
1
-260 -240 -220 -200 -180 -160 -140
-60
-40
-20
0
20
40
60
80
The point (-1,0)
Figure 1: Log magnitude chart for K = 100
2
-260 -240 -220 -200 -180 -160 -140
-60
-40
-20
0
20
40
60
80
The point (-1,0)
Figure 2: Log magnitude chart for K =100andK =0:1
gain would make the system stable. However, Figure 2 shows that this is
not the case. Nor matter howsmall wemakethegain the plot will pass to
the left (above) the point(;1;;0). The same information is available from
the Bode magnitude and phase plots as shown in Figure 3. The phase starts
at ;180
and goes smoothly to ;360
.Thus, the system is always unstable,
as shown bytheroot locus is Figure 4. As can be seen, twolimbs of the
root locus cross immediately into the righthalfplane.
3
10
-1
10
0
10
1
10
2
10
3
-100
-80
-60
-40
-20
0
20
40
10
-1
10
0
10
1
10
2
10
3
-350
-300
-250
-200
Figure 3: Bode phase and magnitude plots for K =100
4
-25 -20 -15 -10 -5 0 5 10
-15
-10
-5
0
5
10
15
Figure 4: Root locus
5