Solution 10.8.8.7
The MATLAB program
w=logspace(-2,3,200);;
s=j*w;;
K=100
z1 = 3
z2 = 5
p1 = 0
p2 = 0
p3 = 10
p4 = 15
p5 = 20
mag = 20*log10( abs((K.*(s+z1).*(s+z2))./((s+p1).*(s+p2).*(s+p3).*(s+p4).*(s+p5))));;
phase = (angle(s+z1)+angle(s+z1)-angle(s+p1)-angle(s+p2);;
phase = phase-angle(s +p3)-angle(s +p4)-angle(s+p5))*180/pi;;
plot(phase,mag);;
grid on
axis([-260,-60,-80 40])
print -deps 10887logmag.eps
K=50000
maga = 20*log10( abs((K.*(s+z1).*(s+z2))./((s+p1).*(s+p2).*(s+p3).*(s+p4).*(s+p5))));;
phasea = (angle(s+z1)+angle(s+z1)-angle(s+p1)-angle(s+p2);;
phasea = phasea -angle(s +p3)-angle(s +p4)-angle(s+p5))*180/pi;;
plot(phase,mag,'k-',phasea,maga,'k--');;
grid on
axis([-260,-60,-80 80])
print -deps 10887logmaga.eps
g=zpk([-z1 -z1],[-p1 -p2 -p3 -p4 -p5],100)
K=linspace(0,1600,500);;
[P,K] = rlocus(g,K);;
plot(real(P),imag(P),'k.')
grid on
print -deps 10887rl.eps
pause
subplot(2,1,1),semilogx(w,mag)
grid on
axis([0.1 1000 -80 20])
subplot(2,1,2), semilogx(w,phase)
grid on
axis([0.1 1000 -280 -60])
print -deps 10887bodema.eps
1
-260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60
-80
-60
-40
-20
0
20
40
The point (-1,0)
Figure 1: Log magnitude chart for K = 100
draws the log magnitude plot shown in Figure 1 With K =100thegain
margin is about 42 dB. Converting to a real number wehave
10
42=20
=125:89:
Thus, the system is stable for
0 <K<12;;589:
Figure 2 Shows the log magnitude plot for both a stable and unstable value
of K.
The same information is available from the Bode magnitude and phase
plots as shown in Figure 3 By tracing the arrows from the phase scale at
;180
to where it intercepts the phase plot and then going up to the mag-
nitude plot and thence to the magnitude scale we nd, again, that the gain
margin is about 42 dB. From the Bode plot weget the additional information
that the root locus will cross the imaginary axis at about ! =20.
The root locus is shown in Figure 4. As can be seen, twolimbs of the
root locus cross into the righthalf place at ! 20.
2
-260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60
-80
-60
-40
-20
0
20
40
60
80
The point (-1,0)
K = 50,000
K = 100
Figure 2: Log magnitude chart for K =100andK =50;;000
3
10
-1
10
0
10
1
10
2
10
3
-80
-60
-40
-20
0
20
10
-1
10
0
10
1
10
2
10
3
-250
-200
-150
-100
Figure 3: Bode phase and magnitude plots for K =100
4
-70 -60 -50 -40 -30 -20 -10 0 10 20
-50
-40
-30
-20
-10
0
10
20
30
40
50
Figure 4: Root locus
5