Solution 9.10.3.7
S
G
a
=
a
G
@G
@a
=
a
s + a
s(s + b)
@
@a
s + a
s(s + b)
=
as(s + b)
(s + a)
1
s(s + b)
=
a
(s + a)
;;
T
c
(s) =
s + a
s(s + b)
1+
s + a
s(s + b)
=
s + a
s
2
+(b+1)s + a
:
S
T
c
a
=
a
T
c
@T
c
@a
=
a
s + a
s
2
+(b+1)s + a
@
@a
s + a
s
2
+(b +1)s + a
=
a(s
2
+(b+1)s+ a)
s + a
;(s + a)
[s
2
+(b+1)s + a]
2
+
1
s
2
+(b+1)s + a
=
a(s
2
+(b+1)s+ a)
s + a
"
;(s + a)+s
2
+(b+1)s + a
[s
2
+(b+1)s + a]
2
#
=
as(s + b)
(s + a)(s
2
+(b+1)s + a)
;;
S
G
b
=
b
G
@G
@b
=
b
s + a
s(s + b)
@
@b
s + a
s(s + b)
=
bs(s+ b)
(s + a)
;s(s + a)
(s
2
+ bs)
2
=
;bs
s(s + b)
;;
S
T
c
b
=
b
T
c
@T
c
@b
=
b
s + a
s
2
+(b+1)s + a
@
@b
s + a
s
2
+(b+1)s+ a
=
b(s
2
+(b +1)s + a)
s + a
;s(s + a)
[s
2
+(b+1)s + a]
2
=
;bs
s
2
+(b+1)s + a
S
G
K
= S
T
c
K
=0;;
since there is no dependence on K.