Solution 9.10.5.1
T
c
(s)=
K(s +
)
(s + ;j!
d
)(s + + j!
d
)
:
= !
n
=0:85=4;;
!
d
= !
n
q
1;
2
=50:6=3:
We rst nd
to set the desired steady state error to a ramp, namely zero.
Wehave
e
ss
=
1
;j!
d
+
1
+ j!
d
;
1
=
2
2
+ !
2
d
;
1
:
For nonzero steady state error to a ramp wehave
2
2
+ !
2
d
;
1
= ;;
where is the steady state error. Then
1
=
2
2
+ !
2
d
; =
2;(
2
+ !
2
d
)
2
+ !
2
d
;;
or
=
2
+ !
2
d
2 ;(
2
+ !
2
d
)
:
For zero steady state error to a step input wemust have
T
c
(0) = 1;;
or
K(s +
)
(s + ;j!
d
)(s + + j!
d
)
s=0
=1;;
or
K
2
+ !
2
d
=1;;
yielding
K =
2
+ !
2
d
1
substituting our value for
obtained earlier wehave
K =
2
+ !
2
d
2
+ !
2
d
2;(
2
+ !
2
d
)
=2;(
2
+ !
2
d
):
(a)
Then, for part(a)
=
4
2
+3
2
24;0(4
2
+3
2
)
=3:125
K = 2 ;(
2
+ !
2
d
)
= 24;0(4
2
+3
2
)
= 8:
The MATLAB program
omegan = 5
zeta = 0.8
eps = 0.0
sigma = omegan * zeta
omegad = omegan * sqrt(1 - zeta^2)
gamma = (sigma^2 + omegad^2 )/ (2*sigma - eps*(sigma^2 + omegad^2))
K=2*sigma - eps*(sigma^2 + omegad^2)
tc = zpk([-gamma],[-sigma+j*omegad -sigma-j*omegad],K)
step(tc)
print -deps sr91051a.eps
t=0:0.01:1;;
u=t;;
lsim(tc,u,t)
print -deps rr91051a.eps
generates the step and ramp responses shown in Figure 1 and 2 respectively.
(b)
Then, for part(b)
2
Time (sec.)
Amplitude
Step Response
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 1: Step response of closed loop system
Time (sec.)
Amplitude
Linear Simulation Results
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Figure 2: Step response of closed loop system
3
=
4
2
+3
2
24;0:01(4
2
+3
2
)
=3:2258
K = 2 ;(
2
+ !
2
d
)
= 24;0:01(4
2
+3
2
)
= 7:75:
The MATLAB program
omegan = 5
zeta = 0.8
eps = 0.01
sigma = omegan * zeta
omegad = omegan * sqrt(1 - zeta^2)
gamma = (sigma^2 + omegad^2 )/ (2*sigma - eps*(sigma^2 + omegad^2))
K=2*sigma - eps*(sigma^2 + omegad^2)
tc = zpk([-gamma],[-sigma+j*omegad -sigma-j*omegad],K)
step(tc)
print -deps sr91051b.eps
t=0:0.01:1;;
u=t;;
lsim(tc,u,t)
print -deps rr91051b.eps
generates the step and ramp responses shown in Figure 3 and 4 respectively.
(c)
Then, for part(c)
=
4
2
+3
2
24;0:1(4
2
+3
2
)
=4:5455
K = 2;(
2
+ !
2
d
)
= 24;0:01(4
2
+3
2
)
= 5:5:
The MATLAB program
4
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 3: Step response of closed loop system
Time (sec.)
Amplitude
Linear Simulation Results
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Figure 4: Step response of closed loop system
5
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 5: Step response of closed loop system
omegan = 5
zeta = 0.8
eps = 0.1
sigma = omegan * zeta
omegad = omegan * sqrt(1 - zeta^2)
gamma = (sigma^2 + omegad^2 )/ (2*sigma - eps*(sigma^2 + omegad^2))
K=2*sigma - eps*(sigma^2 + omegad^2)
tc = zpk([-gamma],[-sigma+j*omegad -sigma-j*omegad],K)
step(tc)
print -deps sr91051c.eps
t=0:0.01:1;;
u=t;;
lsim(tc,u,t)
print -deps rr91051c.eps
generates the step and ramp responses shown in Figure 5 and 6 respectively.
6
Time (sec.)
A
mp
li
tu
d
e
Linear Simulation Results
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Figure 6: Step response of closed loop system
7