Solution 9.10.5.3 The MATLAB program w=logspace(-2,3,200);; s=j*w;; z1 = 1 p1 = 0 p2 = 100 phase1 = (angle(s + z1)- angle(s + p1) -angle(s + p2) )*180/pi;; semilogx(w,phase1) grid on axis([0.01,1000,-100,0]) print -deps 91053phase1.eps % % z1 = 10 p1 = 1 p2 = 100 p3 = 500 phase2 = (angle(s + z1)- angle(s + p1) -angle(s + p2)-angle(s + p3) )*180/pi;; semilogx(w,phase2) grid on axis([0.01,1000,-150,0]) print -deps 91053phase2.eps generates the phase responses shown in Figure 1 and 2 respectively. By comparing the phase data to that in Figures 9.12 and 9.13, weseethat the phase data agrees very well. 1 10 -2 10 -1 10 0 10 1 10 2 10 3 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 Frequency in rad/s Phase in degrees Figure 1: Phase response Example 9.4.1 2 10 -2 10 -1 10 0 10 1 10 2 10 3 -150 -100 -50 0 Frequency in rad/s Phase in degrees Figure 2: Phase response Example 9.4.1 3