Solution 9.10.5.5
Σ
Σ
c
(s)G
G
p
(s)
R(s)
C(s)
+
_
+
+
D(s)
H(s)
Figure 1: Distubance and Input to Plant
For the system of Fig. 2 wehave
G
p
(s)=
1
s(s +1)
;;
and the two compensators
G
c1
(s)=
K
c
(s +3)
s + b)
G
c2
(s)=
K
c
(s +1:2)
s + b
:
(a)
The angle contribution to place the poles at the desired location has the
same form both compensators, namely
= +180
;
1
;
2
;;
as shown in Fig. 2 For G
c1
wehave
= tan
;1
(3=2:8)+ 180
;[180
; tan
;1
(3=4);[180
; tan
;1
(3=3)]
= 133
+180
; 143:1
;135
= 35
:
The pole is then at
b = 4+
3
tan(35
)
=8:3:
XXXO
θ
1
θ
2
α
β
Re(s)
Im(s)
Figure 2: Angle Calculation to Place Pole of Compensator
The gain to place the poles is
K
c
=
jsjjs +1jjs +8:3j
js +1:2j
s=;4+j3
=
p
25
p
18
p
27:49
p
16:84
= 27:1
Thus,
G
c1
(s)=
27:1(s+1:2)
s +8:3
:
For G
c2
wehave
= [180
; tan
;1
(3=1)]+ 180
; [180
; tan
;1
(3=4); [180
; tan
;1
(3=3)]
= 108:4
+ 180
; 143:1
; 135
= 10:33
:
The pole is then at
b = 4+
3
tan(10:33
)
=20:46:
The gain to place the poles is
K
c
=
jsjjs+1jjs+20:46j
js +3j
s=;4+j3
=
p
25
p
18
p
279:93
p
10
= 112:2
Thus,
G
c2
(s)=
112(s +3)
s +20:46
:
(b)
To nd
T
d
(s)=
C
d
(s)
D(s)
;;
Set R =0.Then
C
d
=(D;G
c
C
d
)G
p
= DG
p
;G
c
G
p
C
d
;;
or
T
d
(s)=
G
c
(s)
1+G
c
(s)G
p
(s)
:
For T
d
(j!)tobesmall wemust either have G
p
(j!)very large or G
c
(j!)
very small. Wecan"tdo anything about G
p
(j!), but wedohavecontrol of
G
c
(j!).
For G
c1
wehave
T
d1
=
27:1(s+1:2)
s(s +1)(s+8:3)+ 27:1(s+1:2)
=
27:1(s+1:2)
s
3
+9:3s
2
+35:4s +32:52
=
27:1(s+1:2)
(s +1:3)(s+4;j3)(s+4+j3)
For G
c2
wehave
T
d1
=
112(s +3)
s(s +1)(s+20:46)+ 112(s +3)
=
112(s+3)
s
3
+21:46s
2
+132:46s+336
=
112(s+3)
(s +13:5)(s+4;j3)(s+4+j3)