ú? [? u
?Ds v [?T
Z?
?
E?c f
?
Df
?[)
?
B a' à Q
1 af
??
¥Bá
l ??àQ
!f
?
{ Df
? ?l]B?
?"
?? i¥?
?}
n
f f D ε8iB? ??
?
P¤?
HBMN Nn > Dx∈ ?μ
ε<? )()( xfxf
n
5?f
?
{
Bá
l ?? b:S }
n
f D f )()( xfxf
n
? )( ∞→n b Dx∈
2 af
?)
? ¥Bá
l ??àQ
! {
^?l
?"})(xu
n
E
¥B?f
?
: ?
∑
=
=
n
k
nn
xuxS
1
)()(
εε <?∈?>?? )()(,,, xSxSDxNnN
n
?μ? 5?f
?[)
?
∑
∞
=
=
1
)()(
k
n
xuxS
EBá
l ? b
3 aBá
l ? ?YE
? ? 1
O Bá
l ?5
ε
ε
<+……++
??>?>??
+++
∞
=
∑
)()()(
,,,,0)(
21
1
xaxaxa
xpNnNxa
pnnn
n
n
?Bá
l ?
? ? 2 (3 ? X ??YE ) ¥?s? Báμ? ??t? 05 )(
1
xa
n
n∑
∞
=
)(xS
n
)(xv
n
)()(
1
xvxa
n
n
n∑
∞
=
Bá
l ? b
4 aBá
l ? f
?
?f
?[)
?¥?é
? ? 3
!f
?
{
B á
l ? ? O
?? n
5 ? (iOM? b
}
n
f ),(),(
00
bxxa ∪ )(xf
nn
xx
axf =
→
)(lim
0
n
n
a
∞→
lim )(lim
0
xf
xx→
? ? 4
?? ? ?f
?
{ uW}
n
f I
Bá
l ? O
?B[? ?? 5Kf
?
f I
9 ?? b
? ? 5
V ??f
?
{ uW
Bá
l ?O
?B[? ??5 }
n
f ],[ ba
1
ú? [? u
?Ds v [?T
Z?
dxxfdxxf
b
a
n
n
n
b
a n
)(lim)(lim
∫∫
∞→∞→
=
? ? 6
V±?
! { 1 ?lu W
¥f
?
?}
n
f ],[ ba ],[
0
bax ∈ 1 ¥
l
?? { ¥
?B[ ? ??¥?f
?O
{}
n
f
}
n
f ],[ ba { }nf
'
Bá
l ?5 ],[ ba
)(lim))(lim( xf
dx
d
xf
dx
d
n
n
n
n ∞→∞→
=
= a' Z E
1 a ¨ O
?
5 a M-?YE a-:?3 ? X ??YE?f
?
?f
?[)
¥Bá
l ?? b
2 a¨ V? a V±??? ?9
?tf
?[)
?¥? b
3 a¨?[p a?[p?? ?9
?tf
?[)
? b
? a' 1 p
1 g?f
?
?f
?[)
?¥Bá
l ?àQ b
2 ¨ O
?
5 a M-?YE a -:?3 ? X ??YE?f
?
?f
?[)
?¥
Bá
l ?? b
3¨ V? a V±??? ?9
?tf
?[)
?¥? b
4¨?[p a?[p?? ?9
?tf
?[)
? b
1 a?? è 5
è 1 f
?
)1ln(
2
1
)(
22
xn
n
xf
n
+= ,,2,1L=n D
22
/
1
)(
xn
nx
xf
n
+
=
?
l ?? 0? ?
,,2,1L=n
]1,0[
2
1
)()(maxlim
//
]1,0[
=?
∈∞→
xfxf
n
xn
?[?f
?
?B
á
l ??μ
)}({
/
xf
n
]1,0[
[ ]
/
/
)(lim0)(lim xfxf
n
n
n
n ∞→∞→
== b
è 2 f
? [)
?
∑
+
+?
1
)()1(
n
nn
n
nx
Bá
l ? b y1:]1,0[
n
xu
n
n
)1(
)(
?
=
n
n
n
x
xv )1()( +=
Hμ-:?YEü?¤?2T b
è 3
∑
+
?
+
)
1
(
1
n
x
n
x
nn
[-1,1]
Bá
l ? b
£
{
è 4
1
∑
!n
x
n
l ? b
2],[ ba
∑
2
x41
x
R
Bá
l ?
£
{ b
2
ú? [? u
?Ds v [?T
Z?
? a1? 5
1
! ()
n
f x (1,2,n )= ??? [,
μ? iO {(]ab )}
n
f x [,
Bá
l ? p£]ab ()
n
f x
[,
Báμ? b ]ab
2
! ?l?
7()fx (,)ab
[()]
()
n
nf x
fx
n
= (1,2,n )= ??? .
p£ {()}
n
f x (,
Bá
l ?? b )ab ()fx
3
! =μ ??¥?
?()fx (,)ab ()fx′ O
1
() [ ( ) ()],
n
f x nfx fx
n
=+?
p£>uW [, ]α β ()abα β<<< )}
n
Bá
l ?? ()fx′ .
{(f x
4
!
1
()f x [,
ó
£ V?lf
??
]ab
1
() ()
x
nn
a
f xft
+
=
∫
dt )? (1 ,2,n =?
p£ {()}
n
f x [,
Bá
l ??
, b ]ab
5?
? α|
I
1′
H () ,
nx
n
fx nxe
α ?
= 1, 2, 3,n = ???>uW [0
l ?$>u ,1]
W [0 Bá
l ?$
P,1]
1
0
lim ( )
n
n
f xdx
?>∞
∫
Vs|/|K$
6£
ü?
2
()
nx
n
f xnxe
?
= (1,2,n )= ??? >uW [0
l ?? ,1]
11
00
lim ( ) lim ( ) .
nn
nn
f xdx f xdx
?>∞ ?>∞
≠
∫∫
7
! ()
n
f x (1,2,n )= ??? Bá ??O {((,?∞ +∞) )}
n
f x (,)?∞+∞Bá
l ??
bp£
Bá ?? b ()fx ()fx (,?∞ +∞)
8
! {()}
n
f x
^ [,
¥ ??f
?
O {(]ab )}
n
f x [, Bá
l ?? ]ab ()fx
? [,]
n
x ab∈ (1,2,n = ???)
?@
0
lim
n
n
x x
?>∞
= p£
0
lim ( ) ( ).
nn
n
f xfx
?>∞
=
9
! {()}
n
f x =Bá
l ?? (,)ab ()fx
0
(,)x ab∈ O
0
lim ( ) ,
nn
xx
f xa
?>
=
b£
ü ?(1,2,n =?)? lim
n
n
a
?>∞
0
lim ( )
xx
f x
?>
iOM?'
00
lim lim ( ) lim lim ( )
nn
nxx xxn
f xf
?>∞ ?> ?> ?>∞
= x.
10
! ()
n
f x (1,2,n = ???) [, ó
£ VO {(]ab )}
n
f x [, Bá
l ?? ]ab ()fx
£
ü [, ó
£ V b ()fx ]ab
11p/
f
?[)
?¥
l ?u×
'¥?Hq¥
3
ú? [? u
?Ds v [?T
Z?
ò