Lectures D25-D26 :
3D Rigid Body Dynamics
12 November 2004
Outline
Dynamics 16.07 Dynamics D25-D26 1
?Review of Equations of Motion
?Rotational Motion
?Equations of Motion in Rotating Coordinates
?Euler Equations
?Example: Stability of Torque Free Motion
?Gyroscopic Motion
- Euler Angles
- Steady Precession
?Steady Precession with M = 0
Equations of Motion
Dynamics 16.07 Dynamics D25-D26 2
Conservation of Linear Momentum
˙L = F, L = mvG
Conservation of Angular Momentum
˙HG = MG, HG = IGω
or
˙HO = MO, HO = IOω
EquationsofMotioninRotatingCoordinates
Dynamics 16.07 Dynamics D25-D26 3
Angular Momentum
HG = IGω (or HO = IOω)
Time variation
- Non-rotating axes XYZ (I changes)
˙H = ˙Iω+I˙ω ... ˙I big problem!
- Rotating axes xyz (I constant)
˙H = ( ˙H)xyz + ?×H
= I(˙ω)xyz + ?×H
EquationsofMotioninRotatingCoordinates
Dynamics 16.07 Dynamics D25-D26 4
( ˙H)xyz + ?×H = M
or,
˙Hx?Hy?z +Hz?y = Mx
˙Hy?Hz?x +Hx?z = My
˙Hz?Hx?y +Hy?x = Mz
xyz axis can be any right-handed set of axis, but
. . . willchoosexyz(?) to simplifyanalysis(e.g.I constant)
Example:ParallelPlaneMotion
Dynamics 16.07 Dynamics D25-D26 5
ωx = ωy = 0, ωz negationslash= 0
Hx = ?Ixzωz, Hy = ?Iyzωz, Hz = Izωz
Body fixed axis ? = ω (and z≡Z)
?Ixz ˙ωz +Iyzω2z = Mx (1)
?Iyz ˙ωz?Ixzω2z = My (2)
Iz ˙ωz = Mz (3)
Solve (3) for ωz, and then, (1) and (2) for Mx and My.
Euler’s Equations
Dynamics 16.07 Dynamics D25-D26 6
If xyz are principal axes of inertia
?Hx = Ixωx, Hy = Iyωy,Hz = Izωz
?? = ω
Ix˙ωx?(Iy?Iz)ωyωz = Mx
Iy ˙ωy?(Iz?Ix)ωzωx = My
Iz ˙ωz?(Ix?Iy)ωxωy = Mz
Euler’s Equations
Dynamics 16.07 Dynamics D25-D26 7
?Body fixed principal axes
?Right-handed coordinate frame
?Origin at:
– Center of mass G (possibly accelerated)
– Fixed point O
?Non-linear equations . . . hard to solve
?Solution gives angular velocity components . . . in
unknown directions (need to integrate ω to
determine orientation).
Example:StabilityofTorqueFreeMotion
Dynamics 16.07 Dynamics D25-D26 8
Body spinning about principal axis of inertia,
ωz = ω, ωx = ωy = 0
Consider small perturbation
ωx, ωy, lessmuchω
After initial perturbation M = 0
Ix˙ωx?(Iy?Iz)ωyωz = 0 (1)
Iy ˙ωy?(Iz?Ix)ωzωx = 0 (2)
Iz ˙ωz?(Ix?Iy)ωxωybracehtipupleft bracehtipdownrightbracehtipdownleft bracehtipupright
small
= 0 (3)
Example:StabilityofTorqueFreeMotion
Dynamics 16.07 Dynamics D25-D26 9
From (3) → ωz ≈ω≡ constant
Differentiate (1) and substitute value of ˙ωy from (2),
→ . . .
Ix¨ωx?(Iy?Iz)(Iz?Ix)I
y
ω2ωx = 0
or,
¨ωx?Aωx = 0, A = ?(Iz?Iy)(Iz?Ix)I
xIy
ω2
Solutions,
ωx = Ae
√At
+Be?
√At
Example:StabilityofTorqueFreeMotion
Dynamics 16.07 Dynamics D25-D26 10
?A> 0→√A> 0→ Growth → Unstable
Ix <Iz <Iy, or Iy <Iz <Ix
?A<0→√A=iα→Oscillatory→Stable
Iz >Ix,Iy, or Iz <Ix,Iy
GyroscopicMotion
Dynamics 16.07 Dynamics D25-D26 11
?Bodies symmetric w.r.t.(spin) axis
Iz = I, Ix = Iy = I0
?Origin at fixed point O (or at G)
GyroscopicMotion
Dynamics 16.07 Dynamics D25-D26 12
?XYZ fixed axes
?xprimeyprimez body axes — angular velocity ω
?xyz “working” axes — angular velocity ?
GyroscopicMotion Euler Angles
Dynamics 16.07 Dynamics D25-D26 13
φ : Precession
θ : Nutation
ψ : Spin
– position of xyz requires φ and θ
– position of xprimeyprimez requires φ, θ and ψ
Relation between (φ,θ,ψ) and ω,(and ?)
ωx = ˙θ ?x = ˙θ
ωy = ˙φsinθ ?y = ˙φsinθ
ωz = ˙φcosθ+ ˙ψ ?z = ˙φcosθ
GyroscopicMotion Euler Angles
Dynamics 16.07 Dynamics D25-D26 14
Angular Momentum
Hx = Ixωx = I0 ˙θ
Hy = Iyωy = I0 ˙φsinθ
Hz = Izωz = I( ˙φcosθ+ ˙ψ)
Equation of Motion,
˙Hx?Hy?z +Hz?y = Mx
˙Hy?Hz?x +Hx?z = My
˙Hz?Hx?y +Hy?x = Mz
GyroscopicMotion Euler Angles
Dynamics 16.07 Dynamics D25-D26 15
become,
I0(¨θ? ˙φ2sinθcosθ)+I ˙φsinθ( ˙φcosθ+ ˙ψ) = Mx
I0(¨φsinθ+2˙φ˙θcosθ)?I˙θ( ˙φcosθ+ ˙ψ) = My
I(¨ψ+ ¨φcosθ? ˙φ˙θsinθ) = Mz
. . . not easy to solve!!
GyroscopicMotion SteadyPrecession
Dynamics 16.07 Dynamics D25-D26 16
˙φ = constant, ¨φ = 0
θ = constant, ˙θ = ¨θ = 0
˙ψ = constant, ¨ψ = 0
GyroscopicMotion SteadyPrecession
Dynamics 16.07 Dynamics D25-D26 17
˙φsinθ[I( ˙φcosθ+ ˙ψ)?I0 ˙φcosθ] = Mx
0 = My
0 = Mz
Also, note that ( ˙H)xyz = 0→
H does not change in xyz axes
External Moment
Mx = mgzGsinθ
GyroscopicMotion SteadyPrecession
Dynamics 16.07 Dynamics D25-D26 18
Then,
I ˙φ ˙ψ?(I0 ?I) ˙φ2 cosθ = mgzG
If ˙ψgreatermuch ˙φ, or, θ≈ pi2,
˙φ = mgzG
I ˙ψ
˙φ: precession velocity,
˙ψ: spin velocity
SteadyPrecessionwithM=0
Dynamics 16.07 Dynamics D25-D26 19
MG = 0 ? HG = constant
HGx=I0ωx =0
HGy=I0ωy =HGsinθ
HGz=Iωz =HGcosθ
tanθ=HGyH
Gz
=I0Iωyω
z
=I0I tanβ
SteadyPrecessionwithM=0
DirectPrecession
Dynamics 16.07 Dynamics D25-D26 20
From x-component of angular momentum equation,
˙φ = I ˙ψ
(I0 ?I)cosθ
If I0 >I, then β<θ (tanθ = (I0/I)tanβ), → ˙φ
same sign as ˙ψ
SteadyPrecessionwithM=0
RetrogradePrecession
Dynamics 16.07 Dynamics D25-D26 21
˙φ = I ˙ψ
(I0 ?I)cosθ
If I0 <I, then β>θ (tanθ = (I0/I)tanβ), → ˙φ
and ˙ψ have opposite signs